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A GROUP ACTION ON LOSEV-MANIN
COHOMOLOGICAL FIELD THEORIES

by Sergey SHADRIN & Dimitri ZVONKINE (*)

Abstract. — We discuss an analog of the Givental group action for the space
of solutions of the commutativity equation. There are equivalent formulations in
terms of cohomology classes on the Losev-Manin compactifications of genus 0 mod-
uli spaces; in terms of linear algebra in the space of Laurent series; in terms
of differential operators acting on Gromov-Witten potentials; and in terms of
multi-component KP tau-functions. The last approach is equivalent to the Losev-
Polyubin classification that was obtained via dressing transformations technique.
Résumé. — Nous introduisons un analogue de l’action du groupe de Given-

tal sur l’espace des solutions de l’équation de commutativité. Nous proposons une
construction de cette action en cohomologie de la compactification de Losev-Manin
des espaces des modules en genre 0; une autre utilisant juste de l’algèbre linéaire
sur l’espace des séries de Laurent; une troisième en termes d’opérateurs différen-
tiels agissant sur des potentiels de Gromov-Witten; et une quatrième en termes
des fonctions tau de la hiérarchie multi-KP. La dernière approche est équivalente
à la classification de Losev-Polyubin obtenue par la technique des transformations
d’habillage (dressing transformations).

1. Introduction

Frobenius manifolds are among the most important notions in modern
mathematics and mathematical physics, capturing the universal structure
hidden behind different notions in enumerative geometry, singularity the-
ory, integrable hierarchies, and string theory [7, 8, 13, 25]. Roughly speak-
ing, a Frobenius structure on a manifold is an associative algebra structure

Keywords: cohomological field theory, commutativity equation, Losev-Manin space,
Givental’s group, Gromov-Witten theory, Kadomtsev-Petviashvili hierarchy.
Math. classification: 53D45, 14H10.
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ANR project “Geometry and Integrability in Mathematical Physics” ANR-05-BLAN-
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in every fiber of the tangent bundle, subject to some integrability and ho-
mogeneity conditions. A precise definition involves the celebrated WDVV
equation [27, 6] that reflects the topology of the Deligne-Mumford compact-
ification of moduli spaces of genus 0 curves and makes the whole theory of
Frobenius manifolds so interesting and beautiful.
There are many different methods developed in the course of study of

Frobenius manifolds. One of the most promising ones is due to Givental,
who constructed a group action on the space of Frobenius manifolds [12, 11].
It allows, roughly speaking, to transfer known results from some particu-
larly simple Frobenius manifolds to other ones that are in the same orbit
of the Givental group action. It was used in many different applications;
some references are [1, 4, 5, 9, 18, 26].

Another method that was proposed by Losev [20, 21] is based on the idea
that a part of the structure of a Frobenius manifold can be reconstructed,
under certain assumptions, from a simpler structure: namely, a germ of a
pencil of flat connections. It is used in many works, some recent examples
being [2, 7, 24, 23]. A precise definition involves the so-called commutativity
equation that reflects the topology of a different compactification of the
moduli space of genus 0 curves [22]. This is a sort of linearization of the
notion of Frobenius manifolds, and at the level of the underlying solutions of
the commutativity equation many concepts and theorems about Frobenius
manifolds appear to be much simpler.
In this paper we discuss an analog of Givental’s group action on the space

of solutions of the commutativity equation. We describe it from the point
of view of cohomology classes on the Losev-Manin moduli spaces, in terms
of differential operators on formal matrix Gromov-Witten potential, and in
terms of a linear algebraic interpretation of the descendant version of the
commutativity equation. We also link it to the Losev-Polyubin classification
of solutions of the commutativity equation in terms of τ -functions of multi-
component KP hierarchies [14, 15, 19].
We also hope that our results contribute to the understanding of the

Givental group action on the space of Frobenius manifolds and shed light
on some of the ideas behind Givental’s theory.

1.1. The commutativity equation

Let M(t) be a complex analytic matrix-valued function in several com-
plex variables t = (t1, . . . , tN ). The matrices are of sizem×m. The commu-
tativity equation on this function reads dM ∧ dM = 0. The function M(t)

ANNALES DE L’INSTITUT FOURIER



GROUP ACTION ON LOSEV-MANIN COHFT’S 2721

satisfies the commutativity equation if and only if the matrices ∂M/∂ti

and ∂M/∂tj commute at every point t for every i and j. In this paper we
study the solutions of this equation, more precisely, germs of solutions at
the origin t = 0.

Definition 1.1. — A germ of solution of the commutativity equation
is called nonsingular if the mapM(t) is a composition of a submersion with
an immersion (see the figure below).

In this paper we restrict ourselves to nonsingular solutions.

Space of matrices

T ′

T

Note that although the space of matrices has dimension m2, the image
of T in it is of dimension at most m. Indeed, the tangent space to this
image at any given point is composed of mutually commuting matrices.
Note further that it makes sense to study the solution of the commu-

tativity equation directly on T ′. Indeed, going from T ′ to T means just
adding several coordinates to the parameter space on which the matrix M
does not depend. Therefore we will usually assume thatM is an immersion.

1.2. Pencils of flat connections

Solutions of the commutativity equation can be described in more intrin-
sic terms. First, the coordinates t1, . . . , tN must be viewed as local coordi-
nates on a base complex manifold T . Indeed, the commutativity equation
is preserved by any biholomorphic change of variables t. Over T we have a
trivial vector bundle of rank m with the trivial flat connection d. If M is a
solution of the commutativity equation, then this vector bundle possesses
a whole pencil of flat connections depending on a parameter z. They are
given by

∇z = d− 1
z
dM.

TOME 61 (2011), FASCICULE 7



2722 Sergey SHADRIN & Dimitri ZVONKINE

1.3. The Losev-Manin moduli spaces

In [22] A. Losev and Yu. Manin introduced a new compactification of
M0,n+2 denoted by Ln. The marked points do not play a symmetric role
in this compactification: two “white” marked points, labeled 0 and ∞, are
not allowed to coincide with each other or with any other marked points;
the remaining n > 1 “black” marked points can coincide with each other.

