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MODELS OF GROUP SCHEMES OF ROOTS OF UNITY

by A. MÉZARD, M. ROMAGNY & D. TOSSICI

Abstract. — Let OK be a discrete valuation ring of mixed characteristics
p0, pq, with residue field k. Using work of Sekiguchi and Suwa, we construct some
finite flat OK -models of the group scheme µpn,K of pn-th roots of unity, which
we call Kummer group schemes. We carefully set out the general framework and
algebraic properties of this construction. When k is perfect and OK is a complete
totally ramified extension of the ring of Witt vectors W pkq, we provide a parallel
study of the Breuil-Kisin modules of finite flat models of µpn,K , in such a way that
the construction of Kummer groups and Breuil-Kisin modules can be compared.
We compute these objects for n ¤ 3. This leads us to conjecture that all finite flat
models of µpn,K are Kummer group schemes.
Résumé. — Soit OK un anneau de valuation discrète de caractéristique mixte

p0, pq, de corps résiduel k. Utilisant un travail de Sekiguchi et Suwa, nous construi-
sons des modèles finis plats sur OK du schéma en groupes µpn,K des racines
pn-ièmes de l’unité, que nous appelons schémas en groupes de Kummer. Nous
développons soigneusement le cadre général et les propriétés algébriques de cette
construction. Lorsque k est parfait et OK est une extension complète totalement
ramifiée de l’anneau des vecteurs de Witt W pkq, nous étudions en parallèle les
modules de Breuil-Kisin des modèles finis plats de µpn,K , de telle manière que les
constructions des groupes de Kummer et des modules de Breuil-Kisin peuvent être
comparées. Nous calculons ces objets pour n ¤ 3. Cela nous mène à conjecturer
que tous les modèles finis plats de µpn,K sont des schémas en groupes de Kummer.

1. Introduction

1.1. Context. Let k be a perfect field of characteristic p, W pkq its ring of
Witt vectors, K0 the fraction field of W pkq, K{K0 a finite totally ramified
field extension, and OK its ring of integers. The aim of the present paper is
the determination of the models over OK of the group scheme µpn,K of roots
of unity, or what is the same by Cartier duality, of the cyclic group scheme

Keywords: group schemes, roots of unity, Breuil-Kisin module.
Math. classification: 14L15.



1056 A. MÉZARD, M. ROMAGNY & D. TOSSICI

pZ{pnZqK . Apart from the intrinsic interest of the problem, a first motiva-
tion for doing this lies in the study of the representations of the absolute
Galois group of K. Indeed, finite flat group schemes and p-divisible groups
are extremely important examples of crystalline representations. Work of
Fontaine, Breuil and Kisin has culminated into a fairly nice description
of these groups using modules with semilinear Frobenius. This description
remains however very abstract and many arithmetico-geometric properties
of the group schemes do not have an easy translation in terms of modules.
Thus, one is in search of concrete examples witnessing the constructions
and conjectures of the general theory, like the filtrations defined by Abbes-
Saito [1] and Fargues [10]. We wish to provide such explicit examples and
test these general constructions.
Another important motivation is to understand the reduction of Galois

covers of K-varieties. In the case of covers of curves, it is visible already
for isogenies of elliptic curves (Katz-Mazur [15]) but also in higher genus
(Abramovich-Romagny [2]) that it is necessary to let degenerate, along
with the varieties, also the Galois group of the covers. The existence of
such group degenerations is studied more precisely in [23] and [30]. In the
particular case of cyclic covers, this leads to the question of understanding
the models of Z{pnZ. Here it is worth emphasizing that whereas in the
context of Galois representations one is by choice sticking to the original
field K, in the context of reduction of covers it is natural to allow finite
extensionsK 1{K. This enhances the importance of cyclicK-group schemes,
since any finite flat commutative group scheme becomes isomorphic to a
product of such after a finite field extension.
A third motivation comes from the problem of finding an explicit descrip-

tion of the Hopf algebras of group schemes over a discrete valuation ring
with prescribed generic fiber G, in other words the Hopf orders of the alge-
braKrGs. The most studied and best-known case is that of G � µpn,K . Go-
ing beyond the Tate-Oort classification [29], work in this trend is due mainly
to Larson [18], Greither [12], Byott [5], Underwood [32] and Childs [7]. As
a result, one has a complete classification of Hopf orders for n � 1, 2 and
a wealth of examples for n � 3. One difference between our approach and
some of these constructions is that we shall find descriptions which offer in-
formation about the cohomology of the associated group schemes. Another
important feature of our constructions is that they require no assumption
on the discretely valued field K, whereas the results obtained by the above
authors are valid for K complete, with perfect residue field, containing a
primitive pn-th root of unity.

ANNALES DE L’INSTITUT FOURIER



MODELS OF GROUP SCHEMES OF ROOTS OF UNITY 1057

1.2. Our approach. In this text, building on work of Sekiguchi and Suwa,
we present a family of finite flat models of µpn,K which we call Kummer
group schemes. For this, we consider models of pGm,Kqn constructed by suc-
cessive extensions of affine, smooth, one-dimensional models of Gm,K with
connected fibres, called filtered group schemes. Kummer group schemes are
defined as the kernels G of some well-chosen isogenies E Ñ F between fil-
tered group schemes, and their name comes from the fact that the exact
sequence 0 Ñ G Ñ E Ñ F Ñ 0 is an integral model of the usual Kum-
mer isogeny. This sequence is especially well-suited for the description of
torsors under the group schemes at hand, which as we said before is one
of our motivations. We also point out that the isogenies are given by ex-
plicit equations, and hence so are the kernels. We formulate the following
conjecture:

Conjecture. — Any model of µpn,K over OK is a Kummer group
scheme.

Our aim is to give strong evidence for this statement. We remark that this
conjecture is true, without assuming the discrete valuation ring complete
with perfect residue field, in the case n ¤ 2 (for n � 1 see e.g. [33], discus-
sion after Theorem 2.5, and for n � 2 see [31]). In order to explain why we
think it is true in general and what we actually do, let us first consider the
category of finite flat models of µpn,K . Using scheme-theoretic closures, it
is not hard to see that any morphism GÑ G1 between finite flat OK-group
schemes factors as the composition G � G{N Ñ H ãÑ G1 of the quotient
by a finite flat subgroup scheme, a morphism which is an isomorphism on
the generic fibre (a so-called model map) and the closed immersion of a
finite flat subgroup scheme. Models of µpn,K are special because they have
a unique (finite, flat) subgroup and quotient of a given order. Thus the
category of models of µpn,K may be completely described by the subcat-
egory of groups with model maps as morphisms, which is just a partially
ordered set pCn,¥q, and the two families of functors Qi, Si : Cn Ñ Ci given
by the finite flat quotient of degree pn�1�i, and the finite flat subgroup of
degree pn�1�i, for i P t1, . . . , n� 1u.

Now let us describe what we do. As we said, we take up and extend a
construction of Sekiguchi and Suwa, and use it to produce models of µpn ,
the Kummer group schemes. These group schemes are parametrized by
matrices with coefficients in the ring of Witt vectors W pOKq. The choice
of a uniformizer π for OK allows to single out a certain set Mn of upper
triangular matrices with an interesting structure: it is embedded in a bigger
set of matrices endowed with a non-associative product, giving rise to a

TOME 63 (2013), FASCICULE 3



1058 A. MÉZARD, M. ROMAGNY & D. TOSSICI

natural order ¡. This set has also operators Ui and Li that take a matrix
to its "upper left" and "lower right" square submatrices.
Then, we study Breuil-Kisin modules of models of µpn,K . They can be

identified with u-integral lattices of the ring of Laurent series Wnpkqppuqq,
where k is the residue field of K. The set Ln of lattices is ordered by
inclusion and is endowed with functors Ki, Ii : Ln Ñ Li given by the
kernel and image of the endomorphisms pn�1�i and pi�1 of a given lattice.
The lattices have unique distinguished systems of generators whose p-adic
coefficients can be put together into an upper triangular matrix. In this
way, we obtain a set Gn of matrices with coefficients in kppuqq, with a non-
associative product very similar to that of Mn and giving rise to a natural
order ¡. This set also has functors Ui and Li.
Although not quite “isomorphic”, the partially ordered sets pCn,¥q,

pMn,¡q and pGn,¡q with their pairs of functors have strong analogies.
There are natural functors Mn Ñ Cn

�Ñ Gn given by mapping a matrix to
the Kummer group scheme it defines, and then to the Breuil-Kisin module
of that group. The second functor is an equivalence, constructed in [16].
The basic idea to prove the conjecture above is to compute the Breuil-Kisin
modules of Kummer groups and check that all modules can be obtained
in this way. Unfortunately, there is no direct way to compute Breuil-Kisin
modules. However, computations for n � 2 (done by Caruso in [31] Appen-
dix A) and n � 3 (done in the present article) show a surprising phenome-
non: it seems that if we replace π by u in the matrix of a Kummer group,
we obtain the matrix of its Breuil-Kisin lattice. In fact, we set up a precise,
nontrivial dictionary that indicates how to translate the congruences in a
discrete valuation ring of characteristic 0 on one side, into congruences in
a discrete valuation ring of characteristic p on the other side. The reader
may be inspired by a look at the tables in 8.2.6 (comparison for n � 2) and
8.3.5 (comparison for n � 3 under a simplifying assumption). She/he will
see for her/himself how striking the correspondence is. However, we wish
to say that writing the dictionary already for n � 3 in the general case
seems challenging.
Finally we observe that in particular we prove that Breuil-Kisin modules

of models of µpn are classified by npn�1q
2 parameters, as conjectured, in [13]

and [8], more generally for all models of a fixed group scheme of order pn.
Moreover the Kummer group schemes we constructed form a family with
exactly this number of parameters.

1.3. Summary of contents. Here is a short overview of the contents
of the article; each section starts with a more detailed introduction. The

ANNALES DE L’INSTITUT FOURIER



MODELS OF GROUP SCHEMES OF ROOTS OF UNITY 1059

article is divided in two parts written to be readable independently (to a
reasonable extent). The first part (§§2-5) is devoted to Breuil-Kisin Theory
over a complete discrete valuation ring with perfect residue field. We apply
that theory in order to parametrize the models of µpn in terms of Breuil-
Kisin modules (§2). Then we explain the algebraic structure (called a loop)
of a certain set of matrices (§3) allowing us to rewrite Breuil-Kisin modules
in matricial terms (§4). The main result of this first part is Theorem 4.2.2
which is a computable interpretation of Breuil-Kisin Theory (§4.2). The
second part (§§6-8) is devoted to Sekiguchi-Suwa Theory over a general
discrete valuation ring of unequal characteristics. We recall the construction
of filtered group schemes and formalize it in matricial terms (§6). Then we
describe the conditions for certain model maps of filtered group schemes to
be isogenies, whose kernels are by definition the Kummer group schemes
(§7). Finally we proceed with the explicit computation of models of µp3 (§8)
with a comparison of the congruences coming from Breuil-Kisin Theory and
Sekiguchi-Suwa Theory (8.2.6 an 8.3.5).

1.4. Acknowledgements. We thank Xavier Caruso, Marco Garuti,
Noriyuki Suwa and Angelo Vistoli for interesting conversations related to
this article. We are also grateful to Christophe Breuil for valuable com-
ments on the genesis of the classification of finite flat group schemes and
to Lindsay Childs who kindly sent us a version of the paper [13]. We thank
the referee for his careful reading which allowed to correct several inaccu-
racies. The first and second authors especially enjoyed a stay in the Scuola
Normale Superiore di Pisa where part of this work was done. The third
author had fruitful stays at the MPIM in Bonn, at the IHES in Bures-sur-
Yvette, and spent some time in Paris to work on this project invited by the
University Paris 6, the University of Versailles Saint-Quentin and the IHP,
during the Galois Trimester. The three authors also spent a very nice week
in the CIRM in Luminy. We thank all these institutions for their support
and hospitality.

2. Breuil-Kisin modules and µ-lattices

In this section, we recall the description due to Breuil and Kisin of the
category of finite flat group schemes (understood commutative, of p-power
order) in terms of modules with Frobenius. Then, we specialize to the
subcategory of models of the group scheme µpn of roots of unity.

TOME 63 (2013), FASCICULE 3



1060 A. MÉZARD, M. ROMAGNY & D. TOSSICI

We fix the following notations. Let k be a perfect field of characteristic p,
W �W pkq the ring of Witt vectors with coefficients in k, and S �W rruss.
We write Wn � Wnpkq the ring of Witt vectors of length n and Sn �
Wnrruss. The rings S and Sn are endowed with a ring endomorphism φ

which is continuous for the u-adic topology, defined as the usual Frobenius
onWnpkq and by φpuq � up. Let K0 be the fraction field ofW pkq, let K{K0
be a totally ramified extension of degree e and OK its ring of integers. We fix
a uniformizer π of K and denote by Epuq its minimal polynomial over K0
and v the p-adic valuation with vpπq � 1. We always use the phrase finite
flat group scheme as a shortcut for commutative finite flat group scheme
of p-power order. We denote by pGr{OKq the corresponding category.

2.1. Breuil-Kisin modules of finite flat group schemes

2.1.1. — The Breuil-Kisin Theorem. In recent papers, Breuil and
Kisin have proven a classification theorem for finite flat OK-group schemes,
in terms of the category pMod {Sq described as follows:


 the objects of pMod {Sq are the finitely generated S-modules M of
projective dimension 1, killed by some power of p, and endowed with
a φ-semilinear map φM : MÑM such that EpuqM is contained in
the S-module generated by φMpMq.


 the morphisms in pMod {Sq are the S-linear maps compatible with
φ.

For any M P pMod {Sq, the map φM is called the Frobenius and most often
written simply φ. Note that to φ is associated a linear map φ�M Ñ M,
where φ�M :� M bS,φ S. The classification of Breuil and Kisin is the
following:
2.1.2. — Theorem. There is a contravariant exact equivalence of cat-

egories pGr{OKq Ñ pMod {Sq.
One may compose with Cartier duality to get a covariant equivalence,

and in this paper this is what we will do.
The category pMod {Sq was introduced in [3]. To be more precise, Breuil

required moreover that the underlying S-module of an object pMod {Sq
should be a finite direct sum of modules S{pniS. He conjectured the ex-
istence of an equivalence between pMod {Sq and the category of finite flat
group schemes whose pm-kernels are finite flat for all m, and he proved the
conjecture for group schemes killed by p, when p ¡ 2. After that, Kisin re-
alized that arbitrary finite flat group schemes could be taken into account

ANNALES DE L’INSTITUT FOURIER
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by requiring the underlying modules merely to have projective dimension 1,
and he proceeded to prove the conjecture in general (see [16], Thm 0.5) for
p ¡ 2. Later Lau [19] and Liu [20] independently proved that the statement
also holds for p � 2, which in fact was the original motivation of the note
of Breuil [3].
For the convenience of the reader, here is a very rough sketch of how

the equivalence of the theorem works. Let S denote the p-adic completion
of the divided power envelope of W rus with respect to the ideal generated
by Epuq. There is a natural inclusion S Ñ S but one has to notice that
the ring S is much more complicated than S. Breuil introduces a category
pMod {Sq whose objects are S-modules with a 1-step filtration and a semi-
linear Frobenius. On the syntomic site of the formal scheme SpfpOKq, all
finite flat group schemes define abelian sheaves. Breuil constructs another
abelian sheaf Ocris

8,π. This sheaf plays the role of a sort of dualizing object:
Breuil shows that there is a contravariant equivalence pGr{OKq Ñ pMod {Sq
that takes a group scheme G to the module HompG,Ocris

8,πq, with a quasi-
inverse that takes a module M to the group scheme that represents the
syntomic sheaf X ÞÑ HompM,Ocris

8,πpXqq. Now there is a covariant functor
pMod {Sq Ñ pMod {Sq given by tensoring with the map φ : S Ñ S. Kisin
proves that for any M P pMod {Sq there is a unique sub-S-module M �M

such that EpuqM � xφpMqy � M. Moreover we can recover M from this
submodule in the sense that M �MbS,φ S so that pMod {Sq Ñ pMod {Sq
is an equivalence.

2.1.3. — Group schemes killed by pn. The modules killed by pn

correspond to the group schemes killed by pn. We will use a somewhat
different description of the full subcategory of pMod {Sq of modules killed
by pn, based on the following lemma.

2.1.4. — Lemma. Let M be an S-module endowed with a φ-semilinear
map φ : M Ñ M such that cokerpφ�M Ñ Mq is killed by Epuq. Assume
that M is killed by pn. Then M is an S-module of projective dimension 1
if and only if M is a finite Sn-module without u-torsion.

Proof. — It follows from [16], Lemma 2.3.2 that M has projective dimen-
sion 1 if and only if it is an iterated extension of finite free S{pS-modules.
By induction, it is immediate that this is equivalent to the fact that M is
a finite Sn-module without u-torsion. �

Therefore, the full subcategory of pMod {Sq of modules killed by pn is
the category pMod {Sqn defined as follows:

TOME 63 (2013), FASCICULE 3
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 the objects of pMod {Sqn are the finite Sn-modules M with no u-
torsion endowed with a φ-semilinear map φ : M Ñ M such that
cokerpφ�MÑMq is killed by Epuq.


 the morphisms in pMod {Sqn are the Sn-linear maps compatible
with φ.

We now record some basic facts concerning pMod {Sqn.
2.1.5. — Lemma. For any object M of pMod {Sqn the map φ�MÑM

is injective.

Proof. — This is [17], Lemma 1.1.9. �

2.1.6. — Lemma. The category pMod {Sqn has kernels, cokernels, im-
ages and coimages. Kernels and images are given as the kernels and images
in the category of S-modules.

Proof. — Let us prove first that pMod {Sqn has kernels and images. For
a morphism f : M Ñ N, let K and I be the kernel and the image in
the category of Sn-modules. It is easy to see that K and I are finite Sn-
modules, stable under φ, with no u-torsion. Also note that the map f 1 :�
φ�f : φ�M Ñ φ�N has kernel φ�K (since φ is flat) and image φ�I. The
main point is to see that Epuq kills the cokernels of the maps φ�K Ñ K

and φ�I Ñ I. We start with the kernel. For any x P K we have x P M

and since the cokernel of φ�M Ñ M is killed by Epuq there exists y P M1

such that Epuqx � φpyq. Then f 1pyq maps to 0 in N and hence is 0 in
φ�N. It follows that y P φ�K, as desired. We come to the image. Let x P I

so that x � fpyq for some y P N. Then there exists z P φ�N such that
Epuqy � φpzq. Therefore Epuqx � φpf 1pzqq with f 1pzq P φ�I, as desired.

By Theorem 2.1.2, there is on pMod {Sqn a contravariant exact involu-
tive equivalence given by Cartier duality. It follows that pMod {Sqn has
cokernels and coimages. �

2.1.7. — Remark. In general, for a morphism f : M Ñ N the ob-
jects cokerpkerpfqq and kerpcokerpfqq are not isomorphic. In the category
pMod {Sqn this is not so easy to see, because we have not worked out the
description of cokernels. Things are a little easier in the category of finite
flat group schemes. There, the kernel of a map u : G Ñ H is the scheme-
theoretic closure of the kernel of the generic fibre uK : GK Ñ HK inside G,
and the cokernel is the Cartier dual of the kernel of the dual of u. For ex-
ample, if R contains a primitive p-th root of unity and u : pZ{pZqR Ñ µp,R
is an isomorphism on the generic fibre, then kerpuq � cokerpuq � 0 even
though u is not an isomorphism.

ANNALES DE L’INSTITUT FOURIER
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2.2. Lattices of Wnppuqq

We shall see in 2.3 that the Breuil-Kisin modules of models of µpn can be
identified with lattices in theWnrruss-moduleWnppuqq. For this reason, it is
useful to collect some basic facts on these lattices; knowing their generating
systems will be particularly important in Section 4. Since the lattices we
are interested in are Breuil-Kisin modules, for simplicity we keep the letters
M,N (etc.) to denote them.

2.2.1. — Definition. A lattice M is a finitely generated sub-Wnrruss-
module of Wnppuqq such that Mr1{us � Wnppuqq. We denote by Ln the
partially ordered set of lattices with inclusions between them. If a lattice
M is contained in Wnrruss, we say that it is positive and we write M ¥ 0.

Note that it is simpler here not to follow british mathematical usage, so
we say positive instead of non-negative.

For any two lattices M,N, there exists α P N such that uαN � M. We
define the volume (or index) of M with respect to N as

volpM,Nq � unα�lgpM{uαNq

where lg denotes the length as a Wnrruss-module. Using the fact that
lgpN{uαNq � nα, one sees that the definition is indeed independent of
α. Although our base ring is not a Dedekind ring, this is the analogue of
the symbol χpM,Nq of [10], déf. 5 and [27], chap. III, no. 1. The volume
(or index) of M is defined by volpMq � volpM,Wnrrussq, and we have
volpM,Nq � volpMq{ volpNq.
2.2.2. — Kernels and images of p. For any latticeM and any integer

i with 1 ¤ i ¤ n � 1, we define Mris � kerppn�1�i : M Ñ Mq and
Mpiq � imppi�1 : M Ñ Mq. We have Mpiq � Mris and these submodules
fit into compatible decreasing filtrations:

M � Mr1s � . . . � Mrns � Mrn� 1s � 0
Y Y Y

M � Mp1q � . . . � Mpnq � Mpn� 1q � 0 .

For any two submodules N,N1 of Wnppuqq, consider the ideal

pN : N1q � tx PWnrruss , xN1 � Nu.
Let 1 ¤ i ¤ j ¤ n� 1 be integers. One can see easily, by inverting u, that

pMrjs : Mrisq � pMpjq : Mpiqq � pj�iWnrruss.

TOME 63 (2013), FASCICULE 3
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Besides, since M has no u-torsion then Mris XMrjsr1{us � Mrjs and the
map

Mris{Mrjs ÝÑMrisr1{us{Mrjsr1{us
is injective. Since

Mrisr1{us � pi�1Wnppuqq
and

pi�1Wnppuqq{pj�1Wnppuqq �Wj�ippuqq,
this proves thatMris{Mrjs is canonically a lattice ofWj�ippuqq. Exactly the
same arguments show that Mpiq{Mpjq is canonically a lattice ofWj�ippuqq.
In particular, for j � n � 1 this says that Mris and Mpiq are lattices of
Wn�1�ippuqq.

