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CARDINALITY OF RAUZY CLASSES

by Vincent DELECROIX (*)

Abstract. — Rauzy classes form a partition of the set of irreducible permu-
tations. They were introduced as part of a renormalization algorithm for interval
exchange transformations. We prove an explicit formula for the cardinality of each
Rauzy class. Our proof uses a geometric interpretation of permutations and Rauzy
classes in terms of translation surfaces and moduli spaces.
Résumé. — Les classes de Rauzy forment des partitions de l’ensemble des

permutations irréductibles. Elles ont été introduites par G. Rauzy dans l’étude
d’un algorithme de renormalisation des échanges d’intervalles. Nous démontrons
une formule explicite pour la cardinalité de chaque classe de Rauzy. La preuve que
nous développons utilise une interprétation géométrique des permutations et des
classes de Rauzy en termes de surfaces de translation et d’espace de modules.

1. Introduction

Let λ = (λ1, λ2, . . . , λn) ∈ Rn+ be a vector with positive coordinates and
π ∈ Sn be a permutation. For i = 2, . . . , n + 1, we define xi =

∑i−1
j=1 λj

and yi =
∑i−1
j=1 λπ−1(j) and note x1 = y1 = 0 and a = xn+1 = yn+1. The

interval exchange transformation T = Tλ,π with data (λ, π) is the map
defined on [0, a) to itself, by

T (x) = x− xi + yπ(i) if x ∈ [xi, xi+1).

In other words, on the subinterval [xi, xi+1), the map T acts as a translation
by yπ(i) − xi. An interval exchange transformation is bijective and right

Keywords: Rauzy classes, Rauzy induction, interval exchange transformations, irre-
ducible permutations, indecomposable permutations.
Math. classification: 05A15, 37A05, 37B10.
(*) I wish to thank Arnaldo Nogueira for his patient lectures and comments and Samuel
Lelièvre for his help on drawing pictures with the PGF TikZ library for LATEX. All
formulas in the article have been tested with the help of the mathematical software Sage
[32]. Some of the results where elaborated during a stay at the Hausdorff Institute for
Mathematics (Bonn).
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continuous. The map T is an example of measurable dynamical system as
it preserves the Lebesgue measure on [0, a).

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

T

1 2 3 4 5

12 3 45

Figure 1.1. An interval exchange transformation with permutation
π =

(1 2 3 4 5
2 5 3 1 4

)
.

If π({1, 2, . . . , k}) = {1, 2, . . . , k} for k such that 1 6 k < n, then the
two subintervals [0, xk+1) and [xk+1, a) are invariant under Tλ,π. We are
interested in permutations that do not allow such a splitting.

Definition 1.1. — A permutation π ∈ Sn is irreducible (or indecompos-
able) if there is no k, 1 6 k < n, such that π({1, 2, . . . , k}) = {1, 2, . . . , k}.

We denote by Son the set of irreducible permutations in Sn. It was proved
by M. Keane [19] that if π ∈ Son then for Lebesgue almost all λ ∈ Rn+ the
interval exchange Tλ,π is minimal. Later H. Masur [26] and W.A. Veech
[33], independently, proved that for Lebesgue almost all λ ∈ Rn+ the interval
exchange Tλ,π is uniquely ergodic.
In order to study the dynamics of interval exchange transformations,

[29] defines an induction procedure (named Rauzy induction) on the space
of interval exchange transformations. In other words, a map R : Son ×
Rn+ → Son×Rn+. There are two cases of induction depending whether xn <
yn (top induction) or xn > yn (bottom induction). The induction is not
defined if xn = yn. Let Tλ,π be an interval exchange transformation with
xn 6= yn and Tλ′,π′ = R (Tλ,π) the one obtained by Rauzy induction. The
permutation π′ only depends on the type of the induction. Hence, there
are two combinatorial operations Rt : Son → Son (top induction) and Rb :
Son → Son (bottom induction) which corresponds to the operation on the
permutation π associated to the Rauzy induction. The equivalence classes
induced by the action of Rt and Rb on Son are called Rauzy classes.

As far as we know, up today, only the Rauzy classRsymn of the symmetric
permutation πsymn ∈ Son defined by πsymn (k) = n−k+1 for k = 1, . . . , n has
been described so far [29]. In particular G. Rauzy proved that its cardinality
is |Rsymn | = 2n−1 − 1. Computer experimentations have been made by
P. Arnoux in the 80’s, M. Kontsevich and A. Zorich in the 90’s in relation
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to the classifcation of connected components of strata of the moduli space of
Abelian differentials. Motivated by the study of [29], the aim of this article
is to study the combinatorics of Rauzy classes in Son and establish a formula
for their cardinalities. We also develop a new complete description of the
Rauzy class of rotations, namely the Rauzy classes of the permutations
πrotn ∈ Son defined by πrotn (1) = n, πrotn (n) = 1 and πrotn (k) = k for all
k = 2, . . . , n− 1.

2. Main results

We recall elements from Teichmüller theory which yield to a classification
of Rauzy diagrams. Let I = [0, a) be an interval and T a map from I into it-
self. Let f : [0, a)→ R+ and X be the quotient of {(x, y) ∈ [0, a)×R+; y 6
f(x)} by the relation (x, f(x)) ∼ (T (x), 0). The space X together with the
flow φt in the vertical direction is called a suspension and f the roof func-
tion. The flow φt has the property that the first return map on the interval
I ×{0} ⊂ X is exactly the map T . W. Veech [33] considered roof functions
which are constant on each subinterval of an interval exchange transforma-
tion. The suspension X obtained by this procedure is a translation surface
and the flow φt corresponds to the geodesic flow on X in the vertical di-
rection. Translation surfaces are part of Teichmüller theory and will play
an important role in the construction of our counting formulas.
A translation surface S has a flat metric, except at a finite number of

points where there are conical singularities whose angles are integer mul-
tiples of 2π. If S is a suspension of an interval exchange transformation
T , the conical singularities of S come from the singularities of T . Let
n12π, n22π, . . . , nk2π be the list of angles of the conical singularities of
S. We call the integer partition p = (n1, n2, . . . , nk) the profile of S. The
genus g of S is related to p by 2g − 2 =

∑k
i=1(ni − 1) = s(p)− l(p) where

s(p) = n1 + . . .+ nk is the sum of p and l(p) = k its length. We emphasize
that the suspension associated to an interval exchange transformation is
not unique but all of them have the same profile. Furthermore, suspensions
obtained from permutations in the same Rauzy class have the same pro-
file. Let ΩMg be the moduli space of translation surfaces of genus g and
p = (n1, n2, . . . , nk) an integer partition such that 2g − 2 =

∑k
i=1(ni − 1).

The stratum with profile p denoted ΩMg(p) is the subset of ΩMg made out
of surfaces whose profiles are p. On ΩMg acts the Teichmüller flow which
preserves strata and for which the Rauzy-Veech induction on suspensions is
viewed as a first return map. There is a bijection between extended Rauzy
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1654 Vincent DELECROIX

classes and connected components of strata ΩM(p) [33] where an extended
Rauzy class is an equivalence class of irreducible permutations under the
action of Rt, Rb and s, where s is the operation which acts on π ∈ Sn
by s(π)(k) = π−1(n − k − 1). C. Boissy [4] proved a bijection between
Rauzy classes and connected components of strata with a choice of a part
of the profile p. This choice corresponds to the marking of suspension in-
duced by the left endpoint of the interval exchange transformation which
is not affected during the Rauzy inductions. The combinatorial question of
classifying (extended) Rauzy classes is hence translated into the geometric
one of classifying connected components. M. Kontsevich and A. Zorich [22]
classified connected components of strata in terms of geometrical invari-
ants: the spin parity (an element of {0, 1}) and the hyperellipicity. A spin
parity occurs when the profile p has only odd parts and give rise to at least
two distinct connected components. The term hyperellipticity stands for a
serie of connected components that appear for the profiles (2g− 1, 1k) and
(g, g, 1k). This yields to a classification of (extended) Rauzy classes.
Our approach to count permutations in Rauzy classes relies in the above

geometric interpretation of Rauzy classes. Let π ∈ Son be an irreducible
permutation and pπ the profile of a suspension of π. The profile does not
reflect the structure of an embedded segment in a surface and we refine the
notion. We say that π has marking m|a if the extremities of the interval
corresponds to the same singularity P in the suspension which has a conical
angle m2π and a ∈ {0, . . . ,m − 1} is such that (2a + 1)π is the angle
between the left part and the right part of the interval measured from P .
It has marking ml�mr if the two extremities of the interval correspond to
two different singularities of angles ml2π on the left and mr2π on the right.
The data which consists of the profile and the marking is called the marked
profile of the permutation π. We denote by (m|a, p′) (resp. (ml �mr, p

′))
a profile p′ ] (m) (resp. p′ ] (ml,mr)) with marking m|a (resp. ml �mr).
Here ] stands for the disjoint union of partitions considered as multisets.
Our main theorem (see below) is a recurrence formula for the number of
irreducible permutations with given marked profile.

We first consider standard permutations introduced in [29].

Definition 2.1. — A permutation π ∈ Sn is standard if π(1) = n and
π(n) = 1.

A standard permutation is in particular irreducible. Those permutations
were used for dynamical purpose in [28] and [2] in order to prove the weak
mixing property of interval exchange transformations and in [22],[42] and
[24] in the study of connected components of strata. In terms of moduli
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space of translation surfaces, a standard permutation corresponds to a so
called Strebel differential.
Let p be a marked profile whose profile is p. We denote by γstd(p) the

number of standard permutations with marked profile p. Moreover, if p has
only odd terms, we define δstd(p) = γstd1 (p)−γstd0 (p) where γstds (p) denotes
the number of standard permutations with marked profile profile p and spin
parity s. We prove explicit formulas for γstd(p) and δstd(p). The formulas
involve the numbers zp, c(p) and d(p) which are defined next but we first
introducte notations for partitions. Let p = (n1, n2, . . . , nk) be an integer
partition considered as a multiset (each part has a multiplicity equals to its
number of occurences in the partition). We recall that the disjoint union is
denoted ]. We have s(p1]p2) = s(p1)+s(p2) and l(p1]p2) = l(p1)+ l(p2).
If q ⊂ p is a subpartition of p we denote by p\q the unique partition r such
that p = q ] r.
We recall that the conjugacy classes of Sn are in bijection with integer

partitions of n. We denote by zp the cardinality of the conjugacy class
associated to p. If ei is the number of occurences of i in p, then

zp =
n∏
i=1

ieiei! iei .

If p satisfies s(p)+ l(p) ≡ 0 mod 2 we define (the formula is due to G. Boc-
cara [3])

c(p) = 2(n− 1)!
n+ 1

 ∑
q⊂(n2,n3,...,nk)

(−1)s(q)+l(q)
(
n

s(q)

)−1


where the summation is over all subpartition of (n2, n3, . . . , nk) with mul-
tiplicity in the sense that (1, 3) occurs twice in (1, 1, 3). Moreover, if the
partition p has only odd parts we define d(p) = (n − 1)!/2g where g =
(s(p)− l(p))/2.
Our proofs are based on surgeries of partitions which are used to obtain

recurrence (with a geometric counterpart as in [22] and [10]). If m is a part
of p and a ∈ {0, . . . ,m− 1} we denote by pm|a the partition obtained from
p by removing m and inserting the two parts a and m− a− 1 (if a is 0 or
m − 1 we replace m by m − 1). If ml and mr are two distinct parts of p
we denote by pml�mr the partition obtained from p by removing the parts
ml and mr and inserting ml + mr − 1. We have s(pm|a) = s(p) − 1 and
s(pml�mr ) = s(p)− 1 (notations pm|a and pml�mr comes from [3]).

Theorem 2.2. — Let p be an integer partition such that s(p)+ l(p) ≡ 0
mod 2. Let m be a part of p, a ∈ {1, . . . ,m− 2}. Set p′ = p\(m). Then, we

TOME 63 (2013), FASCICULE 5
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have

γstd(m|a, p′) = c(pm|a)
zp′

and

δstd(m|a, p′) =
{

0 if a ≡ 0 mod 2
d(pm|a)
zp′

otherwise .

Let ml and mr be two distinct parts of p. Set p′ = p\(ml,mr). Then, we
have

γstd(ml �mr, p
′) = c(pml�mr )

zp′
andδstd(ml �mr, p

′) = d(pml�mr )
zp′

.

The numbers c(p) and d(p) can be interpreted as counting of labeled
permutations and zp′ as the cardinality of the group which exchanges the
labels.
Let p be a marked profile. We define γirr(p) (resp. δirr(p) = γirr1 (p) −

γirr0 (p)) the number of irreducible permutations with given marked profile
(resp. the difference between the numbers of irreducible permutations with
odd and even spin parity). The below theorem gives recursive formulas for
the numbers γirr and δirr which involve the numbers γstd and δstd.

Theorem 2.3. — Let p = (m1,m2, . . .) be an integer partition such
that s(p) + l(p) ≡ 0 mod 2. Let m ∈ p and a ∈ {0, . . . ,m− 1} then

γirr (m|a, p′) =γstd (m+ 2|m− a, p′)−∑
p′1]p

′
2=p′

m1+m2=m−1
a1+a2=a−1

γirr (m1|a1, p
′
1) γstd (m2 + 2|m2 − a2, p

′
2) .

Let (ml,mr) ⊂ p then

γirr(ml �mr, p
′) = γstd((ml + 1)� (mr + 1), p′)

−
∑

p′1]p′2=p′

∑
k1+k2=ml−1

06a<k1

γirr(k1|a, p′1) γstd((k2 + 1)� (mr + 1), p′2)

−
∑

p′1]p′2=p′

∑
k1+k2=mr−1

16a<k1−1

γirr(ml � k1, p
′
1) γstd(k2 + 2|a, p′2)

−
∑

p′′](m)=p′

∑
p1]p2=p′′
k1+k2=m−1

γirr(ml � k1, p1) γstd((k2 + 1)� (mr + 1), p2)

ANNALES DE L’INSTITUT FOURIER
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Moreover, if p has only odd parts we have

δirr (m|a, p′) =(−1)a δstd (m+ 2|m− a, p′)−∑
p′1]p

′
2=p′

m1+m2=m−1
a1+a2=a−1

(−1)a2δirr (m1|a1, p
′
1) δstd (m2 + 2|m2 − a2, p

′
2) .

And if (m1,m2) ⊂ p then

δirr(ml �mr, p
′) = δstd(ml +mr + 1, p′)

+
∑

p′1]p′2=p′

∑
k1+k2=ml−1

06a<k1

δirr(k1|a, p′1) δstd(k2 +mr + 1, p′2)

+
∑

p′1]p′2=p′

∑
k1+k2=mr−1

16a<k1−1

δirr(ml � k1, p
′
1) δstd(k2 + 2|a, p′2)

+
∑

p′′](m)=p′

∑
p1]p2=p′′
k1+k2=m−1

δirr(m1 � k1, p1) δstd(k2 +mr + 1, p2)

where δstd(m, p′) =
∑m−2
a=1 δstd(m|a, p′).

Theorems 2.3 and 2.2 do not treat the case of Rauzy classes associated
to hyperelliptic components ΩMhyp

g (2g−1, 1k) and ΩMhyp
g (g, g, 1k) where

(1k) denotes the partition that contains k times the part 1. The component
ΩMhyp

g (2g − 1) (resp. ΩMhyp
g (g, g)) corresponds to the extended Rauzy

class of the symmetric permutation of degree 2g (resp. 2g + 1). We know
since [29] that the cardinality of the extended Rauzy class of the symmetric
permutation of degree n is 2n−1 − 1. To obtain the cardinality of each hy-
perelliptic class, we establish a general formula that relates the cardinality
of an extended Rauzy class R associated to a profile p to the one of R0
obtained from R by adding k marked points. The extended Rauzy class
R0 has profile p ] (1k).

Theorem 2.4. — Let k, R and R0 be as above. Let r the number of
standard permutations in R then

|R0| =
(
n+ k + 1

k

)
|R|+

(
n+ k

k − 1

)
n r.

As a particular case of the above theorem, we obtain an explicit formula
for the cardinalities of Rauzy classes associated to hyperelliptic compo-
nents.

Corollary 2.5. — Let R ⊂ So2g+k (resp. R ⊂ So2g+k+1) be the ex-
tended Rauzy class associated to ΩMhyp(2g−1, 1k) (resp. ΩMhyp(g, g, 1k))

TOME 63 (2013), FASCICULE 5
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and n = 2g (resp. n = 2g + 1), then

|R| =
(
n+ k + 1

k

)
(2n−1 − 1) +

(
n+ k

k − 1

)
n.