Definition 1.2. — A Losev-Manin stable curve is a nodal curve that
has the form of a chain of spheres composed of one or more spheres; the
leftmost sphere of the chain contains a white marked point labeled 0, the
rightmost sphere of the chain contains a white marked point labeled ∞;
every sphere contains at least one black marked point; white points and
nodes do not coincide with each other or with black marked points, but
black marked points are allowed to coincide.
The Losev-Manin space Ln is the moduli space of Losev-Manin stable

curves with n numbered black points.

30

8

1=2

1064
7 5=8=9

The points of a boundary divisor of Ln correspond to curves with at least
one node dividing the set of black points into two parts. Thus the boundary
divisors of Ln correspond to ordered partitions of the set of black points into
two non-empty subsets. Every boundary divisor is isomorphic to Lp × Lq
with p+ q = n.

1.4. The Losev-Manin cohomological field theories

Recall that an ordinary cohomological field theory (CohFT) on a vector
space V is given by a nondegenerate bilinear symmetric form η on V and a
collection of maps ωn : V ⊗n → H∗(M0,n,C) satisfying certain properties.

Now let V and T be two complex vector spaces. Intuitively, V is asso-
ciated with the white marked points, while T is associated with the black
ones.

Definition 1.3. — A Losev-Manin cohomological field theory is a sys-
tem of maps

αn : T⊗n → H∗(Ln,C)⊗ End(V )

ANNALES DE L’INSTITUT FOURIER
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for n> 1 satisfying the following properties. (i) The maps are Sn-equivariant
with respect to the renumbering of the marked points and a simultaneous
permutation of the factors in T⊗n. (ii) The restriction of αn to a boundary
divisor Lp × Lq ⊂ Ln is the composition of αp and αq.

Note that the space End(V ) being self-dual, we could have moved the
tensor factor End(V ) to the left-hand side of the map α. But our convention
is often easier to work with.
Losev-Manin cohomological field theories arise, in particular, as an ex-

ample of extension of the Gromov-Witten invariants of Kähler manifolds.
This construction was developed in [3] in the much more general setting of
moduli spaces of curves and maps with weighted stability conditions.

Let ωn : V ⊗n → H∗(M0,n,C), n = 3, 4, . . . be a CohFT in the usual
sense [16]. Define βn : V ⊗n → H∗(M0,n+2,C) ⊗ End(V ), n = 1, 2, . . . by
moving the last two factors V of ωn+2 (corresponding to the marked point
n + 1 and n + 2) to the right-hand side of the map and dualizing the last
factor with the bilinear form η. Let pn : M0,n+2 → Ln be the natural
morphisms.

Proposition 1.4. — αn = (pn)∗(βn), n = 1, 2, . . . is a Losev-Manin
CohFT with T = V .

Proof. — The Sn-equivariance of αn follows from the Sn-equivariance of
βn, which follows from the Sn+2-equivariance of ωn+2.
The preimage p−1

n (Lp × Lq) of a boundary divisor equals M0,p+2 ×
M0,q+2. Therefore, by the projection formula,

αn|Lp×Lq
= ((pn)∗(βn))|Lp×Lq

= (pn)∗(βn|M0,p+2×M0,q+2
)

= (pn)∗(βp ◦ βq)) = αp ◦ αq.
�

Note that the other way round there is no simple way to construct a
usual CohFT starting from a Losev-Manin CohFT.

1.5. Gromov-Witten potentials

To a Losev-Manin CohFT we can assign matrix Gromov-Witten poten-
tials in the following way.

Let (αn) be a Losev-Manin CohFT with underlying vector spaces V
and T .

TOME 61 (2011), FASCICULE 7



2724 Sergey SHADRIN & Dimitri ZVONKINE

Definition 1.5. — We call matrix Gromov-Witten potentials the en-
domorphisms Ma,b(t) ∈ End(V ) given by

Ma,b(t) =
∑
n>1

1
n!

∫
Ln

αn(t⊗ · · · ⊗ t) ψa0ψb∞

for a, b = 0, 1, . . . .

Ma,b is a formal power series in variables ti, the degree n part corre-
sponding to the contribution of Ln. Denote by Ṁa,b the End(V )-valued
differential form dtMa,b on T .

Proposition 1.6. — The matrix potentials Ma,b satisfy the following
master equations:

Ṁa+1,b = Ma,0 Ṁ0,b,

Ṁa,b+1 = Ṁa,0 M0,b,

Ma+1,b +Ma,b+1 = Ma,0 M0,b.

Proof. — The first two equations follow from the expressions of ψ0 and
ψ∞ as sums of boundary divisors. The last equation follows from the equal-
ity ψ0 + ψ∞ = δ, where δ is the cohomology class Poincaré dual to the
boundary of Ln. �

Definition 1.7. — The family of matrix Gromov-Witten potentials
(Ma,b)a,b>0 is called a tower.

The matrix Gromov-Witten potentials can be regrouped into a unique
power series depending on variables q0, q1, · · · ∈ V and p0, p1, · · · ∈ V ∗.

Definition 1.8. — The complete Gromov-Witten potential associated
to a Losev-Manin CohFT is the power series

F (p, q, t) =
∑
a,b>0

Ma,b(t)paqb,

where q = (q0, q1, . . . ) and p = (p0, p1, . . . ).

Let (Ma,b) be a tower of matrix Gromov-Witten potentials associated
with a Losev-Manin CohFT.

Proposition 1.9. — M0,0 is a solution of the commutativity equation.

Proof. — One of the master equations reads dM1,0 = M0,0 dM0,0. Taking
a differential (with respect to t) we obtain 0 = dM0,0 ∧ dM0,0. �

Consider the trivial vector bundle V × T → T with a pencil of flat
connections ∇z = d− Ṁ0,0/z.

ANNALES DE L’INSTITUT FOURIER
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Proposition 1.10. —

J(z) = I +
∞∑
b=0

M0,b z
−(b+1),

where I is the identity matrix, is a basis of flat sections of the connec-
tions ∇z.

Proof. —

∇zJ(z) = (Ṁ0,0 − Ṁ0,0) z−1 +
∑
b>0

(Ṁ0,b+1 − Ṁ0,0M0,b) z−(b+2) ME= 0,

where the equality ME follows from the first two master equations. �

Example 1.11. — If dimV = 1, the matrix M0,0 automatically com-
mutes with its differential Ṁ0,0. Therefore the equation

∇zJ = 0⇐⇒ J̇ = 1
z
Ṁ0,0J

has an explicit solution: J = eM0,0/z. ThusM0,b = M b+1
0,0 /(b+1)!. It follows

that

Ma,b =
Ma+b+1

0,0

a! b! (a+ b+ 1) .