2.2.3. — Generating sets. For each x P k, let rxs P W pkq be its
Teichmüller representative (see 3.1 for a reminder on this notion). The
map x ÞÑ rxs is the unique multiplicative section of the projection onto the
residue field. If e1, . . . , en is a set of generators for M, then we will call
T -combination a linear combination t1e1 � � � � � tnen where t1, . . . , tn are
Teichmüller representatives. In the following result, and in other places of
the paper, we use the same letter for the valuation of a discrete valuation
ring and for the induced function on its artinian quotients.
2.2.4. — Lemma. Let M be a lattice of Wnppuqq and let e1, . . . , en be a

system of generators. Let vp denote the p-adic valuation on Wn. Then the
following conditions are equivalent:
(1) For 1 ¤ i ¤ n, we have vppeiq � i� 1 and pei P xei�1, . . . , eny.
(2) For 1 ¤ i ¤ n, we have Mris � xei, . . . , eny.
(3) For 1 ¤ i ¤ n, we have vppeiq � i� 1 and each element x P M can be
written in a unique way as a T -combination x � rx1se1 � � � � � rxnsen with
xi P krruss.

Proof. — (1) ñ (2). Set Ni � xei, . . . , eny. It is obvious that Ni �Mris,
so we only prove the opposite inclusion. Since vppeiq � i � 1, we have
Nir1{us � pi�1Wnppuqq. Let x PMris and write

x � x11e1 � � � � � x1nen

for some coefficients x1i P Wnrruss. The fact that pei P Ni�1 implies that
this linear combination may be transformed into a T -combination x �
rx1se1 � � � � � rxnsen. If x � 0 there exists ν minimal such that xν � 0.
Then the assumption that x P Mris gives rxνseν P Mris � Nν�1. After
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tensoring with Wnppuqq we obtain

pν�1Wnppuqq � pi�1Wnppuqq � pνWnppuqq � pminpi�1,νqWnppuqq
hence ν ¥ i, so that x P Ni.
(2) ñ (3). From Mrisr1{us � pi�1Wnppuqq we deduce by decreasing induc-
tion on i that vppeiq � i � 1. Now fix x P M. Since pMris � Mri � 1s, we
have pei P xei�1, . . . , eny for all i. Using this, we may as above write x as
a T -combination x � rx1se1 � � � � � rxnsen with xi P krruss. Moreover, if
rx1se1�� � �� rxnsen � rx11se1�� � �� rx1nsen are two expressions for x, then
prx1s � rx11sqe1 P Mr2s. From the fact that pMr2s : Mr1sq � pWnrruss it
follows that rx1s � rx11s P pWn�1rruss and hence x1 � x11 � 0. By induction
we get similarly xi � x1i for all i.
(3) ñ (1). Since vppeiq � i � 1, the p-valuation of a nonzero element
rx1se1� � � �� rxnsen is equal to ν� 1 where ν is the least integer such that
xν � 0. For x � pei we find ν � i� 1, so that pei P xei�1, . . . , eny. �

2.2.5. — Definition. A set of generators e1, . . . , en of a lattice M sat-
isfying the equivalent conditions of Lemma 2.2.4 is called a Teichmüller
basis, or a T -basis for short.
2.2.6. — Remark. Let e1, . . . , en be a T -basis of M and for each i, let li

be the u-adic valuation of the class of ei in Mris{Mri�1s which is a lattice
of kppuqq. Then, we have l1 ¥ l2 ¥ � � � ¥ ln. Indeed, by the definition
of li, we have ei � αip

i�1 mod pi with valupαiq � li. Therefore pei �
αip

i mod pi�1 and ei�1 � αi�1p
i mod pi�1. Since pei P xei�1, . . . , eny, it

follows at once that li ¥ li�1.
2.2.7. — Proposition. Let M be a lattice of Wnppuqq. Then there

exists a unique T -basis e1, . . . , en of the form:

ei � ulipi�1 � rai,i�1s pi � rai,i�2s pi�1 � � � � � rains pn�1

where aij P kru, u�1s is such that degupaijq   lj for all i, j. Moreover, we
have l1 ¥ l2 ¥ � � � ¥ ln. Finally M is positive if and only if ln ¥ 0 and
aij P krus for all i, j.

Proof. — Existence: we construct the ei by decreasing induction on i,
starting from i � n. The module Mrns is isomorphic via a canonical iso-
morphism to a lattice of W1ppuqq � kppuqq, hence generated by uln for
a unique ln P Z. The preimage via this isomorphism of this generator is
en � ulnpn�1. For i   n, assume by induction that ei�1, . . . , en have been
constructed. The module Mris{Mri � 1s is again canonically a lattice of
kppuqq, generated by uli for a unique li P Z. Since Mris � piWnppuqq, a lift
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in Mris of this generator may be written in the form

ei � ulipi�1 � rai,i�1s pi � rai,i�2s pi�1 � � � � � rains pn�1

for some Laurent series aij P kppuqq. Now write ai,i�1 � a1i,i�1�uli�1a2i,i�1
where a1i,i�1 P kru, u�1s is the truncation of ai,i�1 in degrees ¥ li�1. Re-
placing ei by ei�ra2i,i�1sei�1, and rewriting the p-adic expansion of the tail
ei � ra2i,i�1s pi, we can fulfill the condition degupai,i�1q   li�1. Applying
the same process to ai,i�s for s � 1, . . . , n� i we can fulfill the conditions
degupaijq   lj for all j. This finishes the construction of ei, and by induc-
tion, of e1, . . . , en. The elements ei are such that Mris � xei, . . . , eny by
construction.
Uniqueness: the choice of the generator of Mris{Mri� 1s in the previous

induction is normalized by the fact that we are looking for generators ei
with leading coefficients ulipi�1. The choice of the remaining coefficients of
ei is imposed by the condition on the degrees. This proves that the system
e1, . . . , en is unique. Finally the inequalities between the li are given by
Remark 2.2.6 and the statement about positivity is obvious. �

2.2.8. — Definition. The T -basis of Lemma 2.2.7 is called the distin-
guished basis of M.
2.2.9. — Remark. Let M be a lattice with distinguished basis e1, . . . , en.

Then there exist series bij P krruss and a set of equalities

Ri : pei � rbiis ei�1 � � � � � rbi,n�1s en
for 1 ¤ i ¤ n. It can be proven that in fact

x e1, . . . , en |R1, . . . , Rn y
is a presentation by generators and relations of M as a Wnrruss-module.
We will not need this.

2.3. Breuil-Kisin modules of models of µpn,K

We finally specialize to our main object of interest, namely, the finite flat
models of µpn,K .

2.3.1. — Models and µ-lattices. The natural morphisms between
models are the model maps, which are by definition morphisms of R-group
schemes inducing an isomorphism on the generic fibre. Let us see how the
category of models of µpn,K with model maps can be described concretely
in terms of Breuil-Kisin modules.
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Let K be an algebraic closure of K. For any two finite flat group schemes
G,G1 with associated Breuil-Kisin modules M,M1, we have:

GK � G1
K ðñ GpKq � G1pKq ðñ Mr1{us �M1r1{us

where GpKq and G1pKq are viewed as representations of the absolute Ga-
lois group GalpK{Kq. The first equivalence is clear, let us explain briefly
the second. If we introduce the Kummer extension K8 � Yn¥0Kp pn

?
πq,

then a result of Fontaine says that the module Mr1{us determines the
GalpK{K8q-representation associated to G (see [11], Remark A.3.4.1). By
a result of Breuil ([4], Theorem 3.4.3), this representation in turn deter-
mines the crystalline GalpK{Kq-representation GpKq.
Recall that we are using the covariant equivalence pGr{OKq Ñ pMod {Sq

given by 2.1.2 and Cartier duality. Thus the S-module associated to the
group scheme µpn,R is M � Sn with its usual Frobenius. From this, we
deduce that M is the module associated to a model of µpn,K if and only if
Mr1{us is isomorphic to Snr1{us � Wnpkqppuqq with its Frobenius. Since
M has no u-torsion, we may then see it as a submodule of Wnpkqppuqq.
As far as the morphisms are concerned, the model maps correspond to
inclusions between submodules of Wnpkqppuqq. We are lead to the following
notions.

2.3.2. — Definitions. A µ-lattice is a lattice M � Wnppuqq such that
EpuqM � xφpMqy � M, where φ is the Frobenius of Wnppuqq. We denote
by L µ

n the partially ordered set of µ-lattices with inclusions between them.

The letter ’µ’ reminds us of µpn . Note that since a µ-lattice M is stable
under Frobenius, it is positive, for otherwise there would exist an element
x P M with negative u-valuation and then the valuation of φnpxq would
tend to �8, in contradiction with the finite generation of M. What has
been said before means that the Breuil-Kisin classification gives an equiv-
alence of categories between L µ

n and the category of models of µpn with
model maps.

2.3.3. — Kernels and images of p. Let G be a model of µpn,K . For
1 ¤ i ¤ n� 1, define:


 Gris the scheme-theoretic closure of kerppn�1�i : GK Ñ GKq in G,

 Gpiq the scheme-theoretic closure of imppi�1 : GK Ñ GKq in G.
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These are finite flat models of µpn�1�i . By definition, there are exact se-
quences:

0 // Grn�2�is // G //

pi�1

��

Gpiq //

uu

0

0 // Gris // G // Gpn�2�iq // 0

On the generic fibre, the vertical map pi�1 : GÑ G vanishes on Grn�2�is
and its image is a subscheme of Gris. By taking closures, the same is true
everywhere. Therefore, this map induces a morphism of R-group schemes
Gpiq Ñ Gris which is a model map.
LetM be the µ-lattice associated to G. Starting from the exact sequences

above and using the fact that the Breuil-Kisin equivalence is exact, we see
thatMris is the µ-lattice of Gris andMpiq is the µ-lattice of Gpiq. Moreover,
the inclusion Mpiq � Mris and the model map Gpiq Ñ Gris correspond to
each other.

3. The loop of µ-matrices

In 2.2, we have seen that lattices have "nice" systems of generators. The
p-adic coefficients of such systems of generators may be put together into
"nice" matrices, called µ-matrices. We will come back to this in more detail
in Section 4. In the present section, we focus on the abstract algebra of
the set of µ-matrices. This set has a natural operation pA,Bq ÞÑ A � B
whose meaning is that if i : M Ñ N is an inclusion of lattices, if A is
a matrix associated with a generating system of M and if B is a matrix
associated with the inclusion i, then A � B is a matrix associated with a
generating system ofN. The operation � is unfortunately neither associative
nor commutative. Still, a good surprise is that µ-matrices all lie naturally
in a set where the operation � becomes invertible on the left and on the
right; this set plays the same role as the symmetrization of a commutative
monoid. The structure that we obtain, called a loop, was considered by
Manin [21] in his study of rational points on cubic hypersurfaces, essentially
because the analogue of the addition of elliptic curves in higher dimensions
fails to be associative.
The key to everything in this section is the use of p-adic expansions,

which exist as soon as the coefficient ring of the Witt vectors is a perfect ring
of characteristic p. Thus we fix such a perfect ring throughout Section 3.
For simplicity we denote it by the letter k, but note that it need not be a
field. As before, we set W �W pkq and Wn �Wnpkq.
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Finally we point out that the role of Witt vectors will be very different in
Sections 6 to 8, where we will consider arbitrary Zppq-algebras as coefficient
rings. We will emphasize this in due time.

3.1. p-adic expansions

3.1.1. — p-adic expansions of Witt vectors. Recall that the ring
structure of W is given by universal polynomials with coefficients in Z
in countably many variables X0, X1, X2, . . . For example, there are poly-
nomials Si � SipX0, . . . , Xiq and Pi � PipX0, . . . , Xiq, for i ¥ 0, giving
the addition and the multiplication of two vectors a � pa0, a1, a2, . . . q and
b � pb0, b1, b2, . . . q by the rules:

a� b � pS0pa, bq, S1pa, bq, S2pa, bq, . . . q,
ab � pP0pa, bq, P1pa, bq, P2pa, bq, . . . q.

Moreover, since k is perfect all elements have p-adic expansions:

a � pa0, a1, a2, . . . q � ra0s � ra1{p
1 s p� ra1{p2

2 s p2 � . . .

where rxs :� px, 0, 0, . . . q is the Teichmüller lift of x P k. Hence the functions
Si and Pi defined by Sipa, bq :� Sipa, bq1{pi and Pipa, bq :� Pipa, bq1{pi
satisfy

a� b � rS0pa, bqs � rS1pa, bqs p� rS2pa, bqs p2 � . . . ,

ab � rP0pa, bqs � rP1pa, bqs p� rP2pa, bqs p2 � . . .

In fact, we can define functions Si and Pi in any number r of variables by
the identities
a1� . . .�ar�rS0pa1, . . . , arqs�rS1pa1, . . . , arqs p�rS2pa1, . . . , arqs p2� . . . ,
a1 . . . ar �rP0pa1, . . . , arqs�rP1pa1, . . . , arqs p�rP2pa1, . . . , arqs p2� . . .
3.1.2. — p-adic expansions of series.We wish to extend the formal-

ism of p-adic expansions to the ring of Laurent series W ppuqq. For this, we
extend the definition of Teichmüller lifts to elements x P kppuqq as follows:
if x � °

j"�8 xju
j with xj P k, we set

rxs �
¸

j"�8

rxjsuj .

Then it is easy to see that for a Laurent series a � °
j"�8 aju

j in W ppuqq,
by writing down p-adic expansions of its coefficients one obtains a p-adic
expansion

a � ra0s � ra1s p� ra2s p2 � . . .
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Let a � °
j"�8 aju

j and b � °
j"�8 bju

j be Laurent series with coeffi-
cients in W . We extend the definition of Si by setting

Sipa, bq �
¸

j"�8

Sipaj , bjquj �
� ¸
j"�8

Sipaj , bjqujp
i

�1{pi

and one verifies immediately that the formula a � b � °
i¥0rSipa, bqs pi

remains valid. Similarly, one extends the definition of Sipa1, . . . , arq for
Laurent series as P W ppuqq in an obvious way. We now come to products.
There are functions Pi such that for any r Laurent series as �

°
i"�8 as,iu

i

with coefficients in W we have

a1 . . . ar � rP0pa1, . . . , arqs � rP1pa1, . . . , arqs p� rP2pa1, . . . , arqs p2 � . . .

It is a simple exercise to verify that

Pipa1, . . . , arq �
¸
j

Sip. . . , a1,j1 � � � ar,jr , . . . qui

where the arguments of Sj are all the finitely many possible products
a1,j1 � � � ar,jr indexed by r-tuples pj1, . . . , jrq such that j1�� � �� jr � j. For
example, if a and b are power series (i.e. Laurent series with nonnegative
u-valuation) we have:

Pipa, bq �
¸
j

Sipa0bj , . . . , ajb0quj .

3.1.3. — A warning on the use of Si and Pi. In the sequel, we
will most often use Si and Pi for Teichmüller elements ai � rxis. In
this case, we will usually write Sipx1, . . . , xrq and Pipx1, . . . , xrq instead
of Siprx1s, . . . , rxrsq and Piprx1s, . . . , rxrsq. This is not dangerous, but for
x, y P kppuqq one must be careful to distinguish between the sum x � y in
kppuqq and the sum rxs�rys of their Teichmüller representatives inW ppuqq.
For example, the associativity of the sum of Witt vectors gives for any el-
ements a, b, c P W ppuqq the formula S1pa, b, cq � S1pa � b, cq, and here the
sum a � b takes place in W ppuqq. The reader is invited to compare with
formula 3.1.4(1) below. Among the many formulas relating the Si and the
Pi, most of them coming from associativity and distributivity of the sum
and product of Witt vectors, we give a few examples:
3.1.4. — Lemma. Let a, b, c P kppuqq and let val denote the u-valuation.

We have:
(1) S1pa, b, cq � S1pa, bq � S1pa� b, cq.
(2) S1pa, b� aq � S1pa,�bq.
(3) val pSipa, bqq ¥ maxpvalpaq, valpbqq for all i ¥ 1.
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(4) rasrbs � rabs if a or b is a monomial.
Note that the multiplicativity formula rasrbs � rabs for a, b P k does not

hold in full generality if a, b P kppuqq.
Proof. — (1) This comes from the associativity of the sum of Witt vec-

tors.
(2) It is enough to prove that S1pa, b� aq � S1pa,�bq. This can be proven
over Z, where it follows from the formula S1px, yq � 1

p pxp� yp� px� yqpq.
(3) This comes from the fact that if we write a � °

aju
j and b � °

bju
j ,

then Sipaj , bjq � 0 as soon as aj � 0 or bj � 0.
(4) This is clear. �

3.1.5. — p-adic expansions of vectors and matrices. For the
computations inside lattices, we will use the notations of linear algebra.
The vectors are all column vectors. If A is a rectangular matrix with entries
aij in kppuqq (for example A could be a column vector), we will denote by
rAs the matrix whose entries are the Teichmüller representatives raijs. Thus
the entries of rAs are (possibly truncated) Witt vectors. We may as above
consider p-adic expansions of matrices with entries in W ppuqq, but we will
have no need for this. For us, the most important vector will be

p� �

�����
1
p

p2

...

����

which for convenience may denote a vector with finitely, or infinitely many,
coefficients. Thus if x P Wnppuqqn is a vector with components x1, . . . , xn
we have:

txp� � x1 � x2p� � � � � xnp
n�1 .

If the xi are Teichmüller representatives, then this linear combination is
called a T -combination. Of course, any linear combination can be trans-
formed into a T -combination:
3.1.6. — Lemma. For any rectangular matrix A with entries inWnppuqq

with n columns, there is a unique matrix ρpAq of the same size with entries
in kppuqq such that

Ap� � rρpAqs p� .
If the entries of A are power series in u, or Laurent polynomials, or polyno-
mials, then so are the entries of ρpAq. If A is upper triangular (resp. with
Teichmüller diagonal entries), then so is ρpAq.
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Proof. — The equality Ap� � rρpAqs p� is equivalent to finitely many
equalities, one for each line of A. Thus it is enough to consider the case
where A has only one line A � pa1 . . . anq. Write the p-adic expansion

a1 � a2p� � � � � anp
n�1 � ra11s � ra12s p� � � � � ra1ns pn�1 .

Obviously the desired matrix is ρpAq � pa11 . . . a1nq. The remaining asser-
tions are clear. �

There is an algorithmic point of view on the computation of ρpAq that
will be useful. In order to explain this, for a coefficient in position pi, jq
in an upper triangular square matrix, let us call the difference j � i the
distance to the diagonal.
3.1.7. — Lemma. Let E be the set of upper triangular square matrices

of size n with entries in W ppuqq with Teichmüller diagonal entries. Define
a function F : E Ñ E as follows. Given a matrix A, for i � 1 to n apply
the following rule to the i-th line:


 Find the first non-Teichmüller coefficient ai,ν .

 Write the truncated p-adic expansion ai,νpν�1 � ra1i,νs pν�1 � � � � �
ra1i,ns pn�1 mod pn.


 Replace aiν by ra1iνs and for j ¡ i replace aij by aij � ra1ijs.
After the step i � n has been completed, call the result F pAq. Then, for
all k ¥ 0 we have:


 the coefficients with distance to the diagonal ¤ k of the matrix
F kpAq are Teichmüller, where F k is the k-th iterate of F .


 F kpAq p� � Ap�.
In particular Fn�1pAq � ρpAq.
Proof. — This is obvious. �

3.2. The loop of µ-matrices

3.2.1. — Quasigroups and loops. We start with some definitions
from quasigroup theory, referring to the book of Smith [28] for more details.
A magma is a set X endowed with a binary operation X � X Ñ X,
px, yq ÞÑ xy usually called multiplication. A submagma is a subset Y � X

that is closed under multiplication. A quasigroup is a magma where left
and right division are always possible, in the sense that left multiplications
Lx and right multiplications Ry are bijections. Given x, y P X, the unique
element a such that ax � y is denoted y{x (read “y over x”) and the
unique element b such that xb � y is denoted xzy (read “x into y”). A loop
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(boucle in French, and... loop in Italian) is a quasigroup with an identity
element, i.e. an element e P X such that ex � xe � x for all x P X.
Thus a loop is a group if and only if the operation is associative. A magma
homomorphism is a map f : X Ñ X 1 such that fpx1x2q � fpx1qfpx2q for
all x1, x2 P X. Quasigroup homomorphisms and loop homomorphisms are
just magma homomorphisms.

3.2.2. — The loop Gnppuqq. In Section 4, to lattices of Wnppuqq we
will attach matrices. The matrices coming in this way appear naturally as
objects in a certain loop which we call the loop of µ-matrices and denote
by Gnppuqq. As a set, it is composed of the upper triangular matrices of the
form

Mpl,aq �

�������
ul1 a12 a13 . . . a1n

ul2 a23 a2n
. . . . . . ...

uln�1 an�1,n
0 uln

������

with l � pl1, . . . , lnq P Zn and a � paijq1¤i j¤n where aij P kppuqq. There
is a natural subset Gnru, u�1s composed of matrices with coefficients in
kru, u�1s. In order to keep the notation light, we do not specify the coef-
ficient ring k in the symbols Gnppuqq and Gnru, u�1s. Note also that as a
general rule, we write aij instead of ai,j , unless this can disturb compre-
hension, for example when we write anp,n.
If A,B are square matrices with entries in kppuqq, we set A � B �

ρprAsrBsq where ρ is the map from Lemma 3.1.6. This matrix is char-
acterized by the equality:

rAsrBs p� � rA �Bs p� .

By Lemma 3.1.6, if A,B are in Gnppuqq resp. in Gnru, u�1s, then A � B
also. It is clear that the identity matrix is a neutral element for this mul-
tiplication. Thus the triple pGnppuqq, �, Idq is a magma with identity, and
pGnru, u�1s, �, Idq is a submagma. At this point, the reader may wish to
have a look at the shape of the multiplication � in the examples of 3.3
below.

