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THE DYSON BROWNIAN MINOR PROCESS

by Mark ADLER,
Eric NORDENSTAM & Pierre VAN MOERBEKE

Abstract. — Consider an n× n Hermitean matrix valued stochastic process
{Ht}t>0 where the elements evolve according to Ornstein-Uhlenbeck processes. It
is well known that the eigenvalues perform a so called Dyson Brownian motion,
that is they behave as Ornstein-Uhlenbeck processes conditioned never to inter-
sect.
In this paper we study not only the eigenvalues of the full matrix, but also the
eigenvalues of all the principal minors. That is, the eigenvalues of the k× k minors
in the upper left corner of Ht. Projecting this process to a space-like path leads to
a determinantal process for which we compute the kernel. This kernel contains the
well known GUE minor kernel, and the Dyson Brownian motion kernel as special
cases.
In the bulk scaling limit of this kernel it is possible to recover a time-dependent
generalisation of Boutillier’s bead kernel.
We also compute the kernel for a process of intertwined Brownian motions intro-
duced by Warren. That too is a determinantal process along space-like paths.
Résumé. — Nous considérons une processus stochastique fourni par une ma-

trice {Ht}t>0 de taille n, dont les éléments évoluent selon un processus d’Ornstein-
Uhlenbeck. Les valeurs propres de Ht évoluent selon un mouvement Brownien de
Dyson, c’est-à-dire qu’elles décrivent n processus d’Ornstein-Uhlenbeck répulsifs.
Dans cet article, nous considérons non seulement les valeurs propres de la matrice
elle-même, mais aussi les valeurs propres combinées avec celles des mineurs prin-
cipaux ; c’est-à-dire les valeurs propres des sous-matrices dans le coin supérieur
gauche de la matrice Ht. Ce processus, projeté sur des chemins “spatiaux” appro-
priés, est un processus déterminantal dont nous fournissons le noyau ; en outre,
le noyau GUE-mineur et le noyau du processus de Dyson apparaissent tous deux
comme des cas particuliers.
La limite dans le “bulk” de ce noyau fournit une généralisation, dépendante du
temps, du noyau “bead” de Boutillier.
Nous calculons également le noyau pour un processus de mouvements browniens
entrelacés introduit par Warren ; celui-ci est également un processus déterminantal
le long de chemins spatiaux.
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1. Introduction

In a classic paper Dyson [15] introduced a dynamics on random Her-
mitean matrices where each free matrix element evolves independently of
all others. They each form an Ornstein-Uhlenbeck process, that is a Brow-
nian motion with a drift toward zero. He successfully analysed the associ-
ated dynamics of the eigenvalues. Even the fact that the eigenvalues form
a Markov process is highly non-trivial.

This has become one of the most well studied models of random matrix
theory. It is beyond the scope of this paper to completely survey the liter-
ature but some notable results are these. It has been found to be a limit of
discrete random walks conditioned never to intersect, for which correlation
kernels have been found; see [33, 20, 21, 23, 22, 16, 28, 29]. Other work
includes [4, 37, 38, 1]. In particular, in [38, 1], partial differential equations
were derived for the Dyson process and related processes. Actually there are
two processes that have been called Dyson Brownian motion. The first is
this: Let a Hermitean matrix Bt evolve according to the transition density,
for s < t,

(1.1) Pr(Bt ∈ dB|Bs = B̄) = Ce−Tr(B−qt−sB̄)2/(1−q2
t−s)

where qt−s = e−(t−s) and C is the normalisation constant that makes this
a probability density. Then this is a stationary process and its stationary
measure is called the Gaussian Unitary Ensemble (GUE), see [32, chap-
ter 9]. An n× n GUE matrix B is given by

Pr(B ∈ dB) = Ce−TrB2
dB.

What this boils down to is that the elements on the diagonal are indepen-
dent Gaussians with mean 0 and variance 1

2 . For the off-diagonal elements
the real and imaginary parts are independent Gaussians with mean 0 and
variance 1

4 . For an n× n Hermitean matrix B let eigB = (λ1 < · · · < λn)

ANNALES DE L’INSTITUT FOURIER
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denote the vector of eigenvalues of B. The distribution of the eigenvalues
is exactly

Pr(eigB ∈ dλ) = C
∏

16i<j6n
(λi − λj)2

n∏
i=1

e−λ
2
i dλi

where C is a normalisation constant, see [32, chapter 3]. For (1.1) the tran-
sition density for the eigenvalues is then, by the Harish-Chandra formula,

Pr(eigBt ∈ dλ | eigBs = λ̄)

= C
∆(λ)
∆(λ̄)

det[e−(λi−e−(t−s)λ̄j)2/(1−e−2(t−s))]ni,j=1

n∏
i=1

dλi.

Here, ∆ denotes the Vandermonde determinant. See [23] for a readable
overview. This expression is a Doob h-transform of a Karlin-McGregor
determinant, see [14, 27]. That means that this can be interpreted proba-
bilistically as n Ornstein-Uhlenbeck processes evolving in time conditioned
never to intersect.
A second process that is often called Dyson Brownian Motion, but is

not stationary, is the following. Consider n standard Brownian motions
(x1(t), . . . , xn(t))t∈R conditioned never to intersect. The transition density
for that process would be

(1.2) Pr(x(t) ∈ dx |x(s) = x̄) = C
∆(x)
∆(x̄) det[e−(xi−x̄j)2/(t−s)]ni,j=1

n∏
i=1

dxi.

It can be realised by a Hermitean matrix where the elements evolve as
identical independent standard Brownian motions.
For the purpose of this article consider the following model which we shall

call the Dyson Brownian minor process or (DBM process). Let (Bt)t∈R+ be
an N×N Hermitean matrix-valued stochastic process started at t = 0 with
B0 given by the GUE distribution. Let the process evolve with transition
density given by (1.1). For n = 1, . . . , N let B(n)

t be the n×n submatrix in
the upper left corner (principal minor) of Bt. We are interested in all the(
N+1

2
)
eigenvalues of B(n)

t for n = 1, . . . , N .
If λ is an eigenvalue of B(n)

t then we shall say that there is a particle at
(n, λ, t). In this way we can think of the DBM process as a point process,
that is a measure on configurations of points or particles on the space
{1, . . . , N} × R × R+. It turns out that this is, in the terminology of [6],
a determinantal point process along space-like paths. More precisely, that
means the following.

TOME 64 (2014), FASCICULE 3



974 Mark ADLER, Eric NORDENSTAM & Pierre VAN MOERBEKE

For notation we shall write that

(n, t) < (n′, t′) :=


true if n > n′

true if n = n′ and t < t′

false otherwise.

and
(n, t) > (n′, t′) := ¬((n, t) < (n′, t′)).

Theorem 1.1. — Take a sequence {(ni, xi, ti)}ki=1 of levels, positions
and times. Let them follow a space-like path, which means that

(1.3) 0 6 t1 6 t2 6 · · · 6 tk,

(1.4) n1 > n2 > · · · > nk.

Then the density of the event that there is a particle at time ti on level ni
at position xi in the Dyson Brownian minor process is

ρ((n1, x1, t1), . . . , (nk, xk, tk)) = det[KDBM((ni, xi, ti), (nj , xj , tj))]ki,j=1

where

KDBM((n, x, t), (n′, x′, t′)) =

−1∑
l=−∞

√
(n′ + l)!
(n+ l)! e

−l(t′−t)h∗n+l(x)h∗n′+l(x′)e−(x′)2
, for (n, t) > (n′, t′),

−
∞∑
l=0

√
(n′ + l)!
(n+ l)! e

−l(t′−t)h∗n+l(x)h∗n′+l(x′)e−(x′)2
, for (n, t) < (n′, t′).

Furthermore

(1.5) KDBM((n, x, t), (n′, x′, t′)) = −φDBM((n, x, t), (n′, x′, t′))

+ 2(n′−n)/2 2
(2πi)2

∫
γ

du

∫
Γ
dv
vn
′

un
e−u

2+2ux+v2−2vx′

e−(t′−t)v − u
where

(1.6) φDBM((n, x, t), (n′, x′, t′)) =2(n−n′)/2en
′(t′−t)

∫
R
Hn−n′(x− y)p∗t′−t(y, x′) dy, if (n, t) < (n′, t′),

0, otherwise.

The contours of integration are such that γ encloses the pole at the origin
and Γ goes from −i∞ to i∞ in such a way that |u| < |v| always, see
Figure 1.1.

ANNALES DE L’INSTITUT FOURIER
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Figure 1.1. Contours of integration.

Here the h∗n, for n = 0, 1, . . . , are the normalised Hermite polynomials of
order n, see Section 6.1. The h∗n for n = −1, −2, . . . , are defined to be zero.
The function p∗ is the transition density of an Ornstein-Uhlenbeck process,
see (6.2). Also Hn is the nth anti-derivative of the Dirac delta function,
see (6.1). Theorem 1.1 will be proved in Section 7.5.
The term space-like path for a path in space-time satisfying (1.3) and

(1.4) was coined in [6] and, while the reason for using that name is not
made clear, the terminology has become standard.