Indeed, the third master equation reads Ma,b = Ma−1,0M0,b −Ma−1,b+1.
Assuming by induction that the formula for Ma,0, M0,b, and Ma−1,b+1 is
valid, we get

Ma,b =
Ma

0,0

a! ·
M b+1

0,0

(b+ 1)! −
Ma+b+1

0,0

(a− 1)! (b+ 1)! (a+ b+ 1) =
Ma+b+1

0,0

a! b! (a+ b+ 1) .

�

1.6. Acknowledgements
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2. The upper triangular group

Consider a Losev-Manin CohFT (αn)∞n=1. Suppose we are given an en-
domorphism r of V . The target of each αn being H∗(Ln,C) ⊗ EndV , we
see that αn can be both composed with r and multiplied by a cohomology
class of Ln. Before introducing the group action, let us ask the following

TOME 61 (2011), FASCICULE 7



2726 Sergey SHADRIN & Dimitri ZVONKINE

(presently unmotivated) question: what are the natural ways to multiply
each αn by a degree l cohomology class while simultaneously composing it
with r? The answer is provided in the following picture that represents all
natural ways to do that.

(A) r ψl (B) rψl

(C)
r

ψi ψj (i+ j = l − 1)

These pictures represent the following composition maps:

(A) T⊗n -
αn

H∗(Ln)⊗ End(V ) -
ψl

0⊗(r ◦)
H∗(Ln)⊗ End(V ),

(B) T⊗n -αn

H∗(Ln)⊗ End(V ) -ψl
∞⊗(◦ r)

H∗(Ln)⊗ End(V ),

(C) T⊗n ' T⊗p ⊗ T⊗q -
αp⊗αq

H∗(Lp)⊗H∗(Lq)⊗ End(V )⊗ End(V )

-(Gysin ◦ (ψ′)i(ψ′′)j) ⊗ (◦ r ◦)
H∗(Ln)⊗ End(V ).

Let us denote these composition maps by Al(r), Bl(r), and C(i,j|I,J)
l (r),

where I t J = {1, . . . , n}.
Now we can describe first a Lie algebra action and then a Lie group

action on Losev-Manin cohomological field theories.
Consider the Lie group G+ of formal power series R(z) with values in

End(V ) such that R(0) = id. Its Lie algebra G+ is composed of formal
power series r(z) with coefficients in End(V ) such that r(0) = 0.
Let r =

∑
l>1 rlz

l be an element of G+.

Definition 2.1. — Define the action of r on a Losev-Manin CohFT by
the formula

(r.α)n =
∑
l>1

[
Al(rl) − (−1)lBl(rl) +

∑
i+j=l−1

ItJ={1,...,n}, |I|,|J|>1

(−1)i+1C
(i,j|I,J)
l (rl)

]

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.2. — The action of G+ is a well-defined Lie algebra action.
It lifts to a group action of G+ that takes every Losev-Manin CohFT to a
Losev-Manin CohFT.

Proof. — First of all, let us check that we can exponentiate the action of
r ∈ G+. Indeed, as we have already remarked, the action of rl adds l > 1 to
the degree of its ingredients. Thus (rk.α)n vanishes for k > dimLn = n−1.
We conclude that er.α is well-defined, since each of its components is the
sum of a finite number of terms.
Therefore the action of R ∈ G+ can be defined as the exponential of the

action of r = lnR.
Now we check that the action of G+ is compatible with the Lie algebra

structure. First of all, note that the action of r on a Losev-Manin CohFT
is not linear. Indeed, the term C(i,j|I,J) involves a product of αp and αq.
Therefore, as we compute the commutator of two actions, we will have
to apply the first action to αp (without acting of αq) then to αq (without
acting on αp), then add up the results and compose with the second action.
We have [rlzl, rmzm] = (rlrm − rmrl)zm+l. The action of the right-hand
side of this equality is represented in the following picture (with the same
conventions as above):

(rlrm−rmrl) ψl+m

rlrm−rmrl

ψi ψj
ψl+m (rlrm−rmrl).

i+j=l+m−1

+
∑

(−1)i+1 −(−1)l+m

It is also easy to see that the action of the left-hand side is given by the
same formula, after the cancellation of the terms of the form:

rl ψl

rm

ψi ψj rlψl

rm

ψi ψj rm ψm

rl

ψi ψj rmψm

rl

ψi ψj

rl

ψi′ ψj′
rm

ψi′′ ψj′′
rm

ψi′′ ψj′′
rl

ψi′ ψj′

To understand how the middle term in the previous formula appears
when we compute the commutator of two actions it is useful to remark
that for i+ j = m+ l− 1 we have either i > l or j > m, but not both. And
similarly either i > m or j > l, but not both. This explains why every pair
(i, j) appears exactly once with coefficient rlrm and once with coefficient
rmrl.

TOME 61 (2011), FASCICULE 7
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Finally, we must check that the action of G+ takes a Losev-Manin CohFT
to a Losev-Manin CohFT. In other words, we need to check that the restric-
tion of (r.α)n to a boundary divisor Lp×Lq equals αp×(r.α)q+(r.α)p×αq.
A simple computation shows that both are actually equal to

,

rl ψl p q −(−1)l rlψlp q

+
rl

ψlp q −(−1)l
rl

ψlp q

+
∑

(−1)i+1
ψi ψj

rl

q +
∑

(−1)i+1
ψi ψj

rl

p

where the summation over l is assumed.
An explanation is in order as to how the third and the fourth terms

appear in the restriction of (r.α)n to Lp × Lq. These terms arise when the
partition I t J of the n marked points in C(i,j|I,J) is exactly the same as
in the boundary divisor Lp × Lq. The self-intersection of this boundary
divisor equals −(Lp × Lq)(ψ′ + ψ′′). Multiplied by

∑
(−1)i+1(ψ′)i(ψ′′)j

this gives (−1)l+1(ψ′)l + (ψ′′)l as shown in the figure. The other terms are
straightforward. �

Proposition 2.3. — The action of r on the matrix Gromov-Witten
potentials is given by
(2.1)

(r.M)a,b =
∑
l>1

[
rlMa+l,b − (−1)lMa,b+lrl +

∑
i+j=l−1

(−1)i+1Ma,irlMj,b

]
.