We will now prove that pGnppuqq, �, Idq is a loop.

3.2.3. — Proposition. Let A �Mpl,aq and B �Mpm, bq be elements
of Gnppuqq.
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(1) Any coefficient in position pi, jq of A �B with distance to the diagonal
j � i ¥ 1 has the form:

umjaij � ulibij �
�

terms depending on coefficients ai1j1 and bi1j1
whose distance to the diagonal is j1 � i1   j � i.



.

(2) The maps LA : B ÞÑ A �B and RB : A ÞÑ A �B are bijections.
Thus, the triple pGnppuqq, �, Idq is a loop.

Proof. — (1) The entry of rAsrBs in position pi, jq is

ulirbijs �
�

j�1̧

k�i�1
raiksrbkjs

�
� raijsumj .

The coefficients raiks and rbkjs in the middle sum have distance to the diag-
onal strictly less than j � i. When applying the algorithm of Lemma 3.1.7
to compute A � B, at each step the entry pi, jq is replaced by itself plus
some terms involving coefficients ast and bst of distance to the diagonal
t� s   j � i. This proves the claim.
(2) The argument is the same for LA and RB so we do only the case of LA.
Assume that A�B � C with A �Mpl,aq, B �Mpm, bq, C �Mpn, cq. We
fix A and C and try to solve for B. We determine its entries by increasing
induction on the distance to the diagonal, called k. For k � 0 it is clear
that we have mi � ni� li. By induction, using point (1), it follows directly
that the coefficients bij of distance to the diagonal k are determined by the
entries ofA, C and the coefficients bi1j1 of lower distance to the diagonal. �

3.2.4. — Some subloops. The homomorphisms U and L. There
are some important examples of subloops and loop homomorphisms. Of
course Gnru, u�1s is a subloop of Gnppuqq. Another example is the subloop
of matrices with diagonal entries equal to 1. This is in fact the kernel of the
morphism of loops ϕ : Gnppuqq Ñ Zn to the additive group Zn that maps
A to the tuple of its diagonal exponents.
For any square matrix A of size n with entries in some ring, we denote by

UA the upper left square submatrix of size n� 1, i.e. the matrix obtained
by deleting the last row and the last column of A. Similarly we denote by
LA the lower right square submatrix of size n�1, obtained by deleting the
first row and the first column of A.

3.2.5. — Lemma. The mappings U : Gnppuqq Ñ Gn�1ppuqq and L :
Gnppuqq Ñ Gn�1ppuqq are commuting loop homomorphisms.
Proof. — Let τU be the truncation map that takes a vector v with n

components to the vector whose components are the first n�1 components
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of v. Thus τUp� is the vector analogous to p� in dimension one less. Then
simple matrix formulas yield:
rUpA �Bqs τUp� � pUrA �Bsq τUp� � τUprA �Bs p�q � τUprAsrBs p�q

� UrAs � UrBs τUp� � rUAsrUBs τUp� � rUA � UBs τUp� .
It follows that UpA �Bq � UA � UB, that is, U is a loop homomorphism.
Let τL be the truncation taking a vector v with n components to the

vector whose components are the last n � 1 components of v. Thus τLp�
is the column vector with components p, p2, . . . , pn�1. It is still true that
if two square matrices A,B of size n� 1 with coefficients in kppuqq satisfy
rAs τLp� � rBs τLp� then A � B. Then a similar computation as before
shows that rLpA�Bqs τLp� � rLA�LBs τLp�, so L is a loop homomorphism.
Finally, the fact that U and L commute is clear. �

3.2.6. — Positive matrices. We say that a matrix A P Gnppuqq is
positive, and we write A ¥ 0, if its entries are in krruss. (Here, as in
2.2.1, we say positive instead of non-negative for simplicity.) We denote by
Gnrruss the subset of positive elements of Gnppuqq. It is a submagma, but
not a subloop. Similarly Gnru, u�1s has a submagma Gnrus � Gnru, u�1s X
Gnrruss.

3.3. Examples

Here is what the operation � looks like for n � 4. The product P � A�B
is given by

P �

����
ul1�m1 ul1b12 � um2a12 p13 p14

0 ul2�m2 ul2b23 � um3a23 p24
0 0 ul3�m3 ul3b34 � um4a34
0 0 0 ul4�m4

���
 .

with
p13 � ul1b13 � a12b23 � um3a13 � S1pul1b12, u

m2a12q
p24 � ul2b24 � a23b34 � um4a24 � S1pul2b23, u

m3a23q
p14 � ul1b14 � a12b24 � a13b34 � a14u

m4 � S2pul1b12, u
m2a12q�

� S1pul1b13, a12b23, u
m3a13,S1pul1b12, u

m2a12qq � P1pa12, b23q .

Applying the homomorphism U (Lemma 3.2.5), these formulas contain also
the formulas of multiplication for n ¤ 4.
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3.3.1. — Failure of associativity. For n � 2, the loop G2 is a group:
in fact the multiplication � is the ordinary multiplication of matrices. For
n ¥ 3, the multiplication � is not associative. Let us check this. We have

A �B �
�� ul1�m1 ul1b12 � um2a12 pA �Bq13

0 ul2�m2 ul2b23 � um3a23
0 0 ul3�m3

�

with

pA �Bq13 � ul1b13 � a12b23 � um3a13 � S1pul1b12, u
m2a12q .

We now examine the coefficients in position p1, 3q:
ppA �Bq � Cq13 � ul1�m1c13 � pul1b12 � um2a12qc23

� un3
�
ul1b13 � a12b23 � um3a13 � S1pul1b12, u

m2a12q
�

� S1
�
ul1�m1c12, u

n2pul1b12 � um2a12q
�

and

pA � pB � Cqq13 � ul1
�
um1c13 � b12c23 � un3b13 � S1pum1c12, u

n2b12q
�

� a12pum2c23 � un3b23q � um3�n3a13

� S1
�
ul1pum1c12 � un2b12q, um2�n2a12

�
.

Using the formula S1px, y, zq � S1px, yq � S1px � y, zq from Lemma 3.1.4,
we compute the difference:

ppA �Bq � Cq13 � pA � pB � Cqq13

� S1
�
ul1�n3b12, u

m2�n3a12
�� S1

�
ul1�m1c12, u

n2pul1b12 � um2a12q
�

� S1pul1�m1c12, u
l1�n2b12

�
� S1

�
ul1pum1c12 � un2b12q, um2�n2a12

�
� pun3 � un2qS1

�
ul1b12, u

m2a12
�
.

This is not zero so � is not associative.
However, we see that this is zero on the subloop kerφ : G3ppuqq Ñ Z3,

which then is a group. Let us verify that for n ¥ 4, the multiplication � is
not associative even if we restrict it to the subloop kerφ : G4ppuqq Ñ Z4.
We shall check this only for n � 4. We make the following observation:
the multiplication of Gnppuqq differs from that of the underlying group of
matrices by terms coming from the operations of Witt vectors, i.e. involving
the sum and product functions Si and Pj . Since the ordinary multiplication
of matrices is associative, the terms of the entries in pA�Bq�C andA�pB�Cq
that do not involve Si or Pj are equal. Consequently when we question
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associativity it is enough to look at the terms that contain Si or Pj . Once
this is said, let us compare the entries in position p1, 4q of pA �Bq �C and
A � pB � Cq. Looking at the above formulas, we see that among the terms
involving Si or Pj the coefficient c34 is present in ppA�Bq �Cq14 whereas it
is absent from pA�pB�Cqq14. Then one can easily specialize the parameters
to obtain an example where ppA �Bq �Cq � ppA �Bq �Cq. We can also see
that � is not diassociative (i.e. the subloops generated by two elements are
not associative), and hence not a Moufang loop like the loops considered
by Manin in his book on cubic forms [21].

3.3.2. — Formulas for left and right division. Finally, we let
C � A � B and give the formulas for A � C{B and B � AzC for n � 3.
We use the notations A �Mpl,aq, B �Mpm, bq, C �Mpn, cq.
The matrix A � C{B is determined by li � ni �mi for i � 1, 2, 3 and:

a12 � c12 � un1�m1b12

um2

a23 � c23 � un2�m2b23

um3

a13 �
c13 � un1�m1b13 � c12�u

n1�m1b12
um2 b23 � S1pun1�m1b12, c12 � un1�m1b12q

um3

The matrix B � AzC is determined by mi � ni � li for i � 1, 2, 3 and:

b12 � c12 � un2�l2a12

ul1

b23 � c23 � un3�l3a23

ul2

b13 �
c13 � a12

c23�u
n3�l3a23
ul2

� un3�l3a13 � S1pc12 � un2�l2a12, u
n2�l2a12q

ul1

When C is the identity matrix, we see that left inverse and right inverse
coincide.

4. Relating lattices and matrices

In this section, we consider matrices adapted to well-chosen systems of
generators of lattices. More precisely, we define subsets

G µ
n ppuqq � G d

n ppuqq � G T
n ppuqq � Gnppuqq

whose relation to lattices is the following. The set G T
n ppuqq of T -matrices

corresponds to the nice systems of generators of lattices which we called T -
bases. The set G d

n ppuqq of distinguished matrices corresponds to the distin-
guished T -bases, that is, to the lattices themselves. Finally the set G µ

n ppuqq
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of µ-matrices corresponds to the µ-lattices. The final result is Theorem 4.2.2
which formulates the classification of models of µpn,K in terms of matrices,
well-suited for computations.
From now on, the ring of coefficients k is a perfect field and W �W pkq,

Wn �Wnpkq.

4.1. Matrices and lattices

Recall that lattices, T -bases and distinguished bases are defined in 2.2.

4.1.1. — Definition. For each A P Gnppuqq we consider the column
vector e� � rAs p�, its components e1, . . . , en, and the lattice M � MpAq
they generate.
(1) We say that A is a T -matrix if e1, . . . , en is a T -basis of M.
(2) We say that A is distinguished if e1, . . . , en is the distinguished basis
of M.
We denote by G T

n ppuqq, resp. G d
n ppuqq, the set of T -matrices, resp. distin-

guished matrices, in Gnppuqq. We have similar subsets G �
n rruss � Gnrruss,

G �
n ru, u�1s � Gnru, u�1s, G �

n rus � Gnrus with � P tT, du.
Let Ln be the set of lattices of Wnppuqq. We have a well-defined map

Gnppuqq Ñ Ln , A ÞÑMpAq.
Denote by ApMq the matrix whose coefficients are the p-adic coefficients
of the distinguished basis of M. Then we have a section

Ln Ñ G T
n ru, u�1s � Gnppuqq , M ÞÑ ApMq.

4.1.2. — Lemma. Let A P Gnppuqq and M �MpAq. Then:
(1) A is a T -matrix if and only if UA{LA ¥ 0, i.e. UA � B � LA for some
B P Gnrruss.
(2) A ¥ 0 if and only if M ¥ 0.

Proof. — (1) Set e� � rAs p�. Due to the shape of matrices in Gnppuqq,
we have vppeiq � i � 1. It follows from (1) of Lemma 2.2.4 that e� is a
T -basis if and only if pei P xei�1, . . . , eny for all i. This is in turn equivalent
to the existence of elements bij P krruss such that

pei � rbiis ei�1 � � � � � rbi,n�1s en
for all i. Let B be the upper triangular matrix with diagonal entries uli�li�1

and other entries bij P krruss. It is simple to see that the set of equalities
above is equivalent to UA � B � LA.
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(2) We have M ¥ 0 if and only if ei PWnrruss for all i. Since ei � ulipi�1�
rai,i�1s pi � � � � � rains pn�1, this means that uli and aij belong to krruss
for all i, j. �

The construction of the distinguished basis in Lemma 2.2.7 shows that
the volume of a lattice (defined in 2.3) can be computed from a T -matrix
giving rise to it:

4.1.3. — Lemma. For A P G T
n ppuqq and M �MpAq, we have volpMq �

detpAq.

Proof. — Let α be an integer such that uαM �Wnrruss. ReplacingM by
uαM and A by uαA, we may assume that α � 0. To simplify the notation,
we write M� � Wnrruss{M. Write A � Mpl,aq. We have the following
diagram with exact rows and columns:

0

��

0

��

0

��
0 // Mri� 1s //

��

Mris //

��

Mris{Mri� 1s //

��

0

0 // Wn�irruss //

��

Wn�i�1rruss //

��

W1rruss //

��

0

0 // Mri� 1s� //

��

Mris� //

��

pMris{Mri� 1sq� //

��

0

0 0 0

Since A P Gnrruss, we have Mris{Mri � 1s � ulikrruss and pMris{Mri �
1sq� � krus{puliq of length li. Then the result follows by induction, using
the additivity of the length. �

Let us now look at some natural lattices associated to a lattice M. We
defined the kernel Mris and the image Mpiq in 2.2.2. The ring Wnppuqq
is endowed with a Frobenius endomorphism φ whose restriction to Wn is
the Frobenius of the Witt vectors, and such that φpuq � up. This gives
rise to another interesting lattice, namely the lattice generated by φpMq.
Also, for a polynomial Epuq P Wnrus we can consider the lattice EpuqM.
If M �MpAq, we wish to express the matrices associated to these lattices
in terms of A. We will shortly give the result, but we first need a bit of
notation.
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4.1.4. — Notation. We denote by P the matrix operator taking a
square matrix M of size r to the square matrix of size r � 1 whose up-
per right block of size r is M and whose other entries are zero. In pictures,

PM �

���� 0 M

0 0

���
 .

The operator Pi takes a matrixM of size r to the matrix of size r� i whose
upper right block is M and whose other blocks are zero.

4.1.5. — Definition. Let A P Gnppuqq be a matrix and Epuq P Wnrus
a polynomial, with p-adic expansion Epuq � rE0puqs � rE1puqs p � � � � �
rEn�1puqs pn�1. With the notation of 4.1.4, we define:
(1) Epuq�A � ρ

�°n�1
i�0 rEi Id �PiUiAs�, where ρ is the map from Lemma

3.1.6.
(2) φpAq is the matrix obtained by applying Frobenius to all the entries of
A.

The two operations φp�q and Epuq�� are compatible with U and L in
the following sense.

4.1.6. — Lemma. For all matrices A P Gnppuqq and polynomials Epuq P
Wnrus, we have:
(1) UpφpAqq � φpUpAqq and LpφpAqq � φpLpAqq.
(2) UpEpuq�Aq � Epuq�UpAq, and LpEpuq�Aq � Epuq�LpAq,
where in Epuq�UpAq and Epuq�LpAq it is the image of Epuq in Wn�1rus
that is involved.

Proof. — (1) is obvious and we only prove (2). Let τU be the truncation
map that takes a vector v with n components to the vector whose compo-
nents are the first n � 1 components of v, so τUp� is the vector analogous
to p� in dimension one less, as in the proof of Lemma 3.2.5. Since PUA

is the matrix obtained from UPA by replacing the last line by 0, we have:
rPUAs τUp� � τUrPAs p�. It follows that

τUp
� �

n�2̧

i�0
rEisrPiUi�1As τUp� � τU

�
n�1̧

i�0
rEisrPiUiAs p�

�
� τU

�
rEpuq�As p�

	
.

But it is exactly the defining property ofM � UpEpuq�Aq that rM s τUp� �
τUprEpuq�As p�q. This proves that UpEpuq�Aq � Epuq�UpAq. The proof for
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the commutation with L is similar: PLA is the matrix obtained from LPA

by replacing the first line by 0, etc. �

4.1.7. — Lemma. Let A P Gnppuqq and M P Ln.
(1) If M �MpAq then:

(a) Mpiq �MpUi�1Aq,
(b) Mris �MpLi�1Aq,
(c) xφpMqy �MpφpAqq,
(d) EpuqM �MpEpuq�Aq.

(2) If A is a T -matrix then Ui�1A, Li�1A, φpAq, Epuq �A are also T -
matrices.
(3) If A is distinguished then Ui�1A, Li�1A, φpAq are also distinguished.

It is not true in general that if A is distinguished then Epuq�A is distin-
guished. There are obvious counter-examples for n � 2 as soon as l1 ¥ l2�1.

Proof. — (1) Let e� � rAs p�. Let us fix i P t1, . . . , nu and define:
(a) fj � pi�1ej for 1 ¤ j ¤ n� 1� i,
(b) gj � ej�i�1 for 1 ¤ j ¤ n� 1� i,
(c) hj � φpejq for 1 ¤ j ¤ n,
(d) `j � Epuqej for 1 ¤ j ¤ n,

The elements fj generate Mpiq and we have f� � rUi�1As p�, hence Mpiq �
MpUi�1Aq. The elements gj generate Mris and satisfy g� � rLi�1As p�, so
that Mris � MpLi�1Aq. The elements hj generate xφpMqy and satisfy
h� � rφpAqs p� so xφpMqy � MpφpAqq. Finally the elements `j generate
EpuqM and moreover a simple matrix computation shows that pirAs p� �
rPiUiAs p� so

Epuqe� �
�¸ rEispi

�rAs p� �¸
rEisrPiUiAs p�

� �
ρ
�¸

Ei Id �PiUiA�� p� � rEpuq�As p� .
It follows that EpuqM �MpEpuq�Aq.
(2) Using the characterization 1) in Lemma 2.2.4, it is very easy to prove
that f�, g�, h�, `� are T -bases.
(3) It is immediate that the matrices Ui�1A, Li�1A and φpAq have Laurent
polynomial entries and satisfy the condition on the degrees required to be
distinguished. �

4.1.8. — Lemma. Let A,A1 be in Gnppuqq andM �MpAq,M1 �MpA1q.
(1) Assume that A1 P G T

n ppuqq. Then M �M1 if and only if A{A1 ¥ 0.
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(2) In particular, the T -matrices are the minimal elements among the ma-
trices A P Gnppuqq such that MpAq �M, in the sense that for any two ma-
trices A,A1 with MpAq �MpA1q �M, if A1 is a T -matrix then A{A1 ¥ 0.
(3) Assume that A,A1 P G T

n ppuqq. Then M � M1 if and only if A{A1 is
positive and unipotent.

Proof. — Let e� � rAs p� and e1� � rA1s p� be the associated generating
sets. Then M �M1 if and only if for each i we have ei PM1ris. This means
that there exist scalars bij P krruss such that

ei � rbijs e1i � rbi,i�1s e1i�1 � � � � � rbi,ns en .
Let B be the upper triangular matrix with coefficients bij . These equalities
amount to e� � rBs e1�, in other words rAs p� � rBsrA1s p� � rB � A1s p�.
Thus A{A1 � B ¥ 0 and this proves (1). Now (2) and (3) follow immedi-
ately. �

4.1.9. — Remark. It follows from this lemma that the relation ¡ on
G T
n ppuqq defined by A ¡ B if and only if A{B ¥ 0 is reflexive and transitive.

4.2. Matricial description of Breuil-Kisin modules

Finally we arrive at the description in terms of matrices of the Breuil-
Kisin modules corresponding to a group scheme which is a model of µpn . We
recall that K is a finite totally ramified field extension of K0, the fraction
field of the Witt ring W �W pkq of a perfect field k of characteristic p ¡ 0,
and that Epuq is the Eisenstein polynomial of a fixed uniformizer π P OK .

4.2.1. — Definition. We say that A �Mpl,aq P Gnppuqq is a µ-matrix
if it is distinguished and if
(1) φpAq{A ¥ 0,
(2) pEpuq�Aq{φpAq ¥ 0.
We denote by G µ

n ppuqq the set of µ-matrices in Gnppuqq.
With the induced order of G T

n ppuqq (cf Remark 4.1.9), the set G µ
n ppuqq

is an ordered set. Since U and L are loop homomorphisms (3.2.5), take
positive matrices to positive matrices (obvious), and commute with φ and
Epuq�� (4.1.6), one sees that if A P Gnppuqq is a µ-matrix, then UA and
LA are also µ-matrices.

4.2.2. — Theorem. The maps G ÞÑMpGq and M ÞÑ ApMq give bijec-
tions between:
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 the set of isomorphism classes of R-models of µpn,K ,

 the set L µ

n of µ-lattices, i.e. finitely generated sub-Wnrruss-modules
of Wnppuqq satisfying EpuqM � xφpMqy �M,


 the set G µ
n ppuqq of µ-matrices, i.e. matrices

A �

�������
ul1 a12 a13 . . . a1n

ul2 a23 a2n
. . . . . .

...
uln�1 an�1,n

0 uln

������

where l � pl1, . . . , lnq P Nn and aij P krus for all i, j, such that:

(1) degupaijq   lj whenever 1 ¤ i   j ¤ n,
(2) UA{LA ¥ 0,
(3) φpAq{A ¥ 0,
(4) pEpuq�Aq{φpAq ¥ 0.

These bijections are increasing: if G,G1 are models of µpn,K with associ-
ated lattices M,M1 and distinguished matrices A,A1, then the following
conditions are equivalent:


 there exists a model map GÑ G1,

 M �M1,

 A{A1 ¥ 0.

Finally, these bijections are "compatible with quotients and kernels":

 Gpiq, Mpiq and Ui�1A correspond to each other, and

 Gris, Mris and Li�1A correspond to each other.

Proof. — The increasing bijection between models of µpn and µ-lattices
is the Breuil-Kisin equivalence. The map M ÞÑ ApMq is the map taking a
lattice to its distinguished matrix, so that A � ApMq � Mpl,aq satisfies
the conditions (1) and (2). It remains to prove that the additional con-
ditions satisfied by a µ-lattice translate into the additional conditions (3)
and (4) in the theorem. Indeed, the condition (3) is a translation of the
fact that xφpMqy � M and the condition (4) is a translation of the fact
that EpuqM �M. Moreover, since M is positive (see 2.3), then so is A and
hence li ¥ 0. This gives the refinement in the statement of the theorem.
The fact that the bijection between µ-lattices and µ-matrices is increasing
is Lemma 4.1.8. The fact that the bijections are compatible with quotients
and kernels comes from Lemma 4.1.7 and the fact that U and L preserve
µ-matrices. �
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4.2.3. — Remark. Let us recapitulate some of the information we have
on the parameters.