It is quite clear that this process, along a space-like path, is a Markov
process. It is known from Dyson [15] that this process is Markovian on
a fixed level, that is for constant n. Baryshnikov [3] observed that it is a
Markov process for fixed time going down one level (say from n to n− 1).
A space-like path is a combination of steps in time and steps going down
one level, i.e. it is a combination of consecutive Markov steps.
A beautiful construction due to Warren [39] goes as follows. Start a

1-dimensional Brownian motion, say (x(t))t>0 at the origin at time t =
0. Then start two new processes, say (y1(t))t>0 and (y2(t))t>0, such that
y2(t) < x(t) < y1(t). They evolve as Brownian motions except that they
are pushed up and down, respectively, by x(t). For details see [39]. It is
then a theorem that y1 and y2 together form a Dyson Brownian motion in
the sense that their transition density is of the same form as (1.2). This
procedure can be continued: one can start three processes above, between
and below y1 and y2. These three will then be a Dyson Brownian motion of
three particles and so on. This process occurs as a scaling limit in the study
of a certain random tiling model [35]. To reduce the amount of numerical
factors floating around we shall in this paper consider the Warren process

TOME 64 (2014), FASCICULE 3



976 Mark ADLER, Eric NORDENSTAM & Pierre VAN MOERBEKE

to be driven by Brownian motions with variance t/2 instead of standard
Brownian motion. This is just an unimportant rescaling.
For this model we can show a result analogous to that of Theorem 1.1.

Theorem 1.2. — Take a sequence {(ni, ti, xi)}ki=1 of times as in the
previous Proposition. Then the density of the event that there is a particle
at time ti on level ni at position xi in Warren’s process is

ρ((n1, x1, t1), . . . , (nk, xk, tk)) = det[KW((ni, xi, ti), (nj , xj , tj))]ki,j=1

where

KW((n, x, t), (n′, x′, t′)) =

1√
t

−1∑
l=−∞

√
(n′ + l)!
(n+ l)!

(
t

t′

)l
h∗n+l(x/

√
t)h∗n′+l(x′/

√
t′)e−(x′)2/t′ ,

for (n, t) > (n′, t′),

− 1√
t

∞∑
l=0

√
(n′ + l)!
(n+ l)!

(
t

t′

)l
h∗n+l(x/

√
t)h∗n′+l (x′/

√
t′)e−(x′)2/t′ ,

for (n, t) < (n′, t′).

Furthermore

2 1
2 (n−n′)KW((n, x, t), (n′, x′, t′)) = −φW((n, x, t), (n′, x′, t′))

+ 2
(2πi)2

tn/2(t′)n′/2√
t

∫
γ

du

∫
Γ
dv
vn
′

un
e−u

2+2ux/
√
t+v2−2vx′/

√
t′

tv − u

where

φW((n, x, t), (n′, x′, t′)) =
√

(t′)n′

tn

∫
R
Hn−n′(x− y)pt′−t(y, x′) dy, if (n, t) < (n′, t′),

0, otherwise.

The contours of integration are such that γ encloses the pole at the origin
and Γ goes from −i∞ to i∞ in such a way that |u| < |v| always, see
Figure 1.1.

Again h∗n is the normalised Hermite polynomial of order n, see Section 6.2
and Hn is the nth anti-derivative of the Dirac delta function, see (6.1).
The function p is the transition density of a Brownian motion, see (6.3).
Theorem 1.2 will be proved in Section 7.5.

ANNALES DE L’INSTITUT FOURIER
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Note that although the kernels KW and KDBM are just a change of vari-
ables from each other, the underlying processes are different in an essential
way. As noted in [2], the difference of the eigenvalues of successive levels are
pushed apart by a constant drift when they are close. In the construction
due to Warren in [39] the difference of the particles on successive levels be-
have like the absolute value of a Brownian motion when they are close. It
is to be remarked that if the minor process was constructed with Brownian
motions replacing the Ornstein-Uhlenbeck prcesses, the marginals along
space-like paths would agree with the Warren process.
No article on random matrices is complete without a scaling limit, so let

us do one of those. In [11], Boutillier introduced a one-parameter family
of models which are point processes on N× R. On each individual copy of
R, it specialises to a determinantal process with the sine kernel which is so
prevalent in all branches of random matrix theory, see [32]. Furthermore,
on successive lines the particles interlace. By that we mean that if there
are particles at (n, x1) and (n, x2), then there is a unique particle (n+1, y)
such that x1 < y < x2 almost surely. As a scaling limit of KDBM above we
recover a kernel which specialises to the Boutillier Bead kernel at a fixed
time. One way to interpret this is to imagine all the particles in Boutillier’s
model moving in time in such a way that at each fixed time the picture
looks like the original Bead kernel model.

Theorem 1.3. — Let a be a real number on the interval (−1, 1). In the
bulk scaling limit around a

√
2N the Dyson Brownian minor kernel con-

verges to a time dependent Bead kernel with parameter a. More precisely,

KBead
a ((n, x, t), (n′, x′, t′)) = lim

N→∞
e−N(t′−t)(4N) 1

2 (n−n′)(2N)− 1
2×

×KDBM((N + n,
√

2Na+ x√
2N

,
t

2N ), (N + n′,
√

2Na+ x′√
2N

,
t′

2N ))

where

(1.7) KBead
a ((n, x, t), (n′, x′, t′)) :=

− φBead
a ((n, x, t), (n′, x′, t′)) + 1

2πi

∫ u+

u−

un
′−ne

1
2 (t′−t)(u2−2au)+u(x−y) du

with

TOME 64 (2014), FASCICULE 3
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(1.8) φBead
a ((n, x, t), (n′, x′, t′)) :={

2 1
2 (n−n′) ∫

RH
n−n′(x−y)p 1

2 (t′−t)(y, x′−a(t′−t)) dy if (n, t) < (n′, t′)
0 otherwise.

The limit holds uniformly on compact sets and the contour of integration
in (1.7) is the straight line between u− and u+ where

(1.9) u± = a± i
√

1− a2

are two points on the unit circle.

(The topology used to define compact sets on (N × R2)2 is the product
topology of discrete topology on N and Euclidean topology on R.)

Remark that (1.8) contains the transition density p of Brownian motion,
defined in (6.3), rather than p∗, defined in (6.2). Theorem 1.3 is proved
in Section 8. Remark too that, since the KDBM kernel could only be used
along space-like paths, the same is true for our time dependent Bead kernel.
Finally notice that the kernelKBead

a coincides with Boutillier’s kernel in [11]
with parameter a in the special case t = t′.

Of course convergence of the kernel in this case does not imply conver-
gence of the processes, since the kernel only says something about the be-
haviour on space-like paths. Nor does this theorem give any hint as to how
one might construct such a dynamical version of a Bead process. However,
specialising the theorem above to t = t′ leads to the following Corollary.
Though by no means unexpected, this result has to our knowledge not
previously appeared in the literature.

Corollary 1.4. — The GUE Minor process, defined in [25], converges
in the same bulk scaling limit to Boutillier’s bead process, defined in [11].

Proof. — The kernel KDBM specialised to t = t′ is exactly the GUE Mi-
nor kernel and KBead

a with t = t′ is Boutillier’s kernel. Uniform convergence
on compacts for the kernels is necessary for process convergence. �

The plan of the paper is to first, in Sections 2, 3 and 4, outline the
necessary basic theory about point processes. This is mostly a verbose
summary of [10, 7]. Section 6 is devoted to computing certain convolution
equalities and setting up clever notation so that Theorems 1.1 and 1.2 can
be proved at the same time, performing the computation only once. In
Section 7 the actual computation is performed and the article is rounded
of by the asymptotic analysis in Section 8.

ANNALES DE L’INSTITUT FOURIER
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The fact that the GUE minor kernel can be extended to a dynamic
version in this way begs the question whether something similar can be
done with the antisymmetric GUE minor kernel from [12, 13, 19]. In recent
works, see [8, 30], random walks conditioned to stay in Weyl chambers of
the form

0 < x1 < x2 < · · · < xn

and

|x1| < x2 < · · · < xn

and their diffusion limits have been analysed. It is reasonable to believe
that such processes could be realised by Ornstein-Uhlenbeck dynamics on
antisymmetric purely imaginary matrices of odd respectively even size. If
so then it appears this model could be analysed with the same tools used
in this paper and would lead to a result similar to Theorem 1.1 but with
an antisymmetric Dyson Brownian minor kernel

KA−DBM((n, x, t), (n′, x′, t′)) =

−1∑
l=−∞

√
(n′+2l)!
(n+2l)! e

−2l(t′−t)h∗n+2l(x)h∗n′+2l(x′)e−(x′)2
, for (n, t)>(n′, t′),

−
∞∑
l=0

√
(n′+2l)!
(n+2l)! e

−2l(t′−t)h∗n+2l(x)h∗n′+2l(x′)e−(x′)2
, for (n, t)<(n′, t′).