The paper is organized as follows. In Section 3, we review the definitions
of Rauzy classes and extended classes. We describe the Rauzy classes of the
symmetric permutation πsym ∈ Son defined by π(k) = n−k+1 due to Rauzy
and the permutation of rotation class πrot ∈ Son defined by πrot(1) = n,
πrot(n) = 1 and πrot(k) = k for k = 2, . . . , n− 1 (Section 3.1.3). We recall
the classification of Rauzy classes and extended Rauzy classes in terms of
connected components of strata of the moduli space of Abelian differential.
In particular, we obtain a formula for cardinalities of Rauzy classes in
terms of the numbers γirr(p) and δirr(p). In section 4, we study standard
permutations in order to proove Theorem 2.2. In section 5 we see how
standard permutations can be used to describe the set of all permutations
and prove Theorems 2.3 and 2.4.

Proofs overview

Now, we explain our strategy to compute cardinalities of Rauzy dia-
grams.

First we formulate a definition of Rauzy classes in terms of invariants of
permutations in Section 3 (see in particular Theorem 3.22). This reformu-
lation follows from the work of [33], [4] and the classification of connected
components of strata of Abelian differentials in [22]. Using this geometric
definition, we are able to express cardinalities of Rauzy classes in terms
of the numbers γirr(p) and δirr(p) which counts irreducible permutations
with given profile p (see Corollary 3.23).

The computation of the numbers γirr(p) and δirr(p) is done in two
steps. Both steps use geometrical surgeries used in the classification of con-
nected components of strata [22] and [24]. The first step consists in studying
standard permutations. We consider the numbers c(p) and d(p) of labeled
permutations and get a recurrence in terms of partitions of n− 1 for both
of them (Theorems 4.12 and 4.18). We then prove that the recurence can
be solved into explicit formulas (Theorems 4.13 and 4.19). These explicit
formula corresponds to the formula given in the above introduction. The
link between standard permutations and the number of labeled standard
permutations as in Theorem 2.2 is proved in Corollary 5.10 and 5.12.

ANNALES DE L’INSTITUT FOURIER
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The second step consists in proving Theorem 2.3 which express the num-
bers γirr(p) (resp. δirr(p)) in terms of γstd(p) (resp. δstd(p)). We use
a simple construction: to a standard permutation π ∈ Sn we associate
the permutation π̃ ∈ Sn−2 obtained by “removing its ends”. Formally
π̃(k) = π(k + 1) − 1 for k = 1, . . . , n − 2. The operation π 7→ π̃ gives
a (trivial) combinatorial bijection between standard permutations in Sn
and all permutations in Sn−2. As the permutations obtained by this oper-
ation are not necessarily irreducible we define Rauzy classes of reducible
permutations. To any permutation we can associate a profile and a spin
invariant (see Sections 3.3.1 and 3.3.2). As each permutation is a unique
concatenation of irreducible permutations, we study how are related the
invariants of a permutation to the invariants of its irreducible components
(this is done in Lemmas 5.6 and 5.8). In geometric terms, a reducible per-
mutation corresponds to an ordered list of surfaces in which each surface
is glued to the preceding and the next one at a singularity. The operation
π → π̃ can be analyzed as a surgery operation and the invariants of π̃ de-
pend only on the ones of π (Proposition 5.9 and 5.11). Theorem 2.3 follows
from an inclusion-exclusion counting for irreducible permutations among
all permutations.

3. Permutations, interval exchange transformations and
translation surfaces

In this section we define the Rauzy induction of interval exchange trans-
formations on the space of parameters Rn+×Son. We study in particular the
two combinatorial operations on irreducible permutations Rt, Rb : Son → Son
which define Rauzy classes. Next we recall the relation between translation
surfaces and interval exchange transformations. Our aim is to give another
definition of Rauzy classes and extended Rauzy classes (Definition 3.4) as
well as a classification in terms of invariants of a permutation: the profile
which is an integer partition, the hyperellipticity and the spin parity which
is an element of {0, 1} (Theorem 3.22).
We recall that if p be an integer partition then we denote by γirr(p) (resp.

γirr1 (p) and γirr0 (p)) the number of irreducible permutations with profile p
(resp. profile p and spin parity 1 and 0). We set δirr(p) = γirr1 (p)−γirr0 (p).
The cardinality of every Rauzy class, but the ones which are associated to
components of strata which contain an hyperelliptic component, depend
only on the numbers γirr(p) and δirr(p) (see Corollary 3.23).

TOME 63 (2013), FASCICULE 5
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The next two sections of this paper are devoted to the computations of
γirr(p) and δirr(p). The explicit formulas for the cardinalities of hyperel-
liptic Rauzy classes are given in Corollary 5.15.

3.1. Rauzy induction and Rauzy classes

3.1.1. Labeled permutations

We introduce a labeled version of permutations which comes from [25]
and [6] inspired from [20] (see also [5]). Many constructions are easier to
formulate with this definition.

Definition 3.1. — A labeled permutation on a finite set A is a couple
of bijections πt, πb : A → {1, . . . , n} where n is the cardinality of A. The
elements of A are called the labels of (πt, πb) and A the alphabet.

In order to distinguish labeled permutations from permutations we will
sometimes call the latter reduced permutations instead of permutations.
The number n is called the length of the permutation. To a labeled permu-
tation we associate a reduced one by the map (πt, πb) 7→ πb ◦ π−1

t . We also
consider the natural section given by π 7→ (id, π) for which the alphabet of
the labeled permutation (id, π) is {1, 2, . . . , n}.
A labeled permutation π = (πt, πb) is written as a table with two lines

π =
(
π−1
t (1) π−1

t (2) . . . π−1
t (n)

π−1
b (1) π−1

b (2) . . . π−1
b (n)

)
The top line (resp. bottom line) of π is the ordered list of labels π−1

t (i) for
i = 1, . . . , n (resp. π−1

b (i) for i = 1, . . . , n). For a reduced permutation π

we use the section defined above and write

π =
(

1 2 . . . n

π−1(1) π−1(2) . . . π−1(n)

)
or simply (

π−1(1) π−1(2) . . . π−1(n)
)
.

The above notation coincides with the notation of π−1 in group theory.
With our notation, the label i is at the position π(i) on the bottom line.
The difference of notation will not cause any problem as we never use
the composition of permutations that arises from interval exchange trans-
formations. The only operation considered here is the concatenation (see
Section 5.1).
The definitions of standard and irreducible permutations extend to la-

beled permutations.

ANNALES DE L’INSTITUT FOURIER
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Definition 3.2. — We say that (πt, πb) is irreducible (resp. standard)
if πb ◦ π−1

t ∈ Sn is irreducible (resp. standard).

Our aim is to count reduced permutations, however in Section 4 we
will mainly deal with labeled ones. In [5], C. Boissy analyze the difference
between reduced and labeled permutations.

3.1.2. Rauzy induction and Rauzy classes

Let T = Tλ,π be an interval exchange transformation on I = [0, a) where
π is an irreducible labeled permutation on an alphabet A with n letters and

λ ∈ RA+ satisfies
∑
α∈A λα = a. For i = 1, . . . , n+ 1 we set xi =

i−1∑
j=1

λπ−1
t (j)

the discontinuities of T and yi =
i−1∑
j=1

λπ−1
b

(j) the ones of T−1. We have

x1 = y1 = 0 and xn+1 = yn+1 = a. Let J = [0,max(xn, yn)) ⊂ I. The
Rauzy induction of T , denoted by R(T ), is the interval exchange T ′ = Tλ′,π′

obtained as the first return map of T on J . The type of T is top if λπ−1
t (n) >

λπ−1
b

(n) and bottom if λπ−1
b

(n) > λπ−1
t (n). In the case λπ−1

t (n) = λπ−1
b

(n)
there is no Rauzy induction defined. When T is of type top (resp. bottom)
the label π−1

t (n) (resp. π−1
b (n)) is called the winner and π−1

b (n) (resp.
π−1
t (n)) the loser. Let α ∈ A (resp. β ∈ A) be the winner (resp. loser) of
T . The vector λ′ of interval lengths of T ′ is given by

λ′α = λα − λβ ,
λ′ν = λν for all ν ∈ A\{α}.

The permutation π′ = Rε(π) is defined as follows, where ε ∈ {t, b} is the
type of T (t for top and b for bottom). Let αt = π−1

t (n) (resp. αb = π−1
b (n))

the label on the right of the top line (resp. bottom line). As π is irreducible,
the position m = πb(αt) of αt on the bottom line (resp. m = πt(αb) of αb
in the top line) is different from n. We obtain π′ from π by moving αb
(resp. αt) from position n to position m + 1 in the bottom interval (resp.
top interval). The operations Rt and Rb are formally defined by

Rt(πt, πb) = (πt, π′b) where if m = πb(αt) we have

π′
−1
b (j) =


π−1
b (j) if j 6 m,
π−1
b (n) if j = m+ 1,
π−1
b (j − 1) otherwise.
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Rb(πt, πb) = (π′t, πb) where if m = πt(αb) we have

π′
−1
t (j) =


π−1
t (j) if j 6 m,
π−1
t (n) if j = m+ 1,
π−1
t (j − 1) otherwise.

The map Rt and Rb are called Rauzy moves. An example of a Rauzy
induction of an interval exchange transformation is shown in Figure 3.1.
The Rauzy moves on reduced permutations are defined using the section
π 7→ (id, π) and the projection (πt, πb) 7→ πb ◦ π−1

t introduced in Sec-
tion 3.1.1.

initial permutation π =

(
a b c d
c d b a

)

λa < λd: top induction

a b c d

c d b a

Rt(π) =

(
a b c d
c d a b

)

a b c d

c d a b

λd < λa: bottom induction

a b c d

c d b a

Rb(π) =

(
a d b c
c d b a

)

a d b c

c d b a

Figure 3.1. Alternative of the Rauzy induction

We consider one more operation called inversion and denoted by s which
reverses the top and the bottom and the left and the right

s

(
a1 a2 . . . an
b1 b2 . . . bn

)
=
(
bn . . . b2 b1
an . . . a2 a1

)
.

The following is standard.

Lemma 3.3. — The Rauzy moves Rt, Rb and the inversion s preserve
irreducible permutations. The Rauzy moves and the symmetry restricted
to the set of irreducible permutations are bijections.

Definition 3.4. — Let π be an irreducible permutation. The orbit of π
under the action of Rt and Rb (resp. Rt, Rb and s) is called the Rauzy class
(resp. extended Rauzy classes) of π and note it R(π). The Rauzy diagram
(resp. extended Rauzy diagram) of π is the labeled oriented graph with
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vertices R(π) and edges corresponding to the action of Rt and Rb (resp.
Rt, Rb and s).

Let π is a reduced (resp. labeled) permutation than the Rauzy class of
π is called a reduced Rauzy class (resp. labeled Rauzy class).

The standard permutations play a central role in Rauzy classes in par-
ticular we have.

Proposition 3.5 ([29]). — Every Rauzy class contains a standard per-
mutation.

Proof. — Let R be a Rauzy class of permutations on n letters and let
π ∈ R. Let αt = π−1

t (n) and αb = π−1
b (n) be the labels of the right

extremities. Let nb = πb(αt) and nt = πt(αb).
If nt = min(nt, nb) 6= 1 then by irreducibility, in the set πt ◦ π−1

b ({nt +
1, . . . , n}) the minimal element is less than nt. Let n′b be this minimum and
α′b be the letter for which the minimum is reached. Applying Rt we can
move the letter α′b at the right extremity of the bottom line. After this first
step the quantity n′b = min(nt, n′b) is lesser than nt = min(nt, nb). For, the
case nb = min(nt, nb), we use Rb to decrease the quantity min(nt, nb).
Iterating succesively Rt or Rb as in the above step, we obtain a permu-

tation such that either nt = 1 or nb = 1. Applying one more time a Rauzy
move, we obtain both equal to 1. �

There are only two standard permutations of length 4, (4 3 2 1) and
(4 2 3 1), which define two Rauzy classes. Their Rauzy diagrams are pre-
sented in Figure 3.2.

(4321)(2431)

(3241)

(4132)

(4213)

(2413) (3142)

(a) The Rauzy diagram of (4321)

(4231)

(4123)(2341)

(4312)(3421)

(3412)

(b) The Rauzy diagram of
(4231)

Figure 3.2. The two Rauzy diagrams of So4 .

The labeled rauzy diagrams are coverings of reduced rauzy diagrams (the
covering map is the projection (πt, πb) 7→ πbÂ ◦ π−1

t ). The degree of the
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covering which gives the multiplicative coefficient between the cardinality
of reduced Rauzy classes and labeled Rauzy classes and its computation
involves geometric methods which are developed in [5].

3.1.3. Two examples of Rauzy diagrams: symmetric and rotation classes

We denote by πsymn the symmetric permutation on n letters defined by
πsymn (k) = n− k + 1 for k = 1, . . . , n. In our notation, πsymn writes

(3.1) πsymn =
(

1 2 . . . n

n n− 1 . . . 1

)
.

The permutation πsymn has a Rauzy class which is described in [29] (see
also [38] p. 53).

Proposition 3.6. — The Rauzy class Rsymn of πsymn coincide with its
extended Rauzy class. It contains 2n−1 − 1 permutations and among them
only πsymn is a standard permutation.

In that case we remark that the labeled Rauzy class coincide with the
reduced one.

We now describe an other class. Let n be a positive integer and let

(3.2) πrotn =
(

1 2 3 . . . n− 1 n

n 2 3 . . . n− 1 1

)
.

The permutation πrotn is called of rotation class. Any interval exchange
transformation with permutation πrotn is a first return map of a rotation.
We denote by Rrotn the Rauzy diagram of πrotn

We now build a graph Gn. Let Vn = {(a, b, c) ∈ N3; a, c > 1, b >
0 and a+ b+ c = n}. From a triple (a, b, c) ∈ Vn we define the permutation
made of three blocks

π(a, b, c) = (B1 B2 B3)

which are defined by

B1 =
∣∣∣∣ 1 . . . a

a+ b+ 1 . . . a+ b+ c

∣∣∣∣
B2 =

∣∣∣∣ a+ 1 . . . a+ b

a+ 1 . . . a+ b

∣∣∣∣
B3 =

∣∣∣∣ a+ b+ 1 . . . a+ b+ c

1 . . . a

∣∣∣∣
Let Gn be the oriented labeled graph with vertices Vn and edges are of two
types
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• the left edges are (a, 0, c) → (1, a − 1, c) and if b 6= 0, (a, b, c) →
(a+ 1, b− 1, c),

• the right edges are (a, 0, c) → (a, c − 1, 1) and if b 6= 0 (a, b, c) →
(a, b− 1, c+ 1).

From the rules that define the edges, we see that each vertex has exactly
one incoming and one outgoing edge of each type. Moreover, in each cycle
made by left edges (resp. right edges) there is exactly one element of the
form (a, 0, c). The number a (resp. c) is the length of the cycle. In Figure 3.3
we draw examples of such graphs.

101

(a) n = 2

102 111 201

(b) n = 3

121

202

103 301

211112

(c) n = 4

131

212

401104

311113 221122

302203

(d) n = 5

141 501

411

321
231

105

114

123
132

402204

213 312222

303

(e) n = 6

Figure 3.3. The graphs Gn for n = 2, 3, 4, 5, 6.

Proposition 3.7. — The graph Gn is isomorphic to the Rauzy diagram
Rrotn under the map (a, b, c) 7→ π(a, b, c). The left edges (resp. right edges)
in Grotn correspond to top (resp. bottom) Rauzy moves in Rrotn .
Moreover the extended Rauzy diagram of πrotn has the same set of vertices as
Rrotn . The action of s in the extended Rauzy class corresponds to (a, b, c) 7→
(c, b, a) in Gn.

We remark that for πrotn the ratio between the cardinalities of labeled
and reduced Rauzy classes is (n − 1)!. This result is a particular instance
of a theorem of [5].
Proof. — The permutation πrotn corresponds to the triple (1, n− 2, 1) ∈

Vn. From the definition of Rt and Rb it can be easily checked that the
edges of Gn corresponds to Rauzy moves on π(a, b, c). Hence, the set of
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permutations associated to Vn is invariant under Rauzy induction. As the
graph Gn is connected, this set is exactly the Rauzy class of πrotn .