(1) We have l1 ¥ l2 ¥ � � � ¥ ln since UA{LA ¥ 0 (A is a T -matrix). In
fact, the positivity of UA{LA corresponds to the existence of the model
maps Gpiq Ñ Gris of 2.3.3, for all i.
(2) We have li ¥ 0 and valupai,i�1q ¥ li�1{p, for all i. Indeed, since
φpAq{A ¥ 0 there exists a positive matrix B �Mpm, bq such that φpAq �
B � A. Comparing the diagonal entries, we get pp � 1qli � mi ¥ 0 thus
li ¥ 0. Comparing the entries at distance 1 from the diagonal, we get
pai,i�1qp � upp�1qliai,i�1 � uli�1bi,i�1. Thus pai,i�1qp � 0 mod uli�1 .
(3) We have e{pp � 1q ¥ l1 since pEpuq�Aq{φpAq ¥ 0. Indeed, the upper
left entry of Epuq�A is ue�l1 and the upper left entry of φpAq is upl1 . The
result follows.

Theorem 4.2.2 gives already very precise information on the structure of
the set of models of µpn . In a naive way, it is parametrized by n integers
0 ¤ ln ¤ � � � ¤ l1 ¤ e{pp � 1q and at most

°n�1
i�1 ili elements of k (the

coefficients aij), as follows from condition (1) in Theorem 4.2.2.

4.2.4. — Definition. The parameters pl1, . . . , lnq of a model of µpn are
called the type of the model.

The geometric interpretation of the type of a model of µpn is quite clear.
Theorem 4.2.2 gives a precise geometric interpretation for the other (some-
how more mysterious) parameters of the Breuil-Kisin modules: some of
them parametrize flat subgroup schemes or quotients, and some others pa-
rametrize extensions between such subquotients, models of µps and µpr for
1 ¤ r, s ¤ n� 1.

4.2.5. — Remark. A remaining open question is the structure of this
set of parameters. The explicit computation of relations is completed for
n � 3 in Section 5. Since the functions Si and Pi involved in the operation
A � B are defined by exponentiation with respect to negative powers of
p, a high enough power of Frobenius transforms the constraints defining
µ-matrices into polynomial relations between the coefficients of the aij .
Hence up to Frobenius, we can easily define the variety of models of µpn .
The study of the dimension and irreducible components of this variety has
to be compared to the works of Imai and Caruso ([6], [14]) on Kisin’s moduli
space of models of µpn ([17]).
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5. Computation of µ-matrices for n � 3

Since the bijections in Theorem 4.2.2 are compatible with quotients and
kernels, the matricial formulas for the models of µpn contain the matricial
formulas for the models of µpi for all i ¤ n. In this section, we work out
the conditions in Theorem 4.2.2 for n � 3 and p ¥ 3. We stress that they
include also the case n � 1, 2. And in these cases one gets the formulas
obtained by Caruso in [31], Appendix A.

5.1. Computation of the matrices

We have

A �

�����
ul1 a12 a13

0 ul2 a23

0 0 ul3

����
 , UA �
�� ul1 a12

0 ul2

�
 ,

LA �
�� ul2 a23

0 ul3

�
.
Using Examples 3.3 we find

UA{LA �
�� ul1�l2 a12�u

l1�l2a23
ul3

0 ul2�l3

�
.
Moreover we have

φpAq �

�����
upl1 ap12 ap13

0 upl2 ap23

0 0 upl3

����

and

φpAq{A �

�����
upp�1ql1 ap12�u

pp�1ql1a12
ul2

p13

0 upp�1ql2 ap23�u
pp�1ql2a23
ul3

0 0 upp�1ql3

����

where

p13 �
ap13 � upp�1ql1a13 � ap12�u

pp�1ql1a12
ul2

a23 � S1pupp�1ql1a12,�ap12q
ul3

.
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Finally we compute Epuq�A. Note that for n � 3 we have Ei Id �PiUiA �
EiP

iUiA for all i, but this is false already for n � 4, because of the fail-
ure of multiplicativity of Teichmüller representatives of polynomials (see
Lemma 3.1.4). Thus

Epuq�A �

�����
ue�l1 uea12 � ul1E1 uea13 � a12E1 � S1puea12, u

l1E1q � ul1E2

0 ue�l2 uea23 � ul2E1

0 0 ue�l3

����
.
and

pEpuq�Aq{φpAq �

�����
ue�pp�1ql1 uea12�u

l1E1�u
e�pp�1ql1ap12

upl2
q13

0 ue�pp�1ql2 uea23�u
l2E1�u

e�pp�1ql2ap23
upl3

0 0 ue�pp�1ql3

����

where

q13 � uea13 � a12E1 � S1puea12, u
l1E1q � ul1E2 � ue�pp�1ql1ap13
upl3

�
uea12�u

l1E1�u
e�pp�1ql1ap12

upl2
ap23 � S1pue�pp�1ql1ap12, u

ea12 � ul1E1 � ue�pp�1ql1ap12q
upl3

.

5.2. Translation of the conditions of the theorem

• Condition (1) yields:

degupa12q ¤ l2 � 1 , degupa13q ¤ l3 � 1 and degupa23q ¤ l3 � 1 .

• Condition (2) yields:

l1 ¥ l2 ¥ l3 and a12 � ul1�l2a23 � 0 mod ul3 .

• Condition (3) yields:
ap12 � upp�1ql1a12 � 0 mod ul2 ,

ap23 � upp�1ql2a23 � 0 mod ul3

and

ap13 � upp�1ql1a13 � ap12 � upp�1ql1a12

ul2
a23

� S1pupp�1ql1a12,�ap12q � 0 mod ul3 .
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Since pp� 1ql1 ¥ l2, the first two are equivalent to:

ap12 � 0 mod ul2 and ap23 � 0 mod ul3 .

Concerning the third, observe that since pp�1ql1 ¥ l3 the term upp�1ql1a13
can be neglected. Also since valupS1px, yqq ¥ maxpvalupxq, valupyqq by
Lemma 3.1.4, we see that the S1 term can be neglected. Finally the term
upp�1ql1�l2a12a23 can also be neglected: indeed pl1 ¥ 2l1 ¥ l2 � l3 implies
that its valuation is at least�pp�1ql1� l2

�� l2
p
� l3
p
� 1
p

�pp�1qppl1� l2q� l3
� ¥ 1

p

�pp�1ql3� l3
� � l3 .

So the third condition is equivalent to:

ap13 � u�l2ap12a23 � 0 mod ul3 .

• Condition (4) yields:

uea12 � ul1E1 � ue�pp�1ql1ap12 � 0 mod upl2 ,

uea23 � ul2E1 � ue�pp�1ql2ap23 � 0 mod upl3

and
uea13 � a12E1 � S1puea12, u

l1E1q � ul1E2 � ue�pp�1ql1ap13

�uea12�u
l1E1�u

e�pp�1ql1ap12
upl2

ap23 � S1pue�pp�1ql1ap12,�uea12 � ul1E1q � 0 mod upl3 .

Finally the last but one boxed congruence implies that

S1pue�pp�1ql1ap12, u
ea12 � ul1E1 � ue�pp�1ql1ap12q � 0 mod upl2 .

Hence it vanishes also modulo upl3 and we obtain:

uea13 � a12E1 � S1puea12, u
l1E1q � ul1E2 � ue�pp�1ql1ap13

�uea12�u
l1E1�u

e�pp�1ql1ap12
upl2

ap23 � 0 mod upl3
.

5.2.1. — Corollary. Let p ¥ 3. Let M P pMod {Sq3 be the Breuil-
Kisin module of a finite flat R-model of µp3,K . Then there exists a unique
family of parameters pl1, l2, l3, a12, a13, a23q composed of three integers 0 ¤
l3 ¤ l2 ¤ l1 ¤ e{pp�1q and three polynomials a12, a13, a23 P krus satisfying:
(i) degu a12 ¤ l2 � 1, degu a13 ¤ l3 � 1, degu a23 ¤ l3 � 1,

(ii) a12 � ul1�l2a23 � 0 mod ul3 , ap12 � 0 mod ul2 , ap23 � 0 mod ul3 ,

(iii) ap13 � u�l2ap12a23 � 0 mod ul3 ,
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(iv) uea12 � ul1E1 � ue�pp�1ql1ap12 � 0 mod upl2 and uea23 � ul2E1 �
ue�pp�1ql2ap23 � 0 mod upl3 ,

(v) uea13 � a12E1 � S1puea12, u
l1E1q�

�ul1E2 � ue�pp�1ql1ap13 � uea12�u
l1E1�u

e�pp�1ql1ap12
upl2

ap23 � 0 mod upl3 ,

such that M �MpAq with

A �

�����
ul1 ra12s ra13s
0 ul2 ra23s
0 0 ul3

����
.

5.3. The tamely ramified case

In the tamely ramified case pe, pq � 1, some of these congruences can be
simplified. To begin with, let us prove that

l1 ¥ pl2 and l2 ¥ pl3 .

Let us prove the first inequality. If l2 � 0 there is nothing to show. Other-
wise we have l2 ¡ 0 and we claim that the only monomial of degree l1 in
the polynomial

uea12 � ul1E1 � ue�pp�1ql1ap12

is ul1E1p0q. Indeed the first term has valuation
valpuea12q ¥ e� l2{p ¡ e ¥ pp� 1ql1 ¥ l1 .

Moreover since ap12 is a p-th power, the degrees of the monomials of
ue�pp�1ql1ap12 are of the form

e� pp� 1ql1 � ip � e� l1 � ppl1 � iq
for some integer i. Since pe, pq � 1, this degree is not congruent to l1 modulo
p. This proves that ul1E1p0q is the only monomial of degree l1 and then
the congruence

uea12 � ul1E1 � ue�pp�1ql1ap12 � 0 mod upl2

forces l1 ¥ pl2. The proof that l2 ¥ pl3 is similar.
It follows that the condition given by the congruence a12�ul1�l2a23 � 0

mod ul3 is empty since we already know that both terms have valuation at
least l3.

It follows also that the congruences implied by condition (4) become:

ue�pp�1ql1ap12 � 0 mod upl2 , ue�pp�1ql2ap23 � 0 mod upl3
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and

a12E1�ue�pp�1ql1ap13�
uea12�ul1E1�ue�pp�1ql1ap12

upl2
ap23� 0 mod upl3 .

Then, in the tamely ramified case, the parametrisation of models of µp3,K

is much easier:

5.3.1. — Corollary. In the tamely ramified case pe, pq � 1, the models
of µp3 over OK are classified by three integers 0 ¤ p2l3 ¤ pl2 ¤ l1 ¤ e{pp�1q
and three polynomials a12, a13, a23 P krus satisfying:
(i) degu a12 ¤ l2 � 1, degu a13 ¤ l3 � 1, degu a23 ¤ l3 � 1,
(ii) ue�pp�1ql1ap12 � 0 mod upl2 , ue�pp�1ql2ap23 � 0 mod upl3 ,

(iii) a12E1 � ue�pp�1ql1ap13 � uea12�u
l1E1�u

e�pp�1ql1ap12
upl2

ap23 � 0 mod upl3 .

5.3.2. — Remark. The tamely ramified case seems to be easy to compute
in higher dimension. In Corollary 5.2.1, even for n � 3, we can see that
ramification intervenes in the computation in a very delicate way: not only
through the coefficient E2 of the Eisenstein polynomial but also through
the lifting modulo p2 of the parameters via S1puea12, u

l1E1q.

6. Sekiguchi-Suwa Theory

In this section, we recall and complement some aspects of Sekiguchi-Suwa
Theory. The main definitions and results are given in Subsections 6.1, 6.2,
6.3. For an extended version, see [22]. We also give an interpretation of these
results from a matricial point of view: we introduce the set Mn of matrices
parametrizing filtered group schemes, and study its basic properties. This
is the topic of Subsection 6.4.

6.1. Some definitions about Witt vectors

6.1.1. — The maps V, F, T . We recall here some definitions about Witt
vectors. We emphasize that in contrast with Sections § 2 to § 5, we consider
Witt vectors with coefficients in an arbitrary ring, not necessarily perfect
of characteristic p. In particular, we need to consider quotients of a discrete
valuation ring of unequal characteristics. For r ¥ 0, we recall the definition
of the r-th Witt polynomial:

ΦrpX0, . . . , Xrq � Xpr

0 � pXpr�1

1 � � � � � prXr.

Then for each ring A the following maps are defined:
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- Verschiebung:

V : W pAq ÝÑW pAq
pa0, a1, a2, . . . q ÞÝÑ p0, a0, a1, a2, . . . q

- Frobenius:

F : W pAq ÝÑW pAq
a � pa0, a1, a2, . . . q ÞÝÑ pF0paq, F1paq, F2paq, . . . q

where the polynomials FrpXq � FrpX0, . . . , Xrq P ZrX0, . . . , Xr�1s
are defined inductively by

ΦrpF0pXq, F1pXq, . . . , FrpXqq � Φr�1pX0, . . . , Xr�1q.
- T map:

T : W pAq �W pAq ÝÑW pAq
pa,xq ÞÝÑ Tax � pT0pa,xq, T1pa,xq, T2pa,xq, . . . q

where the polynomials TrpA,Xq � TrpA0, . . . , Ar, X0, . . . , Xrq P
ZrA0, . . . , Ar, X0, . . . , Xrs are defined inductively by

ΦnpT0, . . . , Tnq �
ņ

i�0
pn�ipAn�iqp

i

ΦipX0, . . . , Xiq.

Since ΦnpT0, . . . , Tnq is linear in the variables ΦipX0, . . . , Xiq, we see that
for fixed a the map Ta is a morphism of additive groups. Moreover, it
is easy to see that for any ring A and Witt vectors a,x P W pAq with
a � pa0, . . . , an, . . . q we have explicitly Tax � °8

k�0 V
kpraksxq (see [25],

Lemma 4.2). For instance if a � ra0s is a Teichmüller element then Ta is
nothing else than left multiplication by ra0s, and in particular T1 is the
identity. If x � rx0s is Teichmüller then Taprx0sq � pa0x0, a1x0, a2x0, . . . q.
For each ring A an element λ P A, we set

λ.a df� pλa0, λa1, λa2, . . . q � Taprλsq.
Clearly λ1.pλ2.aq � pλ1λ2q.a which will usually be written λ1λ2.a. The
ideal λ.W pAq is the kernel of the morphism of rings W pAq Ñ W pA{λAq.
If two vectors a, b are congruent modulo λ.W pAq, we sometimes write
simply a � b mod λ. We will also have to consider the following type of
Witt vectors with coefficients in the ring Ar1{λs:

a
λ

df�
�a0

λ
,
a1

λ
,
a2

λ
, . . .

	
.

The notations 1
λa or a{λ may also be used when it is convenient.
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6.1.2. — Definition. For any ring A, we define the subfunctor of finite
Witt vectors by

W f pAq �  pa0, a1, a2, . . . q PW pAq ; ai � 0 for i " 0
(

and the completion of W pAq byxW pAq �  pa0, a1, a2, . . . q PW pAq ; ai � 0 for i " 0 and ai is nilpotent for all i
(
.

Note that W f pAq is not a subgroup of W pAq, but xW pAq is an ideal in
W pAq which is stable under F and V (see [22], 2.2.1, 2.2.3, 2.2.4).

6.1.3. — The T -multiplication. We shall define a new product be-
tween matrices whose entries are Witt vectors. We need to start with some
elementary properties of the map T when one of the variables is fixed.
6.1.4. — Lemma. Let A be a ring and a � pa0, a1, a2, . . . q PW pAq with

a0 not a zero divisor. Then the morphism Ta is injective. If a0 is invertible
then it is an isomorphism.
Proof. — Let us suppose that a0 is not a zero divisor and that Tax � 0

with x � px0, x1, . . . q PW pAq. We prove, by induction, that xn � 0 for any
n. Since Φ0pTaxq � a0x0 � 0 and since a0 is not a zero divisor then x0 � 0.
We now suppose that xi � 0 for i ¤ n. This means that x � V n�1y with
y � pxn�1, . . . , xr, . . . q PW pAq. Therefore

Tax �
8̧

k�0
V kpraksV n�1pyqq � V n�1p

8̧

k�0
V kprapn�1

k syqq � 0.

In particular we have ap
n�1

0 xn�1 � 0. Since a0 is not a zero divisor then
xn�1 � 0.

Let us now suppose that a0 is invertible. Let y PW pAq. Let pn : W pAq Ñ
WnpAq and pn,k : WnpAq Ñ WkpAq, if n ¥ k, the natural projections.
We now prove that for any n P N there exist xn P WnpAq such that
Tpnpaqxn � pnpyq and pn,n�1pxnq � xn�1. This clearly implies that there
exists x PW pAq such that Tax � y.

We prove the above statement by induction. Clearly x0 � px0q � p y0
a0
q P

A. Let us suppose that there exists xn � px0, . . . , xnq such that Tpnpaqxn �
pnpyq. The required xn�1 is given by px0, . . . , xn�1q with xn�1 such that

V n�1ra0xn�1s � pn�1pyq�
n�1̧

i�1
V ipraispx0, . . . , xn, 0qq� ra0spx0, . . . , xn, 0q.

The existence of xn�1 is ensured by the fact that a0 is invertible and by the
fact that the projection of the right hand side on Wn is zero by induction.

�
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6.1.5. — Lemma. For any x � px0, x1, x2, . . . q P W pAq with x0 not a
zero divisor, the map T
x is injective. If x0 is invertible then it is bijective.
Proof. — Let a � pa0, a1, a2, . . . q and b � pb0, b1, b2, . . . q as above. We

will prove by induction that an � bn for any n. If Tax � Tbx in particular
a0x0 � b0x0. Since x0 is not a zero divisor them a0 � b0. Now let us suppose
that ai � bi for i ¤ n. We prove an � bn. By hypothesis, we have

Tax � Tbx � Tax �
8̧

k�0
V kppraks � rbksqxq �

8̧

k�n�1
V kppraks � rbksqxq � 0

In particular we have an�1x0 � bn�1x0 which implies an�1 � bn�1 since
x0 is not a zero divisor. To prove the surjectivity when x0 is invertible
one proceeds in a similar way as in the previous lemma and it is even
simpler. �

We now introduce a new, nonassociative product between matrices with
Witt vector entries.
6.1.6. — Definition. LetM � pmj

i q and N be two matrices belonging
to MnpW pAqq. We define the T -multiplication by

M �T N :� TM pNq
where TM is the matrix of operators pTmj

i
q1¤i,j¤n.

Endowed with this composition law, MnpW pAqq is a magma and the
identity matrix is a two-sided unit element. We will now consider the set
HnpW pAqq �MnpW pAqq of upper triangular matrices of the form������������

a1
1 a2

1 a3
1 . . . an1

0 a2
2 a3

2 . . . an2
...

...

0 an�1
n�1 ann�1

0 ann

�����������

with aji � paji0, aji1, aji2, . . . q and aii0 not a zero divisor. We refer to 3.2.4
for the definition of the operators U and L, taking a square matrix to its
upper left and lower right codimension 1 submatrices.
6.1.7. — Lemma. The set HnpW pAqq is a submagma ofMnpW pAqq and

the cancellation laws hold, i.e. if M �T N �M 1 �T N then M �M 1 and if
M �T N �M �T N 1 then N � N 1. Moreover if A is a field then HnpW pAqq
is a loop.
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Proof. — It is easy to prove that HnpW pAqq is stable under �T . We now
prove that the cancellation laws hold by induction on n. For n � 1 this is
just lemmas 6.1.4 and 6.1.5. Let us suppose that the cancellation laws hold
in HnpW pAqq and prove them for Hn�1pW pAqq. We observe that for any
M,N P Hn�1pW pAqq we have

UpM �T Nq � UpMq �T UpNq

and

LpM �T Nq � LpMq �T LpNq.
Therefore ifM �TN �M 1�TN we have, by induction, that UpMq � UpM 1q
and LpMq � LpM 1q. Similarly if M �T N � M �T N 1 then UpNq � UpN 1q
and LpNq � LpN 1q. It remains to prove that mn�1

1 � m1n�1
1 and nn�1

1 �
n1n�1

1 . We begin with the first. From

pM �T Nqn�1
1 � pM 1 �T Nqn�1

1

it follows that
n�1̧

j�1
Tmj

1
nn�1
j �

n�1̧

j�1
Tm1j

1
nn�1
j .

Since mj
1 � m1j

1 for j � 1, . . . , n it follows that

Tmn�1
1

nn�1
n�1 � Tm1n�1

1
nn�1
n�1

which implies mn�1
1 � m1

1
n�1 by Lemma 6.1.4. Now from

pM �T Nqn�1
1 � pM �T N 1qn�1

1

it follows that
n�1̧

j�1
Tmj

1
nn�1
j �

n�1̧

j�1
Tmj

1
n1n�1
j .

Since nj1 � n1j
1 for j � 1, . . . , n it follows that

Tm1
1
nn�1

1 � Tm1
1
n1n�1

1

which implies nn�1
1 � n1n�1

1 by Lemma 6.1.5.
To prove the fact that HnpWnpAqq is a loop if A is a field one proceeds

similarly, using the second part of Lemmas 6.1.4 and 6.1.5. �
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6.2. Deformed Artin-Hasse exponentials

In this section we introduce some deformations of Artin-Hasse exponen-
tials which we will need in the following.

6.2.1. — Definition. Given indeterminates Λ, U and T , we define a
formal power series in T with coefficients in QrΛ, U s by

EppU,Λ, T q � p1� ΛT qUΛ
8¹
k�1

p1� Λp
k

T p
kq

1
pk

�
pUΛ qp

k

�pUΛ qp
k�1



.

It satisfies basic properties such as Epp0,Λ, T q� 1 and EppMU,MΛ, T q�
EppU,Λ,MT q, whereM is another indeterminate. It is a deformation of the
classical Artin-Hasse exponential EppT q �

±8
k�0 exppT pk{pkq in the sense

that Epp1, 0, T q � EppT q. To see this it is sufficient to observe that, for any

k, the series p1�ΛpkT pkq
1
pk

�
1

Λpk
� 1

Λpk�1

�
is equal to

�
p1�ΛpkT pkq

1
Λpk


 1�Λp

pk

,

and this gives exppT pk{pkq for Λ � 0.