That is beyond the scope of this paper, but this kernel is in [9] recovered as
a scaling limit in a certain model related to the totally asymmetric simple
exclusion process (TASEP).
While this article was being prepared it came to the attention of the

authors that Patrik Ferrari and René Frings [17] were working on related
problems. They prove an analog of Theorem 1.1 for matrices whose elements
evolve as Brownian motions and also for the Laguerre ensemble.

2. Point processes

Let Λ be a complete, separable metric space with some reference measure
λ; for instance, R with the Lebesgue measure or Z with counting measure.
Let M(Λ) be the set of integer valued and locally finite measures on Λ. A
point process X on Λ is a measure on M(Λ). It is beyond the scope of this
article to give a complete overview of the theory of point processes, but
some results which we use are detailed here.

TOME 64 (2014), FASCICULE 3



980 Mark ADLER, Eric NORDENSTAM & Pierre VAN MOERBEKE

A point process can be represented as

X =
∑
i∈I

δxi

where (xi)i∈I are random variables which we shall refer to as the points
or the particles of X. Think of this as a random configuration of points or
particles on the space Λ. In this paper we shall only consider point processes
which are simple, i.e. all xi are distinct.

To work with point processes it is convenient to define the so called
correlation functions. For n = 1, 2, . . ., these are functions ρn : Λn → R.
When Λ = Z and λ is the counting measure on Z,

ρn(x1, . . . , xn) = P[There is a particle at each position xi, for i=1, . . . , n].

When Λ = R and λ is Lebesgue measure then

ρn(x1, . . . , xn) =

lim
ε→0

P[There is a particle in each of [xi, xi + ε), for i = 1, . . . , n]
εn

.

More generally, see [24], one can define correlation functions by saying that
for simple, measurable functions φ of bounded support, the point process
satisfies

(2.1) E
[∏
i∈I

(1 + φ(xi))
]

= 1 +
∞∑
n=1

1
n!

∫
Λn

n∏
j=1

φ(yj)ρn(y1, . . . , yn) dλn(y).

A determinantal point process is a point process whose correlation func-
tions have the special form

ρn(y1, . . . , yn) = det
[
K(yi, yj)

]n
i,j=1,

for some function K : Λ2 → C. This is a very special and simple situation
since all information about the point process is encoded in this function
K of two variables which is called the correlation kernel. Nonetheless pro-
cesses of this kind are commonplace in mathematics today arising from
such diverse sources as tilings with rhombuses or dominoes of regions in
the plane, random walks, eigenvalues of unitarily invariant random matrices
and, as shown in the next section, so called L-ensembles. Indeed, the main
theorems of this paper, Theorems 1.1 and 1.2, state that certain processes
are indeed determinantal point processes. Also note that with correlations
functions of this form, the right hand side of of (2.1) turns out to be the
definition of the Fredholm determinant of the integral operator with kernel
K(x, y)φ(y), again see [24].

ANNALES DE L’INSTITUT FOURIER
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Asymptotic analysis of such point processes can be performed by working
with the kernels only.

Proposition 2.1 (Proposition 2.1 in [25]). — Let X1, X2, . . . , XN , . . .

be a sequence of determinantal point processes, and letXN have correlation
kernel KN satisfying

(1) KN → K, N →∞ pointwise, for some function K,
(2) the KN are uniformly bounded on compact sets in Λ2 and
(3) for C compact, there exists some number n = n(C) such that

det[KN (xi, xj)]16i,j6m = 0

if m > n.
Then there exists some determinantal point process X with correlation
kernel K such that XN → X weakly, N →∞.

3. Introduction to L-ensembles

This section summarises the exposition in [10]. The reader who wishes
to pursue the subject of determinantal point processes will find [5, 31]
illuminating.

3.1. Measure theory

Let (Ω, P, F) be a discrete probability space. That is, Ω is a finite set,
F = 2Ω is the σ-algebra of subsets of Ω. Furthermore, P : F → R is a
measure satisfying

(1) P[Ω] = 1,
(2) P[∅] = 0,
(3) E1, E2 ∈ F and E1 ∩E2 = ∅ implies P[E1 ∪E2 ] = P[E1 ] + P[E2 ].

The last property is called additivity.
An element E ∈ F is called an event and P[E ] is called the probability

of E. To sample the distribution P means picking an element ω ∈ Ω. Since
we are working with a finite space, P[E ] can be decomposed as a sum over
singleton sets,

P[E ] =
∑
ω∈E

P[{ω}].

TOME 64 (2014), FASCICULE 3
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3.2. Point processes

We now specialise and consider probability spaces of the following form.
Take a finite set X . A point process on X is a probability space (Ω =
2X ,P,F = 2Ω = 22X ). To sample the point process means to pick an
element of 2X , i.e. a subset of X . For compatibility with [10], we will use
uppercase letters at the end of the alphabet, X, Y , . . . , when speaking
about elements of Ω.
Given an X ∈ Ω, let EX (X) be the event

F 3 EX (X) =
⋃

X⊆Y⊆X

{Y }.

The probabilistic interpretation is that EX (X) is the event that all x ∈ X
are in the chosen set. Note that EX : Ω→ F .

3.3. L-ensembles

Let us specialise even more. Take a matrix L of size |X | × |X |. We shall
index the rows and columns of this matrix by X . The L-ensemble on X is
a point process (Ω = 2X ,P,F = 22X ) such that, for X ⊆ X ,

(3.1) P[{X}] = detLX
det(1 + L) .

Here LX means pick out those rows and columns that correspond to X,
this giving a |X|× |X| matrix. Also, 1 is the identity matrix of appropriate
size. For sets in F which are not singletons, the measure P is defined by
the additivity property.
This is only a well defined probability if the expression (3.1) is always

positive, for example if L is positive definite. The fact that the probabilities
sum up to one is guaranteed by the following well known formula, the
Fredholm expansion of a determinant.

Lemma 3.1. — LetM be a matrix whose rows and columns are indexed
by the finite set X . Then

det(1 +M) =
∑
X⊆X

detMX ,

with the understanding that the determinant of the empty matrix is 1.
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We do not show this, it can for example be done by induction over the
size of the matrix. To convince the reader of the validity and triviality of
the above lemma, let us see what happens with a 2× 2 matrix.

det
[
1 + a b

c 1 + d

]
= det

[
1 b

0 1 + d

]
+ det

[
a b

c 1 + d

]
= det

[
1 0
0 1

]
+ det

[
1 b

0 d

]
+ det

[
a 0
c 1

]
+ det

[
a b

c d

]
= 1 + det

[
d
]

+ det
[
a
]

+ det
[
a b

c d

]
.

The first equality comes from the fact that the determinant is linear in the
first and second column. The second equality comes from expanding along
rows.

Theorem 3.2. — Let K = L(1 + L)−1. Then for all X ∈ 2X ,

P[EX (X)] = detKX .

The matrix K is frequently called the correlation kernel of P.
Proof. — Let 1(X) be the identity matrix with the ones corresponding

to elements in X̄ := X \X set to zero.

P[EX (X)] =
∑

X⊆Y⊆X

P[{Y }]

= det(1 + L)−1
∑

X⊆Y⊆X

detLY

= det(1(X̄) + L)(1 + L)−1

= det(1 + L− 1(X))(1 + L)−1

= det(1− 1(X)(1 + L)−1)

= det[1− (1 + L)−1]X
= det[L(1 + L)−1]X .

The third equality is due to a variant of Lemma 3.1. �

3.4. Projection on a subspace

Given an L-ensemble on X , let us take an arbitrary fixed subset N ⊂ X .
Define its conjugate N̄ := X \N . We want to study a certain projection P∗
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of P to 22N . This shall give us a smaller point process (Ω∗ = 2N ,P∗,F∗ =
22N ), specified by

P∗[ {D} ] = P[{D ∪ N̄ }]
P[EX (N̄ )]

.

Again P∗ is defined by additivity for events that aren’t singletons. This
should be thought of as a conditional probability. Compute for example

P∗[EN (D) ] = P∗[∪D⊆F⊆N {F } ]

=
∑

D⊆F⊆N

P∗[ {F} ]

=
∑

D⊆F⊆N

P[{F ∪ N̄}]
P[EX (N̄ )]

= P[EX (D ∪ N̄ )]
P[EX (N̄ )]

= P[EX (D) ∩ EX (N̄ )]
P[EX (N̄ )]

.

Theorem 3.3. — LetK∗ = 1(N )−(1(N )+L)−1|N . Then for allX ∈ F∗,

P∗[EN (X) ] = detK∗X .

Here, |N means pick out those rows and columns that correspond to N .
For proof see [10].