The inversion s exchanges the three blocks B1, B2 and B3 of the per-
mutation π(a, b, c). The structure of the permutation in three blocks is
preserved and we get that s · π(a, b, c) = π(c, b, a). �

Proposition 3.8. — The Rauzy class Rrotn of πrotn coincide with its
extended Rauzy class. It contains

(
n
2
)

= n(n−1)
2 permutations and among

them only πrotn is a standard permutation.

3.2. From permutations to translation surfaces

3.2.1. Translation surface

Let S be a compact oriented connected surface. A translation structure
on S is a flat metric defined on S − Σ where Σ ⊂ S is a finite set of
points which has trivial holonomy (the parallel transport along a loop is
trivial). The latter condition implies that at any point P ∈ Σ the metric
has a conical singularity of angle an integer multiple of 2π : the length of
a circle centered at a conic point of angle 2πm with small radius r will
not measure 2πr but 2πmr. More concretely, a translation surface can be
built from gluing polygons. Let P1, . . . , Pf ⊂ R2 be a finite collection of
polygons and τ a pairing of their sides such that each pair is made of two
sides which are parallel, with the same length and opposite normal vectors.
We define the equivalence relation ∼τ on the union P = ∪Pi: x1 ∼τ x2 if
x1 and x2 are, respectively, on two sides s1 and s2 which are paired by τ
and differ by the unique translation that maps s1 onto s2. The quotient
S = S(Pi, τ) := P/ ∼τ is a translation surface for which the metric and
the vertical direction are induced from R2. We call the couple (Pi, τ) a
polygonal representation of the translation surface S. Reciprocally, any
translation surface admits a geodesic triangulation which gives a polygonal
representation of the surface.
Let S be a translation surface and (2πn1, 2πn2, . . . , 2πnk) the list of

angles of its conical singularities. The genus g of the surface satisfies

(3.3) 2g − 2 =
k∑
i=1

(ni − 1).

The integer partition p = (n1, n2, . . . , nk) is the profile of the translation
surface S and Equation (3.3) resumes to s(p)− l(p) = 2g− 2 where s(p) =
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A

BC

D

A

B C

D

(a) A regular octogon

A1 A2

B1

A2

B2

A1

B2

B1

(b) An L-shaped polygon

B

C

D

E

B

C

D

E

(c) Two pentagons

Figure 3.4. Three surfaces built from polygons. The pairings are de-
fined by colors and labels.

n1 + . . . + nl is the sum of the terms of p and l(p) = k its length. As
a consequence the number of even terms in p is even. This is the unique
obstruction for a profile of a flat surface: for any integer partition p such
that the number of even terms is even there exists a translation surface S
with profile p.

The genus, related to the collection of angles in Equation (3.3), can also
be deduced from the way the polygons are glued together. Let f (for faces)
be the number of polygons. Each pair of sides gives an embedded geodesic
segment in the surface, let e (for edges) be the number of those pairs.
The vertices of the polygons are identified in a certain number of classes
depending on the combinatorics of the pairing τ , let v (for vertices) be the
number of classes. Then we have

(3.4) 2− 2g = v − e+ f where g is the genus of the surface.
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Consider the example of Figure 3.4a, the surface obtained from the octo-
gon has four edges and one vertex, thus 2− 2g = 1− 4 + 1 = −2, therefore
its genus is 2. On other hand, the angle at the unique conic point of the
surface is 6π. The two other examples of Figure 3.4 have the same profile.

If a translation surface has a conical angle of 2π then, from the viewpoint
of the metric, the singularity is removable: there exists a unique continu-
ous way to extend the metric at this point. To a surface S with profile
(n1, n2, . . . , nl, 1, . . . , 1) with k parts equal to 1 we associate a surface S
with profile (n1, n2, . . . , nl). We say that surface S is obtained from S by
marking k points.

3.2.2. Moduli space of translation surfaces

Two translation surfaces S1 and S2 are isomorphic if there exists an
orientation preserving isometry between S1 and S2 which maps the verti-
cal direction of S1 on the vertical direction of S2. Let ΩM(n1 − 1, n2 −
1, . . . , nk − 1) be the collection of isomorphism classes of flat surfaces for
whose profile is (n1, n2, . . . , nk). The notation ΩM(κ) comes from algebraic
geometry where ΩM is the tangent bundle to the moduli space of complex
curvesMg. In this settings, translation surfaces are considered as Riemann
surfaces together with an Abelian differential. A conical singularity of an-
gle 2πm for the flat metric corresponds to a zero of degree m − 1 of the
Abelian differential (see [41] for more details about the relations between
flat structure and Abelian differential).
We now define a topology on ΩM using the construction with poly-

gons. We first remark that given the combinatorics of polygons (e.g. the
cyclic order of the edges in each polygon, and the pairing τ), the set of
vectors that are admissible as sides for the polygons forms an open set in
(R2)e−f+1 = (R2)2g+s−1 where as before v, e and f denote the number of
vertices, edges and faces in the polygon. On other hand, two different polyg-
onal representations may give isomorphic translation surfaces. We consider,
on polygonal representations, the following operations (see also Figure 3.5)

• The cut operation consists in the creation of a new pair of edges
between two vertices (if it is possible). This operation creates an
edge and the number of faces increases by 1.

• The paste operation consists in pasting two polygons along two
edges which are paired. This operation delete an edge and the num-
ber of faces decreases by 1.

We have the following.
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B

C

D
E

B

C

D
E B

C

D

F

E

F B

C

D
E

E

F

B

C F

B

C

E

Figure 3.5. An example of one cut followed by one paste.

Proposition 3.9 ([26],[35]). — The isomorphism class of a surface
S(Pi, τ) built from polygons is invariant under cut and paste operations of
the polygonal representation (Pi, τ). Moreover, if P and P ′ are two polyg-
onal representations of the same surface S then there exists a sequence
P0 = P , P1, . . . , Pn = P ′ of polygonal representations such that Pi+1 is
obtained from Pi either by a cut or a paste operation.

The above proposition states that the space ΩM can be considered as a
quotient of a finite union of open sets of (R2)2g−2+v by the action of cutting
and pasting. The topology of ΩM is by definition the quotient topology.
As the action of cut and paste operations is discrete, the local system of
neighborhood in ΩM are open sets in vector spaces. Hence, two translation
surfaces are near if they admit decompostions in polygons which have the
same combinatorics and roughly the same shape.
We drafted a construction of the moduli space of translation surfaces ΩM

which is a quotient of the tangent bundle of a Teichmüller space (which cor-
responds to polygonal representation) by the mapping class group (which
corresponds to cut and paste operations). See [26] and the textbooks [1],
[27], [17] or [16].

3.2.3. Suspension of a permutation and Rauzy-Veech induction

We recall the method in [33] for building a translation surface from a
permutation. The version for labeled permutations comes from [25] and
[6]. Let π = (πt, πb) be an irreducible labeled permutation, A its alphabet
and n = |A|. A suspension datum for π is a collection of vectors ζ =
(ζα)α∈A = ((λα, τα))α∈A ∈ (R+ × R)A such that

∀1 6 k 6 n− 1,
∑

πt(α)6k

τα > 0 and
∑

πb(α)6k

τα < 0.
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To each suspension datum ζ we associate a translation surface S = S(ζ, π)
in the following way. Consider the broken lines Lt (resp. Lb) in R2 starting
at the origin and obtained by the concatenation of the vectors ζπ−1

t (j) (resp.
ζπ−1
b

(j)) j = 1, . . . , n (in this order). If the broken line Lt and Lb have
no intersection other than the endpoints, we can construct a translation
surface S from the polygon bounded by Lt and Lb. The pairing of the sides
associate to the side ζα of Lt the side ζα of Lb (see Figure 3.6). Note that
the lines Lt and Lb might have some other intersection points. But in this
case, one can still define a translation surface using the zippered rectangle
construction due to [33]. In the suspension S = S(π, ζ) there is a canonical
embedding of the segment I = [0, |λ|). The first return map on I of the
translation flow of S is the interval exchange map T with permutation
π and vector of lengths λ (see Figure 3.6). The Rauzy induction can be

A

ζA

B

ζB

C

ζC

D

ζD

A

ζA

B

ζB
C

ζC

D

ζD

Figure 3.6. A suspension of the permutation
(
ABCD
BCDA

)
and the first

return map of the vertical linear flow on its canonical transverse seg-
ment.

extended to suspensions and will be still denoted by R. If ζ = (λ, τ) is a
suspension data for π, then R(ζ, π) is the suspension (ζ ′, π′) = ((λ′, τ ′), π′)
where

• π′ = Rε(π) where ε ∈ {t, b} is the type of T ,
• ζ ′α = ζα − ζβ where α (resp. β) is the winner (resp. loser) for T .

This extension is known as the Rauzy-Veech induction, and is used as a
discretization of the Teichmüller flow.
By construction the surfaces Sζ,π and Sζ′,π′ are isomorphic: the Rauzy-

Veech induction corresponds to one cut followed by one paste operations
(see Figure 3.7). In particular, by the definition of Rauzy class (Defini-
tion 3.4), we have the following proposition which is a key ingredient in
the correspondance between Rauzy classes and moduli space of translation
surfaces.
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A

ζA

B

ζB

C

ζC

D

ζD

A

ζA

B

ζB
C

ζC

D

ζD

A

ζ ′A=ζA−ζD

B

ζB

C

ζC

D

ζD

A

ζ ′A=ζA−ζD

B

ζB
C

ζC

D

ζD

Figure 3.7. The (bottom) Rauzy-Veech induction on a suspension of
π =

(
ABCD
BCDA

)
.

Proposition 3.10 ([33]). — Let R be a Rauzy class or an extended
Rauzy class. Then, the set of suspensions obtained from permutations in
R is open and connected in ΩM.

The case of extended Rauzy class in the above proposition follows from
the fact that the involution s on permutations (see Section 3.1.2) can be
seen as a central symmetry of the suspension S(π, ζ).

3.3. Permutation invariants of Rauzy classes

We now define the three invariants of permutations that lead to a clas-
sification of Rauzy classes.

3.3.1. Interval diagram and profile

Let π be a labeled permutation with alphabet A. We consider a refine-
ment of the permutation σ introduced in [33] which take care of the labels
of π. Let σ̃ be the permutation on the set A∪A = {a; a ∈ A}∪{a; a ∈ A}
defined by

σ̃(a) =
{

π−1
t (1) , if πb(a) = 1

π−1
b (πb(a)− 1), if πb(a) 6= 1

and

σ̃(a) =
{

π−1
t (πt(a) + 1), if πt(a) 6= n

π−1
b (n) , if πt(a) = n

.

Assume that the permutation π is irreducible and consider a suspension S
of π. We identify a (resp. a) to the left-half (resp. right-half) of the edge
labeled a in S. The permutation σ̃ corresponds to the sequence of half-edges
that we cross by turning around vertices of S (see Figure 3.8).
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π−1
t (1)

π−1
b (1)

π−1
t (i)

π−1
t (i+1)

π−1
b (i) π−1

b (i+1)

π−1
t (d)

π−1
b (d)

Figure 3.8. The permutation σ̃π and turning around vertices of a sus-
pension of π.

Let π be a labeled permutation on A. We define Aπ (resp. Aπ) to be
the quotient of A (resp. A) in which π−1

b (1) and π−1
t (1) (resp. π−1

t (n) and
π−1
b (n)) are identified.

Definition 3.11. — The interval diagram of π is the permutation σ =
σπ on the set Aπ = Aπ ∪ Aπ defined by

σπ(a) =


σ̃(π−1

t (1)) if a = (π−1
b (1), π−1

t (1)),
σ̃(π−1

b (n)) if a = (π−1
t (n), π−1

b (n)),
σ̃(a) otherwise.

As an example, on the permutation ( A B C D
B C D A ) in Figures 3.6 and 3.7 the

interval diagram is

σπ =
(

(B,A), (D,B)
) (
C,B

) (
D,C

)
The interval diagram σπ exchanges Aπ and Aπ. In particular, the permu-
tation σ2

π can be written as a product of two permutations σπ and σπ on
respectively Aπ and Aπ.

We recall that conjugacy class of permutations of a set with n elements
are in bijection with integer partition of n. To a permutation σ we associate
the length of the cycles in the disjoint cycle decomposition of σ.

Lemma 3.12. — Let π be an irreducible permutation and S a suspension
of π. The profile of S is the integer partition associated to the conjugacy
class of the permutation σπ (or σπ).

Proof. — Following [33] and [5], the permutation σπ (resp. σπ) can be
seen as the crossing of the horizontal direction. In particular each cycle
corresponds to a conical singularity of the suspension S and its length k

equals the angle divided by 2π. �
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3.3.2. The spin parity

Now we define the spin parity of a permutation π whose profile p contains
only odd numbers. We refer to [18] and [22] for the proofs.
Let n > 1 and V a vector space over F2. A quadratic form on V is a

map q : V → F2 which is an homogeneous polynomial of degree 2 in any
coordinate system of V . If q is a quadratic form, then the application Bq
defined on V ×V by Bq(u, v) = q(u+ v)− q(u)− q(v) is bilinear. The form
q is called nondegenerate if Bq is nondegenerate. Because the characteristic
is two, the form Bq satisfies

(3.5) Bq(u, v) = Bq(v, u) and Bq(u, u) = 0.

. If there exists a non degenerate bilinear form B on V which satisifies (3.5)
then the dimension of V is even. We consider from now that the dimension
n = 2g is even and V = (F2)2g. On V , there is only one linear equivalence
class of nondegenerate bilinear form B that satisfies (3.5). The standard
nondegenerate bilinear form on V = F2g

2 is the bilinear form B0 given in
coordinates v = (x1, y1, . . . , xg, yg) ∈ V , v′ = (x′1, y′1, . . . , x′g, y′g) by

B0(v, v′) =
g∑
i=1

(xiy′i + x′iyi).

By the above remark, any non degenerate quadratic form is linearly equiv-
alent to one whose associated bilinear form is B0. In order to classify qua-
dratic form up to linear equivalence, we assume that q is such that Bq = B0.
In other words the quadratic form q writes in terms of the coordinates of
v as

(3.6) q(v) =
n∑
i=1

(
aix

2
i + biy

2
i + xiyi

)
,

where t = ((ai, bi))i=1,...,n ∈ (F2)2n. We denote by qt the quadratic form
(3.6).

Theorem 3.13. — Let V = (F2)2n with n > 1. There are two equiva-
lence classes of non-degenerate quadratic forms over V . They are identified
by their Arf invariant Arf(q) ∈ F2 which is defined by

#{v ∈ V ; q(v) = 0} −#{v ∈ V ; q(v) = 1} = (−1)Arf(q) 2n−1.

The Arf invariant of the form qt defined in (3.6) is the number of indices
i ∈ {1, . . . , n} such that (ai, bi) = (1, 1) modulo 2.
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ζA

ζA

eA

ζB

ζB

eB
ζC

ζC

eC

ζD

ζD

eD

Figure 3.9. Canonic basis of H1(S,Σ;Z/2) and H1(S − Σ;Z/2) of a
suspension of π =

(
ABCD
BCDA

)
.

The formula in Theorem 3.13 states that the Arf invariant of a quadratic
form q is the majority value assumed by q on V among 0 and 1. We now
states a theorem about the classifcation theorem of all quadratic forms.

Theorem 3.14. — Let V = (F2)n with n > 2. There are three linear
equivalence classes of quadratic forms on V of rank 2g with 0 < g < n:

• {q; q|ker(Bq) 6= 0},
• {q; q|ker(Bq) = 0 and Arf(q) = 0} where q is q on the quotient
V/ ker(Bq),

• {q; q|ker(Bq) = 0 and Arf(q) = 1}.

Now, we define the spin parity of a permutation. Let π = (πt, πb) be a
labeled permutation on the alphabet A with n elements. Let V := (F2)A

and eα be the elementary vector for which the only non zero coordinate is
in position α. The intersection form of π is the bilinear form Ω = Ωπ on V
defined by

Ωα,β = Ω(eα, eβ) =
{

1 if (πt(α)− πt(β))(πb(α)− πb(β)) < 0,
0 else.