6.2.2. — Definition. Given a vector of indeterminates U�pU0,U1, . . .q,
we define a power series in T with coefficients in QrΛ, U0, U1, . . . s by

EppU,Λ, T q �
8¹
`�0

EppU`,Λp
`

, T p
`q.

We have the following fundamental lemma.

6.2.3. — Lemma. The series EppU,Λ, T q and EppU,Λ, T q are integral at
p, that is, they have their coefficients in ZppqrΛ, U s and ZppqrΛ, U0, U1, . . . s
respectively.

Proof. — See [26], Corollary 2.5. �

It follows from this lemma that given a Zppq-algebra A, elements λ, a P
A and a � pa0, a1, . . . q P AN, we have specializations Eppa, λ, T q and
Eppa, λ, T q which are power series in T with coefficients in A. We usu-
ally consider a as a Witt vector, i.e. as an element in W pAq.
6.2.4. — Remark. Let A1 � SpecpZppqrΛsq be the affine line over the ring

of p-integers Zppq, with coordinate Λ, and writeWA1 for the scheme of Witt
vectors over A1. We remark (see [26], Corollary 2.9.1) that, generalizing
what happens for the Artin-Hasse exponential, the deformed exponential
of Definition 6.2.2 gives a homomorphism

WA1 ÝÑ ΛA1
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where ΛA1 � SpecpZppqrΛ, X1, . . . , Xn, . . . sq is the A1-group scheme whose
group of R-points, for any ZppqrΛs-algebra R, is the abelian multiplicative
group 1 � TRrrT ss. (We hope that the difference between the symbols Λ
and Λ is visible enough.) The above homomorphism is in fact a closed
immersion. We also note that there is an isomorphism:¹

p-k
WA1 � ΛA1

which works as follows. With any Zppq-algebra R, any element λ P R, and
any family of Witt vectors ak � pak0, ak1, ak2, . . . q P W pAq indexed by
the prime-to-p integers k, this isomorphism associates the series F pT q �±
p-k Eppak, λ, T kq (see [22], Lemma 3.1.2). l

Here are a couple more definitions which will be useful in the sequel. We
set rpEppU,Λ, T q � EppV pUp0 , Up1 , . . .q,Λ, T q.
where V is the Verschiebung. Using the isomorphism

±
k-pWA1 � ΛA1

described above, one extends this definition to any element of

1� TZppqrU1, . . . , Un,ΛsrrT ss.
The result is a group scheme endomorphism

rp : ΛA1 ÝÑ ΛA1 .

In [25] this operator is called rps, but we prefer rp to avoid confusion with
Teichmüller representatives. Also, we define an additive endomorphism
FΛ :� F � rΛp�1s : WA1 Ñ WA1 . For each element λ in a Zppq-algebra
R, this gives an endomorphism Fλ : WR ÑWR. When R is a discrete val-
uation ring with uniformizer π and λ � πl for some l ¡ 0, we will sometimes
write F plq instead of Fπl (see e.g. the statement of Theorem 6.3.4).

6.2.5. — Definition. Let Λ2 be another indeterminate. For any H in
1� TZppqrU1, . . . , Un,ΛsrrT ss we define the series

rEppW,Λ2, Hq � H
W0
Λ2

8¹
r�1

�rprH� 1
prΛp

r

2
Φr�1pF

Λ2 pWqq

. (6.1)

From the definition, one sees that rEppW,Λ, Hq gives a bilinear group
scheme homomorphism

WA1 �ΛA1 Ñ ΛA1 .

With some quite simple computations one shows the following lemma.
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6.2.6. — Lemma. In the group 1� TZppqrW, U
Λ2
,Λ,Λ2srrT ss, we have

rEppW,Λ2, EppU,Λ;T qq � EppTU{Λ2W,Λ;T q.

Proof. — See [25], Proposition 4.11. �

In particular, we have rEppW,Λ, 1�ΛT q � EppW,Λ;T q. Finally we define
the following series.

6.2.7. — Definition. For any H as above, we define

GppW,Λ2, Hq

�
8¹
r�1

�
1� pH � 1qprrprH


 1
prΛp

r

2
Φr�1pWq

P 1� TQrW,U,Λ,Λ2,
1

Λ2
srrT ss.

Using [26], Lemma 2.8, one sees immediately that

GppFΛ2pWq,Λ2, Hq �
EppW,Λ2; H�1

Λ2
qrEppW,Λ2, Hq
. (6.2)

We remark that for any H as above we have

GppW,Λ2, HqGppW1,Λ2, Hq

� GppW�W1,Λ2, Hq P 1� TQrW,W1,U,Λ,Λ2
1

Λ2
srrT ss (6.3)

where W �W1 is the sum of Witt vectors. We finally have the following
lemma.

6.2.8. — Lemma. We have

GppW,Λ2, EppU,Λ2;T qq P ZppqrW,
U
Λ2
,Λ,Λ2srrT ss.

Proof. — See [25], Proposition 4.12. �

It is quite simple to verify the following equality.

6.2.9. — Lemma. We have

rEppW,Λ3, GppU,Λ2;Hqq � GppTU{Λ3W,Λ2;Hq.

Proof. — See [25], Proposition 4.13. �
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6.3. Main theorems of Sekiguchi-Suwa Theory

In this section, we briefly recall the main results of Sekiguchi-Suwa The-
ory, stated in [25]. One can also find a summary of this theory in wider
generality in [22]. From now on, we denote by R a discrete valuation ring
of unequal characteristics. We stress that, in contrast with Sections § 2
to § 5 we do not assume that R is complete and neither that its residue
field is perfect. We will denote by π a fixed uniformizer of R and by v the
valuation of R.

6.3.1. — Definition. Let l, l1, . . . , ln be integers.
(1) We let Gplq be the group scheme SpecpRrT, 1{pπlT � 1qsq with group
law T �T 1 � T �T 1�πlTT 1, the unique group law such that the morphism
α : SpecpRrT, 1{pπlT�1qsq Ñ Gm � SpecpRrT, 1{T sq given by T ÞÑ 1�πlT
is a group scheme homomorphism.
(2) Let E be a flat R-group scheme. If there exist exact sequences of flat
R-group schemes

0 ÝÑ Gpliq ÝÑ Ei ÝÑ Ei�1 ÝÑ 0
for 1 ¤ i ¤ n, with E0 � 0 and En � E, we call the sequence of flat R-group
schemes

E1 � Gpl1q,E2, . . . ,En � E

or, sometimes, simply E, a filtered R-group scheme of type pl1, . . . , lnq.
6.3.2. — Remark. One can define a group scheme Gpλq for each λ P R,

in such a way that Gplq :� Gpπ
lq is just the group scheme defined in 6.3.1.

In this article, we care only about the isomorphism class of Gpλq which
depends only on λ up to units, so we prefer to adopt the more compact
notation.

6.3.3. — Theorem. Let E � pE1, . . . ,Enq be a filtered group scheme of
type pl1, . . . , lnq, with li ¡ 0 for each i. Then there are compatible open
immersions of Ei Ñ Ai and elements

Di P H0pAiR,OAi
R
q � RrT1, . . . , Tis

such that, for each 1 ¤ i ¤ n, the Hopf algebra of Ei is given by

RrEis � R
�
T1, . . . , Ti,

1
1� πl1T1

,
1

D1pT1q � πl2T2
, . . . ,

1
Di�1pT1, . . . , Ti�1q � πliTi

�
The group law of Ei is the one which makes the morphism
αEi : Ei ÝÑ pGm,Rqi

pT1, . . . , Tiq ÞÝÑ p1� πl1T1, D1pT1q � πl2T2, . . . , Di�1pT1, . . . , Ti�1q � πliTiq
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a group-scheme homomorphism and the reduction modulo πli�1 of the
function Di : AiR Ñ A1

R factors into a group scheme homomorphism
Di|Ei : Ei,R{πli�1R Ñ Gm,R{πli�1R � A1

R{πli�1R
.

Moreover if ln�1 is a positive integer and Dn : AnR Ñ A1
R is a function

whose reduction modulo πln�1 factors into a group scheme homomorphism

Dn|En : En,R{πln�1R Ñ Gm,R{πln�1R � A1
R{πln�1R

then

RrEn�1s :� RrEns
�
Tn�1, 1{pDnpT1, . . . , Tnq � πln�1Tn�1q

�
is the Hopf algebra of a filtered group scheme En�1 of type pl1, . . . , ln�1q,
where the group scheme structure is the only one which turns into a group
scheme homomorphism the morphism αEn�1 : En�1 Ñ pGm,Rqn�1 which
extends αEn and sends Tn�1 to DnpT1, . . . , Tnq � πln�1Tn�1.

Finally, a polynomial D1
n P RrT1, . . . , Tns with the same reduction mod-

ulo πln�1 as Dn gives the same filtered group scheme up to isomorphism.

Proof. — See [25], Theorem 3.2 and Theorem 3.3. �

In fact one can describe very explicitly the polynomials which appear in
the above theorem. In the next statement and in the rest of the article, we
sometimes write f : X ý for a map f : X Ñ X from some set to itself.

6.3.4. — Theorem. Let E be a filtered group scheme of type pl1, . . . , lnq
with li ¡ 0 for each i. Then there exist elements aji PW f pRq with 1 ¤ i  
j ¤ n, whose reductions modulo πlj are in xW pR{πljRq, such that


 one can take, for any j � 1, . . . , n � 1, DjpT1, . . . , Tjq as the trun-
cation of

Epppaj�1
i q1¤i¤j , pπlkq1¤k¤j ;T1, . . . , Tjq

in degree r, where Ep
�paj�1

i q1¤i¤j , pπlkq1¤k¤j ;T1, . . . , Tj
�
is the se-

ries defined by induction
j¹
i�1

Ep

�
aj�1
i , πli ; Ti

Epppaisq1¤s¤i�1, pπlkq1¤k¤i�1;T1, . . . , Ti�1q



and r is the degree of the reduction of this series modulo πlj�1 ,
which is a polynomial;


 the reduction modulo πlj of each paji q1¤i¤j�1 is in the kernel of the
operator

U j�1 : xW pR{πljRqj�1
ý
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defined as follows: U1 is defined as F pl1q :� F � rπpp�1ql1s and we
define

Un �

������������

F pl1q �Tb2
1

�Tb3
1

. . . �Tbn1

0 F pl2q �Tb3
2

. . . �Tbn2
... 0 . . . . . .

...

0 0 . . . . . . �Tbn
n�1

0 0 . . . 0 F plnq

�����������

where UpUnq � Un�1 and LpUnq are defined by induction and

bn1 :� 1
πln

�
F pl1qan1 �

n�1̧

t�2
Tbt1ant

�
� Un�1pani q1¤i¤n�1

πln
;


 for any l P N, we have an isomorphism

ker
�
Un : xW pR{πlRqn ý

	
ÝÑ HomR{πlR-Grpi�E,Gm,R{πlRq,

given by

cn ÞÝÑ Eppcn, pπlj q1¤j¤n, T1, . . . , Tnq,
where i is the closed immersion SpecpR{πlRq Ñ SpecpRq.

Proof. — See [25], Theorem 5.1 and Theorem 5.2. �

6.4. Sekiguchi-Suwa Theory from a matricial point of view

Our purpose here is to introduce "simple" matrices parametrizing filtered
group schemes (6.4.1) and to translate in matricial terms the main opera-
tions on group schemes: quotients and subgroups (6.4.5) and model maps
(6.4.7). In the following, we always suppose that the parameters li of the
filtered group schemes we are considering are positive (li ¡ 0).

Let HnpW pKqq be the loop constructed in 6.1.7. For matrices A,B P
HnpW pKqq we will make use of the notations A{B and AzB as defined
in 3.2.1. In a similar way as in 3.2.6 we will say that a matrix A in
HnpW pKqq is positive, and we will write A ¥ 0, if it belongs to HnpW pRqq.
6.4.1. — The set Mn. To start with, we need a technical remark al-

lowing to reformulate the congruences in Theorem 6.3.4. We consider an
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upper triangular matrix of the following form:

A �

������������

rπl1s a2
1 a3

1 . . . an1

rπl2s a3
2

...
. . . . . . ...

rπln�1s ann�1

0 rπlns

�����������

PMnpW f pRqq , all li ¡ 0.

6.4.2. — Lemma. For each matrix A as above, let F pAq be the matrix
obtained by applying Frobenius to all entries. Then the following conditions
are equivalent:

(1) for each j P t1, . . . , nu, the reduction of paji q1¤i¤j�1 belongs toxW pR{πljRqj�1 and

U j�1paji q1¤i¤j�1 � 0 mod πlj

where U j�1 is defined by induction in Theorem 6.3.4.
(2) F pAq{A ¥ 0.

Note that the operator U j�1 in (1) depends only on the vectors ak P
W pRqk with 1 ¤ k ¤ j � 1.

Proof. — In fact, we have

F pAq{A �

������������

rπpp�1ql1s b2
1 b3

1 . . . bn1
0 rπpp�1ql2s b3

2 . . . bn2
... . . . . . . ...
... . . . rπpp�1qln�1s bnn�1

0 . . . . . . 0 rπpp�1qlns

�����������

P HnpW pKqq

where the bji are defined as in 6.3.4. By the definition of bji , this matrix is
in HnpW pRqq if and only if the congruences in (1) are satisfied. It remains
to prove that if F pAq{A ¥ 0 then for each j the reduction of paji q1¤i¤j�1

belongs to xW pR{πljRqj�1. We prove this by induction on n. We observe
that since the entries of A are in W f pAq, then this condition simply means
that the entries of A are congruent to 0 modulo π, i.e. A{rπs Id is positive.
For n � 1 there is nothing to prove. Let us suppose the statement true for
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n and prove it for n� 1. Then one has

F pAq{A �

���������
UF pAq{UA F ppan�1

i
q1¤i¤nq�TpUF pAq{UAqpan�1

i
q1¤i¤n

πln�1

0 . . . 0 rπpp�1qln�1s

��������

(6.4)

and

F pAq{A �

������
rπpp�1qln�1s F ppaj1q2¤j¤n�1q�TpLF pAq{LAqpaj1q2¤j¤n�1

πlj

0
... LF pAq{LA
0

�����

where we use the notation TM pNq from Definition 6.1.6. By the inductive
hypothesis, the matrices UA{rπs Id and LA{rπs Id are positive. Therefore
it remains to prove that an�1

1 � 0 mod π. Since F pAq{A is positive and
ln�1 ¡ 0 then from (6.4) we derive

F pan�1
1 q � TpUF pAq{UAqpan�1

i q1¤i¤n mod π.

Since by induction an�1
i � 0 mod πln�1 for i� 2, . . . , n and UnF pAq{UnA�

prπpp�1ql1sq with l1 ¡ 0, then we have

F pan�1
1 q � rπpp�1ql1san�1

1 � 0 mod π.

This implies that an�1
1 � 0 mod π. �

Theorems 6.3.3 and 6.3.4 imply that to any matrix satisfying the equiv-
alent conditions of Lemma 6.4.2 one can attach a unique filtered group
scheme EpAq. Conversely, for any filtered group scheme E one can find a
matrix A satisfying these conditions such that E � EpAq. This leads us to
introduce the relevant set of matrices. Note that if E is given, then a matrix
A such that E � EpAq is not unique. So we have to identify the equivalence
relation saying that two matrices define the same filtered group; this will
be done in 6.4.7.

6.4.3. — Definition. Let n P N and l � pl1, . . . , lnq P pN¡0qn. We
define

M l
n :�  

A�paji q PMnpW f pRqq,upper triangular,aii�rπlis for 1¤ i¤n
and F pAq{A ¥ 0

(
and Mn :� �

M l
n, the union being over all l P pN¡0qn.
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6.4.4. — Remark. If A P Mn, then it is not necessarily the case that
F pAq P Mn. There are counterexamples already for n � 2, with l2 " l1.
By Theorems 6.3.3, 6.3.4 and Lemma 6.4.2, one can associate with any

A P M l
n a filtered group scheme EpAq of type pl1, . . . , lnq. It is constructed

by successive extensions defined by deformed exponentials DjpT1, . . . , Tjq
equal to the truncation of Epppaj�1

i q1¤i¤j , pπlkq1¤k¤j ;T1, . . . , Tjq in degree
r, where r � ri is the degree of the reduction modulo πli�1 of this series.
We call Dj the truncated exponential associated with paj�1

i q1¤i¤j . (Note
that similar truncated exponentials appear in the work [13].) With the
vocabulary introduced in the article [22] (see especially 3.2 and 4.3 there),
the vectors aj are frames for the filtered group EpAq, and the matrix A

may be called a matrix of frames.

6.4.5. — Operators U and L versus quotients and subgroups.
It is clear that for each A P Mn and i P t1, . . . , nu we have Un�iA P Mi

and LiA P Mn�i. Here is the precise meaning of the operators U and L for
filtered group schemes.
6.4.6. — Proposition. Let E � pE1, . . . ,Enq be a filtered group scheme

of type l � pl1, . . . , lnq, and A P M l
n. For 1 ¤ i ¤ n� 1 consider the exact

sequence 0 Ñ Sn�i Ñ En Ñ Qi Ñ 0 where Qi :� Ei (quotient of dimension
i) and Sn�i :� kerpEn Ñ Eiq (subgroup of codimension i). Then:
(1) Qi is a filtered group scheme of type pl1, . . . , liq. If E � EpAq then
Qi � EpUn�iAq.
(2) Sn�i is a filtered group scheme of type pli�1, . . . , lnq. If E � EpAq then
Sn�i � EpLiAq.
Proof. — Assertion (1) comes from the inductive construction of En. For

the proof of (2), we set Kd � kerpEd Ñ Eiq for each d ¥ i�1. First, we show
by induction on d that Kd is a filtered group scheme of type pli�1, . . . , ldq.
The initialization at d � i � 1 is clear and the inductive step is verified
since the morphism νd : Ed�1 Ñ Ed with kernel Gpld�1q induces an exact
sequence:

0 ÝÑ Gpld�1q ÝÑ Kd�1
νdÝÑ Kd ÝÑ 0.

In order to prove that Sn�i � EpLiAq if E � EpAq, we examine more closely
the way these extensions are built. The extension Ed�1 is constructed from
Ed using a morphism Dd : Ed Ñ i�Gm where i : SpecpR{πld�1Rq ãÑ
SpecpRq is the closed immersion. This morphism is the deformed exponen-
tial defined by the coefficients ad�1

i in the pd�1q-th column of A. The exten-
sionKd�1 is constructed fromKd using the morphismDd|Kd

: Kd Ñ i�Gm.
In the coordinates T1, . . . , Td of 6.3.4, the closed subgroup scheme Kd � Ed

ANNALES DE L’INSTITUT FOURIER



MODELS OF GROUP SCHEMES OF ROOTS OF UNITY 1103

is defined by the vanishing of the coordinates T1, . . . , Ti. It follows that
Dd|Kd

is obtained from the deformed Artin-Hasse exponential Dd by set-
ting ad�1

1 � ad�1
2 � � � � � ad�1

i � 0. Hence the matrix of coefficients that
defines Kd is the boxed middle matrix:

A �

�
��������������

. . .
rπli s

� �

0
rπli�1 s

. . .
rπld s

�

0 0
rπld�1 s

. . .

�
�������������


In symbols, Kd � EpUn�dLiAq. For d � n, we get Sn�i � Kn � EpLiAq.
�

6.4.7. — Positive matrices versus model maps. We use the word
unitriangular as a synonym for upper triangular unipotent.

6.4.8. — Proposition. Let E � EpAq and E1 � EpA1q be two filtered
group schemes, with A,A1 P Mn.


 There exists a (unique) model map E Ñ E1 which commutes with
αE and αE1 if and only if A{A1 ¥ 0. In particular, the relation
¡ in Mn given by A ¡ A1 if and only if A{A1 ¥ 0, is transitive.
Moreover E and E1 are isomorphic if and only if A{A1 is positive
and unitriangular.


 If ϕ : EÑ E1 is such a model map, the morphism of groups

ϕ� : HomR{πlR-Grpi�E1,Gm,R{πlRq ÝÑ HomR{πlR-Grpi�E,Gm,R{πlRq

is given, using the isomorphism of Theorem 6.3.4, by the operator
TA{A1 .

Proof. — We prove by induction on the dimension n the following more
precise statements:


 There exists a (unique) model map E Ñ E1 which commutes with
αE and αE1 if and only if A{A1 ¥ 0.


 Let D1, . . . , Dn�1 (resp. D1
1, . . . , D

1
n�1) be the truncated polynomi-

als determined by A (resp. A1). If a model map ϕn : E Ñ E1 exists
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then it is given by ϕn � pϕiq1¤i¤n, where ϕ1pT1q � πl
1
1�l1 and

ϕipT1, . . . , Tiq

� Di�1pT1, . . . , Ti�1q �D1
i�1pϕ1pT1q, . . . , ϕi�1pT1, . . . , Ti�1qq

πl
1
i

� πli�l
1
iTi

for all i ¡ 1.

 Write A � paji q and A1 � pa1ji q in Mn with aii � rπlis and a1i

i �
rπl1is for 1 ¤ i ¤ n. Let pwn

i q1¤i¤n P W pRqn be a vector whose
reduction modulo πl belongs to

kerpUn : xW pR{πlRqn ýq.
Let H1 � 1� πl1T1 and

Hn �
Ep

�pani q1¤i¤n�1, pπliq1¤i¤n�1,T
��

1� πln Tn
Epppani q1¤i¤n�1,pπli q1¤i¤n�1,Tq

�
Epppa1ni q1¤i¤n�1, pπl1q1¤i¤n, ϕnpTqq

for n ¡ 1. Then
Eppwn, pπl1 , . . . , πlnq, ϕnpTqq � EppTA{A1pwnq, pπl1 , . . . , πlnq,Tq

�
¹

2¤r¤n
GppUnr pwnq, πlr ;Hr�1q (6.5)

where Unr is the r-th row of Un, and

Hn �
Ep

�pani q1¤i¤n�1 � TUA{UA1pa1ni q1¤i¤n�1, pπl1 , . . . , πln�1q;T�±
2¤r¤nGppUnr pwnq, πl1r ;Hr�1q

� Ep

�
rπlns, πln ; T

Epppa1ni q1¤i¤n�1, pπliq1¤i¤n�1, ϕnpTqq


.