To formulate the next proposition we choose a basis of V and a dual
basis of V ∗. The indices µ and ν run over these bases and the summation
over repeated indices is assumed.

Proposition 2.4. — The action of r on the exponent of the complete
Gromov-Witten potential is given by the differential operator

r̂ =
∑
l>1

∑
a>0

(rl)νµpa,ν
∂

∂pa+l,ν
− (−1)l

∑
b>0

(rl)νµq
µ
b

∂

∂qνb+l
(2.2)

+
∑

i+j=l−1
(−1)i+1(rl)νµ

∂2

∂qνi ∂pj,µ

 .
modulo the terms that don’t depend on p and q.

ANNALES DE L’INSTITUT FOURIER
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Remark 2.5. — The notion of a Losev-Manin CohFT can be extended to
the space of genus 1 curves with only black marked points. This adds to the
complete Gromov-Witten potential a function F1(t) with no dependence on
p and q. The function F1(t) can be chosen independently from the genus 0
potential and does not contribute any new relations, therefore we did not
include it in our considerations. There is, however, a natural way to extend
our group action to the genus 1 part of Losev-Manin CohFTs that would
account for the missing p, q-independent terms in the above proposition.
Unfortunately Losev-Manin CohFTs cannot be extended to higher genus

beyond this trivial case.

The claims of both propositions follow immediately from the definition
of the action of r on a Losev-Manin CohFT.

Example 2.6. — Consider the tower of matrix Gromov-Witten poten-
tials from Example 1.11:

Ma,b =
Ma+b+1

0,0

a! b! (a+ b+ 1) ,

dimV = 1. Every series r acts trivially on this tower. This follows from the
combinatorial identity:

1
(a+ l)! b! (a+ b+ l + 1) −

(−1)l

a! (b+ l)! (a+ b+ l + 1)

+
∑

i+j=l−1

(−1)i+1

a! b! i! j! (a+ i+ 1) (b+ j + 1) = 0

for any a, b > 0, l > 1.

Proposition 2.7. — The action of G+ preserves the spectrum of Ṁ0,0.

Proof. — Since Ṁ0,0 is a matrix of differential 1-forms on T , its spectrum
is also a collection of N differential 1-forms.
First of all, note that Definition 2.1 and Propositions 2.3 and 2.4 define

a valid action for r = r0 + r1z + . . . even if r0 6= 0. In particular,

(r0.M)a,b = r0Ma,b −Ma,br0.

TOME 61 (2011), FASCICULE 7
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We claim that dt(r.M)0,0 is equal to the commutator
[((r/z).M)0,0, dtM0,0]. The assertion of the proposition follows immedi-
ately from this equality. The equality itself is obtained by the following
computations:

dt(r.M)0,0

=
∑
l>1

(
rl Ṁl,0 − (−1)l Ṁ0,l rl +

∑
i+j=l−1

(−1)i+1(Ṁ0,i rlMj,0 +M0,i rl Ṁj,0)
)

=
∑
l>1

(
(−1)l+1 Ṁ0,l rl +

∑
i+j=l−1

(−1)i+1Ṁ0,i rlMj,0

)

+
∑
l>1

(
rl Ṁl,0 +

∑
i+j=l−1

(−1)i+1 M0,i rl Ṁj,0

)
ME=
∑
l>1

(
−Ṁ0,0rlM0,l−1 + (−1)l−1Ṁ0,0M0,l−1rl) +

∑
i+j=l−1
i>1

(−1)i+1Ṁ0,0M0,i−1rlMj,0

)

+
∑
l>1

(
rlMl−1,0Ṁ0,0 − (−1)l−1Ml−1,0rlṀ0,0 +

∑
i+j=l−1
j>1

(−1)i+1 M0,i rlMj−1,0 Ṁ0,0

)

= [((r/z).M)0,0, Ṁ0,0].
�

3. The lower triangular group

Now consider the Lie group G− of formal power series S(z−1) with values
in End(V ) such that S = id at 1/z = 0. Its Lie algebra G− is composed
of formal power series s(z−1) with coefficients in End(V ) such that s = 0
at 1/z = 0. This group does not act on Losev-Manin cohomological field
theories, but only on Gromov-Witten potentials.

Let s =
∑
l>1 slz

−l be an element of G−.

Definition 3.1. — The action of s on the matrix Gromov-Witten po-
tentials is given by

(s.M)a,b =
∑
l>1

[
slMa−l,b − (−1)lMa,b−lsl + (−1)b δa+b+1,l sl

]
,

where by convention a matrix Gromov-Witten potential vanishes if one of
its indices is negative.
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The action of s on the exponent eF of the complete Gromov-Witten
potential is given by the differential operator

ŝ =
∑
l>1

∑
a>0

(sl)νµpa+l,ν
∂

∂pa,µ
− (−1)l

∑
b>0

(sl)νµq
µ
b+l

∂

∂qνb
(3.1)

+
∑

i+j=l−1
(−1)j (sl)νµ pi,ν q

µ
j

 .
It is obvious that both definitions are equivalent.

Theorem 3.2. — Definition 3.1 gives a well-defined Lie algebra action
of G− on Gromov-Witten potentials. It preserves the master equations and
can be integrated to a well-defined group action of G−.