The matrix Ω corresponds to crossings: the entry (α, β) of the matrix is 1
if and only if the order of (πt(α), πt(β) is the opposite of (πb(α), πb(β)).
Let S = S(π, ζ) be a suspension of π. The sides (ζα)α∈A of S form a basis

of the relative homology H1(S,Σ;Z/2). The elements (eα) can be consid-
ered as its dual basis in H1(S − Σ;Z/2) (see Figure 3.9). The intersection
form on H1(S;Z/2) is well defined on H1(S − Σ;Z/2) by composition of
the natural morphism H1(S − Σ;Z/2) → H1(S;Z/2) obtained from the
inclusion S − Σ → S. The matrix Ω corresponds to the the intersection
matrix of the vectors (eα)α∈A viewed as elements of H1(S − Σ;Z/2). In
particular the rank of Ωπ is 2g where g is the genus of the suspension.
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We remark that Ω only depends on the topological structure of S(π, ζ)
and not on the flat metric. Now, we define a quadratic form qπ. For any
closed curve γ : [0, 1]→ S there is an associated winding number (relative
to the flat metric) which is an integer multiple of 2π. We denote by w(γ)
this integer modulo 2 and extends it by linearity to H1(S − Σ;Z/2). We
may notice that any linear form on F2 can be canonically transformed into
a totally degenerate quadratic form without changing its values as 02 = 0
and 12 = 1. The quadratic form qπ on H1(S − Σ;Z/2) is

q(x) = w(x) + #(components of x) + #(self intersections of x).

Proposition 3.15. — Let π be a permutation. The quadratic form qπ
is such that the restriction to ker(Bqπ ) is null if and only if the profile of π
as only odd parts.

Definition 3.16. — Let π be a permutation such that its profile has
only odd parts. The spin parity of π is the Arf invariant of the quadratic
form qπ.

As an example the permutations

π0 =
(

1 2 3 4 5 6 7 8
8 5 4 3 2 7 6 1

)
and π1 =

(
0 1 2 3 4 5 6 7
8 3 2 5 4 7 6 1

)
have both profiles (7) but the spin parity are, respectively, 0 and 1. The per-
mutations π0 and π1 hence belong to two different Rauzy classes. This fact
can be checked by explicit computation of Rauzy classes but is fastidious
as the cardinality of Rauzy classes are respectively 5209 and 2327.

3.3.3. Hyperellipticity

A translation surface S is hyperelliptic if there exists a morphism of
degree two from S to the Riemann sphere P1C such that the flat structure
of S comes from a quadratic differential on P1C.

Proposition 3.17 ([22]). — In the strata ΩM(2g−1) (resp. ΩM(g, g))
there exists a connected component ΩMhyp(2g − 1) (resp. ΩMhyp(g, g))
such that each surface in the component is hyperelliptic. These two families
are the only connected components of strata without marked point with
this property.

For strata ΩM(2g−1, 1k) and ΩM(g, g, 1k) which contain marked points,
there is also a connected components which comes from the hyperelliptic
ones in ΩM(2g− 1) and ΩM(g, g). We will call them hyperelliptic as well.
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Proposition 3.18 ([22]). — Let π be an irreducible permutations with
profile (2g−1) or (g, g) and S a suspension of π. Then S is in an hyperelliptic
component of ΩM defined in Proposition 3.17 if and only if π is in the
Rauzy class of a symmetric permutation

πsymn =
(

1 2 . . . n

n n− 1 . . . 1

)
.

3.4. Definition of Rauzy classes in terms of invariants

As we have seen in Proposition 3.10, we can associate to each Rauzy
class and each extended Rauzy class a connected component of a stratum
ΩM(pπ). In this section we recall the results of [33] and [4] which prove
how this association can be turned into a one to one correspondance. Next,
we explain the classification of connected components of strata of [22] and
deduce a classification of Rauzy classes.

3.4.1. Connected components of moduli space and Rauzy classes

In order to get a correspondance between Rauzy classes and connected
components of moduli space of translation surfaces, we need to encode a
combinatorial data which corresponds to the fact that the Rauzy induction
fixes the left endpoint of the interval. Let ΩM(p) be a stratum and ml ∈ p.
Let p′ = p\{ml}. We denote by ΩM(ml; p′) the moduli space of translation
surfaces ΩM(p) with a choosen singularity of degree ml.

If π is a permutation, we denote by ml(π) the angle of the singularity
on the left of π. It corresponds to the length of the cycle of the interval
diagram which contains the element π−1

b (1), π−1
t (1) (see Section 3.3.1). To

an irreducible permutation we associate a connected component with a
choosen singularity of degree ml.

Theorem 3.19 ([33],[4]). — The association π 7→ ΩM(pπ) induces a
bijection between extended Rauzy classes of irreducible permutations and
connected components of strata of moduli spaces ΩM(p).
The association π 7→ ΩM(ml(π); p′π) induces a bijection between Rauzy
classes and connected components of strata of moduli spaces with a chosen
fixed degree.

Corollary 3.20 ([4]). — Let R be an extended Rauzy class associated
to a connected component C of a stratum ΩM(p). Then R is the union of
r Rauzy classes where r is the number of distinct elements of p.
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If R is an extended Rauzy class, we denote by R(ml) the Rauzy class
which consist of permutations for which ml(π) = ml. Note that r is not
the number of singularities, we have r = 1 for any connected component of
ΩM(2, 2, 2, 2).

There is a map from a component with chosen fixed degree to the one
without: ΩM(ml; p′) → ΩM(p). At the level of Rauzy classes this corre-
sponds to a disjoint union: the extended Rauzy class corresponding to a
permutation π is the union of the Rauzy classes associated to the possible
degrees associated to the left endpoint. As an example there is one extended
Rauzy R class with 2638248 elements associated to the connected stratum
ΩM(4, 3, 2, 1) which is the union of four Rauzy classes R(4), R(3), R(2)
and R(1) with respectively 1060774, 792066, 538494 and 246914 elements.
The labeled Rauzy classes also have a geometric interpretation in terms

of moduli space of translation surfaces. If π = (πt, πb) is a labeled per-
mutation, then the permutation σπ deduced from the Rauzy diagram (see
Section 3.3.1) is invariant under Rauzy induction which implies a bijec-
tion as Theorem 3.19 between labeled Rauzy classes and a moduli space
of translation surfaces with combinatorial data. In this case, the combi-
natorial data consist in a label for each horizontal outgoing separatrices
of the surface. The classification of connected component of this moduli
space is done in [5]. In particular, he establishes a formula that relates the
cardinality of a labeled Rauzy class of a permutation (πt, πb) and the car-
dinality of the reduced Rauzy class of the associated reduced permutation
πb◦π−1

t . But we emphasize that there is no known relation between labeled
extended Rauzy classes and moduli space of translation surfaces.

3.4.2. Kontsevich-Zorich classification of connected components

The strata of moduli spaces of translation surfaces ΩM(p) are not con-
nected in general. The three invariants above (profile, spin, and hyperellip-
ticity) as proved in [22] are enough to give a complete classification.

Theorem 3.21 ([22]). — The connected components of a stratum with
marked points ΩM(n1, n2, . . . , nk, 1l) are in bijection with connected com-
ponents of the stratum ΩM(n1, n2, . . . , nk).
The classification of connected components of stratum whose profile does

not contains any 1 are given by the classification below. For genus g > 4
we have
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• The strata ΩM(2g−1) and ΩM(g, g) with g odd have three compo-
nents: a hyperelliptic component associated to the symmetric per-
mutations on respectively 2g and 2g+ 1 letters. A component with
odd spin parity and a component with even spin parity.

• The other strata with only odd partsH(2m1+1, 2m2+1, . . . , 2mn+
1) have two connected components which are distinguished by their
spin parities.

• ΩM(g, g) for g even has two components: one hyperelliptic and an
other one (called the non-hyperelliptic component).

• Any other stratum is connected.
For small genera, the preceding classification holds but there are empty
components:

• genus 1 and 2: the strata ΩM(1), ΩM(3) and ΩM(2, 2) are non
empty and connected.

• genus 3: ΩM(5) and ΩM(3, 3) have two connected components one
hyperelliptic and one odd. The other strata of ΩM3 are connected.

By the above theorem, Theorem 3.19 and Theorem 3.19 we obtain the
following classification of Rauzy classes.

Theorem 3.22. — Let p = (n1, . . . , nk) be an integer partition such
that s(p) + l(p) ≡ 0 mod 2. Then the set of permutations π with profile p
is the union of 1, 2 or 3 extended Rauzy classes depending on the number
of connected components of ΩM(p) given by Theorem 3.21. Each extended
Rauzy class is the union of r Rauzy classes where r is the number of distinct
part in p.

Recall from the introduction that if p be a partition such that s(p)+l(p) ≡
0 mod 2 we denote by γirr(p) the number of irreducible permutations with
profile p. Moreover, if p has only odd terms we denote δirr(p) = γirr1 (p)−
γirr0 (p) where γirrs (p) is the number of irreducible permutations with profile
p ans spin paruty s.
The below corollary is a direct consequence of Theorem 3.22.

Corollary 3.23. — Let p be an integer partition such that s(p) +
l(p) ≡ 0 mod 2 and ΩM(p) the stratum of the moduli space of translation
surfaces with profile p.

If ΩM(p) is connected then the only Rauzy class R which consists of
irreducible permutations with profile p satisfies |R| = γirr(p).
If ΩM(p) is a union of an odd and an even component then there are

two Rauzy classes Rodd and Reven with profile p which satisfy |Rodd| =
γirr(p)+δirr(p)

2 and |Reven| = γirr(p)−δirr(p)
2 .
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If p = (g, g, 1k) with g even, then there are two Rauzy classes Rhyp and
Rnonhyp with profile p which satisfy |Rnonhyp| = γirr(p)− |Rhyp|.

If p = (2g − 1, 1k) or p = (g, g, 1k) with g odd, then there are three
Rauzy classes Rhyp, Rodd and Reven associated respectively to the hyper-
elliptic, the odd spin and even spin components of ΩM(2g − 1, 1k) (resp.
ΩM(g, g, 1k) with g odd). Then, if g ≡ 1, 2 mod 4 then

|Rodd| = γirr(p) + δirr(p)
2 − |Rhyp| and |Reven| = γirr(p)− δirr(p)

2 .

And if g ≡ 0, 3 mod 4 then

|Rodd| = γirr(p) + δirr(p)
2 and |Reven| = γirr(p)− δirr(p)

2 − |Rhyp|.

As an example, the 461 irreducible permutations on six letters is the
union of seven Rauzy classes (respectively five extended Rauzy classes) as
below:

• two Rauzy classes (two extended) associated to ΩM3(5) =
ΩMhyp

3 (5)∪ΩModd
3 (5) with respectively 31 and 134 permutations,

• two Rauzy classes (one extended) associated to ΩM2(3; 1, 1) and
ΩM2(1; 3, 1) with respectively 105 and 66 permutations,

• two Rauzy classes (one extended) associated to ΩM2(2; 2, 1) and
ΩM2(1; 2, 2) with respectively 90 and 20 permutations,

• one Rauzy class (one extended) associated to ΩM1(1, 1, 1, 1, 1) with
15 elements.

Corollary 3.23 can be formulated as well for Rauzy classes introducing
natural notations γirr(m, p′) and δirr(m, p′).

4. Enumerating labeled standard permutations

In this section we are interested in the number of standard permutations
(Definition 2.1) in any Rauzy class (Definition 3.4) which is the starting
point to enumerate the whole class. Recall that the conjugacy classes of Sn
are in bijection with integer partition of n. To a permutation σ we associate
the integer partition (n1, . . . , nk) whose parts are the lengths of the cycles
in the disjoint cycle decomposition. As the bijection is canonic we identify
conjugacy classes of Sn and integer partition of n.

Let p be an integer partition and σ ∈ Sn a permutation whose conjugacy
class is p. We establish in Proposition 4.1 a bijection between the solutions
(τt, τb) of the equation

(4.1) σ = τt τ
−1
b where τt, τb are n-cycles of Sn,
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and the labeled permutations (πt, πb) with profile p and fixed labels on
outgoing separatrices (see Section 3.3.1). We denote by c(p) the number of
solutions of (4.1) as it does not depend on the choice of σ with conjugacy
class p. We remark that when p statisfies l(p) + s(p) 6≡ 0 mod 2 then there
is no labeled permutation with profile p (because s(p) + l(p) = 2g − 2
where g is the genus of a suspension of π, see (3.3) in Section 3.2). On
the other hand, the signature τ of a permutation with conjugacy class p is
ε(τ) = (−1)s(p)+l(p). Hence, if there is a solution (τt, τb) ∈ Sn ×Sn of (4.1)
the signature of σ is necessarily 1.
If p has only odd parts (in which case the condition s(p)+l(p) ≡ 0 mod 2

is automatic), we denote by c1(p) (resp. c0(p)) the number of labeled per-
mutations with spin parity 1 (resp. 0) and set d(p) = c1(p)−c0(p). Using ge-
ometrical analysis, we prove recurrence formulas for c and d (Theorems 4.12
and 4.18) and then provide explicit formulas for both (Theorems 4.13 and
4.19).

4.1. Standard permutations and equations in the symmetric
group

The particular form of a standard permutation allows the construction
of a surface which is no more built from a polygon but from a cylinder. We
explain this construction which can be found in [22], [42] and [24]. Instead
of considering a standard permutation π as a double ordering πt, πb of
the alphabet A, we describe it as a triple of permutations (τt, τb, σ) ∈
SAπ × SAπ × SAπ with the following properties

• τt and τb are n− 1 cycles,
• σ = τt τ

−1
b is the permutation σπ,

where the notation Aπ and σπ were defined in Section 3.3.1.
Given (τt, τb, σ) ∈ Sn×Sn×Sn with τtτ−1

b = σ we develop the method of
[3] which consists in defining another triple (τ ′t , τ ′b, σ′) ∈ Sn−1×Sn−1×Sn−1
in order to relate the solutions of (4.1) in Sn to the ones on Sn−1.

4.1.1. Cylindric suspension and equation σ = τt τ
−1
b

Let π = (πt, πb) be a labeled standard permutation on the alphabet A
of cardinality n+ 1. Let rt = π−1

t (1) = π−1
b (n) and rb = π−1

t (n) = π−1
b (1).

Let ζ ∈ CA be such that
• Im(ζrb) < 0 and Re(ζrb) > 0,
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• for all α 6= rb, Im(ζα) = 0 and Re(ζα) > 0.
Therefore, the vector ζ is not a suspension data as in Section 3.2.3. However,
using the same construction with broken lines Lt and Lb, we get a surface
which we call a cylindric suspension of π (see Figure 4.1). If we glue together
the vertical associated to rb on Lt to the one on Lb we obtain an horizontal
cylinder. Its boundary consists of two circles cut in n intervals.

(rb, rt) a b c

c a b (rb, rt)

τt = (r a b c)
τb = (r c a b)

(rb, rt)

b

a
c

σπ = (r c a)(b)

Figure 4.1. Cylindric suspension of π =
(
rt a b c rb
rb c a b rt

)
and its interval

diagram.

There is an arbitrary choice between rt and rb as vertical edge. To take
care of this flexibility, we label the top and bottom circles with the alphabet

Aπ = {(rb, rt)} ∪ {α ∈ A : α 6= rb and α 6= rt},

instead of A\{rb} (see Figure 4.1). Remark that the labelization of the two
circles coincide with the interval diagram defined in Section 3.3.1. Recall
that the interval diagram σπ of π is a permutation defined on the alphabet
Aπ ∪ Aπ which consists in two copies of Aπ above. The interval diagram
σπ exchanges Aπ and Aπ. The square of σπ decomposes as a product of
two permutations σπ and σπ on respectively Aπ and Aπ.

Proposition 4.1. — Let A be a finite alphabet and rt, rb two distinct
elements of A. Set A′ = {(rb, rt)} ∪ A\{rb, rt}. Let σ ∈ SA′ , then there
is a bijection between the set of labeled standard permutations π on the
alphabet A such that σπ = σ and the set of solutions (τt, τb) ∈ SA′ × SA′
such that τtτ−1

b = σ.

Proof. — Let n be the cardinality of A. The proof follows directly from
the definition of the interval diagram (Definition 3.11). Let π be a standard
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permutation on A. We associate to π the two n-cycles that consists of the
top and bottom lines

τt = ((rb, rt) π−1
t (2) π−1

t (3) . . . π−1
t (n− 1))

and
τb = ((rb, rt) π−1

b (2) π−1
b (3) . . . π−1

b (n− 1)).
The fact that τt, τb and σ satisfies Equation (4.1) can be resumed in the
following picture (Figure 4.2) which represents a vertex of a suspension
S(π, ζ) of π together as the action of τt, τb and σ as permutation. �

τt

τb

σ = τt τ
−1
b

Figure 4.2. The relation σ = τt τ
−1
b on the level of the interval diagram

of π.

An example is shown in Figure 4.1.
Counting labeled stantard permutations is now expressed in a group

theoritical way. Let X Y , Z be three conjugacy classes of a finite group G,
we want to count the number of solutions of an equation x y z = 1 where
x ∈ X, y ∈ Y and z ∈ Z. This problem is known to be equivalent to a
formula involving characters called the Frobenius formula.