(6.6)

Note that (6.5) implies that ϕ� is given by the operator TA{A1 , as asserted
in the statement of the proposition.
If n � 1 we have E � Gpl1q and E1 � Gpl

1
1q for some positive integers l1, l11.

In this case A{A1 ¥ 0 simply means l1 ¥ l11 and the above statement is
known: see [24], Proposition 1.4 for the first part and second part and [26],
Remark 3.8 for the third part.
We now suppose that the three statements hold true for some n ¥ 1 and

we prove them for n� 1. We have

A{A1 �

������ UA{UA1 pan�1
i

q1¤i¤n�TUA{UA1 ppa1
n�1
i q1¤i¤nq

π
l1
n�1

0 . . . 0 rπln�1�l
1
n�1s

�����
.
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Let D1, . . . , Dn�1 (resp. D1
1, . . . , D

1
n) be the truncated exponentials that

define E (resp. E1). The model map ϕn�1 which we are looking for should
commute with αE and αE1 , so if it exists it is unique. So one sees immedi-
ately that it exists if and only if there exists a model map En Ñ E1n and, if
we write ϕn�1 � pϕiq1¤i¤n�1, the polynomial

ϕn�1pT1, . . . , Tn�1q

� DnpT1, . . . , Tnq �D1
npϕ1pT1q, . . . , ϕnpT1, . . . , Tnqq
πl

1
n�1

� πln�1�l
1
n�1Tn�1

belongs to RrT1, . . . , Tns. Therefore, by the inductive hypothesis, there ex-
ists a model map between E and E1 if and only if UA{UA1 is positive,
ln�1 ¥ l1n�1 and

DnpT1, . . . , Tnq � D1
npϕ1pT1q, . . . , ϕnpT1, . . . , Tnqq mod πl

1
n�1 . (6.7)

By induction we have that

ϕ� : HomR{πlR-Grpi�EpUpA1qq,Gm,R{πlRq
ÝÑ HomR{πlR-Grpi�EpUpAqq,Gm,R{πlRq

is given by the operator TUA{UA1 . This means that the equation (6.7) is
equivalent to

pan�1
i q1¤i¤n � TUA{UA1

�pan�1
i q1¤i¤n

�
mod πl

1
n�1 .

Thus we have proved the first and second part of the statement for n� 1.
It remains to prove the formulas (6.5) and (6.6) for n�1. But the second

one clearly follows from the first one, so we just have to prove (6.5). Let us
suppose that (6.5) is true for n and prove it for n� 1. We clearly have

Epppwn�1
r q1¤r¤n�1, pπl1 , . . . , πln�1q, ϕn�1pTqq �

Ep
�pwn�1

r q1¤r¤n, pπl1 , . . . , πlnq, ϕnpTq
�
Ep

�
wn�1
n�1, π

ln�1 ,
ϕn�1pTq

Epppa1n�1
i q1¤i¤n, pπliq1¤i¤n, ϕnpTqq



.

(6.8)
Moreover, by induction

Ep
�pwn�1

i q1¤i¤n, pπl1 , . . . , πlnq, ϕnpTq
�

� Ep
�
TUA{UA1pwn�1

i q1¤i¤n, pπl1 , . . . , πlnq,T
�

�
¹

2¤r¤n
Gp

�
Unr ppwn�1

i q1¤i¤nq, πl
1
r ;Hr�1

�
. (6.9)
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Now

Ep

�
wn�1
n�1, π

l1n�1 ,
ϕn�1pTq

Epppa1n�1
i q1¤i¤n, pπliq1¤i¤n, ϕnpTqq

	
� Ep

�
wn�1
n�1, π

ln�1 ,
Hn � 1
πl

1
n�1

	
(6.2)� rEp�wn�1

n�1, π
ln�1 , Hn

	
Gp

�
F ln�1wn�1

n�1, π
ln�1 , Hn

	
� Ep

�
T

pan�1
i

q1¤i¤n�TUA{UA1 pa1n�1
i

q1¤i¤n

π
ln�1

wn�1
n�1, pπl1 , . . . , πlnq;T

	
� Ep

�
T
rπ
ln�1�l1n�1 s

wn�1
n�1, π

ln�1 ; Tn�1

Epppan�1
i q1¤i¤n�1, pπliq1¤i¤n, ϕnpTqq

	
�

n¹
r�2

Gp

�
� TUnr pan

i
q1¤i¤n�1

π
ln�1

wn�1
n�1, π

ln�1 ;Hr�1

	
Gp

�
F ln�1wn�1

n�1, π
ln�1 , Hn

	
where in the last equality we have used Equation (6.6), Lemma 6.2.6,
Lemma 6.2.9, Equation (6.3) and the fact that rEppW,Λ, Hq gives a bi-
linear group scheme homomorphism WA1 � ΛA1 Ñ ΛA1 . Now using (6.8)
and (6.9) one gets the result.
Finally we remark that if A{A1 ¥ 0 and A1{A ¥ 0 then necessarily A{A1

and A1{A are unitriangular, as it is very easy to verify. �

The order relation ¡ from the previous proposition induces an equiva-
lence relation on Mn:
6.4.9. — Definition. For any A,A1 P Mn we write A � A1 if and only

if A{A1 is positive and unitriangular.
This relation characterizes when two matrices in Mn define the same

filtered group scheme:
6.4.10. — Corollary. The map A ÞÑ EpAq induces an increasing bi-

jection between the set Mn{ � ordered by the relation ¡ and the set of
isomorphism classes of filtered group schemes of dimension n ordered by
the existence of a model map.

7. Kummer group schemes

In this section, following Sekiguchi and Suwa’s approach, we specify The-
orem 6.3.4 for filtered R-group schemes containing a model of µpn . The
main result (7.1.1 below) is a generalization of Theorem 9.4 of [25], which
covers the particular case where the finite flat subgroup is the constant
group scheme pZ{pnZqR. As it turns out, the main difficulty is to find the
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statement of the generalized theorem, for then the proof of [25] carries over
smoothly.

We point out an important fact: the computation of successive exten-
sions by groups Gplq, which is the essence of the existence of filtered group
schemes, proceeds differently when l ¡ 0 and when l � 0. The former case
is treated by Theorem 7.1.1, and we indicate in Remark 7.1.4 how to handle
the easier case l � 0.

7.1. Finiteness of closures of finite flat subgroups

Let E � En be a filtered group scheme of type pl1, . . . , lnq. Let α : E Ñ
pGmqn be a morphism of filtered R-group schemes which is an isomorphism
on the generic fibre. Let Θn : pGmqn Ñ pGmqn be the morphism defined
by

ΘnpT1, . . . , Tnq � pT p1 , T p2 T�1
1 , . . . , T pnT

�1
n�1q.

The kernel of Θn is a subgroup isomorphic to µpn,R which we call the
Kummer µpn of Gnm. Via the map α, we can see the Kummer µpn,K as a
closed subscheme of EK . We define the pre-Kummer subgroup Gn as the
scheme-theoretic closure of µpn,K in E, and we call it the Kummer subgroup
when it is finite over R. In spite of the notation, Gn depends on the choice
of α (see Theorem 6.3.3). If Gn is finite, then the quotient Fn is a filtered
group scheme and the quotient map Ψn : En Ñ Fn is an isogeny. In this
case, for each µ P R we have a pullback map

pΨnq� : HomR{µR-GrpFn,Gmq ÝÑ HomR{µR-GrpEn,Gmq.
We know by Theorem 6.3.4 that using the deformed Artin-Hasse exponen-
tials, the groups on both sides may be identified with suitable kernels of
additive operators Un on Witt vector groups. Once this is done, Sekiguchi
and Suwa express pΨnq� by a matrix called Υn. Let us give some details in
the case n � 1 that initiates the induction. Then we have E1 � Gpl1q and
the closure of µp,K is finite flat if and only if vppq ¥ pp� 1ql1, see e.g. [22],
Lemma 5.1.1. Moreover F1 � E1{G1 � Gppl1q and one may check that the
pullback pΨ1q� is expressed by the one-term matrix Υ1 � pTprλ1s{λ

p
1
q. Note

that the operator Tprλ1s{λ
p
1
indeed takes the kernel of F ppl1q into the kernel

of F pl1q, see [22], Lemma 5.2.8. Let us come back to an arbitrary dimension
n.

In this setting, we can characterize the situation where the pre-Kummer
group scheme Gn�1 inside a filtered group scheme En�1 is finite and flat.
In the statement below, we will denote by U i the matrices involved in the
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construction of En like in Theorem 6.3.4, and U i the matrices involved in
the construction of Fn (this is the notation of [25]). Note that the inductive
construction of Un is included in the statement of the theorem via the
vectors un.

7.1.1. — Theorem. Let n ¥ 1, l � pl1, . . . , ln�1q with li ¡ 0 for each
i, and A P M l

n�1. Let E � EpAq � pE1, . . . ,En�1q be the filtered group
scheme of type l defined by A. Assume that Gn � En is finite flat. Then,
the following conditions are equivalent:

(i) Gn�1 is finite flat,
(ii) vppq ¥ pp � 1qln�1 and there exist vectors un�1 and vn�1 in

W f pRqn, with the reduction of un�1 modulo πpln�1 lying in kerpUn :xW pR{πpln�1Rqn ýq, such that

pan�1
i � cn�1

i � pΥnun�1qi � πpln�1 .vn�1
i

for all 1 ¤ i ¤ n, where c2 � c2
1 � rπl1s P W pRq, cn�1 �

pan, rπlnsq PW pRqn for n ¥ 2, with an � pani q1¤i n.
In this case, the filtered group scheme Fn�1 � En�1{Gn�1 is obtained
from En{Gn using the deformed Artin-Hasse exponential defined by un�1.
Moreover, if Ψn�1 : En�1 Ñ Fn�1 is the induced morphism and if µ P Rzt0u
then the morphism

pΨn�1q� : HomR{µR-GrpFn�1,Gmq Ñ HomR{µR-GrpEn�1,Gmq

is given by

Υn�1 �

��� Υn Tvn�1

0 . . . 0 Tprπln�1 s{πpln�1

��
.
Proof. — We make an induction on n. It is convenient to set E0 � t1u

and to start the induction at n � 0, in which case the result is known (see
e.g. [22], Lemma 5.1.1). For the last statement we will prove something
more precise. Write En�1 � EpAq and Fn�1 � EpBq with A � paji q and
B � puji q in Mn�1 with aii � rπlis and uii � rπplis for i � 1, . . . , n� 1. Let

K0 :� p1� πl1T1qp � Eppprπl1s, πl1 , T1q

and for r ¥ 1 let

Kr :� pEppar�1, pπliq1¤i¤r,Tq � πlr�1Tr�1qp
pEppar, pπliq1¤i¤r�1,Tq � πlrTrqEppur�1, pπliq1¤i¤r,ΨrpTqq P RrT1, . . . , Tr�1s.
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Given wn P W pRqn whose reduction belongs to kerpUn : xW pR{µRqn ýq,
we will prove that

Eppwn, pπpl1 , . . . , πpln�1q,ΨnpTqq �
EppΥnpwnq, pπl1 , . . . , πln�1q,Tq

¹
1¤r¤n

GppUnr pwnq, πplr ,Kr�1q, (7.1)

where Unr is the r-th row of Un. SinceGppUnr pwnq, πplr ;Kr�1q P 1�TRrrT ss
for each r ¥ 1 ([25], Prop. 9.3), Equation (7.1) implies

Kr �
Epppar � cr �Υrur, pπl1 , . . . , πlr q;TqEppprπlr�1s, πlr�1 ; Tr�1

Eppar�1,pπli q1¤i¤r;Tq q±r
i�1GppUri purq, πplr�1 ;Ki�1q .

(7.2)
For n � 1 the formula (7.1) follows from 6.2.6 and (6.2). We now suppose
that the theorem and the formula (7.1) are true for n � 1 and we prove
them for n. We do this in three steps (a)-(b)-(c).

(a) We prove that (i) is equivalent to (ii). Among the objects constructed
inductively at the same time as the filtered groups En,Fn, we consider the
polynomials Dr, D

1
r (truncated exponentials associated respectively to En

and Fn) and the isogenies Ψr : Er Ñ Fr, for 1 ¤ r ¤ n � 1. We also
introduce the notation:

Cn�1 � Cn�1pT1, . . . , Tn�1q
:� pDnpT1, . . . , Tnq � πln�1Tn�1qppDn�1pT1, . . . , Tn�1q � πlnTnq�1.

We have KrGn�1s � KrGnsrTn�1s{pCn�1 � 1q. Assume that Gn�1 is finite
over R; then it is finite over Gn. It follows ([9], Prop. 4.1) that Cn�1�1 � 0
mod πpln�1 and

RrGn�1s � RrGnsrTn�1s{
�Cn�1 � 1

πpln�1

	
. (7.3)

In particular Cn�1, seen as an element of HomR{πpln�1RpGn,Gmq, is the
trivial morphism. If we apply the functor HomR{πpln�1Rp�,Gmq to the
short exact sequence

0 ÝÑ Gn
inÝÑ En

ΨnÝÑ Fn ÝÑ 0,

we obtain a long exact sequence

0 ÝÑ HomR{πpln�1RpFn,Gmq
pΨnq�ÝÑ HomR{πpln�1RpEn,Gmq

i�nÝÑ HomR{πpln�1RpGn,Gmq ÝÑ . . .
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As we noticed before, the element Cn�1 lives in kerpi�nq and hence is equal
to pΨnq�pD1

nq for some D1
n P HomR{πpln�1 pFn�1,Gmq. Now we use the

description of groups of homomorphisms from a filtered group scheme to
Gm in terms of vectors, as given by the third point of Theorem 6.3.4. Let
un�1 P W pRqn be a lift in W pRqn of a vector corresponding to D1

n. The
equality

Cn�1 � pΨnq�pD1
nq

translates to n equalities pan�1
i � cn�1

i � pΥnun�1qi in W pR{πpln�1Rqn,
for 1 ¤ i ¤ n. Lifting this to W pRqn shows that (ii) holds. Conversely,
if (ii) holds then Cn�1 is of the form pΨnq�pD1

nq for some D1
n, hence it

has trivial image under i�n. Thus Cn�1 � 1 mod πpln�1 and the expression
(7.3) defines a finite flat group scheme Gn�1 over R.

(b) Let Fn�1 � En�1{Gn�1. Now we prove that Fn�1 � F1n�1 where F1n�1
is the filtered group scheme obtained from Fn using the vector un�1. The
R-algebra of F1n�1 is

RrFnsrTn�1, 1{pD1
n � πpln�1Tn�1qs.

where D1
n P RrT1, . . . , Tns is the truncation of

Eppun�1q
n¹
j�1

Eppun�1
j , πlj , Tj{Eppui�1, pπliq,Tqq

as defined in Theorem 6.3.4. Let Ψ1, . . . ,Ψn be the polynomials defining
the isogeny Ψn : En Ñ Fn. Let

Ψn�1pT1, . . . , Tnq

� 1
πpln�1

� pDnpT1, . . . , Tnq � πln�1Tn�1qp
Dn�1pT1, . . . , Tn�1q � πlnTn

�D1
npΨ1pTq, . . . ,ΨnpTqq



.

Then the morphism RrFn�1s Ñ RrEn�1s, Ti ÞÑ ΨipT1, . . . , Tiq defines an
isogeny En�1 Ñ F1n�1 with kernel Gn�1. Therefore Fn�1 is isomorphic to
F1n�1 as a filtered group scheme.

(c) We now prove the formula (7.1). We have

Ep
�
wn�1, pπpl1 , . . . , πpln�1q,Ψn�1pTq� �

Ep
�pwn�1

r q1¤r¤n, pπpl1 , . . . , πplnq,ΨnpTq�Ep�wn�1
n�1, π

pln�1 ,
Ψn�1pTq

Eppun�1, pπliq1¤i¤n; ΨnpTqq


.

(7.4)
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By the induction hypothesis we have
Ep

�pwn�1
r q1¤r¤n, pπpl1 , . . . , πplnq,ΨnpTq� �
Ep

�
Υnwn�1, pπl1 , . . . , πlnq,T� ¹

1¤r¤n
Gp

�
Unr ppwn�1

s q1¤s¤nq, πpln�1 ,Kr�1
�
. (7.5)

Moreover we have

Ep

�
wn�1
n�1, π

pln�1 ,
Ψn�1pTq

Eppun�1, pπliq1¤i¤n; ΨnpTqq



� Ep

�
wn�1
n�1, π

pln�1 ,
Kn � 1
πpln�1




(6.2)� rEp�wn�1
n�1, π

pln�1 ,Kn

	
Gp

�
F ppln�1qwn�1

n�1, π
pln�1 ,Kn

	
� Ep

�
T ppan�cn�1�Υnun�1q

π
pln�1

wn�1
n�1, pπl1 , . . . , πlnq;T

	
� Ep

�
T
prπ

ln�1 s

π
pln�1

wn�1
n�1, π

ln�1 ; Tn�1

Eppan�1, pπliq1¤i¤n,Tq

�

�
¹

1¤r¤n
Gp

�
� TUnr un�1

π
pln�1

wn�1
n�1, π

pln�1 ;Kr�1



�Gp

�
F pln�1qwn�1

n�1, π
pln�1 ;Kn

	
where in the last equality we have used Equation (7.2), Lemma 6.2.6,
Lemma 6.2.9, Equation (6.3) and the bilinearity of rEppW,Λ, Hq : WA1 �
ΛA1 Ñ ΛA1 , see 6.2.5. Now using Equations (7.4) and (7.5) one gets the
result. �

7.1.2. — Definition. Let EpAq � pE1, . . . ,Enq be a filtered group
scheme. We say that A satisfies the integrality conditions if for any 1 ¤ i ¤
n, the upper left square submatrix Un�iA of A satisfies the conditions (ii)
in Theorem 7.1.1 applied to an i-dimensional matrix.

In other words, A satisfies the integrality conditions if and only if the
pre-Kummer subgroups Gi are finite flat in Ei, for 1 ¤ i ¤ n. From the
proof of Theorem 7.1.1, we deduce an explicit formula for these models of
µpn,K .
7.1.3. — Corollary. Let En � EpAq be a filtered group scheme given

by a family of parameters A � paji q satisfying the integrality conditions.
Let D1pT1q P RrT1s be any lifting of Eppa2

1, π
l1 , T1q mod πl2 , . . . , and

Dn�1pT1, . . . , Tn�1q P RrT1, . . . , Tn�1s be any lifting of

Eppan, pπl1 , . . . , πln�1q, T1, . . . , Tn�1q mod πln
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as defined in Theorem 6.3.4. Then Gn is a finite flat R-group scheme,
defined in affine n-space in coordinates T1, . . . , Tn by the n equations:

p1� πl1T1qp � 1
πpl1

,
pD1 � πl2T2qpp1� πl1T1q�1 � 1

πpl2
, . . .

. . . ,
pDn�1 � πlnTnqppDn�2 � πln�1Tn�1q�1 � 1

πpln
.

Proof. — This is a translation of Theorem 7.1.1. �

7.1.4. — Remark. In the statement of Theorem 7.1.1, it is assumed
that li ¡ 0 for all i. Here is what to do so as to obtain a description of
all Kummer group schemes, including the case where some li vanish. We
make some preliminary observations. First, as it is easy to see from the case
n � 2, the type of a Kummer group is necessarily ordered: l1 ¥ l2 ¥ � � � ¥ ln
(see 8.2.5). Second, there are no nontrivial extensions of a filtered group
scheme by Gm (see [25], Prop. 3.1). Third, it is easy to see that the only
Kummer group scheme of pGmqn with type p0, . . . , 0q is µpn . After these
preliminaries, it remains to see how to describe Kummer groups of type
l with l1 ¥ � � � ¥ lr ¡ lr�1 � � � � � ln � 0. Such a Kummer group G

lies in a filtered group E � Gn�rm � E1pA1q where E1pA1q is filtered of type
l 1 � pl1, . . . , lrq. We define EpAq :� E when

A �
�� A1 0

0 V

�

with V unipotent in Mn�rpW f pRqq (therefore equivalent to the identity,
since invertible: use Lemma 6.1.4). Moreover, G is an extension of a finite
flat Kummer group G1 of E1 by µpn�r . Using the same argument as in [31],
Prop. 3.6 there is an exact sequence:

0 ÝÑ Z{prZ ÝÑ Ext1pG1, µpn�r q ÝÑ H1pS, pG1q_q ÝÑ 0

where S � SpecpRq and pG1q_ is the Cartier dual of G1. Then with the
same proof as in [31], Cor. 3.20 we see that the Kummer subgroups of
E are given by the image of 1 P Z{prZ. They have the following ring of
functions:

RrGs � RrG1srTr�1s
pT pn�rr�1 pDr�1 � πlrTrq�1 � 1q

.
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7.2. Matricial translation of the integrality conditions

We translate the previous results on Kummer group schemes in terms
of matrices, in order to emphasize the formal similarities with the classifi-
cation of models of µpn by their Breuil-Kisin lattices in 4.2.2. Up to now
in Sections §6 and §7, we followed Sekiguchi and Suwa’s notation aji for
the entries of matrices. However, in order to compare the parameters with
those of the Breuil-Kisin classification, we will henceforth write aij . In the
statement of the following result, we use the operator P introduced in 4.1.4.