Proof. — The action of sl decreases the sum of indices a+ b of a matrix
Gromov-Witten potential by l. Therefore only a finite number of actions
of s can be applied in succession before their contributions to Ma,b become
identically vanishing. We conclude that the action of es is well-defined,
since we only need a finite number of steps to compute (es.M)a,b for any
given a, b.
Let us check that the action is compatible with the Lie bracket. Com-

puting the commutator of the operators ŝlzl and ŝmzm we obtain

[ŝlzl, ŝmzm]

=
∑
a>0

[sl, sm]νµ pa+l+m,ν
∂

∂pa,ν
− (−1)l+m

∑
b>0

[sl, sm]νµ q
µ
b+l+m

∂

∂qνb

+
∑

i+j=l+m−1
(−1)j [sl, sm]νµ pi,ν q

µ
j ,

which is indeed the action of [sl, sm]zl+m.
Now let us check, for instance, that the action of G− preserves the second

master equation. We have

(s.Ṁ)a,b+1 =
∑
l>1

[
slṀa−l,b+1 − (−1)lṀa,b+1−lsl

]
=
∑
l>1

[
slṀa−l,0M0,b − (−1)lṀa,0(M0,b−l + δb+1,l)sl

]
= (s.Ṁ)a,0M0,b + Ṁa,0(s.M)0,b.
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We leave the analogous computations for the two other master equations
to the reader. We encourage the reader to compute the commutator of two
operators r̂lzl and r̂mzm from Proposition 2.4. �

Proposition 3.3. — Let J(z) = I +
∑
M0,bz

−(b+1). The action of G−
preserves Ṁ0,0. The action of s ∈ G− and of S ∈ G− on J are given by

J.s = −J(z) s(−z),

J.S = J(z)S−1(−z).

Proof. — This follows immediately from the definition of the action. �

Corollary 3.4. — There is a unique S ∈ G− such that (S.M)a,b(0) =
0 for all a, b.

Proof. — Take S(z) = J(−z). �

4. Group action orbits

We can sum up the results obtained so far as follows. A Losev-Manin
CohFT determines a pencil of flat connections and a choice of a flat basis for
every connection of the pencil. The lower half-group G− acts on the choices
of the flat basis, but preserves the connections themselves. The action of
the upper half-group G+ changes both the connections and the flat basis
in a compatible way. In addition to these two groups, the group Bihol(T, 0)
of local biholomorphisms of the base T acts by coordinate changes.

Theorem 4.1. — Let (Ma,b) be a tower of matrix potentials. Assume
that dtM0,0 is diagonalizable at the origin and its eigenvalues α1, . . . , αN –
linear forms in the variables t – are pairwise distinct. Then by a successive
application of an element of the lower triangular group S and an element
of the upper triangular group R one can arrive at a tower of pairwise
commuting matrix potentials (R.S.M)a,b.

Proof. — We choose the element S in such a way that (S.M)a,b(0) = 0 for
all a, b (see Corollary 3.4). From now on we will assume that the condition
Ma,b(0) = 0 is satisfied from the start and we are looking for an upper
triangular group element R such that the matrices (R.M)a,b commute.

Now we are going to prove the following property by induction on l: there
exists a sequence of matrices r1, . . . , rl ∈ End(V ) such that

(exp(zlrl) . . . exp(zlr1).M)0,0 = diagonal +O(tl+2).
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This property holds for l = 0, since, by out assumptions, M0,0(0) = 0
and dtM0,0(0) is diagonal.

The next two lemmas prepare the step of induction.

Lemma 4.2. — Let (Ma,b) be a tower of matrix potentials satisfying the
master equations of Proposition 1.6, the condition Ma,b(0) = 0 for all a, b,
and the condition

M0,0 = diagonal +O(tl+1).
Then

Ma,b = O(ta+b+1) and Ma,b =
Ma+b+1

0,0

a! b! (a+ b+ 1) +O(ta+b+l+1).

Proof. — This is proved by induction on a+ b by integrating the master
equations. �

Lemma 4.3. — Under the assumptions of Lemma 4.2 the diagonal ma-
trix elements of (zlrl.M)0,0 are O(tl+2), while the off-diagonal matrix ele-
ments are given by

(αµ − αν)l+1(rl)µ,ν
(l + 1)! +O(tl+2).

Proof. — Just substitute the expression for Ma,b from Lemma 4.2 into
the formula that describes the action of rl on M0,0 (Proposition 2.3). �

Step of induction. Assume that M0,0 = diagonal + O(tl+1). Let us study
the term of order l+1 in the Taylor expansion ofM0,0, that is, the first not
necessarily diagonal term. Denote this term by X and its matrix elements
by Xµ,ν .
Extract the degree l part in the equality dtM0,0 ∧ dtM0,0 = 0. We get

(αµ −αν)∧ dXµ,ν = 0 for all µ, ν. Since, by assumption, αµ −αν 6= 0, this
implies that Xµ,ν = xµ,ν(αµ − αν)l for some constant xµ,ν .

Now we construct the matrix rl by setting (rl)µ,ν = −(l + 1)!xµ,ν for
µ 6= ν and choosing the diagonal elements of rl arbitrarily. According to
Lemma 4.3, we have (erl .M)0,0 = diagonal+O(tl+2). Indeed, the action of
rl kills the off-diagonal elements of M0,0 in degree l + 1, while the action
of the higher powers of rl only involves higher degree terms.
This proves the step of induction. It remains to note that the product

· · · ezlrl · · · ezr1 determines a well-defined element R of the upper triangular
group, since every power of z only appears in a finite number of factors.
The theorem is proved. �

Corollary 4.4. — Suppose that dimT = dimV . The joint action of
the groups G−, G+, GL(V ), and Bihol(T, 0) is transitive on the space of
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towers of matrix potentials such that dtM0,0 is diagonalizable at the origin
and its eigenvalues span T ∗.

Proof. — First by an action of GL(V ) we diagonalize dtM0,0 at the ori-
gin. Then by an action of S ∈ G− followed by an action of R ∈ G+ we
transform the tower of matrix potentials into a tower satisfying

M0,0(0) = 0, M0,0 is diagonal, Ma,b =
Ma+b+1

0,0

a! b! (a+ b+ 1) .

Finally, by a biholomorphic change of variables t we transform the matrix
M0,0 into its linear part (so that its matrix elements are linear forms in the
variables t). �

5. The commutativity equation and the loop space

In this section we give an interpretation of the commutativity equation
in terms of linear algebra of the loop space of V (alternatively, it can be
rewritten in terms of symplectic linear algebra of the loop space of V ⊕V ∗).
This gives an alternative explanation as to why the loop group of GL(V )
acts on the solutions of the commutativity equation.

5.1. A special family of linear maps

In this subsection we give an intermediate description in terms of linear
algebra of the loop space of V .