Proposition 4.2 (Frobenius formula). — Let G, X, Y and Z as above.
Let NX,Y,Z be the number of triples (x, y, z) ∈ X × Y × Z such that
x y z = 1. Then

NX,Y,Z = |X| |Y | |Z|
|G|

∑
χ∈Ĝ

χ(X) χ(Y )χ(Z)
χ(1) ,

where Ĝ denotes the set of irreducible characters of G.

The proof of Frobenius formula can be found for example in Section
7.2. of [30]. For the numbers c(p) we deduce from Frobenius formula the
following expression

(4.2) c(p) = (n− 1)!
∑
χ∈Ŝn

χ(n)2
χ(p)

χ(1) .
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It is a hard to pass from expression (4.2) which involves characters to a
formula which involves numbers. The recursive construction we adopt does
not use Frobenius formula. However there are some works, for example
[14] (see Theorem 4.16), that from Frobenius formula obtain formulas for
the value of c(p). The conjugacy class of σ encodes the stratum associated
to the suspension of π. For the numbers d(p) = c1(p) − c0(p), there is
still an approach using Group Theory. The spin parity can be viewed as a
refinement of the signature of a permutation in the Sergeev group [12].

4.1.2. Recursive construction

In order to obtain formulas for the numbers c(p) and d(p) we follow an
approach of [3]. Let A be an alphabet of size n and σ ∈ SA a permutation.
Let (τt, τb, σ) be a solution of Equation (4.1) and x ∈ A. Starting from a
triple (τt, τb, σ) ∈ SA of equation (4.1), we choose a letter x ∈ A, then we
remove x in both cycles τt and τb and get two (n − 1)-cycles τ ′t and τ ′b on
A′ = A\{x}. Set σ′ = τ ′t τ

′
b
−1, we want to know the relation between σ

and σ′.
The (n− 1)-cycles τ ′t and τ ′b obtained are formally given by

τ ′(y) =
{
τ(x) if y = τ−1(x),
τ(y) otherwise. where τ equals τt or τb.

The operation τ 7→ τ ′ can be obtained as a multiplication by a transpo-
sition, where we consider τ ′ as a permutation on A which fixes x. More
precisely

(4.3) τ ′t = (x τt(x)) τt and τ ′b
−1 = τ−1

b (x τb(x)).

To τ ′t and τ ′b which are (n−1)-cycles on A′ we associate the permutation σ′
by the formula σ′ = τ ′t τ

′−1
b . Using formulas (4.3) we write σ′ as a product

involving (τt, τb, σ) and the letter x

(4.4) σ′ = τ ′t τ
′
b
−1 = (x τt(x))σ (x τb(x)).

The conjugacy class of σ′ depends only of the positions of x and τt(x) in
the cycle decomposition of σ. If p = (n1, . . . , nk) and p′ = (n′1, . . . , n′k′) are
integer partitions we denote p ] p′ = (n1, . . . , nk, n

′
1, . . . n

′
k′) their disjoint

union. If m is an integer we write m ∈ p if m is a part of p and if q is an
integer partition we write q ⊂ p if there exists p′ such that p = q ] p′. In
which case p′ is denoted p\q.
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Definition 4.3 ([3]). — Let p be an integer partition of n. Let m ∈ p
and a ∈ {1, 2, . . . ,m − 2}, we call the splitting of m in p by a the integer
partition

pm|a = (a, m− a− 1) ] p\{m}.

Let (ml,mr) ⊂ p we call the collapsing of ml and mr in p the integer
partition

pml�mr = (ml +mr − 1) ] p\(ml,mr).

Remark that if p is a partition of n then both pm|a and pml�mr are
partitions of n− 1.

Proposition 4.4 ([3]). — Let (τt, τb, σ), p the conjugacy class of σ,
x ∈ A and (τ ′t , τ ′b, σ′) be as above. If x and τt(x) are in the same cycle of σ
with lengthm, then the conjugacy class of σ′ is pm|a where a is the smallest
number such that σa(τt(x)) = x. If x and τt(x) are in different cycles of σ
of length, respectively, ml and mr, then the profile of σ′ is pml�mr .

We remark that x, τt(x) and τb(x) belong to the same cycle c of σ.
More precisely, τb(x) and τt(x) are successive letters in c, as by definition
σ(τb(x)) = τt(x).

Proof of 4.4. — By (4.3) and (4.4), the differences between σ and σ′

occur for σ−1(x) and τb(x) for which we have

(4.5) σ′(τb(x)) = σ(x) and σ′(σ−1(x)) = τt(x).

We first prove the first part of the proposition. We assume that x and τt(x)
belong to different cycles cl and cr of σ whose lengths are, respectively, ml

and mr. We write cl =
(
x A σ−1(x)

)
and cr = (τt(x) B τb(x)) where A

and B are two blocks of labels which may be empty. The cycles cl and cr
collapse in σ′ in a unique cycle c =

(
τt(x) B τb(x) A σ−1(x)

)
. Because x is

removed the length of c is ml +mr − 1.
Now, consider the second part of the proposition. We assume that x and

τt(x) are in the same cycle c of σ of length m. Because σ(τb(x)) = τt(x),
the cycle of σ containing x writes c = (τt(x) At σ−1(x) x σ(x) Ab τb(x)),
with σ(x) 6= τb(x) and σ−1(x) 6= τt(x). As before, At and Ab are two
blocks which may be empty. Now σ′ has the same cycle decomposition as
σ but the cycle containing x splits into two cycles ct = (τt(x) At σ−1(x))
and cb = (σ(x) Ab τb(x)). The lengths at and ab of the cycles ct and
cb can be defined symmetrically by σat(τt(x)) = x and σ−ab(τb(x)) = x.
Therefore, as the label x is removed, those lengths satisfy the expression
at + ab = m− 1. �
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Proposition 4.4 is the heart of the recurrence formula for the numbers
c(p) (Theorem 4.12).

4.2. Spin parity

Let (τt, τb σ) ∈ SA × SA × SA be a solution of (4.1) and x ∈ A. The
suppression of the label x in the cycle decomposition of τt and τb studied
in the preceding section leads to a solution (τ ′t , τ ′b, σ′) on A\{x}. Let S
be a cylindric suspension of (τt, τb, σ). The geometric operation associated
to the suppression of x corresponds to remove a cylinder associated to the
edge ζx in S (see Figure 4.3). The operation leads to a cylindric suspension
S′ of (τ ′t , τ ′b, σ′). Proposition 4.4 can be interpreted as an answer to the
stratum behavior of the operation (S, ζx) 7→ S′ (see Proposition 4.6). In
this section, we analyze the geometric operation and get a relation between
the spin parities of S and S′.

4.2.1. Removing a cylinder in a translation surface

In a cylindric suspension S of a triple (τt, τb, σ) ∈ SA × SA × SA, a
label x ∈ A corresponds to a horizontal geodesic ζx in S which join two
singularities (possibly the same). More generally, let S be a translation
surface and ζ a geodesic segment between two singularities of S. We assume
that ζ contains no singularity in its interior. Such a segment is called a
saddle connection.

Definition 4.5. — Let S be a translation surface and ζ a saddle con-
nection in S. A geodesic cylinder which contains ζ in its interior and each
of its boundary circle contains an endpoint of ζ and no other singularity is
called a cylinder associated to ζ.

In the case of cylindric suspension each edge ζx is a saddle connection
and there are several cylinders that are associated to ζx but we emphasize
that in general given a saddle connection in a translation surface there is
no associated cylinder. Let S be a cylindric suspension whose permutations
are defined on the alphabet A. The cylinders associated to an edge ζx which
are of interest for our purpose are cylinders for which the boundary circles
are obtained by a straight line in the polygonal representation joining the
endpoints of ζx in the bottom circle to the endpoints of ζx in the bottom
circle as in the left part of Figure 4.3.
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Let S be a translation surface, ζ a saddle connection in S, C a cylinder
associated to ζ and c1, c2 its boundary circles. Denote by S′ the surface
which is obtained from S by removing the interior of C and identifying c1
and c2 under the unique isometry f : c1 → c2 that maps the endpoint of ζ
in c1 to the endpoint of ζ in c2.
In the surface S′ there is a saddle connection c′ which corresponds to

the identified boundary circles c1 and c2 in S. The operation (S,C) → S′

is invertible as soon as we know the saddle connection c′ in S′ and the
parameters of the cylinder C which is removed in S, namely its height h ∈
(0,∞) and a twist parameter θ ∈ S1. The converse operation (S′, c′, h, θ)→
S is called bubbling a handle in [22] and a figure eight operation in [10].

c1 c2

x

x

τ−1t (x) τt(x)

τ−1b (x) τb(x)

c′

τ−1t (x) τt(x)

τ−1b (x) τb(x)

Figure 4.3. Removing the cylinder associated to ζx in a cylindric sus-
pension.

Consider a triple (τt, τb, σ) ∈ SA × SA × SA satisfying (4.1) and an
associated cylindric suspension S. Let ζx be the edge in S associated to
a label x in A and C an associated cylinder whose boundary circles are
straight line in the polygonal representation as in Figure 4.3. The surface
S′ obtained by removing the cylinder C is still a cylindric suspension but of
the triple (τ ′t , τ ′b, σ′) obtained by removing x in the cycle decomposition of τ ′t
and τ ′b as defined Section 4.1.2. While the choice of a cylinder associated to
x is not unique, the surface S′ is. With our convention, the set of outgoing
edges of each singularity P of S is invariant under the permutation σ. The
cycle c of σ containg x corresponds to the startpoint of ζx while the endpoint
of ζx corresponds to the cycle of σ containing τt(x). Proposition 4.4 can
then be rephrased in terms of translation surfaces, cylinders and strata.

Proposition 4.6. — Let S ∈ ΩM(n1, . . . , nk) be a translation surface,
ζ a saddle connection in S and C a cylinder associated to ζ. Let S′ be
the surface obtained by removing the cylinder C in S. If the endpoints
of ζ corresponds to the same singularity of degree κ1 in S and the start
and end of ζ are separated by an angle (2a + 1)π then the stratum of S′
is ΩM(a, n1 − a − 1, n2, . . . , nk). If the endpoints of ζ corresponds to two
different singularities of S of degrees respectively κ1 and κ2 the the stratum
of S′ is ΩM(n1 + n2 − 1, n3, . . . , nk).
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Let S be a translation surface, Σ ⊂ S its singularities, ζ a saddle connec-
tion in S and C a cylinder of S associated to ζ. Let S′ be the translation
surface obtained by removing C from S, Σ′ ⊂ S′ its singularities, and c′ the
saddle connection in S′ which corresponds to the identified boundary cir-
cles c1 and c2 of C. We define a map Ψ : H1(S′\Σ′;Z/2)→ H1(S\Σ;Z/2)
which will be used to compare the spin parities of S and S′.

Recall that the surgery operation S 7→ S′, does not affect S\C. Hence,
if ξ ⊂ S is a closed curve disjoint from the cylinder C, it defines a curve
ξ′ ⊂ S′. Let ξ′ ⊂ S′ is a closed curve which intersects c′. We assume that
the intersection is transverse. Let ξ ⊂ S be the curve which coïncides with
ξ′ outside of C and, for each intersection P ′ of ξ′ and c′, we replace P ′ by
the unique geodesic segment in C which joins the preimages P1 ∈ c1 and
P2 ∈ c2 of P ′ and do not intersect ζ.

Lemma 4.7. — Let S , Σ, S′ and Σ′ as above. Then the map ξ′ 7→ ξ de-
fines a map Ψ : H1(S′\Σ′;Z/2)→ H1(S\Σ;Z/2). Moreover Ψ is injective,
preserves the intersection forms and the winding numbers.

Proof. — The map ξ′ 7→ ξ is well defined on homology because it pre-
serves boundaries. Let ξ′ ⊂ S′\Σ′ be a simple closed curve such that
[ξ] = 0 ∈ H1(S\Σ;Z/2). Then there is a disc D ⊂ S\Σ such that ξ = ∂D.
The disc D goes down to a disc in S′ and shows that [ξ′] = 0.
If ξ′ is disjoint from c′, it is clear that the intersection with ξ′ is preserved

and w′(ξ′) = w(ξ). Now if ξ′ is transverse to c′ then the pieces added
to build ξ are all parallel and in particular do not intersect and has no
winding. As the preceding case, the intersection with ξ′ is preserved and
w′(ξ′) = w(ξ). �

4.2.2. Spin parity in the collapsing case

Let S be a translation surface with spin parity. Depending on the alter-
native of Proposition 4.6, the behavior of the spin structure is different.
Let ζ be a saddle connection in S whose endpoints are two different singu-
larities of S, C a cylinder associated to ζ and S′ the surface obtained by
removing the cylinder C in S. The genus of S is the same as the one of S′
and we have the following result.

Lemma 4.8. — Let S, ζ, C and S′ as above. Then S′ has a spin parity
and is the same as the one of S.

Proof. — From Proposition 4.6, we know that if S has a spin structure
(meaning that all its singularities have degrees even multiples of 2π) then
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S′ has also one. Recall that the spin structure of, respectively, S and S′ are
given by Arf invariants of quadratic forms qS and qS′ on H1(S;Z/2) and
H1(S′;Z/2) (see Section 3.3.2).
Let Ψ : H1(S′\Σ′;Z/2) → H1(S\Σ;Z/2) be the map of Lemma 4.7. As

all singularities of S and S′ are conical angles of odd multiple of 2π the
winding numbers w : H1(S\Σ;Z/2)→ Z/2 and w′ : H1(S′\Σ′;Z/2)→ Z/2
are well defined on H1(S;Z/2) and H1(S′;Z/2). In the collapsing case, the
genus of S equals the genus of S′ and hence the vector spaces H1(S;Z/2)
and H1(S′;Z/2) have the same dimension.
As Ψ is injective, it is an isomorphism. Ψ preserves the intersection form

and the winding number, thus qS′ = qS ◦ Ψ and the Arf invariant of qS′
and qS are equal. This proves that S and S′ have the same spin parity. �

4.2.3. Spin parity in the splitting case

We now consider the case of a translation surface S with a saddle con-
nection ζ which has the same singularity P ∈ S as endpoints. Let C be
a cylinder associated to ζ. By Proposition 4.6, removing C in S gives a
surface S′ whose genus is the one of S′ minus 1. The start and the end
of the geodesic ζ form an angle at the point P which is an odd multiple
of π that we denote (2a + 1)π (see Proposition 4.4 and Proposition 4.6).
In order to get the recurrence for the numbers d(p), we have two cases to
treat:

• S and S′ have a spin parity, which corresponds to a odd
(Lemma 4.9),

• S has a spin parity but S′ has not, which corresponds to a even
(Lemma 4.10).

Similarly to Lemma 4.8, we have.

Lemma 4.9. — Let S and C as above. We assume that S has a spin
parity and that a is odd. Then S′ obtained by removing C in S has a spin
parity and is the same as the one of S.

Proof. — We consider the maps Ψ and Ψ of Lemma 4.7. The map Ψ
identifies a subspace of codimension 2 of H1(S;Z/2) with H1(S′;Z/2). Let
c be a circumference of the cylinder C. Then, the symplectic complement
of H1(S′;Z/2) in H1(S;Z/2) is the subspace M = Z/2 [c]⊕Z/2 [ζ]. Hence
qS ' q′S ⊕ qS |M and, as the Arf invariant is additive, to compare the Arf
invariant of qS and qS′ we compute the Arf invariant of qS |M .
As ζ is geodesic and its start and end are separated by an angle (2a+1)π

we have w(ζ) = a mod 2 and hence qS([ζ̃]) = a+ 1 = 0 mod 2. On other
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hand qS([c]) = 1, and from Theorem 3.13 we get that Arf(qS |M ) = 0. Thus
qS and qS′ have the same Arf invariant which proves that S and S′ have
the same spin parity. �

Now, we treat the case of a even. The surface S′ obtained after removing
the cylinder has no spin but the surface S can have one. In the following
lemma the surface S′ is fixed and we count how many surfaces of each
spin parity we get by the procedure of adding a cylinder. Let (τ ′t , τ ′b, σ′) the
combinatorial datum associated to a cylindric suspension S′. We assume
that the profile p of S′ contains only odd numbers excepted two,mt andmb

and we write p = (mt,mb)] q. Let Pt and Pb be the two singularities of S′
of conical angles respectively mt and mb. We fix a vertex vt corresponding
to Pt in the top circle of S′. Consider all saddle connections that joins
vt to a vertex associated to Pb in the bottom line of the circle of S′ (see
Figure 4.4). The following is similar to Lemma 14.4 of [10].