3.5. Eynard-Mehta Theorem

Again let us specialise. We are interested in studying a point process on
the space N = X (0) t X (1) t · · · t X (N) which is the disjoint union of N
finite sets X (n) for n = 1, 2, . . . , N .
A sample x ∈ N can be written

x̄ = (x(0), x(1), . . . , x(N))

where x(n) ∈ 2X (n) . Fix an integer p and the following functions:

φk :X (0) → R,

Wn :X (n) ×X (n+1) → R, and(3.2)

ψk :X (N) → R
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for n = 0, . . . , N − 1 and k = 1, . . . , p. The measure we are interested in
has the form

(3.3) P∗[ {x̄} ] = Z−1 det[φk(x(0)
l )]pk,l=1 det[W0(x(0)

k , x
(1)
l )]pk,l=1×

· · · × det[WN−1(x(N−1)
k , x

(N)
l )]pk,l=1 det[ψk(x(N)

l )]pk,l=1

if |x(1)| = |x(2)| = · · · = |x(N)| = p and P∗[{x̄}] = 0 otherwise. Here
x

(n)
l is the l:th element of the set x(n) for n = 1, . . . , N and l = 1, . . . , p.

For that to be well defined one needs a total ordering on X (n), but which
one we use is not important. Note that the measure P∗ : 22N → R is
defined by (3.3) for singleton sets and by additivity for all other sets in
22N . Measures of this form turn up everywhere in random matrix theory
and related combinatorial models.

The idea now is to extend the space on which the point process lives in
such a way that the new bigger process admits an L-ensemble representa-
tion. Let N̄ = {1, 2, . . . , p} and let X = N̄ t N . The measure P∗ can then
be expressed as

P∗[ {x̄} ] = P[{x̄ t N̄}]
P[EX (N̄ )]

where P is the measure defined by (3.1) where

(3.4) L =



0 Φ 0 0 · · · 0 0
0 0 −W0 0 · · · 0 0
0 0 0 −W1 · · · 0 0
...
0 0 0 0 · · · 0 −WN−1
Ψ 0 0 0 · · · 0 0


.

Here Φ, W1, . . . ,WN−1 and Ψ are certain blocks and 0 means the zero
matrix of appropriate dimension. The minus signs are for convenience later.
Recall that the L-matrix should be of size |X | × |X | and that its rows and
columns are indexed by elements of X = N̄ tX (1) tX (2) t · · · tX (N). The
determinants of the various blocks in (3.4) will be exactly the determinants
that occur in (3.3).
Here, Φ and Ψ are matrices of dimension p × |X (0)| and |X (N)| × p

respectively defined by

[Φ]n,x = φn(x) for n ∈ N̄ and x ∈ X (0),

[Ψ]x,n = ψn(x) for x ∈ X (N) and n ∈ N̄ .
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The matrices Wn for n = 1, . . . , N are of size |X (n)| × |X (n+1)| and defined
by (3.2). Let

(3.5) W[n,m) =
{
Wn · · ·Wm−1, n < m,

0, n > m.

Theorem 3.4 (Eynard-Mehta Theorem). — Assume

(3.6) M := ΦW0 · · ·WN−1Ψ

is invertible. Then there exists a correlation kernel K∗ for the measure P∗,
that is,

P∗[EN (X) ] = detK∗X .

This matrix can be written in block form

K∗ =

K
∗
0,0 · · · K∗0,N
...

K∗N,0 · · · K∗N,N


where

(3.7) K∗n,m = W[n,N)ΨM−1ΦW[0,m) −W[n,m).

Note that the block K∗n,m is of size |X (n)| × |X (m)|.

Proof. — We shall use the following matrix identity.

(3.8)
[
A B

C D

]−1

=
[
−M−1 M−1BD−1

D−1CM−1 D−1 −D−1CM−1BD−1

]
.

Here, A and B must be square blocks and M = BD−1C −A. This is easy
to verify by explicit computation.
Now according to Theorem 3.3 we need to invert 1(N ) +L which can be

decomposed as the left hand side of (3.8) with A = 0, B = [Φ, 0, 0, . . .],
(3.9)

D−1 =


1 −W0 0 · · · 0
0 1 −W1 · · · 0
0 0 1 · · · 0
...

. . .
0 0 0 · · · 1



−1

=


1 W[0,1) W[0,2) · · · W[0,N)
0 1 W[1,2) · · · W[1,N)
0 0 1 · · · W[2,N)
...

. . .
0 0 0 · · · 1


and C appropriately chosen.
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Thus

BD−1 = [Φ ΦW[0,1) · · · ΦW[0,N)], D−1C =


W[0,N)Ψ
W[1,N)Ψ

...
Ψ

 ,
and M is as given by (3.6). Applying (3.8) to the formula in Theorem 3.3
gives

K∗ = 1−D−1 +D−1CM−1BD−1.

Inserting the various ingredients above into this formula proves Theo-
rem 3.4 . �

4. Tips and Tricks

To compute the kernel in the main theorem, the following additional
ideas are needed. None of these are new but for the instruction of the
reader they are summarised here.

4.1. Continuous state space

In the version of the Eynard-Mehta theorem above, Theorem 3.4, the
state spaces X (n), for n = 1, . . . , N , are finite. In the literature a version
with X (n) = R for all n is more common. We shall now expound on the
relationship between these two versions of the same useful theorem.
Again we are faced with analysing a measure on the form (3.3) but now

P∗[ {x∗} ] is the probability density of configuration x∗,

φn : R→ R, for n = 1, . . . , p,
Wn : R× R→ R, for n = 1, . . . , N,
ψn : R→ R, for n = 1, . . . , p.

The state space is now

(4.1) R t R t · · · t R = N × R.

Pick some discretisation M of the real line, i.e. some sequence M1,
M2, . . . of |M| real numbers. Restricting the measure in (3.3) — with
state space given by (4.1) — to the state space

MtMt · · · tM = N ×M
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gives a measure on a discrete set of exactly the type to which Theorem 3.4
applies. Now all the blocks in for example (3.9) are |M| × |M| and thus
D is a matrix of size (N |M|)× (N |M|). The idea is of course to take the
limit |M| → ∞.
The correlation kernel (3.7) is computed through suitable matrix multi-

plications and inversions. Consider for example the matrix multiplication
of W1 and W2.

1
|M|

[W1W2]x,z = 1
|M|

∑
y∈M

[W1]x,y[W2]y,z →
∫
R
W1(x, y)W2(y, z) dy,

|M| −→ ∞.

The constant |M|−1 can be absorbed into the normalisation constant Z.
Thus we see that all the matrix multiplications in the expression (3.7) turn
into convolutions of the corresponding functions in the continuous setting.
In later sections we will blur the line between discrete and continuous by
sometimes using the notation of matrix multiplication for convolutions. It
is understood that one needs to check convergence and integrability when
one goes from the discrete to the continuous. That offers no problem in our
examples so nothing further will be said on that score.

4.2. Unequal number of particles on each level

We shall illustrate this by the example of the GUE Minor process. Con-
sider a GUE random matrix M of size N ×N . Let the eigenvalues of the
n × n minor, that is [Mij ]ni,j=1, be denoted λ(n)

1 > · · · > λ
(n)
n . Then these

vectors λ(1), . . . , λ(N) can be seen as random variables.
For this process, the probability measure for all the variables λ̄ = (λ(1),

. . . , λ(N)) is absolutely continuous with respect to the Lebesgue measure,
thus it has a probability density function (p.d.f.). It can be written [3, 25,
18] as

p(λ̄) = 1
C

1{λ(1)≺λ(2)} · · ·1{λ(N−1)≺λ(N)}∆(λ(N))
N∏
n=1

e−(λ(N)
n )2

.

Here, λ(n) ≺ λ(n+1) means λ(n) and λ(n+1) interlace, i.e. λ(n+1)
1 > λ

(n)
1 >

λ
(n+1)
2 > · · · > λ

(n+1)
n > λ

(n)
n > λ

(n+1)
n+1 . We use the increasingly common

notation that ∆ denotes the Vandermonde determinant. It turns out that it
is practical to introduce fictitious (or virtual) variables λ(0)

1 = λ
(1)
2 = λ

(2)
3 =

· · · = λ
(N−1)
N = −∞. Then the interlacing condition can be written in terms
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of determinants [39] using the Heaviside function H(x) = 1{x > 0} and
the above p.d.f. becomes

(4.2) p(λ̄) = 1
C

det[H(λ(1)
i − λ

(0)
j )]1i,j=1) det[H(λ(2)

i − λ
(1)
j )]2i,j=1) · · ·

· · · det[H(λ(N)
i − λ(N−1)

j )])Ni,j=1∆(λ(N))
N∏
n=1

e−(λ(N)
n )2

.

The reader must agree that this vaguely resembles (3.3) except that the
dimension of the matrices change. The first is a 1 × 1 determinant and
the last of size N ×N for example. Notice too that the last column of all
these matrices is identically one because of our choice of fictitious particles
above.
The way to deal with this, first discovered in [7], is to form an L-matrix

similar to the one in (3.4) but which looks like this.

(4.3) L =


0 Φ 0 0 · · · 0 0
E0 0 −W0 0 · · · 0 0
E1 0 0 −W1 · · · 0 0
...

EN−1 0 0 0 · · · 0 −WN−1

 .