Let V = V ⊗ C[[z−1, z] be the space of V -valued Laurent series of the
form

· · ·+ q∗2(−z)−3 + q∗1(−z)−2 + q∗0(−z)−1 + q0z
0 + q1z

1 + q2z
2 + . . . ,

where qi, q∗i ∈ V and qi = 0 for i large enough. Let V+ := V ⊗ C[z] and
V− := V ⊗ z−1C[z−1].

Any tower of endomorphisms Ma,b : V → V , a, b = 0, 1, . . . , determines
a linear map µ : V+ → V−:

µ(q0 + q1z + q2z
2 + . . . ) = (−z)−1

( ∞∑
i=0

M0,iqi

)
+

(−z)−2

( ∞∑
i=0

M1,iqi

)
+ (−z)−3

( ∞∑
i=0

M2,iqi

)
+ . . .
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Note that all the sums are actually finite.
Denote by Vµ the graph of µ. It is a vector subspace of V transversal to

V−. Let j : V+ → Vµ be the natural identification and let π : V → V− be
the projection to V− along the graph of µ. Finally introduce the linear map
ϕ : V+ → V− given by

ϕ = π ◦ z−1 ◦ j.

V+

V−

Vµ
j

z−1π

Now consider (a formal germ of) the trivial vector bundle V × T over
(T, 0). The endomorphisms Ma,b and the linear maps µ, j, π, and ϕ will
all depend on t ∈ T .

Lemma 5.1. — The following two characterizations of a linear map µ :
V+ → V− are equivalent:
(a) The matrices Ma,b satisfy the master equations of Proposition 1.6;
(b) The image of ϕ is isomorphic to V and the differential dtµ : V+⊗T →

V− factorizes through the map ϕ⊗ id.

It is important to note that condition (b) depends solely on the graph
of µ and its formulation involves only the vector space structure of V and
the operator of multiplication by z−1. Thus the loop group of GL(V ), that
is, the group of matrices G(z) ∈ End(V ) ⊗ (C)[[z−1, z], which preserves
both these structures, acts on the solutions of the commutativity equation.
Proof of Lemma 5.1. — Let

Q = Q

( ∞∑
i=0

qiz
i

)
= q0 +

∑
i>0

M0,iqi+1.

This is a surjective linear map from V+ onto V .
Let us write out the maps ϕ and µ̇ in coordinates. We have

z−1 j

( ∞∑
i=0

qiz
i

)
= . . . +

( ∞∑
i=0

M1,iqi

)
z−3 −

( ∞∑
i=0

M0,iqi

)
z−2 + q0z

−1

+ q1 + q2z + . . .
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The components of the decomposition of this vector along the graph of µ
and along V− are, respectively,

. . . −

( ∞∑
i=0

M2,iqi+1

)
z−3 +

( ∞∑
i=0

M1,iqi+1

)
z−2 −

( ∞∑
i=0

M0,iqi+1

)
z−1

+ q1 + q2z + . . .

and

ϕ

( ∞∑
i=0

qiz
i

)
= . . . +

(
M1,0q0 +

∞∑
i=0

(M2,i +M1,i+1)qi+1

)
z−3

−

(
M0,0q0 +

∞∑
i=0

(M1,i +M0,i+1)qi+1

)
z−2 +

(
q0 +

∞∑
i=0

M0,iqi+1

)
z−1.

If the endomorphisms satisfy the master equations, then the latter ex-
pression is transformed into

. . . +M1,0Qz
−3 −M0,0Qz

−2 +Qz−1.

Thus ϕ
(∑∞

i=0 qiz
i
)
depends only on Q, i.e., the image of ϕ is isomorphic

to V . Conversely, since

ϕ(q0) = . . . +M1,0q0z
−3 −M0,0q0z

−2 + q0z
−1,

if we want the image of ϕ to be isomorphic to V we must have

ϕ

( ∞∑
i=0

qiz
i

)
= . . . +M1,0Qz

−3 −M0,0Qz
−2 +Qz−1.

This implies the master equations

Ma+1,b +Ma,b+1 = Ma,0M0,b.

The map µ̇ is given by

µ̇

( ∞∑
i=0

qiz
i

)
= . . . −

( ∞∑
i=0

Ṁ2,iqi

)
z−3

+
( ∞∑
i=0

Ṁ1,iqi

)
z−2 −

( ∞∑
i=0

Ṁ0,iqi

)
z−1.

If the endomorphisms Ma,b satisfy the master equations, this is trans-
formed into

. . . − Ṁ2,0Qz
−3 + Ṁ1,0Qz

−2 − Ṁ0,0Qz
−1.

ANNALES DE L’INSTITUT FOURIER



GROUP ACTION ON LOSEV-MANIN COHFT’S 2737

Thus it depends only on Q and therefore factorizes through ϕ. Conversely,
since

µ̇(q0) = . . . − Ṁ2,0q0z
−3 + Ṁ1,0q0z

−2 − Ṁ0,0q0z
−1,

if we want the map µ̇ to factorize through ϕ we must have

µ̇

( ∞∑
i=0

qiz
i

)
= . . . − Ṁ2,0Qz

−3 + Ṁ1,0Qz
−2 − Ṁ0,0Qz

−1.

This implies the master equations Ṁa,b+1 = Ṁa,0M0,b.

The last master equation Ṁa+1,b = Ma,0Ṁ0,b follows from the other
two. �

5.2. Symplectic framework

The symplectic framework for the linear algebraic description of the mas-
ter equations is important, because it allows one to obtain the formulas for
the r̂-action (Equation (2.2) in Proposition 2.4) and the ŝ-action (Equa-
tion (3.1) in Definition 3.1) as the result of the Weyl quantization of qua-
dratic hamiltonians.
In order to put the description given above into a setup suitable for

quantization, we have to double the loop space of V . Namely, consider
V := (V ⊕ V ∗)⊗C[[z−1, z]. Let Ω(f, g) :=

∮
〈f(−z), g(z)〉dz, where 〈·, ·〉 is

the standard pairing of vectors and covectors in V ⊕ V ∗.
There is a natural action of the loop group of GL(V ) on V. This is the

maximal group that preserves the operator of multiplication by z and the
splitting of V into the direct sum of V ⊗C[[z−1, z] and V ∗⊗C[[z−1, z]. The
action is completely determined by its restriction to V ⊗ C[[z−1, z], where
we have the same action as in the previous section.
V is naturally identified with T ∗V+, where V+ = (V ⊕ V ∗) ⊗ C[z]. We

view a complete Gromov-Witten potential F (p, q, t) =
∑
Ma,b(t)paqb as a

function on V+ depending on an extra set of parameters t ∈ T . Introduce
the maps

µ : V ⊗ C[z] → V ⊗ z−1C[[z−1]]∑
qbz

b 7→
∑
a,b

(−z)−a−1Ma,bqb,

and
µ∗ : V∗ ⊗ C[z] → V∗ ⊗ z−1C[[z−1]]∑

paz
a 7→

∑
a,b

(−z)−b−1paMa,b.