Lemma 4.10. — Let S′, Pt, Pb ∈ S′,mt,mb and vt as above. Then there
are mb vertices in the bottom circle of S′ associated to Pb. Amongst the mb

cylindric suspension obtained by adding a cylinder to (S′, [vt, vb]) where vb
is a vertex associated to Pb in the bottom line, half of them have an odd
spin parity and half of them have an even spin parity.

vt

vb1 vb2

3 4 1 2

1 4 3 2
{
τ ′t = (1 2 3 4)
τ ′b = (4 3 2 1)

∈ ΩM2(2, 2)

Add a cylinder be-
tween vt and vb1.

Add a cylinder be-
tween vt and vb2.

3 4 x 1 2

1 x 4 3 2

C

{
τt = (1 2 3 4 x)
τb = (x 4 3 2 1)

∈ ΩMhyp
3 (5)

3 4 x 1 2

1 4 3 x 2

C

{
τt = (1 2 3 4 x)
τb = (4 3 x 2 1)

∈ ΩModd
3 (5)

Figure 4.4. The two ways of adding a cylinder to a cylindric suspension
in ΩM(2, 2).

Proof. — There are exactly mb vertices associated to Pb in the bottom
circle as the conical angle at Pb is 2πmb. We fix vb associated to Pb in the
bottom cylinder. We use the same strategy as in Lemma 4.9, we use a map
H1(S′;Z/2)→ H1(S;Z/2) and then look at the symplectic complement of
its range.
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Consider a small neighborhoods Vb of Pb in S′ and c the saddle con-
nection that joins vt to vb. Any other saddle connection between vt and
a representative of Pb in the bottom circle can be obtained by adding to
c an arc of circle contained in Vb. Hence each curves that joins vt to a
representative of Pb in the bottom line can be numeroted with respect
to the angle from c. We denote them by c0 = c, c1, . . . , cmb−1. Let Sj ,
j = 0, . . . ,mb − 1, be the surface obtained by adding a cylinder corre-
sponding to cj and qj its associated quadratic form. The contribution of
the module Mj = Z/2[cj ] ⊕ Z/2[xj ] ⊂ H1(S;Z/2) to the spin structure is
qj(cj) = q(c)+j mod 2 and qj(xj) = 1. In particular Arf(qj) = Arf(q)+j
mod 2 which proves the lemma. �

4.3. Formulas for c(p) and d(p)

In this section we prove formulas for the numbers c(p) and d(p). We
will use two notations for partitions of an integer n. Either p =
(n1, n2, . . . , nk) where n1, . . . , nk are positive integers whose sum are n.
Or p = (1e1 , 2e2 , . . . , nen) where ei denotes the number of times i occurs in
p. The numbers ei satisifies

∑
ei i = n.

4.3.1. Marked points

We first consider the presence of 1 in the integer partition p. They cor-
respond to marked point in the associated cylindric suspension S. See for
example Figure 4.1 where the vertex represented by a square with outgoing
edge b is a marked point.

Proposition 4.11. — We have c((1n)) = d((1n)) = (n− 1)! and, more
generally, if p is a partition of the integer n and k is a non negative integer
then

c(p ] (1k)) = (n+ k − 1)!
(n− 1)! c(p).

If moreover p has only odd parts, then

d(p ] (1k)) = (n+ k − 1)!
(n− 1)! d(p).

Proof. — The identity permutation 1 ∈ Sn is the only element with pro-
file (1n). On the other hand, the solutions of the form (τt, τb, 1) of Equa-
tion (4.1) are given by (c, c, 1) where c is any n-cycles. Thus c((1n)) =
(n− 1)! is the number of n-cycles in Sn. As the partition (1n) corresponds
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to a torus (a surfaces with genus 1), it is well known that the spin is odd.
Hence d((1n)) = c((1n)). More generally, adding marked points in a surface
do not modify the spin parity.
We denote by Cn the set of n-cycles in Sn. Let p be a partition of n and

σ′ ∈ Sn whose conjugacy class is p. Let

E′ = {(τ ′t , τ ′b) ∈ Cn × Cn| τ ′t τ ′b
−1 = σ′}.

Let σ ∈ Sn+1 be the permutation which equals σ′ on {1, . . . , n} and such
that σ(n+ 1) = (n+ 1) and

E = {(τt, τb) ∈ Cn+1 × Cn+1| τt τ−1
b = σ}.

We claim that there is a canonic bijection E → E′ × {1, . . . , n}. The con-
clusion of the lemma follows from the claim which we prove now.
The map E → E′ on the first factor correspond to remove (n+ 1) in the

cycles τt and τb as in Section 4.1.2. The map E → {1, . . . , n} on the second
factor is (τt, τb) 7→ τt

−1(n+ 1). As σ(n+ 1) = n+ 1, we have τt−1(n+ 1) =
τb
−1(n+1). The preimage (τt, τb) of the element (τ ′t , τ ′b, x) ∈ E′×{1, . . . , n}

is given by

τ(i) =


n+ 1 if i = x,

τ(x) if i = n+ 1,
τ(i) otherwise,

for τ = τt or τ = τb.

�

4.3.2. Two formulas for c(p)

We first give a recurrence formula for the number c(p) of labeled standard
permutations in the stratum associated to p. The initialization c((1)) = 1
of the recurrence can be considered as a particular case of Proposition 4.11.

Theorem 4.12 ([3] prop. 4.2.). — Let p = (n1, . . . , nk) be a partition
of an integer n > 2, then

c(p) =
k∑
i=2

ni c(pn1�ni) +
n1−1∑
a=2

c(pn1|a).

Proof. — Let σ ∈ Sn whose conjugacy class is p such that the length of
the cycle containing n is n1. As in the proof of Proposition 4.11 we set

E(σ) = {(τt, τb) ∈ Cn × Cn; τt τ−1
b = σ}.

To an element (τt, τb) ∈ E we associate (τ ′t , τ ′b, τt(n)) ∈ Cn−1 × Cn−1 ×
{1, . . . , n−1} where (τ ′t , τ ′b) is obtained from (τt, τb) by removing n in their
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cycle decomposition (see Section 4.1.2). The map E → Cn−1 × Cn−1 ×
{1, . . . , n − 1} is injective. As proved in Proposition 4.4, the conjugacy
class of σ′ = τ ′t τ

′
b
−1 depends on the nature of the cycle of σ that contains

τt(n). The formula of the theorem follows by summing over all possibilities
for τt(n). The first sum corresponds to the cases where τt(n) is in a different
cycle from the one of n. The second sum corresponds to the cases where n
and τt(n) are in the same cycle. �

Boccara in [3] find an explicit formula from the recurrence of Theo-
rem 4.12 using an identity involving a polynom and integration.

Theorem 4.13 ([3]). — Let p = (n1, n2, . . . , nk) be a partition of the
integer n. Then, we have

c(p) = 2(n− 1)!
n+ 1

 ∑
q⊂(n2,n3,...,nk)

(−1)s(q)−l(q)
(
n

s(q)

)−1
 .

From the theorem, we deduce several explicit values

Corollary 4.14. — Let n = 2k + 1 then

c((n)) = 2 (n− 1)!
n+ 1 .

Let n = n1 + n2 ≡ 0 mod 2, then

c((n1, n2)) = 2 (n− 1)!
n+ 1

(
n

n1,n2

)
+ (−1)n1+1(
n

n1,n2

) .

We also have

Proposition 4.15. — Let k be a positive even integer then

c((2k)) = (2k − 1)!
2(k − 1)(k + 1) .

Using the representation theory of the symmetric group A. Goupil and
G. Schaeffer [14] gave an explicit formula for more general numbers than
c(p). Their formula has the advantage of containing only positive numbers.
In our particular case we get

Theorem 4.16 ([14]). — Let p be a partition of the integer n with
length k. We set g = (n− k)/2. Then we have

c(p) = zp
22g

∑
g1+g2=g

(2g1)!
2g1 + 1

(
n− 1
2g1

)
Sk,g2(p),
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where Sk,g ∈ Q[x1, x2, . . . , xk] is the symmetric polynomial

Sk,g(x1, x2, . . . , xk) = (k + 2g − 1)!
∑

(p1,p2,...,pk)|=g

k∏
i=1

1
2pi + 1

(
xi − 1

2pi

)
,

where (p1, . . . , pk) |= g design the set of k-tuples (p1, . . . , pk) of non-
negative integers whose sum is g. And zp is the cardinality of the cen-
tralizer of any permutation in the conjugacy class associated to p. Writing
p = (1e1 , 2e2 , . . . , nen) in exponential notation we have

zp =
n∏
i=1

ei! iei .

In [37], D. Walkup made a conjecture about the asymptotic behavior of
the numbers c which was proved few years later by R. Stanley in [31].

Theorem 4.17 ([37],[31]). — Let (pi)i>0 be a sequence of partition of
integers (ni)i>0 such that ni tends to infinity and the number of 1 in pi is
O(log(ni)) then

c(pi) ∼ 2(ni − 2)!(1 + o(1)).

The asymptotic behavior of the above theorem proves that in Boccara’s
formula (Theorem 4.13) the only contribution comes from the factor 2(n−1)!

n+1
and the sum in parentheses is asymptotically (1 + o(1)). For the particular
cases in Corollary 4.14 this fact is clear.

4.3.3. A formula for d(p)

For an integer partition p whose parts are odd numbers, recall that c1(p)
and c0(p) denote the number of standard permutations with fixed labels
and respectively odd and even spin parity. We have c(p) = c1(p) + c0(p)
and d(p) = c1(p)− c0(p). As for c, we first prove a recurrence formula and
then solve it explicitely.
The recurrence formula is similar to Theorem 4.12.

Theorem 4.18. — Let p = (n1, . . . , nk) be an integer partitions with
odd parts then

d(p) =
k∑
i=2

ni d(pn1�ni) +
n1−2∑
a=1

a≡1 mod 2

d(pn1|a).
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Proof. — The proof is identic to the one of Theorem 4.12. We fix a
permutation p and an element σ ∈ Sn such that the conjugacy class of σ
is p. We assume that the cycle containing n has length n1.
Let Es be the set of standard permutations (τt, τb) with labels σ and

spin parity s ∈ {0, 1}. According to the position of τ−1
t (n) we separate Es

in different subsets.
If τ−1

t (n) and n are in different cycles, then we apply the Lemma 4.8 and
we get that their number is

k∑
j 6=i

njcs(pni�nj ).

If n and τ−1
t (n) are in the same cycle, then we differentiate the case a odd

and a even (see Section 4.2.1). For a even, Lemma 4.9 gives that the total
number of such standard permutation is∑

a≡1 [2]

cs(pn1|a).

For a odd, Lemma 4.10 implies that their number is
1
2

∑
a≡0 [2]

c(pn1|a).

As this last term does not depend on the spin parity s, it cancels in the
difference c1(p)− c0(p). �

The formula for the numbers d(p) is given by the following.
Theorem 4.19. — Let p be an integer partition with only odd parts,

then the number d(p) depends only on the sum n and the length k of p.
Set g = (n− k)/2 then

d(p) = (n− 1)!
2g .

Proof. — Set d̃(n, k) := (n − 1)!/2(n−k)/2. Those numbers satisfy the
recurrences

d̃(n+ 1, k + 1) = n d̃(n, k) and d̃(n+ 1, k − 1) = n

2 d̃(n, k).

On the other hand if i, j ∈ {1, . . . , k} and a ∈ {1, . . . , ni−2}, we have for the
sum s(pmi�mj ) = s(pmi|a) = s(p)−1 and for the length l(pni�nj ) = l(p)−1
and l(pni|a) = l(p) + 1. It is then straightforward to check that d̃ satisfies
the same recurrence as the formula given in Theorem 4.18. The initial value
needed to start the recurrence is the one for the only partition of 1 which
is p = (1). But d̃(1, 1) = 1 = d((1)). Hence d(p) = d̃(s(p), l(p)) for all
partitions with odd parts. �
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5. From standard permutations to cardinality of Rauzy
classes

We now prove a recurrence formula for the numbers γirr(p) (resp.
δirr(p) = γirr1 (p) − γirr0 (p)) in terms of the number of standard permu-
tations γstd(p) (resp. δstd(p) = γstd1 (p) − γstd0 (p)). We relate the latter
ones to the numbers c(p) and d(p) computed in the preceding section. The
recurrence formula is based on the construction of suspensions for any per-
mutation (non necessarily irreducible) and a geometrical analysis of the
concatenation of permutations.

5.1. Irreducibility, concatenation and non connected surfaces

5.1.1. Concatenation and irreducible permutations

Let π1 (resp. π2) be a labeled permutation on the alphabet A1 (resp.
A2). The concatenation π1 · π2 is the labeled permutation on the disjoint
union A1 t A2 defined by(
a1 . . . an1

b1 . . . bn1

)
·
(
a′1 . . . a′n2

b′1 . . . b′n2

)
=
(
a1 . . . an1 a′1 . . . a′n2

b1 . . . bn1 b′1 . . . b′n2

)
.

The concatenation of two reduced permutations can be defined from the
section π 7→ (id, π) and projection (πt, πb) 7→ πb ◦ π−1

t (see Section 3.1.1).
More precisely, let π1 and π2 be two reduced permutations of lengths n1
and n2. The concatenation π = π1 ·π2 is the permutation of length n1 +n2
defined by

π(i) =
{
π1(i) if 1 6 i 6 n1,

π2(i− n1) + n1 if n1 + 1 6 i 6 n1 + n2.

One has the following elementary.

Proposition 5.1. — A permutation π ∈ Sn is irreducible if and only
if it can not be written as a non trivial concatenation.
Each (reduced or labeled) permutation has a unique decomposition in

irreducible permutations.

As an example, we write in the table below the decomposition of the
reducible permutations of length 4. We call class of a permutation π the
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ordered list of the lengths of the irreducible components of π (which is a
composition of 4, e.g. an ordered list of positive integers whose sum is 4).

permutation decomposition class
(1234) (1) · (1) · (1) · (1) [1, 1, 1, 1]
(1243) (1) · (1) · (21) [1, 1, 2]
(1324) (1) · (21) · (1) [1, 2, 1]
(2134) (21) · (1) · (1) [2, 1, 1]
(2143) (21) · (21) [2, 2]
(1342) (1) · (231) [1, 3]
(1423) (1) · (312) [1, 3]
(1432) (1) · (321) [1, 3]
(2314) (231) · (1) [3, 1]
(3124) (312) · (1) [3, 1]
(3214) (321) · (1) [3, 1]

As a corollary, we get a formula relating factorial numbers n! = |Sn| to
p(n) = |Son|.

Corollary 5.2. — Let f(n) be the number of irreducible permutations
in Sn. Then

(5.1) n! =
n∑
k=1

∑
c1+...+ck=n

f(c1) f(c2) . . . f(ck),

5.1.2. Suspensions of reducible permutations

Let π1 and π2 be two labeled permutations on the alphabet A of lengths
respectively n1 and n2 and π = π1 · π2 = (πt, πb) their concatenation of
length n = n1 + n2. If ζ ∈ CA then

(5.2)
∑

16j6n1

ζπ−1
t j =

∑
16j6n1

ζπ−1
b
j .

Thus there is no suspension data for π (see Section 3.2.3). But if π1 and
π2 are irreducible, we can assume that n1 is the only index such that (5.2)
holds.

Definition 5.3. — Let π be a labeled permutation on the alphabet A
and π1 · π2 · . . . · πk its decomposition in irreducible permutations. Let Aj
be the alphabet of πj . A suspension data for π is a vector in ζ ∈ CA such
that each (ζα)α∈Aj is a suspension data for the irreducible permutation πj .
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In the case of the irreducible permutation on 1 letter π =
(
A
A

)
, the sus-

pension datum is an element ζA ∈ R+ × iR ⊂ C.
Let π and ζ as in the above definition. Then, as for suspension of irre-

ducible permutations in Section 3.2.3, we build two broken lines Lt and Lb
made, respectively, of the concatenation of the vectors ζπ−1

t (j) and ζπ−1
b

(j).
The surface obtained by identifying the side ζα on Lt with the side ζα on Lb
is a sequence S1, S2, . . . , Sk of translation surfaces such that Sj and Sj+1
are connected at a singularity. In the case of the degenerate permutation(
A
A

)
the surface associated to ζA ∈ R+ × R corresponds to a (degenerate)

sphere with two conical singularities of angle 0. We take as convention that
the stratum of

(
A
A

)
is ΩM(0, 0) (see Figure 5.1).