Here, in the example of the GUE Minor process, [Wn]x,y = H(y − x) for
n = 0, 1, . . . , N−1, and x, y ∈M. For the matrices in (4.2) the last column
— which is identically one — is moved out to the first column of blocks.
Thus a sequence ofM×N matrices E0, . . . , EN−1 are produced such that,
for m = 1, . . . , N ,

[En]x,m =
{

1, n+ 1 = m,

0, n+ 1 6= m.

By cranking this machinery it is possible to compute the correlation kernel
for the GUE Minor process. This is done in [7, 18].

4.3. Column operations on the kernel

Recall the expression for the kernel in (3.7). It is sometimes favourable
to perform some column operations on the matrices W[n,N)Ψ for n =
0, . . . , N − 1. Doing column operations means multiplying from the right
with an upper triangular or lower triangular matrix, say Rm, which must be
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invertible. Typically, but not necessarily, it will have ones on the diagonal
and a single off-diagonal entry. The kernel (3.7) then takes the form

K∗n,m = W[n,N)ΨRn(MRn)−1ΦW[0,m) −W[n,m)

for n, m ∈ {0, . . . , N − 1}.

5. Markov property along space-like paths

It is a sad fact of life that no transition density for the Warren process is
known explicitly. We do however know certain marginals. To fix notation
let x̄ = (x(1), . . . , x(n)) where x(k) ∈ Rk. Let I(n)(x̄) = 1 if the interlacing
x(n) � · · · � x(1) holds and 0 otherwise. Let P (n)

t be the transition density
for Warren’s process which we know exists since it is a well defined Markov
process. In this notation, [39, Proposition 6] can be restated as follows.

Proposition 5.1. — For fixed n, x(n) and ȳ = (y(1), . . . , y(n)),∫
I(n)(x̄)
∆(x(n))

P
(n)
t (x̄, ȳ) dx(1) · · · dx(n−1) = I(n)(ȳ)

∆(y(n))
p

(n)
t (x(n), y(n))

where
p

(n)
t (x, y) = ∆(y)

∆(x) det
[
e−(xi−yj)2/t

]n
i,j=1

.

Also, by the characterisation after (30) in Warren’s paper, it is clear that

Proposition 5.2. — For fixed n, x(1), . . . , x(n−1), y(1), . . . , y(n−1),∫
P

(n)
t (x(1), . . . , x(n); y(1), . . . , y(n)) dy(n)

= P
(n−1)
t (x(1), . . . , x(n−1); y(1), . . . , y(n−1)).

Notice that there is no dependence on x(n) in the right hand side, i.e. the
evolution of the particles on levels 1, . . . , n− 1 does not feel what happens
on level n.
We shall compute the eigenvalue measure along a particular space-like

path and the reader will see how to generalise this. Suppose we want to
look at the path (n, t1), (n, t2), (n− 1, t2), (n− 2, t2), (n− 2, t3) for some
fixed n and 0 < t1 < t2 < t3. The density of the event that the Warren
process, started at the origin, takes values x̄, ȳ and z̄ respectively at times
t1, t2 and t3 respectively is by [39]

∆2(x(n))e−
∑n

i=1
(x(n)
i

)2 I(n)(x̄)
∆(x(n))

P
(n)
t (x̄, ȳ)P (n)

t′ (ȳ, z̄)
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where t := t2 − t1 and t′ := t3 − t2. To find the distribution on the afore-
mentioned path we need to integrate out x(1), . . . , x(n−1), y(1), . . . , y(n−3),
z(n−1) and z(n).
We start by integrating out the unwanted x-variables which can be done

by applying Proposition 5.1 which gives

(5.1) ∆2(x(n))e−
∑

(x(n))2
p

(n)
t (x(n), y(n)) I

(n)(ȳ)
∆(y(n))

P
(n)
t′ (ȳ, z̄).

Observing that

I(n)(ȳ) = 1{y(n) � y(n−1) � y(n−2)}I(n−2)(y(1), . . . , y(n−2))

and applying Proposition 5.2 twice we see that∫
I(ȳ)P (n)

t′ (ȳ, z̄) dz(n)dz(n−1)

= 1{y(n) � y(n−1) � y(n−2)}P (n−2)
t′ (y(1), . . . , y(n−2); z(1), . . . , z(n−2)).

We insert that into (5.1) integrated and then apply Proposition 5.1 to
integrate out the unwanted y-variables to get

(5.2)

∆(x(n))e−
∑

(x(n))2 ∆(x(n))
∆(y(n))

p
(n)
t (x(n), y(n))1{y(n) � y(n−1) � y(n−2)}×

× ∆(y(n−2))
∆(z(n−2))

p
(n−2)
t′ (y(n−2), z(n−2))I

(n−2)(z(1), . . . , z(n−2))
∆(z(n−2))

.

As was noted before (4.2), with H(x) = 1{x > 0},

1{y(n) � y(n−1)} = det[H(y(n)
i − y(n−1)

j )]ni,j=1

if you adopt the convention that y(n−1)
n = −∞. Then (5.2) can be written

as a product of determinants.

(5.3) ∆(x(n))e−
∑

(x(n))2
det
[
e−(x(n)

i
−y(n)

j
)2/t
]n
i,j=1

×

× det
[
H(y(n)

i − y(n−1)
j )

]n
i,j=1

det
[
H(y(n−1)

i − y(n−2)
j )

]n−1

i,j=1
×

× det
[
e−(y(n−2)

i
−z(n−2)

j
)2/t′

]n−2

i,j=1

I(n−2)(z(1), . . . , z(n−2))
∆(z(n−2))

.

The same idea can be applied to any other space-like path.
An argument for the corresponding statement for the Dyson Brownian

minor process is given in [17, Section 4].
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6. Definitions and computations

Given the theory presented in the last two sections, computing the kernel
is nothing but a long tedious computation. It was hard to write, hopefully
it isn’t too hard to read. The computation for the Warren process and the
Dyson BM process can be done at the same time with judicious choice of
notation. Let

(6.1) Hn(x) :=
{

(n− 1)!−1xn−11{x > 0}, n = 1, 2, . . . ,
δ(x), n = 0.

be the nth anti-derivative of the Dirac delta function and H := H1 be the
Heaviside function.

6.1. Dyson BM

Define the normalised Hermite polynomials,

h∗n(x) = [
√
πn!2n]−1/2(−1)n(w∗(x))−1Dnw∗(x)

which are orthonormal with respect to the weight

w∗(x) = e−x
2
.

The transition density of the Ornstein-Uhlenbeck process is the well
known expression

(6.2) p∗t (x, y) =
exp(−(y−q∗t x)2

1−q∗,2t

)√
π(1− q∗,2t )

where
q∗t = e−t.

While we are at it, define r∗t := q∗t and σ∗(t) = 1/
√

2 for t > 0, and set
q∗,nt = (q∗t )n.

6.2. Warren process

For t > 0, let

h(t)
n (x) = [

√
πn!2nt−n]−1/2(−1)n(w(t)(x))−1Dnw(t)(x).

These are orthogonal with respect to the weight

w(t)(x) = e−x
2/t
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and related to the Hermite polynomials above by h(t)(x) = h∗(x/
√
t).

The transition density of Brownian motion with variance t/2 is

(6.3) pt(x, y) = 1√
πt
e−(y−x)2/t.

Define

q(t)
s =

√
t

s+ t
.

We are going to set rt ≡ 1 and σ(t) =
√
t/2. Also, as notational convenience

let q(t),n
s = (q(t)

s )n.
We need the following convolutions in our computations later.

Lemma 6.1. — For n = 0, 1, 2, . . . , and t > 0,∫
R
h(t)
n (x)w(t)(x)ps(x, y) dx = q(t),n

s h(t+s)
n (y)w(t+s)(y),(6.4) ∫

R
h

(t)
n+1(x)w(t)(x)H(x− y) dx = σ(t)(n+ 1)−1/2h(t)

n (y)w(t)(y),(6.5) ∫
R
Hn(x− y)H(y − z) dy = Hn+1(x− z)(6.6) ∫

R
pt(x, y)ps(y, z) dy = pt+s(x, z)(6.7) ∫

R
pt(x, y)Hn(y − z) dy = rnt

∫
R
Hn(x− y)pt(y, z) dy(6.8) ∫

R
h(t)
n (x)h(t)

m (x)w(t)(x) =
√

2σ(t)δnm(6.9)

pt(x+ y, z) = pt(x, z − rty),(6.10)

q
(t1)
t2−t1q

(t2)
t3−t2 = q

(t1)
t3−t1(6.11)

rtrs = rt+s(6.12)

q
(s)
t−s
σ(s) = rt−s

σ(t) .(6.13)

All of this is also true for the stared functions. The coefficient of xn in h(t)
n

is
an := 1

σn(t)
√
n!
√
π

and that is true for h∗n with σ replaced by σ∗.