(The map µ is the same as in the previous section.) Then the graph of dF is
a Lagrangian subspace of V that is equal to Vµ⊕V∗µ∗ , where Vµ and V∗µ∗
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are the graphs of µ and µ∗. Note that V∗µ∗ is also unambiguously recon-
structed from the condition that Vµ ⊕ V∗µ∗ is Lagrangian and, conversely,
Vµ is the intersection of the graph of dF with V ⊗ C[[z−1, z].

Thus a power series F (p, q, t) =
∑
Ma,b(t)paqb satisfies the master equa-

tions of Proposition 1.6 if and only if the intersection of the graph of dF
with V ⊗ C[[z−1, z] satisfies condition (b) of Lemma 5.1. This condition is
preserved by the loop group action.
Let us define the Weyl quantization of a quadratic function on V. Let

(eµ) be a basis of V and (eµ) the dual basis of V ∗. An element of V can be
written in coordinates as∑

a>0
pa,µe

µza +
∑
a>0

p̄a,µe
µ(−z)−a−1 +

∑
b>0

qµb eµz
b +

∑
a>0

q̄µb eµ(−z)−b−1.

Thus we have Ω =
∑
a>0

(dp̄a,µ ∧ dqµa + dq̄µa ∧ dpa,µ). The Weyl quantization

is then defined by the correspondence:

p̄a,µ 7→
∂

∂qµa
; pa,µ 7→ pa,µ; q̄νb 7→

∂

∂pb,ν
; qνb 7→ qνb ;

together with the convention that the derivation operators are always placed
to the right of the multiplication operators.
Now we can describe a way to obtain formulas for r̂-action (Equation (2.2)

in Proposition 2.4) and ŝ-action (Equation (3.1) in Definition 3.1) on the
exponent of the complete Gromov-Witten potential expF (p, q, t). First, we
consider the symplectic action of exp(s) and exp(r), s =

∑∞
l=1 slz

−l and
r =

∑∞
l=1 rlz

l, sl, rl ∈ End(V ), i = 1, 2, . . . . We obtain exponents of linear
Hamiltonian vector fields. The corresponding Hamiltonians, Hs and Hr are
quadratic and can be quantized according to the above conventions. The
quantized Hamiltonians, Ĥs and Ĥr are differential operators of the first
and second order respectively.

Theorem 5.2. — The action of Ĥs and Ĥr on the exponent of the
complete Gromov-Witten potential F (p, q, t) is given by the formulas r̂-
action (Equation (2.2) in Proposition 2.4) and ŝ-action (Equation (3.1) in
Definition 3.1).

Proof. — These formulas are obtained by a straightforward computation
in the same way as it was done in [17]. �

Remark 5.3. — It is a general property of the Weyl quantization that
the action of exp(s) and exp(r) on the graph of dF coincides with the action
of exp(Ĥs) and exp(Ĥr) on expF (p, q, t).
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6. A link to the Losev-Polyubin action

In this section we have two goals. First, we recall a construction of the
group action on solutions of the commutativity equation due to Losev and
Polyubin [23] (or rather we give our own interpretation of their construction
with a new proof). Second, we prove a relation between the action that we
develop in this paper and the Losev-Polyubin construction. This is a direct
analog of the relation between the group actions constructed by van de
Leur and Givental [10].

In this section we always assume that the number of t-variables coincides
with the size of matrices (dimV = dimT ). Unfortunately, we have to use
certain standard definitions and basic theorems from the theory of multi-
component KP hierarchies without prior explanation. We refer to [14, 15]
for all preliminary material, in particular, we use the same notation as in
these papers.

6.1. Interpretation of the Losev-Polyubin action

Losev and Polyubin associated in [23] a solution of the commutativity
equation to an arbitrary invertible matrix formal power series A(z) = A0 +
zA1 + z2A2 + . . . . Their construction has a nice interpretation in terms of
wave functions of multi-component KP hierarchies. Moreover, while Losev
and Polyubin give a formula only for dM0,0, we can extend it in a natural
way to the whole tower of descendant matrices Ma,b, a, b > 0.

Let V ±(0, x, z) be the wave functions of multi-component KP hierarchies
corresponding to the vector A(z)|0〉 (see the definition in [19, 10]). It is quite
natural to consider the wave functions twisted by A(z). We introduce the
notation

Ψ+(t, z) := V +(0, x, z)A(z)|x1=t,x>2=0;

Ψ−(t, z) := A−1(−z)V −(0, x,−z)T |x1=t,x>2=0.

We list the main properties of the matrices Ψ±(t, z):
P1: Ψ±(t, z) is a matrix-valued formal power series in variables z and

t = (t1, . . . , tN ).
P2: Ψ−(t,−z)Ψ+(t, z) = id.
P3: The series Ψ+(t, z) satisfies the equation

∂

∂tk
Ψ+(t, z) = (zEkk +Wk)Ψ+(t, z).

Here Ekk is the matrix with a 1 on the k-th diagonal entry and
zeroes elsewhere, while Wk = Wk(t) is some matrix that doesn’t
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depend on z. (In fact,Wk has a precise expression in terms of multi-
component KP tau-functions corresponding to A(z), but we don’t
need it.)

P4: Ψ−(t, z) satisfies the equation
∂

∂tk
Ψ−(t, z) = −Ψ−(t, z)(zEkk +Wk).

We will now forget about the multi-component KP origin of the matrices
Ψ±(t, z) and use the properties P1-P3 as axioms (P4 follows from P2 and
P3).

One more piece of notation:

Ψ+(t, z) = Ψ+
0 + zΨ+

1 + z2Ψ+
2 + . . . ;

Ψ−(t, z) = Ψ−0 + zΨ−1 + z2Ψ−2 + . . . .