A

ζA

B

ζB

B

ζB

A

ζA

C

C

ζC D

ζD
E

ζE

F

ζF

F

ζF

E

ζE

D

ζD

Figure 5.1. A suspension of the reducible permutation
(
ABCDEF
BACFED

)
=(

AB
BA

)
·
(
C
C

)
·
(
DEF
FED

)
.

5.1.3. Marking of a permutation

Let π1 and π2 be two permutations. We want to deduce the profile of the
permutation π = π1 · π2 as defined in Section 3.3.1 from the profiles of π1
and π2. We first look at an example with the following permutations

(5.3) π1 =
(

1 2 3 4 5
3 5 4 2 1

)
and π2 =

(
1 2 3 4 5
2 5 4 1 3

)
.

Both permutations have have profile (3, 1) but the products π1 ·π1, π1 ·π2,
π2 · π1 and π2 · π2 have respectively profiles (5, 3, 1), (7, 1, 1), (3, 3, 3) and
(5, 3, 1). In a product π1 · π2 the permutations are glued at the right of π1
and the left of π2. To keep track of left and right, we consider profile of
permutation with an additional data which encodes the configuration of
the two singularities at both extremities of the permutation. In the intro-
duction, we defined markings in term of suspension. We give here a more
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combinatorial version based on the interval diagram of a permutation de-
fined in Section 3.3.1.

Definition 5.4. — Let π be a permutation, Γ its interval diagram and
cl (resp. cr) be the cycle in Γ that corresponds to the left (resp. right)
endpoint of π.
If cl = cr, let m be the length of cl and 2a be the number of edges in Γ

between the outgoing edge on the left of π and the incoming edge on the
right of π. The marking of π is the couple (m, a) which we call a marking
of the first type and denote by m|a.

If cl 6= cr, let ml and mr be respectively the lengths of cl and cr. The
marking of π is the couple (ml,mr) which we call a marking of the second
type and denote by ml �mr.

The notation similar to the one in Definition 4.3 is explained by the
Corollaries 5.10 and 5.12 below.

For the permutations π1 and π2 defined in (5.3) the interval diagrams
are respectively

Γ(π1) = ((3, 1) 2) (3 4 (5, 1) 2 4 5))

and
Γ(π2) = (3 1 (2, 1) 4 5 2) (4 (5, 3)).

Hence the markings are respectively 1�3 and 3�1. Examples of a marking
of the first type with profile (3, 1) are given by the permutations

π3 =
(

1 2 3 4 5
2 4 5 1 3

)
π4 =

(
1 2 3 4 5
4 5 3 2 1

)
π5 =

(
1 2 3 4 5
2 5 3 4 1

)
The interval diagrams and markings of the above permutations are respec-
tively

Γ(π3) = ((2, 1) (5, 3) 4 2) 3 1)(5 4) with marking 3|0,

Γ(π4) = ((4, 1) 2 3 (5, 1) 2 3 ) (5 4) with marking 3|1,

Γ(π5) = ((2, 1) 4 5 2 3 (5, 1)) (3 4) with marking 3|2.

Let p be an integer partition. The markings that occur in a permutation π
with profile p are

• the markings m|a where m ∈ p and a ∈ {0, . . . ,m− 1},
• the markings m1 �m2 where m1,m2 ∈ p and m1 6= m2,
• the markings m�m for m which appears at least twice in p.

We remark that for a permutation π with marking of the first type m|a the
number a belongs to {0, . . . ,m− 1} whereas for a standard permutation a
belongs to {1, . . . ,m− 2}.
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Definition 5.5. — Let π be a permutation with profile p and marking
m|a (resp. ml �mr). The marked profile of p is the couple (m|a, p′) (resp.
(ml �mr, p

′)) where p′ is the integer partition p\(m) (resp. p\(ml,mr)).

We naturally extend the definition of γ, γirr, γstd, δ, δirr and δstd to
marked profiles.

5.1.4. Profile and spin parity of a concatenation π1 · π2

We now answer to the question asked previously about the profile of a
concatenation. The lemma below expresses the marked profile of a concate-
nation in terms of the marked profiles of its irreducible components.

Lemma 5.6. — Let π1 and π2 be two permutations and let π = π1 · π2
be their concatenation. The following array shows how deduce the marked
profile p of π from the marked profiles p1 of π1 and p2 of π2.

p1 p2 p
(m|a, p′) (n|b, q′) (m+ n+ 1|a+ b, p′ ] q′)
(m|a, p′) (nl � nr, q′) (m+ nl + 1� nr, p′ ] q′)

(ml �mr, p
′) (n|b, q′) (ml �mr + n+ 1, p′ ] q′)

(ml �mr, p
′) (nl � nr, q′) (ml � nr, p′ ] q′ ] (mr + nl + 1)

In particular, a concatenation π1 · π2 has a marking of the first type if
and only if both of π1 and π2 have a marking of the first type.
Proof. — Let Γ (resp. Γ1 and Γ2) be the interval diagram of π (resp. π1

and π2). Let c1 (resp. c2) be the cycle associated to the right of π1 (resp.
the left of π2). The diagram Γ is built from the disjoint union of Γ1 and Γ2
by gluing the cycles c1 and c2. More precisely, let

π1 =
(
x1 . . . xn
y1 . . . yn

)
and π2 =

(
x′1 . . . x′n′
y′1 . . . y′n′

)
.

Then c1 =
(

(xn, yn) A
)

and c2 =
(

(y′1, x′1) A′
)

where A and A′ design
blocks of letters. In the concatenation π = π1 · π2, the cycles c1 and c2 are
glued into c =

(
x′1 A

′ y′1 yn A xn

)
. Hence, the length of |c| is |c1|+ |c2|+1.

In particular the profile of p of π can be computed from the profiles p1 and
p2 of respectively π1 and π2 as p = (p1\(|c1|))] (p2\(|c2|))] (|c1|+ |c2|+1).
We have proved how the profile of a concatenation π = π1 · π2 can be
deduced from the profiles and markings of its components π1 and π2. We
now consider the marking of the permutation π.
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We treat only the case of two markings of type one, the other being
similar. We keep the notation Γ1, Γ2, c1 and c2 as above. The cycle c1
(resp. c2) of Γ1 (resp. Γ2) which corresponds to the right of π1 (resp. the
left of π2) can be written as c1 =

(
(y1, x1) A (xn, yn) B

)
(resp. c2 =(

(y′1, x′1) A′ (x′n′ , y′n′) B′
)
) where A, B, A′ and B′ are blocks of letters.

The angles in the marking are a = |A| and A′. Those two cycles become
one in π which is(

(y1, x1) A xn x′1 A
′ (x′n′ , y′n′) B′ y′1 yn B

)
.

The angle a (resp. b) in the marking of π1 (resp. π2) is the length of A
(resp. A′) divided by 2. The structure of the cycle c shows that the angle
in the marking of π is the length of A xn x

′
1 A
′ divided by 2 which equals

a+ b+ 1. �

Now, we consider the spin parity of a permutation whose profile contains
only odd parts. We would like to have a lemma similar to Lemma 5.6 which
relates profile to the profiles of the irreducible components. But recall that
the spin parity (see Section 3.3.2) is only defined when the profile contains
only odd numbers. Hopefully Lemma 5.6 implies

Corollary 5.7. — Let p be an integer partition which contains only
odd terms and π a permutation with profile p. Then the profile of each
irreducible component of π contains only odd terms.

Hence, if π is a permutation with profile p containing only odd numbers,
we can discuss about the spin parity of its components. The situation is
simpler than the one in Lemma 5.6 as the spin parity does not depend on
the structure of the endpoints of each component.

Lemma 5.8. — Let p be a partition with odd parts and π a permutation
with profile p. Then the spin parity of π is the sum mod 2 of the spins of
the irreducible components of π.

Proof. — Recall that the spin invariant of an irreducible permutation is
the Arf invariant of a quadratic form qπ on FA2 . It is geometrically defined
on H1(S;Z/2) where S = S(π, ζ) is any suspension of π by

qπ(x) = (w(x) + #(components of x) + #(self intersection of x)) mod 2.

In the above formula, w(γ) is the winding number of γ which depends on
the flat metric of the suspension while the other two are topological. Let
π be a permutation and π1 · π2 · . . . · πk its decomposition in irreducible
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components. Let S = S(π, ζ) be a suspension of π and Sj = S(πj , ζj) the
associated suspension of each irreducible components. Then

H1(S;Z/2) '
k⊕
j=1

H1(Sj ;Z/2) and qπ =
k∑
j=1

qπj .

To complete the proof, we remark that the Arf invariant is additive (which
follows from Theorem 3.13). �

5.2. Removing the ends of a standard permutation

Let π be a standard permutation on the n+ 2 ordered symbols {0, 1, . . . ,
n + 1} (i.e. π(0) = n + 1 and π(n + 1) = 0). Consider the permutation
π̃ on the n letters {1, . . . , n} obtained by removing 0 and n + 1 in π.
We call π̃ the degeneration of π. As a permutation, π̃ corresponds to the
restriction of the domain of π from {0, 1, . . . , n + 1} to {1, . . . , n}. The
term degeneration comes from geometric consideration. Let (ζ(t))t>0 be a
continuous sequence of suspensions of π which converges to a vector ζ̄ ∈ R2

for which ζ̄0 = 0 = ζ̄n+1 = 0 and Re(ζ̄k) > 0 for all 0 < k < n+ 1 and the
imaginary part of ζ̄ satisfies the condition of suspension for π̃. Then the
limit ζ̄ is a suspension of π̃ which do not live in the same stratum ΩM(p)
as S but is obtained as a limit of a continuous family (St) ⊂ ΩM(p) which
degenerates for t→∞.
The degeneration operation is invertible and gives a bijection between

the set of permutations on n letters and standard permutation on n + 2
letters. We emphasise that the irreducibility property is not preserved. For
counting permutations in Rauzy classes, as we did in Section 4 we analyze
the geometric surgery associated to this combinatorial operation.

5.2.1. Marked profile, relation between γstd and c

As in Lemma 5.6, the profile of the degeneration depends only on the
profile of the initial permutation and its marking. The proposition below
expresses the profile of the degeneration from the profile of a standard
permutation.

Proposition 5.9. — Let π be a standard permutation. If π has a
marked profile of the first type (m|a, p′), then its degeneration π̃ has
marked profile (m − 2|m − a − 2, p′). If π has a marked profile of the
second type (ml � mr, p

′), then its degeneration π̃ has a marked profile
(ml − 1)� (mr − 1), p′).
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Proof. — We write the standard permutation π, in the following form

π =
(

1 y1 . . . x0 0
0 y0 . . . x1 1

)
.

Let Γ be the interval diagram of π. If the marking of π is of the first type, let
say m|a, then the corresponding singluarity in its interval diagram writes
c = (x0, (0, 1), x1, A, y0, (0, 1), y1, B) where A and B are some blocks of
lengths respectively 2(m − a − 2) and 2(a − 1). Let π̃ =

(
y1...x0
y0...x1

)
be the

degeneration of π and Γ̃ its interval diagram. The interval diagram Γ̃ is
obtained from the one of Γ by modifying c as c̃ = ((x0, x1), A, (y0, y1), B)
where the blocks A and B have not changed. The angle between the left
end point and the right endpoint is |B|. Hence, the permutation π̃ has a
marking of the first type m− 2|m− a− 2.
Now, consider the case of a marking of the second type. By symmetry,

it is enough to consider one endpoint of the interval. Let cl be the cycle
of the interval diagram that contains the left end point. It writes cl =
(x0, (0, 1), x1, A) and becomes ((x0, x1), A) in the degeneration π̃ and proves
the the proposition. �

From Proposition 5.9, we deduce a corollary about the relations between
the numbers c(p) of Section 4 and the numbers γirr(p) and γ(p). For an
integer partition p′, we denote by zp′ the cardinality of the centralizer of any
permutation in the conjugacy class associated to p′. Let ei be the number
of parts equal to i in p′ then

zp′ =
n∏
i=1

ieiei!.

Corollary 5.10. — Let p = (m|a, p′) be a marking of the first type
then

γ(m|a, p′) = γstd(m+ 2|m+ 2− a′, p′) and γstd (m|a, p′) =
c
(
pm|a

)
zp′

,

Let p = (ml �mr, p
′) be a marking of the second type then

γ(ml �mr, p
′) = γstd((ml + 1)� (mr + 1), p′)

and

γstd (ml �mr, p
′) = c (pml�mr )

zp′
.

Proof. — The two equalities on the left follows from Proposition 5.9 as
the degeneration is a bijection.
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Recall that c(p) counts the number of labeled standard permutations
while γstd(p) counts unlabeled ones. Given a standard permutation π the
different ways we have to label it with a fixed labelization σπ is exactly
zp′ . �

5.2.2. Spin parity, relation between δstd and d

In order to get a counting formula relative to the spin invariant, we now
analyze the relation between the spin parity of a standard permutation π
and the one of its degeneration.

Proposition 5.11. — Let π be a standard permutation of length n+2
and note α1 = π−1

t (1) = π−1
b (n + 2) and α2 = π−1

b (1) = π−1
t (n + 2). If

π has a marking of the first type m|a, then π̃ has a spin parity which is
Arf(qπ̃) = Arf(qπ) + a+ 1 modulo 2. If π has marking of the second type,
then the spin parity of π̃ is the same as the one of the permutation obtained
by removing the letter α1 or α2 in π.

Proof. — Let π having a marking of the first type and π̃ = π1 · π2 ·
. . . · πk the decomposition of π̃ into irreducible components. We denote by
Sπ a suspension of π, Sπ̃ a suspension of π̃ and Sπj the one induced on
each irreducible components. Let ζj for j = 0, . . . , n + 1 be the sides of
the suspension Sπ̃ (see Section 3.3.2 and in particular Figure 3.9). As the
marking of π is of type one, both intervals labeled 0 and n+1 have the same
singularities at both ends. Hence ζ0 and ζn+1 are elements of H1(S;Z/2)
and there is a symplectic sum

H1(S;Z/2) = (Z/2 [ζ0]⊕ Z/2 [ζn+1])⊕
k⊕
j=1

H1(Sj ;Z/2).

The form qπ diagonalizes with respect to this decomposition as its bilinear
form is Ωπ which is the intersection form in H1(S;Z/2). We hence only
need to compute the restriction of qπ to the symplectic module of rank two
M = (Z/2 [ζ0]⊕ Z/2 [ζn+1]). A direct computation shows that

qπ(ζ0) = w(ζ0) + 1 + 0 = a+ 1 = qπ(ζn) and q(ζ0 + ζ1) = 1

Hence Arf(qπ|M ) = a + 1. By additivity of the Arf invariant we get∑
Arf(qπj ) + a+ 1 = Arf(qπ).
Now, we consider a permutation π with marked profile (ml�mr, p

′). If π̃
has a spin parity then both ml and mr are even. If we remove the interval
labeled 0 (or n + 1) the permutation has profile (ml + mr − 1|a, p′). The
conservation of the spin statement is a direct consequence of Lemma 4.8 of
the preceding section. �

TOME 63 (2013), FASCICULE 5



1704 Vincent DELECROIX

Let δstd(p) be the difference between the number of odd spin permu-
tations and even spin permutations among standard permutations with
profile p.

Corollary 5.12. — Let (m|a, p′) be a marked profil of type one then

δ(m|a, p′) = (−1)(a+1)δstd(m+ 2|m+ 2− a′, p′)

and

δstd (m|a, p′) =
{

0 if a ≡ 0 mod 2,
d(pm|a)
zp′

otherwise.

Let (ml �mr) be a marked profile of type two then

δ(ml �mr, p
′) =

d
(
p(ml+1)�(mr+1)

)
zp′

and

δstd (ml �mr, p
′) = d (pml�mr )

zp′

Proof. — The proof is similar to the one of Corollary 5.10. The left equal-
ities follows from Proposition 5.11 and the right ones from the definition
of d. �

5.3. Counting permutations in Rauzy classes

5.3.1. Marked points and hyperelliptic strata

As we did in Section 4.3.1 with labeled standard permutations, we give
a relation between cardinalities of a Rauzy diagram and the ones obtained
by adding marked points. As a corollary, we get the cardinality of any
hyperelliptic Rauzy class.

Let p be a marked profile which corresponds to an hyperelliptic strata
ΩM(2g− 1, 1k) or ΩM(g, g, 1k). We denote by hyp(p) the number of irre-
ducible permutations with marked profile p. From the explicit description of
the Rauzy class associated to rotation class permutation and hyperelliptic
class (Section 3.1.3) we get the two following proposition.