These are proved by explicit elementary computation. An important
point here is that replacing h, q, r, w, p and σ with the stared versions
these equations still hold. By this intelligent choice of notation we can do
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the computation concerning the Ornstein-Uhlenbeck and the Warren pro-
cess at the same time. Furthermore,

Lemma 6.2.∫
R
Hn(x− y)pt−s(y, z) dy

=
n−1∑
k=0

h
(s)
k (x)(σ(t))kq(s),k

t−s

rnt−sσ(s)
√

2k!π 1
4

∫
R
w(t)(y)Hn−k(y − z) dy

+ (σ(t))n√
2σ(s)rnt−s

∞∑
k=n

√
(k − n)!
k! q

(s),k
t−s h

(s)
k (x)h(t)

k−n(z)w(t)(z).

Proof. — By orthogonality

f(x, z) =
∫
Hn(x− y)pt−s(y, z) dy

can be written as

f(x, z) =
∞∑
k=0

ck(z)h(s)
k (x)

for suitable coefficients

(
√

2σ(s))ck(z) =
∫
R
f(x, z)h(s)

k (x)w(s)(x) dx

(6.14)

=
∫∫

R×R
Hn(x− y)pt−s(y, z)h(s)

k (x)w(s)(x) dx dy.(6.15)

Let us start with the case k > n. Apply (6.8).

= 1
rnt−s

∫∫
R×R

h
(s)
k (x)w(s)(x)pt−s(x, y)Hn(y − z) dxdy.(6.16)

Apply (6.4).

=
q

(s),k
t−s
rnt−s

∫
R
h

(t)
k (y)w(t)(y)Hn(y − z) dy.(6.17)

Apply (6.5) and (6.6) n times to get

=
q

(s),k
t−s
rnt−s

(σ(t))n
√

(k − n)!
k! h

(t)
k−n(z)w(t)(z).(6.18)
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Now suppose instead that k < n. Then everything up to (6.17) works the
same. Apply (6.5) k times.

=
q

(s),k
t−s
rnt−s

(σ(t))k√
k!

∫
R
h

(t)
0 (y)w(t)(y)Hn−k(y − z) dy.(6.19)

Remember that h0(y) ≡ π− 1
4 .

=
q

(s),k
t−s
rnt−s

(σ(t))k√
k!π 1

4

∫
R
w(t)(y)Hn−k(y − z) dy.(6.20)

�

6.3. Integral representations

With the normalisations above the classical integral representations for
the Hermite polynomials are

(6.21) h(t)
n (x) = π

1
4 ex

2/t(2t)n/2

iπ
√
n!

∫
Γ
vnev

2−2vx/
√
t dv

and

(6.22) h(t)
n (x) = (t/2)n/2

√
n!

π
1
4

1
2πi

∫
γ

u−n−1e−u
2+2ux/

√
t du

with contours of integration as in Figure 1.1. The starred Hermite polyno-
mials are given, for n = 0, 1, . . . , by h∗n ≡ h

(1)
n .

As a sort of generalisation of (6.21) it can be shown [34] that for n =
1, 2, . . .,

1
πi

∫
Γ
v−nev

2−2vx/
√
t dv = 2n√

πtn/2

∫
R
Hn(y − x)e−y

2/t dy.

7. The Kernel

We will now introduce some notation, and hopefully Figure 7.1 will clarify
the situation. Pick N times and levels (t0, n0), . . . , (tN−1, nN−1) following
a space-like path. This means that 0 < t0 6 t1 6 · · · 6 tN−1 and n0 >
n1 > · · · > nN−1. Without loss of generality we can take nN−1 = 1 and
nm − nm+1 ∈ {0, 1} for all m = 0, . . . , N − 2. That is, we end at level 1
and only drop one level at a time. For the sake of notation let nN = 0
and tN = tN−1. Denote by x(k) = (x(k)

1 > x
(k)
2 > · · · > x

(k)
nk ) the nk
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0
=
τ 0

s 0
=
t 0

1
=
τ 1

s 1
=
t 1

=
t 2

2 3

t 3

4

t 4

5

t 5

6

t 6

7
=
τ 2

s 2
=
t 7

=
t 8

8 9

t 9

10

t 10

11
=
τ 3

=
N
−

1

s 3
=
t 11

=
t 12

12
=
N

n = n0 = n1 = 3

n2 = n3 = n4 = n5 = n6 = n7 = 2

n8 = n9 = n10 = n11 = 1

n12 = 0

Figure 7.1. Times and levels must follow a space-like path. This means
that this curve must not take steps upward.

eigenvalues at time tk and level nk. We shall say that m ∈ Space if the
mth step is a down step, i.e. nm = nm+1 + 1. For k = 1, . . . , n0, let τk
and sk be the position and time, respectively, of the kth down step. Thus
τk ∈ Space by definition and nτk = n + 1 − k. The time of the kth down
step is sk = tτk = sn0+1−nτk . Also let τ0 = 0 and s0 = t0. If the mth step
is a time step, i.e. nm = nm+1, then we shall write m ∈ Time. That’s a lot
of notation, hopefully Figure 7.1 should make this clearer.
Let

φk(x) = h
(t0)
k−1(x)w(t0)(x) for k = 1, . . . , n0

Wm(x, y) =
{
ptm+1−tm(x, y) m ∈ Time
H(x− y) m ∈ Space

for m = 0, . . . , N − 1.

A full configuration of eigenvalues is the N -tuple

x̄ = (x(0), x(1), . . . , x(N−1))

where x(m) ∈ Rnm for m = 0, . . . , N − 1. We adopt the notation that
x

(m+1)
nm+1 = u for some large negative real number u if m ∈ Space. In partic-

ular xN1 = u since, by definition N − 1 ∈ Space. Those are the positions
where we step down a level, that is, we lose an eigenvalue. One way to think
of this is that that particle jumps away to some position u which is close
to −∞. The weight or probability density of configuration x̄ is then, by
the Markov property along space-like paths discussed in Section 5, given
by the following product

(7.1) p(x̄) = Z−1 det[φk(x(0)
l )]n0

k,l=1

N−1∏
m=0

det[Wm(x(m)
k , x

(m+1)
l )]nmk,l=1,

where we adopt the notation that x(m+1)
nm+1 = u for some large negative real

number u if nm − nm+1 = 1, for m = 1, . . . , N . Also xN1 = u.
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Let the magic begin. Define the block matrix

L =



0 Φ 0 0 · · · 0 0
F0 0 −W0 0 · · · 0 0
F1 0 0 −W1 · · · 0 0
...

FN−2 0 0 0 · · · −WN−2 0
FN−1 0 0 0 · · · 0 −WN−1
FN 0 0 0 · · · 0 0


.

The FN block in the above block matrix has zero rows but let us keep this
notation. The (Wn)N−1

n=0 are defined above. For l = 1, . . . , n0,

[Φ]l,x = φn0+1−l(x) = h
(t0)
n0−l(x)w(t0)(x),(7.2)

[Fk]x,l =
{
H(x− u), k = τn0−l+1,

0, otherwise.
(7.3)

The measure in (7.1), being similar to that in (3.3), can then be represented
as in (3.1) with the above L-matrix, as explained in Section 4.2 (see (4.3)).
Introduce W[k,l) as in (3.5). By the general theory of these L-ensembles,
we need to compute

(7.4) K = 1−D−1 +D−1CM−1BD−1

for some invertible matrix M . Here, D is as in (3.9), M = BD−1C,

B =
[
Φ 0 0 · · · 0

]
,(7.5)

C =


F0
F1
...

FN−1

 .(7.6)

The plan now is to analyse each of the different components of (7.4), namely
BD−1, D−1C, (M)−1 and the upper triangular matrix 1−D−1.
First of all,

BD−1 =
[
Φ ΦW[0,1) ΦW[0,2) · · · ΦW[0,N)

]
which is an n0 × |M| matrix. We’ll call the kth block of this Φk. That is,
Φ0 := Φ and

(7.7) Φk := ΦW[0,k),
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for k = 1, . . . , N , and an explicit expression for it will be given in Lemma
7.3. Next, let us look at

D−1C =


F0 +W[0,1)F1 +W[0,2)F2 +W[0,3)F3 + · · ·+W[0,N)FN

F1 +W[1,2)F2 +W[1,3)F3 + · · ·+W[1,N)FN
...
FN

(7.8)

=:


Ψ̄0
Ψ̄1
...

Ψ̄N


where, for k = 0, . . . , N ,

(7.9) Ψ̄k = Fk +
N∑

j=k+1
W[k,j)Fj .

As mentioned it is useful to do column operations on Ψ̄k, which are rep-
resented by the n0 × n0 matrix Rk, see Section 4.3. We will choose Rk in
such a way that MRk, for k = 0, . . . , N − 1, is asymptotically the identity
matrix as u→ −∞. Thus for k = 0, . . . , N let

(7.10) Ψk := Ψ̄kRk.