7.2.1. — Theorem. Let G be a Kummer group scheme. Then there
exists l � pl1, . . . , lnq P pNqn and upper triangular matrices

A �

������������

rπl1s a12 a13 . . . a1n

rπl2s a23 a2n

. . . . . .
...

rπln�1s an�1,n

0 rπlns

�����������

,

B �

������������

rπpl1s b12 b13 . . . b1n

rπpl2s b23 b2n

. . . . . .
...

rπpln�1s bn�1,n

0 rπplns

�����������

with entries in W f pRq, satisfying

(1) F pAq{A ¥ 0, F pBq{B ¥ 0,
(2) ppA� PUAq{B ¥ 0,

such that G is the kernel of an isogeny EpAq ÝÑ EpBq. Moreover when A
is chosen, B is unique up to the equivalence relation �.
If there exists A and B as above then EpAq contains a finite and flat

Kummer subgroup scheme G and E{G � EpBq.
Proof. — Let us first suppose that pl1, . . . , lnq � p0, . . . , 0q. Then the

unique Kummer scheme of type p0, . . . , 0q is µpn . In this case any matrix
as in the statement is unipotent and so is equivalent to the identity, since
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it is invertible. Therefore such a matrix gives rise to the group scheme µpn .
Conversely A � B � Id satisfy the conditions of the theorem.
We will now suppose that all the li are all strictly positive. The case with

some li equal to zero can be deduced form this one using Remark 7.1.4.
By definition of a Kummer subgroup, it is embedded in a filtered group

scheme EpAq, for some A P Mn of type l. Moreover by 7.1.1 it is easy to
see that

pA� PUA � Vn �T Bn
where the matrices Bn, Vn are defined by induction:

Bn�1 �

���� Bn un�1

0 . . . 0 rπpln�1s

���

and

Vn�1 �

���� Vn vn�1

0 . . . 0 prπln�1s{πpln�1

���

with un�1 and vn�1 as in the statement of Theorem 7.1.1. It follows from
the same theorem that EpAq{G � EpBq. Similar argument for the converse.

�

7.2.2. — Remark. One significant difference between this theorem and
Theorem 4.2.2 is that here we do not provide a normal form, or distin-
guished choice, for a matrix A defining a Kummer group scheme. Theo-
rem 4.2.2 suggests that maybe one could choose a pair pA,Bq of the form
pA,F pAqq. This is true for instance for n � 2 and at least in some cases for
n � 3, as we will see in the next section.

This theorem should be seen as the analogue in Sekiguchi-Suwa Theory
of Theorem 4.2.2 in Breuil-Kisin Theory.

8. Computation of Kummer group schemes for n � 3

In this section, we apply the general theory to compute some Kummer
group schemes for n � 3, that is to say, those models of µp3 constructed
using Sekiguchi-Suwa Theory. From the start, we see that the complexity
of the computations with Witt vectors is a serious obstacle. In fact, the
difficulty increases with the number of nonzero coefficients of the vectors. It
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is therefore interesting to know if in Theorem 7.2.1 we can choose matrices
A and B with "short" Witt vector entries. The results of [31] show that in
the case n � 2, any Kummer group scheme may be described by matrices
A,B such that A has Teichmüller entries. We could not settle the question
whether this is possible for all n, but in our opinion it is not very likely. It is
much more plausible that A may be chosen with entries of bounded length;
more precisely, it seems reasonable to hope that each Kummer model of µpn
may be defined by a matrix A all whose entries are Witt vectors of length
at most n � 1. However, it is probably impossible to make simple choices
simultaneously for A and B, which means that one should not make a priori
assumptions on B. Because of these remarks, here we compute the Kummer
groups defined by matrices A,B P M3 such that A has Teichmüller entries
and B is arbitrary.
Even though this is not essential, it will simplify matters to assume

throughout that p ¥ 3. Recall that R is a discrete valuation ring of charac-
teristic 0, residue characteristic p, uniformizer π, valuation v and vppq � e.
For l ¥ 1, we denote again by v the induced valuation on R{πlR. When-
ever the context does not allow confusions, we keep the same notation for
a Witt vector a � pa0, a1, . . . , ai . . .q P W pRq and its image in W pR{πlRq.
Following the comments at the beginning of 7.2 and the notation in 7.2.1,
in this section we will write aij the entries of the matrices.

8.1. Two lemmas

We collect two easy lemmas for future reference.

8.1.1. — Lemma. Let l ¥ 1 be an integer. Then the following statements
hold.
(1) If pe ¥ pp � 1ql, then for any a P kerpF : xW pR{πlRq ýq we have
vpaiq ¥ l{p for all i ¥ 0.
(2) For all a, b P xW pR{πlRq such that vpaiq ¥ l{p and vpbiq ¥ l{p for all
i ¥ 0, we have a� b � pa0 � b0, a1 � b1, . . . q.
Proof. — This is Lemma 2.4 of [31]. More precisely, (1) and (2) are

proven in the proof of loc. cit. and the assertion of Lemma 2.4 itself is
a combination of these statements. �

8.1.2. — Lemma. Let X � pX0, X1, X2, . . . q and Y � pY0, Y1, Y2, . . . q
be sequences of indeterminates and S0, S1, S2, . . . the polynomials giving
Witt vector addition (see 3.1).
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(1) If the variables Xi, Yi are given the weight pi, then the polynomial
SnpX,Yq P ZrX,Ys is homogeneous of degree pn.
(2) We have S0pX,Yq � X0 � Y0,

S1pX,Yq � S0pX1, Y1q � σ1pX0, Y0q
with

σ1pX0, Y0q � Xp
0 � Y p0 � pX0 � Y0qp

p
and

S2pX,Yq � S0pX2, Y2q�σ1pX1, Y1q�σ1

�
X1�Y1, σ1pX0, Y0q

	
�σ2pX0, Y0q

with

σ2pX0, Y0q � Xp2

0 � Y p
2

0 � pX0 � Y0qp2 � pσ1pX0, Y0qp
p2 .

(3) We have σipX,�Y q � σipX,Y �Xq and σipX,�Y q � σipX,Y �Xq.
(4) For any l ¥ 1, a, b P R{πlR and i � 1, 2 we have:

vpσipa, bqq ¥ min
�
ppi � 1qvpaq � vpbq, ppi � 1qvpbq � vpaq

	
.

(5) If p ¥ 3, then in the ring W pZq we have

p � pp, 1� pp�1, ε2p
p�1, ε3p

p�1, ε4p
p�1, . . . q

where ε2, ε3, ε4, . . . are principal p-adic units.

Proof. — (1) is obvious and well-known, (2) is a simple computation,
(3) is proven in 3.1.4, (4) follows from (2) with the help of the binomial
theorem, and (5) is proven for example in Lemma 5.2.1 of [22]. �

8.2. Computations for n � 2

As already said, the case n � 1 is well-known (see for instance [22]
Lemma 5.1.1). All the models of µp,K are given by certain group schemes,
called Gπl,1 with l P N such that e

p�1 ¥ l. If l � 0 we obtain the group
scheme µp,R � Gm. One proves (see [31] § 1) that there exists a model map
between Gπl,1 and Gπm,1 if and only if l ¥ m. Using Lemma 4.1.8, this
implies that for models of µp,K , the covariant equivalence of Kisin described
in § 2.1 is given by Gπl,1 ÞÑ ulkrruss. We recall that the matrix associated
to the Breuil-Kisin module ulkrruss is the 1� 1 matrix pulq.

We now consider the case n � 2. First we recall the following lemma.

8.2.1. — Lemma. If G is a Kummer group scheme of type pl1, l2q then
l1 ¥ l2.
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Proof. — If G is of type pl1, l2q, it is an extension of Gπl1 ,1 by Gπl2 ,1
so the result follows from [31], Lemma 3.2. Another way to see this is to
argue that by 2.3.3 there is a model map Gπl1 ,1 Ñ Gπl2 ,1 and this forces
l1 ¥ l2, as recalled above. Finally, in the case l1, l2 ¡ 0 one can also obtain
the lemma using Theorem 7.2.1. �

Now fix l1, l2 ¡ 0. We consider a matrix

A �
�� rπl1s a12

0 rπl2s

�
PM2pW f pRqq.

8.2.2. — Lemma. The condition A P M2, that is to say F pAq{A ¥ 0, is
equivalent to the congruence F pl1qpa12q � 0 mod πl2 . Moreover let

A1 �
�� rπl1s a112

0 rπl2s

�
PM2pW f pRqq.

Then a112 � a12 mod πl2 if and only if A1 P M2 and EpAq � EpA1q.

Proof. — By definition we have F pAq{A ¥ 0 if and only if there exists a
positive matrix

C �
�� rπpp�1ql1s c12

0 rπpp�1ql2s

�

such that F pAq � C �T A. The equality of entries in position p1, 2q gives
F pl1qpa12q � πl2 .c12. This is equivalent to F pl1qpa12q � 0 in W pR{πl2Rq,
which is the first assertion. In order to prove the second assertion, let
A1 PM2pW f pRqq be as in the statement. If a112 � a12 mod πl2 , then:

(i) F pl1qpa112q � F pl1qpa12q � 0 mod πl2 ,
(ii) there exists r PW pRq such that a112 � a12 � πl2 .r , so A1 � D �T A

with D � �1 r
0 1

�
.

By (i) and the first assertion of the lemma we have A1 P M2, and by
(ii) and Prop. 6.4.8 we have EpA1q � EpAq. Conversely if A1 P M2 and
EpAq � EpA1q, then by Prop. 6.4.8 there exists a unitriangular matrix D
as above such that A1 � D �T A. It follows that a112 � a12 � πl2 .r and
a112 � a12 mod πl2 . �

Now we use Theorem 7.2.1 in order to tell exactly when A gives rise to
a model of µp2 , in the case A is a matrix with Teichmüller entries.
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8.2.3. — Proposition. Let

A :�
�� rπl1s ra12s

0 rπl2s

�

be a matrix with Teichmüller entries and l1, l2 ¥ 0. Then A belongs to M2
and EpAq contains a finite flat Kummer subgroup G if and only if

(i) e
p�1 ¥ l1 ¥ l2,

(ii) ap12 � 0 mod πl2 , and
(iii) pa12 � πl1 � p

πpp�1ql1 pa12qp � 0 mod πpl2 .
In such a case, we have EpAq{G � EpF pAqq. Moreover, if we set D1pT q �°p�1
k�0 a

k
12T

k{k!, then

G � Spec
�
RrT1, T2s

M� p1� πl1T1qp � 1
πl1p

,
pD1pT1q � πl2T2qpp1� πl1T1q�1 � 1

πpl2

	

.

Finally G depends only on the reduction of a12 modulo πl2 .

Proof. — If l1 � 0 or l2 � 0, the result comes from the case n � 1 (see
7.1.4) and is easy so we suppose that l1, l2 ¡ 0. By Theorem 7.1.1 and
Lemmas 8.2.1 and 8.2.2, the matrix A gives a finite flat Kummer group
G if and only e

p�1 ¥ l1 ¥ l2, F pl1qpra12sq � 0 mod πl2 and there exists a
vector u � u12 P W f pRq with reduction in kerpF ppl1q : xW pR{πpl2Rq ýq
such that:

pra12s � rπl1s � Tprπl1 s{πpl1 puq mod πpl2 . (8.1)

Since l1 ¥ l2, the congruence F pl1qpra12sq � 0 mod πl2 is equivalent to
ap12 � 0 mod πl2 . It remains only to prove that (8.1) and (iii) are equivalent
equations.
First, let us consider the left hand side of the congruence (iii). Using

the expression p � pp, 1 � pp�1, . . . q P W pRq recalled in 8.1.2(5) and the
minoration vpa12q ¥ l2{p, we find:

pra12s �
�
pa12, p1� pp�1qpa12qp, 0, 0, . . .

� PW pR{πpl2Rq.

Since p ¥ 3, we have vppp�1q � pp� 1qe ¥ pp� 1q2l2 ¥ pl2. Thus in fact:

pra12s � ppa12, pa12qp, 0, 0, . . .q mod πpl2 .

Using Lemma 8.1.1(2) we obtain

pra12s � rπl1s � ppa12 � πl1 , pa12qp, 0, 0, . . .q mod πpl2 . (8.2)
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Now let us turn to the right hand side. We set ω :� p
πpp�1ql1 . In the same

way as before, we obtain
prπl1s
πpl1

� pω, 1, 0, 0, . . . q mod πpl2 .

It follows that Tprπl1 s{πpl1 u � rωsu�V u inW pR{πpl2Rq. Now note that in
W pR{πpl2Rq we have kerpF ppl1qq�kerpF q, so it follows from Lemma 8.1.1(1)
that

u � 0 mod πl2 ,

hence also
rωsu � V u � 0 mod πl2 .

Thus by Lemma 8.1.1(2), their sum in W pR{πpl2Rq is computed compo-
nentwise:

Tprπl1 s{πpl1 u �
�
ωu0, ω

pu1 � u0, ω
p2
u2 � u1, ω

p3
u3 � u2, . . .

	
.

Since u has finitely many nonzero coefficients, we may call uk the last of
them. It follows from the above that

ppa12 � πl1 , pa12qp, 0, . . . q
�

�
ωu0, ω

pu1 � u0, ω
p2
u2 � u1, . . . ω

p3
uk � uk�1, uk . . .

	
.

This is possible only if k � 0, hence u � pu0, 0, . . . q � ru0s in W pR{πpl2Rq.
Now if we identify

Tprπl1 s{πpl1 u � pωu0, u0, 0, 0, . . . q � ppa12 � πl1 , pa12qp, 0, . . . q,
we obtain u0 � pa12qp mod πpl2 and the congruence

pa12 � πl1 � p

πpp�1ql1
pa12qp � 0 mod πpl2 .

This finishes the proof of the first assertion of the proposition. As a bonus,
we see that u � F pra12sq is a solution to (8.1). Then Theorem 7.2.1 shows
that EpAq{G � EpF pAqq. The final expression for the function ring of G
follows from the general theory, which of course provides also the group
law. The final statement follows from the above lemma. �

8.2.4. — Remarks. (1) In the set of conditions (i)-(ii)-(iii) of the propo-
sition, the inequality l1 ¥ l2 is a consequence of the rest. Indeed, if we
assume the three conditions satisfied except that l1   l2, it is clear that
(iii) has no solution.
(2) We recover, with essentially the same proof, all the group schemes
exhibited in Tossici’s paper [31]. In loc. cit. it is also proven with some
more work that if pl1, l2, a12q and pl1, l2, a112q give rise to isomorphic group
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schemes then a12 � a112 mod πl2 , and that all models of µp2 are obtained
in this way. Moreover Proposition 3.34 in loc. cit. can be complemented
by saying that the existence of model maps corresponds to the divisibility
between their matrices (with Teichmüller entries). All these things works
also in characteristic 2.

The following remark is the equivalent of 4.2.3.

8.2.5. — Remark. The above results for n � 2 have consequences for
general n. Let G be a finite flat Kummer group scheme in a filtered group
scheme EpAq of type pl1, . . . , lnq P Nn. Then

(1) e
p�1 ¥ l1,

(2) l1 ¥ l2 ¥ � � � ¥ ln,
(3) if ai,i�1 � pa0

i,i�1, a
1
i,i�1, . . . , a

k
i,i�1, . . . q then vpaki,i�1q ¥ li�1{p for

all i, k.
In fact point (1) is already known (first sentences of 8.2). For n � 2, point
(2) follows from Lemma 8.2.1 and point (3) follows from Lemmas 8.2.2 and
8.1.1(1). The statement for arbitrary n follows simply by considering the
n�1 subquotients of G of order p2, whose matrices are the diagonal blocks
of size p2, 2q of the matrix A (see Proposition 6.4.8).

8.2.6. — Comparison Sekiguchi-Suwa Theory / Breuil-Kisin
Theory for n � 2. The existence of a link between these two theories was
already known in [31], Appendix A but in a less precise way. Explaining
it in details using our formalism will give an idea of what the problems
are for n ¡ 2. We shall construct an explicit bijection between the set of
matrices parametrizing models of µp2 viewed as Kummer group schemes,
and the set of matrices parametrizing Breuil-Kisin lattices.
We recall the setting: R is a complete discrete valuation ring with perfect

residue field k, totally ramified over W pkq. We fix a uniformizer π P R and
we call Epuq its minimal polynomial over K, so that u ÞÑ π induces an
isomorphism W pkqrus{pEpuqq � R. Note that since Epuq is Eisenstein, we
have Epuq � ue � p rE1puqs mod p2 with E1puq P krus, degpE1puqq   e

and E1p0q � 0.
The central point in the dictionary between the two theories is the map

p�q� : krruss Ñ R sending a power series c � °8
i�0 ciu

i to c� � °8
i�0 rcisπi.

It is an isometry for the u-adic distance on the domain and the π-adic
distance on the target, which means simply that f � g mod ul if and only
if f� � g� mod πl, for all l ¥ 0. Moreover, we have the property puncq� �
πnc�. For each l ¥ 1, the map c ÞÑ c� induces a map krus{ulkrus � R{πlR
which for l ¤ e is an isomorphism of rings but is neither additive nor
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multiplicative in general. Now, using p�q� we map any matrix

A �
�� ul1 a12

0 ul2

�
P G2ppuqq

to the matrix

A� �
�� rπl1s ra�12s

0 rπl2s

�
PM2pW pRqq.

We claim that A is a µ-matrix if and only if A� gives rise to a model of
µp2 . In order to prove this, we just have to check that the congruences in
the two columns correspond to each other:

Breuil-Kisin (cf 5.2.1) Sekiguchi-Suwa (cf 8.2.3)

e
p�1 ¥ l1 ¥ l2

e
p�1 ¥ l1 ¥ l2

pa12qp � 0 mod ul2 pa�12qp � 0 mod πl2

uea12 � E1puqul1 � ue�pp�1ql1pa12qp pa�12 � πl1 � p
πpp�1ql1 pa�12qp

� 0 mod upl2 � 0 mod πpl2

Since l2 ¤ e, the equivalence between the congruences in the second line
comes from the isomorphism krus{ulkrus � R{πlR. It remains only to prove
the equivalence of the congruences in the third line: this is not immediate
since R{πpl2R is not isomorphic to krus{upl2 if pl2 ¡ e. So we look at the
image under c ÞÑ c� of the Breuil-Kisin congruence

uea12 � E1puqul1 � ue�pp�1ql1pa12qp mod upl2 . (8.3)

We compute the image of both sides. Since, for α, β P k, the difference
rα � βs � rαs � rβs P W pkq is a multiple of p, one sees that the difference
between puea12 � E1puqul1q� and πea�12 � rE1spπqπl1 is a multiple of pπe.
Hence using the fact that 2e ¡ pl2 we see that

puea12 � E1puqul1q� � πea�12 � rE1spπqπl1 mod πpl2 ,

where rE1spπq is the evaluation of the polynomial rE1s at u � π. Now using
valupa12q ¥ l2{p and e

p�1 ¥ l2, one sees using the binomial theorem that
ppa12qpq� � pa�12qp mod πpl2 . Putting things together, it follows that the
image of the congruence (8.3) is:

πea�12 � rE1spπqπl1 � πe�pp�1ql1pa�12qp mod πpl2 .
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Since E vanishes at u � π, we have πe � prE1spπq � 0 mod p2 (beware
that rE1puqs evaluated at u � π is rE1spπq). Given that p2 � 0 mod πpl2 ,
we may replace πe by �prE1spπq in the previous congruence and obtain:

p rE1spπqa�12 � rE1spπqπl1 � p

πpp�1ql1
rE1spπqpa�12qp � 0 mod πpl2 .

Since rE1spπq is invertible mod πpl2 , this is indeed equivalent to the equa-
tion on the Sekiguchi-Suwa side in the third line. Our claim is thus proved.
As we noticed in 8.2.4(2), the results of [31] imply that in fact the

matrices with Teichmüller coefficients that we are considering above on
the Sekiguchi-Suwa side are in one-one correspondence with the models of
µp2,K . Since the map A ÞÑ A� also preserves divisibility between matrices,
it follows that we have set up a covariant equivalence between the category
of µ-matrices and the category of models of µp2,K . We have not proven
that this equivalence is the covariant equivalence constructed by Kisin, but
it seems natural to conjecture that they are indeed the same.

8.3. Computations for n � 3

Fix l1, l2, l3 ¡ 0. We consider a matrix:

A �

�����
rπl1s a12 a13

0 rπl2s a23

0 0 rπl3s

����
P H3pW f pRqq.

8.3.1. — Lemma. The condition A P M3, i.e. F pAq{A ¥ 0, is equivalent
to the congruences:
(1) F pl1qpa12q � 0 mod πl2 , F pl2qpa23q � 0 mod πl3 , and
(2) F pl1qpa13q � TF pl1qpa12q

πl2

pa23q mod πl3 .

Moreover if A1 � pa1ijq P M3 then EpA1q � EpAq as filtered group schemes
if and only if a112 � a12 PW pR{πl2Rq, a123 � a23 PW pR{πl3Rq and

a113 � a13 � T a112�a12
πl2

pa23q mod πl3 . (8.4)

If A has Teichmüller entries raijs and l1 ¥ l2 ¥ l3 then F pAq{A ¥ 0 is
equivalent to the congruences:
(1) ap12 � 0 mod πl2 , ap23 � 0 mod πl3 , and
(2) πl2ap13 � a23a

p
12 mod πl2�l3 .
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Moreover if A1 � pra1ijsq P H3pW f pRqq with a1ii � πli , then A1 P M3 and
EpAq � EpA1q as filtered group schemes if and only if a112 � a12 mod πl2 ,
a123 � a23 mod πl3 and

ra113s � ra13s �
� pa112 � a12qa23

πl2

�
mod πl3 . (8.5)

8.3.2. — Remark. Here is a remark for later use. Let us suppose that
pe ¥ pp � 1ql3 and l1, l2 ¥ l3. Let ai3 � pa0

i3, a
1
i3, . . . , a

k
i3, . . . q for i �

1, 2. Then, if a13 and a23 satisfy the congruences of the first part of the
above lemma then vpa13q ¥ l3{p2. To prove this we first observe that since
F pa23q � 0 mod πl3 it follows from Lemma 8.1.1(1) that vpak23q ¥ l3{p,
for any k. Hence from

F pl1qpa13q � TF pl1qpa12q
πl2

pa23q mod πl3

it follows that all the components of F pa13q have valuation at least l3{p.
Again by Lemma 8.1.1(1) we obtain vpak13q ¥ l3{p2 for any k.