Theorem 6.1. — (A generalization of Losev-Polyubin) The matrices

Ma,b := (−1)bΨ−a+b+1Ψ+
0 + (−1)b−1Ψ−a+bΨ

+
1 + · · ·+ Ψ−a+1Ψ+

b

satisfy the master equations of Proposition 1.6, that is, Ma+1,b+Ma,b+1 =
Ma,0M0,b, dMa+1,b = Ma,0dM0,b, and dMa,b+1 = dMa,0M0,b.

In particular, M0,0 = Ψ−0 Ψ+
1 = Ψ−1 Ψ+

0 , Ma,0 = Ψ−a+1Ψ+
0 , M0,b = Ψ−0 Ψ+

b+1.
The original statement of Losev and Polyubin is equivalent to the following
explicit formula for dM0,0.

Proposition 6.2. — We have dM0,0 = Ψ−0 diag(dt1, . . . , dtn)Ψ+
0 .

Proof of Theorem 6.1 and Proposition 6.2. — In order to prove the
theorem it is enough to show that Ma+1,b + Ma,b+1 = Ma,0M0,b and
dM0,b+1 = dM0,0M0,b.
First, observe that P2 implies that M0,b = Ψ−0 Ψ+

b+1. This means that
Ma,0M0,b is equal to Ψ−a+1Ψ+

0 Ψ−0 Ψ+
b+1 = Ψ−a+1Ψ+

b+1 (we apply P2 again).
On the other hand, in the expression for the sumMa+1,b+Ma,b+1 all terms
are cancelled except for Ψ−a+1Ψ+

b+1.
P3 and P4 then imply that ∂

∂tk
M0,b is equal to

∂

∂tk

(
Ψ−0 Ψ+

b+1
)

= −Ψ−0 WkΨ+
b+1 + Ψ−0 EkkΨ+

b + Ψ−0 WkΨ+
b+1 = Ψ−0 EkkΨ+

b .

The proposition is proved by substituting b = 0 in the last equality.
Finally, we apply P2 once again and we obtain
∂

∂tk
M0,b+1 = Ψ−0 EkkΨ+

b+1 = Ψ−0 EkkΨ+
0 Ψ−0 Ψ+

b+1 = ∂(Ψ−0 Ψ+
1 )

∂tk
Ψ−0 Ψ+

b+1,

which is equal to ∂M0,0
∂tk

M0,b. �
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Remark 6.3. — Using the approach from the commutativity equation
side it is easier to explain the result of van de Leur [19] than it is done in the
original paper. He constructs a solution of the WDVV equation starting
from A(z)|0〉 with A(−z)tA(z) = id and passing through the Darboux-
Egoroff system of equations in canonical coordinates.
Instead one can observe that ifA(−z)tA(z) = id, then Ψ−(z) = Ψ+(−z)t,

and the matrixM0,0 happens to be symmetric. One can classify all possible
changes of variables such that M0,0 turns into the matrix of second deriva-
tives of some function [7]. This function is then a solution of the WDVV
equation. One of the simplest changes of variables is (t1new, . . . , tNnew) =
(1, . . . , 1)M0,0, and it is exactly the change of variables that van de Leur is
applying in [19].

6.2. Lie algebra action

In the extension of the Losev-Polyubin construction discussed above we
have Ψ±i = Ψ±i (A(z)) and Ma,b = Ma,b(A(z)). That is, the system of
matrices depends on the choice of an invertible matrix-valued formal power
series A(z) = A0 + A1z + A2z

2 + . . . . Let r(z) = r1z + r2z
2 + . . . be an

arbitrary formal power series of matrices. We introduce the notation for
the derivatives

r(z).Ma,b(A(z)) := ∂

∂ε
Ma,b (A(z) exp(εr(z)))

∣∣∣∣
ε=0

, a, b > 0;

r(z).Ψ±i (A(z)) := ∂

∂ε
Ψ±i (A(z) exp(εr(z)))

∣∣∣∣
ε=0

, i > 0.

The formula for r(z).Ψ+
k is computed in [10]:

(r`z`).Ψ+
k = Ψ+

`+krl −
∑̀
i=1

`−i∑
j=0

(−1)`−i−jΨ+
j r`Ψ

−
`−i−jΨ

+
i+k.

It allows to compute explicitly all expressions for r(z).Ma,b.
Theorem 6.4. — The formulas for the Lie algebra action r(z).Ma,b in

Losev-Polyubin framework coincide with (2.1) up to a change of sign.
Proof. — Since all matrices Ma,b are polynomial expressions in M0,b, it

is enough to prove the theorem for M0,b = Ψ−0 Ψ+
b+1. Using P2, we have:

(r`z`).
(
Ψ−0 Ψ+

b+1
)

= −Ψ−0
(
(r`z`).

(
Ψ+

0
))

Ψ−0 Ψ+
b+1 + Ψ−0 (r`z`).

(
Ψ+
b+1
)
.

Using P2 again we can rewrite the formula for (r`z`).
(
Ψ+

0
)
as

(r`z`).
(
Ψ+

0
)

= Ψ+
` r` +

`−1∑
i=0

(−1)`−qΨ+
i r`Ψ

−
`−iΨ

+
0 .
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Therefore,

(r`z`).
(
Ψ−0 Ψ+

b+1
)

= −Ψ−0 Ψ+
` r`Ψ

−
0 Ψ+

b+1 −
`−1∑
j=0

(−1)`−jΨ−0 Ψ+
j r`Ψ

−
`−jΨ

+
b+1

+Ψ−0 Ψ+
`+b+1rl −

∑̀
i=1

`−i∑
j=0

(−1)`−i−jΨ−0 Ψ+
j r`Ψ

−
`−i−jΨ

+
i+b+1

= M0,b+`r` −
∑̀
i=0

`−i∑
j=0

(−1)`−i−jΨ−0 Ψ+
j r`Ψ

−
`−i−jΨ

+
i+b+1

= M0,b+`r` +
∑̀
j=1

(−1)`−j−1M0,j−1r`M`−j,b + (−1)`−1r`M`,b.

The last expression coincides with (2.1) up to multiplication by (−1)`−1.
�
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