These will be explicitly computed in Lemmas 7.4 and 7.5.
Block (k, k′) of the kernel in (7.4) can with this notation be written,

remembering (3.9), as

[Kk,k′ ]x,y = −W[k,k′) +
n0∑
i,j=1

[Ψ̄k]x,i[M−1]i,j [Φk′ ]j,y(7.11)

= −W[k,k′) +
n0∑
i,j=1

[Ψk]x,i[(MRk)−1]i,j [Φk′ ]j,y.(7.12)

Note that, as we shall see in Lemma 7.5, only the columns 1, . . . , nk of Ψk

are non-zero. So we need only compute rows 1, . . . , nk of (MRk)−1. As it
happens we never need to explicitly write down what Rk is but it can in
principle be extracted from the proof of Lemma 7.5.
Recall from (7.4) that M = BD−1C, but what we really need is MRk

for k = 0, . . . , N − 1. Multiply (7.5) with (7.8) to compute

MRk = BD−1CRk = ΦF0Rk +
N∑
j=1

ΦW[0,j)FjRk.
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For k = 0 that specialises to MR0 = Φ0Ψ0. For k > 0 it will later turn out
that we only need the first nk columns of MRk. That allows us to remove
those terms that only contribute to columns nk + 1 to n0, which by (7.3)
are those that involve F0, . . . , Fk−1. We shall denote by ' the operation of
removing the unnecessary columns.

MRk '
N∑
j=k

ΦW[0,j)FjRk

= ΦW[0,k)(Fk +
N∑

j=k+1
W[k,j)Fj)Rk

= ΦkΨk

Another way of saying that is

(7.13) [MRk]i,j =
∫
R

[Φk]i,x[Ψk]x,jdx.

for i, j = 1, . . . , nk.

7.1. Computing 1−D−1

From (3.9) it is clear that this is a matrix of size N |M|×N |M|. Further-
more, the (k, l) block of this is identically 0 if l 6 k and otherwise −W[k,l).
Recall from (3.5) the definition of W[k,l). For notation introduce a function
S : {0, . . . , N − 1} → R defined by

S(k) :=
nk∏
l=1

rsn0+1−l−s0 .

Lemma 7.1.

(7.14) [W[k,k′)]x,z = (rtk−t0)nk′−nk S(k)
S(k′)

∫
R
Hnk−nk′ (x−y)ptk′−tk(y, z) dy

for k < k′ and [W[k,k′)]x,z = 0 otherwise.

Recall the definition ofH in (6.1). Here we will use the method, described
in Section 4.1, replacing M by R. Remember Section 4.1 explains how to
go from the discrete to the continuous; in particular how matrix multipli-
cations in the discrete turn to convolutions in the continuous setting.
Proof. — This is shown by induction and k′ = k + 1 is the basic case.

Let’s say k ∈ Space. (Recall from the first paragraph of Section 7 what
that means.) Then sn0+1−nk = tk and nk = nk′+1 so the above expression
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reduces to [W[k,k+1)]x,z = H(x− z) which is correct. Otherwise k ∈ Time.
Then all the S and r factors in (7.14) equals one. The integral evaluates to
[W[k,k+1)]x,z = ptk+1−tk(x, z) which is correct.
Of course

[W[k,k′+1)]x,z =
∫
R

[W[k,k′)]x,y[Wk′ ]y,z dy.

If k′∈Space then apply first (6.8) which pops out an rtk′−tk = rtk′−t0/rtk−t0
and then apply (6.6). But k′∈Space implies that tk′ = sn0+1−nk′ =
sn0+1−(nk′+1+1). On the other hand if k′ ∈ Time, just a single application
of (6.7) completes the induction. �

Lemma 7.2.

[W[k,k′)]x,z = r
nk′−nk
tk′−t0

S(k)
S(k′)

nk∑
l=nk′+1

h
(tk)
nk−l(x)(σ(tk))nk−l−1rnk−ltk′−tk√

2(nk − l)!π
1
4

(7.15)

×
∫
R
w(tk′ )(y)H l−nk′ (y − z) dy

+ r
nk′−nk
tk′−t0

S(k)
S(k′)

(σ(tk′))nk−nk′√
2σ(tk)

×
nk′∑

l=−∞

√
(nk′−l)!
(nk−l)!

q
(tk),nk−l
tk′−tk h

(tk)
nk−l(x)h(tk′ )

nk′−l
(z)w(tk′ )(z).

for k′ > k and [W[k,k′)]x,z = 0 otherwise.

Proof. — Apply Lemma 6.2 and (6.11)–(6.13) to the formula in
Lemma 7.1. �

7.2. Computing BD−1

Recall from (7.7) the definition of Φk, which we shall now compute.
Multiply (7.2) with (7.15) and use the orthogonality (6.9) to get

Lemma 7.3.

(7.16) [Φk′ ]l,z = r
nk′−n0
tk′−t0

S(0)
S(k′) (σ(tk′))n0−nk′×

×

√
(nk′ − l)!
(n0 − l)!

q
(t0),n0−l
tk′−t0 h

(tk′ )
nk′−l

(z)w(tk′ )(z)
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for l 6 nk′ (equivalently k′ > τn+1−l) and
(7.17)

[Φk′ ]l,z = r
nk′−n0
tk′−t0

S(0)
S(k′)

(σ(t0))n0−lrn0−l
tk′−t0√

(n0 − l)!π
1
4

∫
R
w(tk′ )(y)H l−nk′ (y − z) dy

for l > nk′ .

7.3. Computing D−1C

We do the same at the other end. Recall the definition of Ψk in (7.9).
Explicit computations, similar to what we did for Φk in the preceding
section, leads us to conjecture a general expression, which is proved by
induction.

Lemma 7.4.

(7.18) [Ψ̄k]x,l =
( nk∏
j=l

rsn0+1−j−tk

)∫
R
Hnk+1−l(x−y)psn0+1−l−tk(y, u) dy

for nk > l (equivalently k 6 τn0+1−l) and [Ψ̄k]x,l ≡ 0 otherwise.

Proof. — To get the hang of it, consider column one of Ψ̄k for all k =
0, 1, . . .. Recall (7.3). Of course FN is quite tame, it is identically zero giving
us Ψ̄N = 0. By definition τn0 = N − 1, so step number N − 1 ∈ Space
and Ψ̄N−1 = FN−1 is non-zero. Remember that FN−1 is non-zero only in
column one and it is the only one of F0, . . . , FN−1 that is non-zero in that
column. So

[Ψ̄k]x,1 = [W[k,N−1)FN−1]x,1.
Repeated applications of (6.8) and (6.6) specialises this to (7.18) if you
keep track of the constants.
More generally, for k = 0, . . . , N , recall from (7.3) that column l of Fk is

only non-zero if k = τn0+1−l. Remember too from (7.9) that Fk only occurs
in Ψ̄0, . . . , Ψ̄k. That accounts for the fact that [Ψ̄k]x,l ≡ 0 for k > τn0+1−l
(equivalently nk < l).

The induction on k is now done backwards. Fix l ∈ {1, . . . , n0}. We
shall show that the formula (7.18) is true for this particular value of l.
Specialising to k̄ = τn0+1−l, equivalently tk̄ = sn0+1−l, gives us [Ψ̄k̄]x,l =
r0H

1(x− u) = Fk̄. Assume now that the theorem gives the correct expres-
sion for Ψ̄k+1. Since k 6= k̄ + 1 it is clear that Fk+1 = 0 in column l. Also,
WkW[k+1,k̄) = W[k,k̄) So

(7.19) [Ψ̄k]x,l =
∫
R

[Wk]x,y[Ψ̄k+1]y,l dy.
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If k ∈ Time then applying first (6.8) and then (6.12) completes the proof.
If k ∈ Space then (6.6) does the same. The calculation is in reality only a
question of keeping track of the coefficients. �

We now exercise the right to do column operations. Recall from (7.10) the
definition of Ψk. Rk is chosen judiciously to give a very simple expression
for MRk.

Lemma 7.5. — There exists an Rk such that for x ∈ M and u a large
negative real number,

[Ψk]x,l = h
(tk)
nk−l(x)rn0−nk

tk−t0 q
(t0),l−n0
tk−t0 ×

×

√
(n0 − l)!
(nk − l)!

S(k)
S(0)

(σ(tk))nk−n0

√
2σ(tk)

+O(e−u
2/2)

for l = 1, . . . , nk, and [Ψk]x,l = 0 for l = nk + 1, . . . , n0.

Proof. — This bit is rather tricky. Fix k and let ρl=sn0+1−nk+l− tk. Let

fl(x, u) = C(l)[Ψ̄k]x,nk−l

for l ∈ {0, . . . , nk − 1} where C(l) is the constant that gives

fl(x, u) =
∫
R
H l+1(x− y)pρl(y, u) dy

=
∫
R
H l+1(x− y)pρl(y − r−1

ρl
u, 0) dy

=
∫
R
H l+1(x− y − r−1

ρl
u)pρl(y, 0) dy.

The second equality is due to (6.10) and the third one is a change of vari-
ables y 7→ y + r−1

ρl
u. Now what we need to do is to produce a sequence of

functions g0, . . . , gnk−1 such that for each l,
(1) gl is a linear combination of f0, . . . , fl,
(2) gl(x, u) differs from a polynomial in x of order l by at most a term

exponentially decreasing in u. That is, there is a polynomial h̄l(x)
of degree l such that

gl(x, u) = h̄l(x) +O(e−u
2/2).