Proof. — We begin with the general case. By definition we have
F pAq{A ¥ 0 if and only if there exists a positive matrix

C �

�����
rπpp�1ql1s c12 c13

0 rπpp�1ql2s c23

0 0 rπpp�1ql3s

����

such that F pAq � C �T A. By the case n � 2, this gives the congruences in
(i). The equality of entries in position p1, 3q gives:

F pl1qpa13q � Tc12pa23q � πl3 .c13.

The coefficient c12 is determined by the equality of entries in position p1, 2q,
namely it is equal to F pl1qpra12sq

πl2
.c12. This gives the congruence (ii).

Let A1 be another matrix in M3. Then by 6.4.7 we have EpAq � EpA1q as
filtered group schemes if and only if there exist Witt vectors r 1, s1, t1 such
that

A1 :�

�����
rπl1s a112 a113

0 rπl2s a123

0 0 rπl3s

����
�

�����
1 r 1 t1

0 1 s1

0 0 1

����
�T
�����
rπl1s a12 a13

0 rπl2s a23

0 0 rπl3s

����
.
It is easy to see that r 1 � a112�a12

πl2
and the rest follows.

We now show how things simplify if one supposes that A has Teichmüller
entries and l1 ¥ l2 ¥ l3.
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Formulas in (1) are immediate, under these hypothesis, from the general
case, and we already found them in the case n � 2. Now let us suppose
that

F pl1qpra13sq � TF pl1qpra12sq
πl2

pra23sq mod πl3 .

Since pp� 1ql1 ¥ 2l1 ¥ l2 � l3, this is equivalent to say

ap13 �
a12

πl2
a23 mod πl3 ,

which is equivalent to (2).
We now study when two matrices with Teichmüller entries are equivalent.

The assertions about a12 and a23 clearly come from the general case. Now
let us take an upper triangular matrix A1 � pra1ijsq P M3. The condition
(8.4) reads, in this case,

ra113s � ra13s � T ra112s�ra12s

πl2

pra23sq mod πl3 .

Since a112 � a12 � πl2r for some r P R, l2 ¥ l3 and vpa12q, vpa23q ¥ l3
p we

have
T ra112s�ra12s

πl2

pra23sq � rpa112 � a12qa23s
πl2

mod πl3 .

So we get
ra113s � ra13s � rpa112 � a12qa23s

πl2
mod πl3 ,

as desired. �

We now state our final result for n � 3, and we provide some comments
after the statement.

8.3.3. — Theorem. Let 0 ¤ l3 ¤ l2 ¤ l1 ¤ e{pp � 1q be integers and
a12, a23, a13 P R elements satisfying the congruences:

ap12 � 0 mod πl2 , ap23 � 0 mod πl3 , πl2ap13 � a23a
p
12 mod πl2�l3 .

Let A � praijsq be the matrix with Teichm̈uller entries of M3 defined by
these parameters (Lemma 8.3.1). Assume that l1 ¥ pl3. Then the pre-
Kummer subgroup G � EpAq is finite flat if and only if the following
congruences are satisfied:

pa12 � πl1 � p

πpp�1ql1
ap12 � 0 mod πpl2 ,

pa23 � πl2 � p

πpp�1ql2
ap23 � 0 mod πpl3 ,

p

πpp�1ql1
ap13 � pa13 � a12 � ap23

pa12 � πl1 � p
πpp�1ql1 a

p
12

πpl2
mod πpl3 .
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When this is the case, we have

G � Spec

���RrT1, T2, T3s
O��� p1�πl1T1q

p

πl1p
, pD1pT1q�π

l2T2q
pp1�πl1T1q

�1�1
πpl2

,

pD2pT1,T2q�π
l3T3q

ppD1pT1q�π
l2T2q

�1�1
πpl3

��

��


where D1pT q � Eppa12T q �
°p�1
k�0 a

k
12
Tk

k! and D2pT1, T2q is a lifting of

Eppa13T1qEp
�
a23

T2

D1pT1q
	

mod πl3 ,

which under the above congruences is a polynomial. Finally ifA1 � pra1ijsq P
M3 then the finite and flat group scheme of EpA1q is isomorphic to G if
and only if a112 � a12 P R{πl2R, a123 � a23 P R{πl3R and

ra113s � ra13s �
� pa112 � a12qa23

πl2

�
mod πl3 . (8.6)

8.3.4. — Remark. (1) This result says that we are able to describe com-
pletely the congruences satisfied by matrices with Teichmüller entries giving
rise to Kummer group schemes of order p3, under the (light) assumption
that l1 ¥ pl3. Removing this assumption would require more work. See the
final remarks in 8.5 for more comments on the case l1   pl3. However we
do not know if Kummer group schemes of order p3 arising from matrices
with Teichmüller entries provide all the Kummer group schemes of order
p3, under the hypothesis l1 ¥ pl3.
(2) A consequence of the above statement is that in the situation of 8.3.3,
we may take B � F pAq in Theorem 7.2.1. See also Remark 7.2.2.
(3) In the third congruence of the second set of congruences, one may in fact
remove the term pa13 since e ¥ l1 ¥ pl3. But leaving it emphasizes the sim-
ilarity with the congruences we obtained with the Breuil-Kisin approach,
as we will see in 8.3.5.

Proof. — The dependency on the parameters (in the end of the state-
ment) follows from Lemma 8.3.1. The rest is proven by the general theory,
except for the precise shape of the congruences. Proposition 8.2.3 gives the
congruences for the subgroup and quotient of degree p2 in G to be finite
flat, and fills up the upper left and lower right matrices of size 2. More
precisely, we have the congruences:

pa12 � πl1 � p

πpp�1ql1
pa12qp � 0 mod πpl2 ,

pa23 � πl2 � p

πpp�1ql2
pa23qp � 0 mod πpl3 .
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With the notations of Theorem 7.2.1, we have:

B � B3 �

�����
rπpl1s rap12s u13

0 rπpl2s rap23s
0 0 rπpl3s

����

and

V3 �

�����
prπl1s{πpl1 v12 v13

0 prπl2s{πpl2 v23

0 0 prπl3s{πpl3

����

where v12 � v2

1 and v23 � v3
2 are the following vectors of W pRq:

v12 � 1
πpl2

�
pra12s � rπl1s � Tprπl1 s{πpl1 rap12s

�
,

v23 � 1
πpl3

�
pra23s � rπl2s � Tprπl2 s{πpl2 rap23s

�
.

Thus G is finite flat if and only if the previous congruences are satisfied as
well as the following last one:

pra13s � ra12s � Tprπl1 s{πpl1 u13 � Tv12rap23s � 0 mod πpl3 .

It only remains to prove that this is equivalent to:

p

πpp�1ql1
ap13 � pa13 � a12 � ap23

pa12 � πl1 � p
πpp�1ql1 a

p
12

πpl2
mod πpl3 .

This is done in Subsection 8.4. �

8.3.5. — Comparison Sekiguchi-Suwa Theory / Breuil-Kisin
Theory for n � 3. We proceed as in 8.2.6 to compare the two theories.
Since we conducted the computations only under the additional assumption
l1 ¥ pl3 on the Sekiguchi-Suwa side, we will stay in this restricted setting.
We consider again the map p�q� : krruss Ñ R,

°8
i�0 ciu

i ÞÑ °8
i�0 rcisπi
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and the induced map on matrices:

A �

�����
ul1 a12 a13

0 ul2 a23

0 0 ul3

����
P G3ppuqq

ÞÝÑ A� �

�����
rπl1s ra�12s ra�13s

0 rπl2s ra�23s
0 0 rπl3s

����
PM3pW pRqq.

We want to check that A is a µ-matrix if and only if A� gives rise to
a model of µp3 . For this we compare the congruences from Breuil-Kisin
Theory (cf 5.2.1) on the left, and the congruences from Sekiguchi-Suwa
Theory (cf 8.2.3) on the right.

A ap12 � 0 mod ul2 , ap23 � 0 mod ul3

a�12
p � 0 mod πl2 , a�23

p � 0 mod πl3

B uea12 � ul1E1 � ue�pp�1ql1ap12 � 0 mod upl2

uea23 � ul2E1 � ue�pp�1ql2ap23 � 0 mod upl3

pa�12 � πl1 � p
πpp�1ql1 a

�
12
p � 0 mod πpl2

pa�23 � πl2 � p
πpp�1ql2 a

�
23
p � 0 mod πpl3

C a12 � ul1�l2a23 � 0 mod ul3

???

D ul2ap13 � ap12a23 � 0 mod ul2�l3

πl2a�13
p � a�23a

�
12
p mod πl2�l3

E
uea13 � a12E1 � S1puea12, u

l1E1q � ul1E2

�ue�pp�1ql1ap13 � uea12�u
l1E1�u

e�pp�1ql1ap12
upl2

ap23 � 0 mod upl3

p
πpp�1ql1 a

�
13
p � pa�13 � a�12 � a�23

p pa
�
12�π

l1� p

πpp�1ql1
a�12

p

πpl2
mod πpl3
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One sees immediately that in the Breuil-Kisin side there is one more
equation. We will prove below that in fact this congruence is a consequence
of the others, so we do not bother considering it for the moment.

In fact, only conditionsD and E need to be compared, since the previous
ones match by the case n � 2. The equivalence between the congruences
in D is immediate since the operator p�q� induces an isomorphism on the
truncations of level l2� l3, given that e ¥ l2� l3. We pass to E. Taking into
account our assumption that l1 ¥ pl3, on the Breuil-Kisin side we have

ul1E2 � S1puea12, u
l1E1q � 0 mod upl3 .

With what remains, we can see that the two equations are equivalent in
the same way as in 8.2.6. It is still true that p2 � 0 mod πpl3 . So we have
πe � prE1spπq � 0 mod p2 (beware that rE1puqs evaluated at u � π is
rE1spπq). With no more difficulty than in the case n � 2 one shows, using
l1 ¥ pl3, that pap13q� � pa�13qp mod πl3 , pap23q� � pa�23qp mod πl3 and

�
uea13 � a12E1 � uea12 � ul1E1 � ue�pp�1ql1ap12

upl2
ap23

�� �
πea�13�a�12rE1spπq� πea�12 � πl1rE1spπq � πe�pp�1ql1ap12

πpl2
pa�23qp mod πpl3 .

This gives the result.
We now prove that the congruence a12 � ul1�l2a23 mod ul3 , in the

Breuil-Kisin side, is implied by the others. We first observe that by the
Breuil Kisin congruence in E, and since ap23 � 0 mod ul3 , we have

a12E1 � �ue�pp�1ql1ap13 mod ul3 .

So, using ap13 � a23
ap12
ul2

mod ul3 , it follows that

a12E1 � �ue�pp�1ql1a23
ap12
ul2

mod ul3 . (8.7)

But if we divide uea12 � ul1E1 � ue�pp�1ql1ap12 mod ul2p by ul2 , and we
consider what we obtain modulo ul3 , we get

�ul1�l2E1 � ue�pp�1ql1 a
p
12
ul2

mod ul3 .

Putting this congruence inside (8.7) one gets the claim. Finally the sets of
congruences on the left is equivalent to the set of congruences on the right.
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8.4. Five lemmas

The lemmas in this subsection complete the proof of Theorem 8.3.3.
We use all the notations introduced in the statement and the proof of the
theorem.

8.4.1. — Lemma. Modulo πpl3 , we have:

v12 � 1
πpl2

�
pa12 � πl1 � p

πpp�1ql1
ap12, σ1ppa12,�πl1q � σ1

�
pa12 � πl1 ,

p

πpp�1ql1
ap12

�
, 0, . . .

	
.

Proof. — We will compute πpl2v12 � pra12s � rπl1s � Tprπl1 s{πpl1 rpa12qps
modulo πppl2�l3q. Since vpa12q ¥ l2{p, we obtain vpSipra12s, ra12sqq ¥ l2p

i�1

for each i P N. For i ¥ 3, we have l2pi�1 ¥ l2p
2 ¥ pl2 � pl3, hence

pra12s �
�
pa12, p1� pp�1qpa12qp, �pp�1pa12qp

2
, . . .

	
P xW pR{πppl2�l3qRq,

with vp�q ¥ 0. Note that

vppp�1pa12qp
2q ¥ epp� 1q � pl2 ¥ l3pp� 1q2 � pl2 ¥ pl2 � pl3

so finally

pra12s �
�
pa12, p1� pp�1qpa12qp, 0, . . .

� P xW pR{πppl2�l3qRq.
We now compute:

pra12s � rπl1s
� �

pa12 � πl1 , p1� pp�1qpa12qp � σ1ppa12,�πl1q, S2ppra12s,�rπl1sq, . . .
�
.

Using the minorations vppa12q ¥ e, vp1� pp�1qpa12qp ¥ l2, vpπl1q � l1, we
obtain Sippra12s,�rπl1sq � 0 in R{πppl2�l3qR.
vpσ2ppa12,�πl1qq ¥ pp2 � 1ql1 � e

¥ pp2 � 1ql1 � pp� 1ql1 � pl1 � pp2 � 2ql1 ¥ pl2 � pl3

so finally

pra12s � rπl1s � �
pa12 � πl1 , p1� pp�1qpa12qp � σ1ppa12,�πl1q, 0, . . .

�
.

The last term contributing to v12 is

Tprπl1 s{πpl1 rpa12qps

�
�
pπl1

πpl1
pa12qp, p1� pp�1qpa12qp, 0 . . .



P xW pR{πppl2�l3qRq.

We add up and we obtain the lemma. �
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8.4.2. — Lemma. In xW pR{πpl3Rq, we have the equality:

Tv12rpa23qps

�
� pa23qp

πpl2

�
pa12 � πl1 � p

πpp�1ql1
pa12qp

	
,
pa23qp
πpl2

σ1
�
pa12,�πl1

�
, 0, . . .



.

Proof. — Now we can compute, in xW pR{πpl3Rq this time:

Tv12rpa23qps �
� pa23qp

πpl2

�
pa12 � πl1 � p

πpp�1ql1
pa12qp

	
,

pa23qp
πpl2

σ1
�
pa12,�πl1

�� pa23qp
πpl2

σ1

�
pa12 � πl1 ,

p

πpp�1ql1
pa12qp

	
, 0, . . .



.

We simplify a little bit. Using the identity σ1px, yq � σ1px,�y�xq, we get

σ1

�
pa12 � πl1 ,

p

πpp�1ql1
pa12qp

	
� σ1

�
pa12 � πl1 ,� p

πpp�1ql1
pa12qp � πl1 � pa12

	
.

We use the inequality vpσ1pa, bqq ¥ minppp�1qvpaq�vpbq, pp�1qvpbq�vpaqq
from Lemma 8.1.2(4). In our case a � pa12 � πl1 has valuation l1 and
b � � p

πpp�1ql1 pa12qp � πl1 � pa12 has valuation at least pl2, and we find

v

� pa23qp
πpl2

σ1pa, bq


¥ l3 � pl2 �min

�pp� 1ql1 � pl2, l1 � pp� 1qpl2
� ¥ pl3

so this term vanishes. Finally we obtain the lemma. �

8.4.3. — Lemma. We have the following equalities in xW pR{πpl3Rq:
pra13s � ra12s � Tv12rpa23qps

� ppa13 � a12, pa13qp � σ1ppa13,�a12q, 0, . . . q

�
� pa23qp

πpl2

�
pa12 � πl1 � p

πpp�1ql1
pa12qp

	
,
pa23qp
πpl2

σ1
�
pa12,�πl1

�
, 0, . . .



� pc0, c1, c2, . . . q

with

c0 � pa13 � a12 � pa23q
p

πpl2

�
pa12 � πl1 � p

πpp�1ql1 pa12qp
�

c1 � pa13qp

and ci � 0, i ¥ 2.
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Proof. — We have

pra13s � ra12s
� ppa13, pa13qp, 0, . . . q � pa12, 0, . . . q
� ppa13�a12, pa13qp�σ1ppa13,�a12q, σ2ppa13,�a12q, . . . q PxW pR{πpl3Rq.

Recall from Lemma 8.1.2(4) that

vpσ2pa, bqq ¥ min
�pp2 � 1qvpaq � vpbq, pp2 � 1qvpbq � vpaq� .

Using this we see immediately that σ2ppa13,�a12q � 0 mod πpl3 so that

pra13s � ra12s � ppa13 � a12, pa13qp � σ1ppa13,�a12q, 0, . . . q P xW pR{πpl3Rq.
So c0 is as in the statement and

c1 � pa13qp � σ1ppa13,�a12q � pa23qp
πpl2

σ1
�
pa12,�πl1

�
� σ1

�
pa13 � a12,�pa23qp

πpl2

�
pa12 � πl1 � p

πpp�1ql1
pa12qp

	

.

Then we have vpσ1ppa13,�a12qq ¥ e� pp� 1ql2{p ¥ pp� 1ql1 ¥ pl3,

v
�
pa23q

p

πpl2
σ1

�
pa12,�πl1

� 	 ¥ l3 � pl2 � l1pp� 1q � e� l2{p ¥ pl3,

v
�
σ1

�
pa13 � a12,� pa23q

p

πpl2

�
pa12 � πl1 � p

πpp�1ql1 pa12qp
			

¥ l1{p� pp� 1ql3 ¥ pl3.

�

8.4.4. — Lemma. For u13 � pu0, u1, . . . q, the condition

pra13s � ra12s � Tprπl1 s{πpl1 u13 � Tv12rap23s � 0 mod πpl3 .

implies in R{πpl3R:
c0 � p

πpp�1ql1 u0

c1 � u0 �
�

p
πpp�1ql1

�p
u1

σ1pc1,�u0q � u1 � 0.

Proof. — Since prπl1 s
πpl1

� �
p

πpp�1ql1 , 1, 0, . . .
�
modulo πpl3 , then

T prπl1 s
πpl1

u13 �
� p

πpp�1ql1

�
u13 � V u13 mod πpl3 .
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Then by the condition in the statement it follows� p

πpp�1ql1

�
u13 � �V u13�pc0, c1, 0, . . . q � �p0, u0, u1, . . . q�pc0, c1, 0, . . . q.

Remark that vpc0q ¥ l2
p and vpc1q ¥ l3{p. Also note that by Remark 8.3.2

it follows that vpuiq ¥ l3{p, for all i ¥ 0. We deduce:� p

πpp�1ql1

�
u13

�
�
c0, c1 � u0, σ1pc1,�u0q � u1,�u2, . . . ,�uk, 0, . . .

	
P xW pR{πpl3Rq

where uk is by definition the last nonzero term in u13 and �uk occurs here
at the pk � 1q-th place. On the other hand,� p

πpp�1ql1

�
u13

�
�

p

πpp�1ql1
u0,

� p

πpp�1ql1

	p
u1,

� p

πpp�1ql1

	p2

u2, . . . ,
� p

πpp�1ql1

	pk
uk, 0, . . .



where here the term involving uk occurs at the k-th place. This is not
possible if k ¥ 2. Hence k ¤ 1 and u13 � pu0, u1, 0, . . . q P xW pR{πpl3Rq.
And we obtain the expected formulas. �

8.4.5. — Lemma.We have u1 � 0. Therefore u0 � ap13 and the condition
of the previous lemma is equivalent to the congruence:

p

πpp�1ql1
ap13 � pa13 � a12 � ap23

pa12 � πl1 � p
πpp�1ql1 a

p
12

πpl2
mod πpl3 .

Proof. — We have u0 � c1 �
�

p
πpp�1ql1

	p
σ1pc1,�u0q. Since c1 divides

σ1pc1,�u0q P R{πpl3R, u0 � c1u
1
0 with vpu10q ¥ 0. Write β � c1

�
p

πpp�1ql1

	
then

c0 � β �
� p

πpp�1ql1

	
βpσ1p1, u10q

and vpβq ¥ vpc1q ¥ l3{p. We obtain

β � c0 �
� p

πpp�1ql1

	
σ1p1, u10qpc0 �

� p

πpp�1ql1

	
βpσ1p1, u10qqp

� c0 �
� p

πpp�1ql1

	
σ1p1, u10qcp0 P R{πpl3R.
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Recall that c0 � pa13 � a12 � pa23q
p

πpl2

�
pa12 � πl1 � p

πpp�1ql1 pa12qp
�
. Hence

cp0 � �ap12 P R{πpl3R. Now we come back to the congruence

pa12 � πl1 � p

πpp�1ql1
pa12qp � 0 mod πpl2 .

If e�vpa12q ¤ e�l1pp�1q�pvpa12q then vpa12q ¥ l1 and ap12 � 0 P R{πpl3R.
If e � vpa12q ¡ e � l1pp � 1q � pvpa12q, then e � l1pp � 1q � pvpa12q ¥
minppl2, l1q and

�
p

πpp�1ql1

	
ap12 � 0 P R{πpl3R. Hence β � c0 P R{πpl3R.

Since β �
�

p
πpp�1ql1

	
c1, we obtain the lemma. �

8.5. Conclusion

The case l1   pl3 excluded in Proposition 8.3.3 shows the complexity of
the ramification. To achieve this case, we should compute the integrality
conditions with matrices with non-Teichmüller entries (see the introduction
of Section 8). More generally, for n ¥ 4, in order to compute the Breuil-
Kisin modules of Kummer groups, we need to define adapted liftings of
parameters to R. In view of Theorem 4.2.2, these choices should be related
to Epuq mod pn in some way.

We have seen that any µ-matrix has to satisfy the condition UA{LA ¥ 0.
This condition is not present in the context of the classification of Kummer
group schemes. And in the case n � 2 and n � 3 (with l1 ¥ pl3 and
matrices with Teichmüller entries) we have seen that in fact this condition
is consequence of the others. We do not know if we could remove this
condition in the classification of µ-matrices.
Let us emphasize that the explicit formulas for Kummer subgroups are

relevant not only in the perpective of classification of Hopf orders of rank
pn ([8], [13]) but also for the computation of dimension and irreducible
components ([6],[14]) of Kisin’s variety parametrizing some group schemes
over OK ([17]). At last, Kummer group schemes could be useful to give an
explicit form for Breuil-Kisin’s equivalence of categories between pMod {Sq
and the category of finite flat group schemes of p-power order.
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