Proposition 5.13. — We have

γirr(1|0, (1n−2)) = n− 1 and γirr(1� 1, (1n−3)) = (n− 1)(n− 2)
2 .
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If n is even the profile of π is p = (n− 1) and the genus of a suspension
of π is g = n/2. In this case for a 6 g − 1 we have

hyp(2g − 1|a) = hyp(2g − 1|2g − 1− a) =
(

2g − 1
2a+ 1

)
If n is odd, the profile of π is ((n − 1)/2, (n − 1)/2) and the genus of a

suspension is g = (n− 1)/2. In this case for a 6 g we have

hyp(2g − 1|a) = hyp(2g − 1|2g − a) =
(

2g − 1
2a+ 1

)
and

hyp(g � g) =
g−1∑
k=0

(
2g
2k

)
= 22g−1 − 1

Let C ⊂ ΩM(κ) be a connected component of a stratum and R its asso-
ciated Rauzy diagram. We assume that the partition κ does not contain 1.
Consider C0 ⊂ ΩM(κ ] 0k) the connected component obtained by mark-
ing k points in the surfaces of C. Let R0 be the extended Rauzy diagram
associated to R0. The following theorem shows that the cardinality of R0
is a linear combination of the cardinality of R and the number of standard
permutations in R. Recall that R(m) denotes for m − 1 an element of κ
the Rauzy class which correspond to the elements π ∈ R such that the left
end point has an angle 2mπ (see Section 3.4.1).

Theorem 5.14. — LetR,R0 and k be as above. Le let d be the number
of letters in the permutations of R, r the number of standard permutations
in R and m an element of the profile of R. Then

|R0(m)| =
(
d+ k

k

)
|R(m)| and |R0(1)| =

(
d+ k

k − 1

)
|R|+

(
d+ k

k − 1

)
d r

In particular, for the cardinalities of extended Rauzy classes, we get the
following relations

|R0| =
(
d+ k + 1

k

)
|R|+

(
d+ k

k − 1

)
d r.

The proof of the theorem follows from Proposition 5.16 below. As a
corollary of the theorem, we get an explicit formula for the cardinality of
Rauzy diagrams associated to any hyperelliptic component of stratum.
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Corollary 5.15. — Let R be the extended Rauzy diagram of the hy-
perelliptic component ΩMhyp(2g − 1, 1k) (reps. ΩM(g, g, 1k)) for which
d = 2g (resp. d = 2g + 1) is the number of intervals in ΩM(2g − 1) (resp.
ΩM(g, g)). Then the cardinality of the Rauzy diagrams are

|R(1)| =
(
d+ k

k − 1

)
(2d−1 + d− 1) and |R(d− 1)| =

(
d+ k

k

)
(2d−1 − 1).

The cardinality of the extended Rauzy diagram is

|R| =
(
d+ k + 1

k

)
(2d−1 − 1) +

(
d+ k

k − 1

)
d.

We now prove Theorem 5.14. As above, let R be an extended Rauzy
class and R0 the one obtained by adding k marked points. We denote by
p the profile of the permutations in R and we assume that 1 6∈ p. If m|a
(resp. ml �mr) is a marking of the first type (resp. second type) then we
denote by R(m|a) (resp. R(ml�mr)) the elements of the extended Rauzy
class R which has marking m|a (resp. ml �mr).

Proposition 5.16. — Let R and R0 be extended Rauzy classes as
above, then

(1) |R0(m|a)| =
(
d+k−1
k

)
|R(m|a)|,

(2) |R0(ml �mr)| =
(
d+k−1
k

)
|R(ml �mr)|,

(3) |R0(m� 1)| = |R0(1�m)| =
(
d+k−1
k−1

)
|R(m)|,

(4) |R0(1� 1)| =
(
d+k−1
k−2

)
(|R|+ d r),

(5) |R0(1|0)| =
(
d+k−1
k−1

)
d r.

Proof. — We first prove equalities 1 and 2. Let π ∈ R with marking m|a
or ml�mr and P0 ⊂ R0 the set of permutations π0 with the same marking
as π and such that they are obtained from π by adding k zeroes. The marked
points of any π0 ∈ P0 belong inside the d intervals. Hence |P0| =

(
d+k−1
k

)
is the number of choices of placing k undifferentiated points in d intervals.

Now, we proove equality 3. Let π ∈ R(m) and P0 ⊂ R0(m�1) the set of
permutations obtained from π by adding k marked points. For any π0 ∈ P0,
because of the marking m� 1 and 1 6∈ p one of the marked point has to go
to the right endpoint of the permutation. There is only one way to do this
by the following operation

π =
(
. . . y . . . x

. . . x . . . y

)
7→ π0 =

(
. . . y c . . . x

. . . x c . . . y

)
.

Then, the k − 1 other marked points belong in the d+ 1 intervals and the
number of choices for such operation is

((d+1)+(k−1)−1
k−1

)
=
(
d+k−1
k−1

)
. Hence

|P0| =
(
d+k−1
k−1

)
.
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Equality 4 is similar to equality 3 but two of the marked points have to be
placed at the extremities. We get the coefficient

((d+2)+(k−2)−1
k−2

)
=
(
d+k−1
k−2

)
.

We now proove equality 5. Let π ∈ R0 be a permutation with marking
1|0. Then we can write a general form for π0 and we see below that removing
the marked point of π gives a standard permutation.

(5.4) π0 =
(
a0 A b1 a1 B b0
a1 C b0 a0 D b1

)
7→

(
a A c B b

b C c D a

)
.

Hence, the only way to mark 1 point on a permutation in R in order
to obtain a marking 1|0 is that π is standard. Starting from a standard
permutation π ∈ R the construction of a permutation π0 with marking 1|0
is as follows. Choose the letter c which will play the role of an intermediate
and place it as in (5.4). There are d choices for the letter c. Then, the other
k− 1 points can be placed inside d+ 1 intervals. We get exactly

(
d+k−1
k−1

)
d

permutations in R0 built from π. �

5.3.2. The number of irreducible permutations

Before counting permutations in Rauzy diagrams, we recall the elemen-
tary method to count irreducible permutations. Most of the idea developed
here are similar to the one we will use in the next section. As in (5.1), let
f(n) = |Son| be the number of irreducible permutations of length n. We
recall the elementary method for different expression of (5.1) and get an
asymptotic development. See the original article [9] for further details on
asymptotics and [13] for general considerations about the relations between
generating series and operations on combinatorial classes.
Let E(t) =

∑
n! tn and F (t) =

∑
f(n) tn considered as formal serie.

Given a permutation, its factorization in irreducible elements is unique. In
terms of the generating functions E and F , the equation (5.1) can be seen
as

E = 1
1− F =

∞∑
k=0

F k.

Using an inclusion/exclusion argument, we get a dual formulation of the
equation (5.1)

(5.5) f(n) =
n∑
k=1

∑
c1+...+ck=n

(−1)k+1 c1! . . . ck! or F = 1− 1
E
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We can write a simpler relation between factorial numbers n! and the num-
bers f(n). Any permutation can be decomposed uniquely as the product
of an irreducible permutation and a permutation. Hence

(5.6)
n∑
i=1

f(i) (n− i)! = n! or EF = E − 1.

From the equations on generating functions, we see that the formulas (5.1),
(5.5), (5.6) are equivalent. However each one has its own advantage: equa-
tion (5.1) is the most natural, equation (5.5) gives a closed formula and
(5.6) is adapted for explicit computations.
The equation (5.6) suffices to obtain an equivalent of the number of

irreducible permutations. For an asymptotic serie, see [9].

Proposition 5.17 ([9]). — f(n) is equivalent to n! (e.g. f(n) = n!(1 +
o(1))).

Proof. — Let g(n) := f(n)/n!. Those numbers satisfy the inequality
g(n) 6 1 and from Equation (5.6) we get

g(n) = 1−
n−1∑
k=1

g(k)
(
n

k

)−1

= 1− 2
n
−
n−2∑
k=2

(
n

k

)−1

> 1− 2
n
− (n− 3) 2

n(n− 1) .

As the right member of this equation tends to 1 we get that g(n) tends to
1 as n tends to ∞. �

5.3.3. Formula for γirr and δirr, proof of Theorem 2.3

Recall that γ(m|a, p′) and γ(ml � mr, p
′) (resp. γirr(m|a, p′) and

γirr(m1 � m2, p
′)) denote the number of permutations (resp. irreducible

permutations) with marked profile (m|a, p′) and (m1 �m2, p
′). The num-

bers γ(m|a, p′) and γ(ml �mr, p
′) are related to the number c(p) of Sec-

tion 4 by Corollary 5.10.
The two formulas in Theorem 2.3 are obtained by an exclusion procedure

and are very similar to (5.6) which gives an explicit formula for the number
f(n) of irreducible permutations in Sn in the following form

f(n) = n!−
n−1∑
k=1

f(k)(n− k)!.
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In the above formula, n! corresponds to the cardinality of permutations and
the summation corresponds to all reducible ones. Each reducible permuta-
tion has to be thought as the concatenation of an irreducible permutation
of length k with any permutation of length n− k.

We explain the formula for γirr(ml � mr, p
′), the other being similar.

The set of all permutations (non necessarily reducible) with marked profile
ml �mr, p

′) is exactly γstd((ml + 1) � (mr + 1), p′) (see Section 5.2 and
in particular Proposition 5.9). Then we have to subtract all irreducible.
Recall from Lemma 5.6 that the profile of a reducible permutation can be
expressed in terms of its irreducible components. We consider the possible
form of a reducible permutation π1π2 with marked profile (ml � mr, p

′)
where π1 is irreducible.

(1) either π1 has a marking of the first type and π2 a marking of the
second type,

(2) or π1 has marking of the second type and π2 of the first type,
(3) or π1 and π2 both have marking of the second types.

The three cases above, correspond to the three summations in the formula
γirr(ml �mr, p

′) in Theorem 2.3.

5.3.4. Explicit formula for profile (2g − 1)

We gave in Section 5.3.1 examples of family of Rauzy classes obtained
by adding marked points. Theorem 5.14 gives an explicit formula for the
behavior of the cardinality. In those example, the genus was fixed. In this
section we consider the family of Rauzy diagrams which are the Rauzy
classes associated to the odd and even components of ΩM(2g − 1). This
family of strata are the so called minimal strata. Recall that for g = 2,
ΩM(2g− 1) has only one connected components, for g = 3 there are 2 and
for g > 4 there are three. The cardinality of the hyperelliptic component
is given in Proposition 3.6. To get the cardinality of all Rauzy classes, we
consider explicit formulas for the numbers γirr(2g − 1) and δirr(2g − 1) in
the following proposition.

Proposition 5.18. — Let n = 2g − 1 then we have the following for-
mulas for γirr((n)) and δirr((n))

(5.7) γstd((n)) = (n− 1)!
n+ 1 and δstd((n)) = (n− 1)!

2n−1 ,
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(5.8) γirr((n)) =
2n+1∑
k=1

(−1)k+1
∑

(c1,...,ck)∑
cj=n+1

k∏
i=1

(2 ci)!
ci + 1 ,

(5.9) δirr((n)) = 1
2n+1

2n+1∑
k=1

(−1)k+1
∑

(c1,...,ck)∑
cj=n+1

k∏
i=1

(2ci)! .

Proof. — This is a direct consequence of Corollary 4.14 and the explicit
formula for d in 4.19. �

Appendix A. Explicit cardinalities of small Rauzy
diagrams

In this appendix we present explicit computations obtained from Theo-
rems 2.2 and 2.3. Additional data may be computed using the free software
Sage [32] and a program available on the webpage of the author.

We remark that for large values of the number of intervals, all labeled
Rauzy classes but the hyperelliptic class, have roughly the same number
of elements (see in particular Figure A.3). In view of Theorem 4.17 about
the asymptotic of the number of standard permutations, we expect that
there is a common asymptotic for the cardinality of Rauzy classes and
more precisely

Conjecture A.1. — Let (Rd)d=1,2,3,... be a sequence of labeled Rauzy
classes on d = 1, 2, 3, . . . intervals which are not hyperelliptic and without
fake singularities, then

|Rd| ∼ (d− 1)!
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profile comp. left sg. perm. card. of red. card. of .lab.
4 intervals(

31) 3 (4 3 2 1) 7 7(
13) 1 (4 2 3 1) 6 12

5 intervals(
31, 11) 3 (5 2 4 3 1) 35 35

1 (5 3 2 4 1) 11 33(
22) 2 (5 4 3 2 1) 15 15(
14) 1 (5 2 3 4 1) 10 60

6 intervals(
51) hyp 5 (6 5 4 3 2 1) 31 31

odd 5 (6 5 3 2 4 1) 134 134(
31, 12) 3 (6 2 3 5 4 1) 105 210

1 (6 3 2 4 5 1) 66 198(
22, 11) 2 (6 2 5 4 3 1) 90 90

1 (6 4 3 2 5 1) 20 80(
15) 1 (6 2 3 4 5 1) 15 360

7 intervals

(
51, 11) hyp 5 (7 2 6 5 4 3 1) 217 217

1 (7 5 4 3 2 6 1) 37 185

odd 5 (7 2 6 4 3 5 1) 938 938
1 (7 5 3 2 4 6 1) 176 880(

41, 21) 4 (7 4 3 2 6 5 1) 509 509
2 (7 3 2 6 5 4 1) 261 522(

32) hyp 3 (7 6 5 4 3 2 1) 63 63
odd 3 (7 6 2 4 3 5 1) 294 882(

31, 13) 3 (7 2 3 4 6 5 1) 245 1470
1 (7 3 2 4 5 6 1) 231 1386(

22, 12) 2 (7 2 3 6 5 4 1) 315 630
1 (7 4 3 2 5 6 1) 140 560(

16) 1 (7 2 3 4 5 6 1) 21 2520

Figure A.1. Classification and cardinalities of Rauzy diagrams up to
7 intervals. The three first columns profile, component and left sin-
gularity refer to the invariants of Rauzy diagrams (see Sections 3.3
and 3.4). The column permutation is an element of the Rauzy class.
The two last columns are respectively the cardinality of the reduced
Rauzy class and the cardinality of the labeled Rauzy class.
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profile comp. left sg. card. of red. card. of .lab.
8 intervals(

71) hyp 7 127 127
odd 7 5209 5209
even 7 2327 2327(

31, 22) 3 919 3676
2 1258 3774

9 intervals(
61, 21) 6 31031 31031

2 10543 31629

(
51, 31) odd 5 14709 44127

3 8797 43985

even 5 6614 19842
3 3954 19770(

42) hyp 4 255 255
nonhyp 4 15568 31136(

24) 2 1255 30120
10 intervals(

91) hyp 9 511 511
odd 9 352697 352697
even 9 233285 233285(

51, 22) 5 70886 283544
2 57606 288030(

41, 31, 21) 4 96434 289302
3 72006 288024
2 48954 293724(

33) odd 3 23167 417006
even 3 9876 177768

Figure A.2. Cardinalities of Rauzy diagrams for permutations on 8, 9
and 10 intervals and without fake singularities (in other words there is
no 1 in the profile). For the signification of columns we refer to Fig-
ure A.1
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profile comp. left sg. card. of red. card. of .lab.
14 intervals(

131) hyp 13 8191 8191
odd 13 5724239456 5724239456
even 13 5025884454 5025884454(

91, 22) 9 1318606936 5274427744
2 591091478 5319823302(

81, 31, 21) 8 1777360362 5332081086
3 665441558 5323532464
2 448438786 5381265432(

71, 41, 21) 7 1330060550 5320242200
4 760439798 5323078586
2 383441998 5368187972

(
71, 32) odd 7 338712097 6096817746

3 289841446 6086670366

even 7 261049290 4698887220
3 223309500 4689499500(

61, 51, 21) 6 1064847254 5324236270
5 887183558 5323101348
2 358142542 5372138130(

61, 41, 31) 6 896914498 5381486988
4 598253506 5384281554
3 447635758 5371629096

(
52, 31) odd 5 405815038 6087225570

3 121564929 6078246450

even 5 312674340 4690115100
3 93633542 4681677100(

51, 42) 5 335516435 5368262960
4 537219694 5372196940(

51, 24) 5 27014779 5186837568
2 43569916 5228389920(

41, 31, 23) 4 72742460 5237457120
3 54464020 5228545920
2 109975236 5278811328(

33, 22) 3 73518626 5293341072
2 33023700 5349839400

Figure A.3. Cardinalities of Rauzy diagrams for permutations on 14
intervals.
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