Just to see how it works consider

f0(x, u) =
∫
R
H(x− y − r−1

ρ0
u)pρ0(y, 0) dy

=
∫
pρ0(y, 0) dy +O(e−u

2/2)
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as u→ −∞. So let g0 = f0 implying that h0 is a constant.
Now for some constant

C =
(∫

R
pρ1(y, 0) dy

)(∫
R
pρ0(y, 0) dy

)−1

look at

f1(x, u)− Cr−1
ρ1
uf0(x, u) =

∫
(x− y − r−1

ρ1
u)H(x− y − r−1

ρ1
u)pρ1(y, 0)

− Cr−1
ρ1
u

∫
H(x− y − r−1

ρ1
u)pρ0(y, 0)

(where C is chosen so that, in the limit of large negative u, the integrands
partially cancel out.)

=
∫

(x− y)pρ1(y, 0) dy +O(e−u
2/2)

= x

∫
pρ1(y, 0) dy −

∫
ypρ1(y, 0) dy +O(e−u

2/2).

Thus set g1(x, u) = f1 − Cr−1
ρ1
uf0 and h̄1 accordingly.

Now that we see it works for l = 0 and 1, let’s do the induction. Say the
statement is true for l, then

fl+1(x, u) =
∫

(x− y − r−1
ρl+1

u)l+1H(x− y − r−1
ρl+1

u)pρl+1(y, 0) dy

=
l+1∑
i=0

(
l+1
i

)∫
(x−y)l+1−i(r−1

ρl+1
u)iH(x−y−r−1

ρl+1
)pρl+1(y, 0) dy.

The first term is already a polynomial in x of degree l + 1 modulo an O-
term. The other terms are polynomials in x of lower degree which by the
induction hypothesis can be expressed in g0, . . . , gl.

What we have effectively done is that we have taken various linear com-
binations, encoded in R, of columns of Ψ̄k producing

[Ψ̄kR]x,l = polynomial of degree l+perturbation exponentially small in u.

Now we will go ahead and do more column operations and multiply the
columns with suitable constants. Let R′ be the matrix that encodes the
column operations and multiplications that turn the columns of Ψ̄kR into
Hermite polynomials with factors as in the statement of Lemma 7.5. Set
Rk = RR′ and Ψk = Ψ̄kRk and we are done. �
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7.4. Computing (MRk)−1

First observe that M is essentially lower triangular. To see this, for 1 6
i < j 6 n0 consider

(7.20) [M ]ij =
∫
R

[Φ0]i,x[Ψ̄0]x,j dx = O(e−u
2/2).

This is a computation. You insert the expressions for Φ0 and Ψ0, apply
first (6.6), then then (6.4) and lastly perform n0 − j applications of (6.5).
By (6.9) the conclusion in (7.20) holds.
Let In be the identity matrix of size n×n. In block form M and Rk are:

MRk =
[
∗ O(e−u2/2)
∗ ∗

][
∗ 0
0 In0−nk

]
=
[
Ink +O(e−u2/2) O(e−u2/2)

∗ ∗

]
.

The top-right block of MRk is essentially Ink by construction. To see that,
recall (7.13), insert the results in Lemmas 7.3 and 7.5 and apply (6.9).
To invert this matrix, use (3.8) with M = −Ink + O(e−u2/2) and B =
O(e−u2/2) and we are only interested in the top two blocks.
Proposition 7.6.

[(MRk)−1]ij = δi,j +O(e−u
2/2)

for i = 1, . . . , nk and j = 1, . . . , n0.

Essentially, it is diagonal due to our judicious choice of polynomials and
furthermore the identity matrix due to our choice of factors in Lemma 7.5.

7.5. Putting it all together

Recall the expression for the kernel in (7.12). For the case k > k′, insert-
ing the results of Lemmas 7.3 and 7.5, (6.11)–(6.13), taking account of the
cancellations and letting u→ −∞ gives

(7.21) K((nk, x, tk), (nk′ , x′, tk′)) = r
nk′−nk
tk′−t0

S(k)
S(k′)

(σ(tk′))nk−nk′√
2σ(tk)

×

×
nk∑
l=1

√
(nk′ − l)!
(nk − l)!

q
(tk),nk−l
tk′−tk h

(tk)
nk−l(x)h(tk′ )

nk′−l
(x′)w(tk′ )(x′).

In this case you don’t need to use (7.17).
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In the case k < k′ we also need Lemma 7.2. The first nk terms in the
summand in (7.12) cancel the corresponding terms in (7.15) and we are left
with the following infinite sum.

(7.22) K((nk, x, tk), (nk′ , x′, tk′)) = −rnk′−nktk′−t0
S(k)
S(k′)

(σ(tk′))nk−nk′√
2σ(tk)

×

×
0∑

l=−∞

√
(nk′ − l)!
(nk − l)!

q
(tk),nk−l
tk′−tk h

(tk)
nk−l(x)h(tk′ )

nk′−l
(x′)w(tk′ )(x′).

We shall now specialise to the case of Dyson Brownian motion and Warren
respectively.
Proof of Theorem 1.1. — Insert the various expressions in section 6.1

into (7.21) and (7.22) and multiply with the conjugating factors

S(k′)en′(t′−t0)

S(k)en(t−t0)

which always cancel out when you take determinants.
To show that the integral representation equals this shifted sum of Her-

mite polynomials, observe that

1
e−(t′−t)v − u

vn
′

un
= vn

′

un+1

∞∑
l=0

( u

e−(t′−t)v

)l
and plug in the integral representations in Section 6.3. The function φ

should be expanded according to Lemma 6.2. �

Proof of Theorem 1.2. — Insert the various expressions in section 6.2
into (7.21) and (7.22) and multiply with

(7.23) S(k′)
S(k) 2(n′−n)/2

which always cancels out when you take determinants. The integral repre-
sentation is done exactly as in the last proof. �

8. Asymptotics

We shall now study the scaling limit of the Dyson Brownian Minor kernel
from (1.5) in the bulk.

Proof of Theorem 1.3. — This is done by saddle point analysis. Let
τN = e−(t′−t)/2N . We start out with the case (n, t) > (n′, t′). Use the
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representation (1.5) and substitute u 7→ u
√
N/2 and v 7→ τ−1

N v
√
N/2 in

the integral. We must now compute

lim
N→∞

1
2πi

∫
γ

du

∫
Γ
dv
τ−N−n

′−1
N

v − u
vn
′

un
exp
[
(N/2)

(
τ−2
N v2 − u2

+ 4a(u− τ−1
N v) + 2 ln v − 2 ln u

)
+ ux− τ−1

N vy
]
.

The part of the exponent that is multiplied by (N/2) is f(u)− f(v) for

f(u) = −u2 + 4au− 2 ln u.

The saddle points, satisfying the equation f ′(u) = 0 are given by (1.9) and
are both on the unit circle. We let θ be the angle specifying those points,
so that u± = e±iθ. The Taylor expansions around these critical points are

f(u± + h) = f(u±) + (∓4a
√

1− a2 + 4(1− a2)i)h2 + o(h2).

The only thing we really need is that the coefficient of h2 is non-zero.

y

x

γ

Γa

a

Γ

Figure 8.1. New contours of integration.

Now deform the contour Γ to Γa which is a straight line from a − i∞
to a + i∞. See Figure 8.1. When deforming the v-contour through the
u-contour out pops the residue at u = v which is exactly

1
2πi

∫ u+

u−

un
′−ne

1
2 (t′−t)(u2−2au)+u(x−y) du.

It remains to show that all the other parts of the contours evaluate to zero.
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To see what happens around the saddle point u+ perform the change of
variables u 7→ u+ + u/

√
N and v 7→ u+ + v/

√
N .

1
2πi

∫
du

∫
dv
τ−N−n

′−1
N

v − u
(u+ + v/

√
N)n′

(u+ + u/
√
N)n

×

× exp
[1

4f
′′(u+)(u2 − v2) + u+(x− τ−1y) +O(1− τN ) +O(N− 1

2 )
]

which, as N →∞, tends to
1

2πi

∫
du

∫
dv
e

1
2 (t′−t)

v − u
(u+)n

′−n exp
[1

4f
′′(u+)(u2 − v2) + u+(x− y)

]
.

Switching u 7→ −u and v 7→ −v makes the integrand change sign. Thus the
integral must be zero. The saddle point at u− contributes zero by the same
argument.
For the remaining contours we need to show that g(u, v) := Re f(u) −

f(v) < 1. Well, if g(u, v) > 1 somewhere then the integral would not be
convergent. But the whole expression is a probability density and must
therefore be finite, so this is a contradiction. If at some point (u, v) it
happens that g(u, v) = 1 then f ′(u) 6= 0, for we have already accounted
for all saddle points. Thus by the definition of derivative there must be a
point nearby where g(u, v) > 1 which is a contradiction.
Next we need to compute the same scaling limit of the function φ

from (1.6) which is a very straight forward computation, yielding (1.8). �
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