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MODELS OF GROUP SCHEMES OF ROOTS OF UNITY

by A. MEZARD, M. ROMAGNY & D. TOSSICI

ABSTRACT. — Let O be a discrete valuation ring of mixed characteristics
(0, p), with residue field k. Using work of Sekiguchi and Suwa, we construct some
finite flat Og-models of the group scheme pyn g of p™-th roots of unity, which
we call Kummer group schemes. We carefully set out the general framework and
algebraic properties of this construction. When k is perfect and Ok is a complete
totally ramified extension of the ring of Witt vectors W (k), we provide a parallel
study of the Breuil-Kisin modules of finite flat models of upn 5, in such a way that
the construction of Kummer groups and Breuil-Kisin modules can be compared.
We compute these objects for n < 3. This leads us to conjecture that all finite flat
models of p,n g are Kummer group schemes.

RESUME. — Soit O un anneau de valuation discréte de caractéristique mixte
(0, p), de corps résiduel k. Utilisant un travail de Sekiguchi et Suwa, nous construi-
sons des modeles finis plats sur Ox du schéma en groupes p,n i des racines
p™-iémes de 'unité, que nous appelons schémas en groupes de Kummer. Nous
développons soigneusement le cadre général et les propriétés algébriques de cette
construction. Lorsque k est parfait et Ok est une extension compléte totalement
ramifiée de 'anneau des vecteurs de Witt W(k), nous étudions en parallele les
modules de Breuil-Kisin des modeles finis plats de uyn g, de telle maniere que les
constructions des groupes de Kummer et des modules de Breuil-Kisin peuvent étre
comparées. Nous calculons ces objets pour n < 3. Cela nous méne a conjecturer
que tous les modeles finis plats de upn i sont des schémas en groupes de Kummer.

1. Introduction

1.1. Context. Let k be a perfect field of characteristic p, W (k) its ring of
Witt vectors, Ko the fraction field of W (k), K/Kj a finite totally ramified
field extension, and O its ring of integers. The aim of the present paper is
the determination of the models over O of the group scheme p,» i of roots
of unity, or what is the same by Cartier duality, of the cyclic group scheme

Keywords: group schemes, roots of unity, Breuil-Kisin module.
Math. classification: 14L.15.



1056 A. MEZARD, M. ROMAGNY & D. TOSSICI

(Z/p"Z) k. Apart from the intrinsic interest of the problem, a first motiva-
tion for doing this lies in the study of the representations of the absolute
Galois group of K. Indeed, finite flat group schemes and p-divisible groups
are extremely important examples of crystalline representations. Work of
Fontaine, Breuil and Kisin has culminated into a fairly nice description
of these groups using modules with semilinear Frobenius. This description
remains however very abstract and many arithmetico-geometric properties
of the group schemes do not have an easy translation in terms of modules.
Thus, one is in search of concrete examples witnessing the constructions
and conjectures of the general theory, like the filtrations defined by Abbes-
Saito [1] and Fargues [10]. We wish to provide such explicit examples and
test these general constructions.

Another important motivation is to understand the reduction of Galois
covers of K-varieties. In the case of covers of curves, it is visible already
for isogenies of elliptic curves (Katz-Mazur [15]) but also in higher genus
(Abramovich-Romagny [2]) that it is necessary to let degenerate, along
with the varieties, also the Galois group of the covers. The existence of
such group degenerations is studied more precisely in [23] and [30]. In the
particular case of cyclic covers, this leads to the question of understanding
the models of Z/p"Z. Here it is worth emphasizing that whereas in the
context of Galois representations one is by choice sticking to the original
field K, in the context of reduction of covers it is natural to allow finite
extensions K’/K. This enhances the importance of cyclic K-group schemes,
since any finite flat commutative group scheme becomes isomorphic to a
product of such after a finite field extension.

A third motivation comes from the problem of finding an explicit descrip-
tion of the Hopf algebras of group schemes over a discrete valuation ring
with prescribed generic fiber G, in other words the Hopf orders of the alge-
bra K[G]. The most studied and best-known case is that of G = p,n . Go-
ing beyond the Tate-Oort classification [29], work in this trend is due mainly
to Larson [18], Greither [12], Byott [5], Underwood [32] and Childs [7]. As
a result, one has a complete classification of Hopf orders for n = 1,2 and
a wealth of examples for n = 3. One difference between our approach and
some of these constructions is that we shall find descriptions which offer in-
formation about the cohomology of the associated group schemes. Another
important feature of our constructions is that they require no assumption
on the discretely valued field K, whereas the results obtained by the above
authors are valid for K complete, with perfect residue field, containing a
primitive p™-th root of unity.
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1.2. Our approach. In this text, building on work of Sekiguchi and Suwa,
we present a family of finite flat models of p,» x which we call Kummer
group schemes. For this, we consider models of (G, k)" constructed by suc-
cessive extensions of affine, smooth, one-dimensional models of G, g with
connected fibres, called filtered group schemes. Kummer group schemes are
defined as the kernels G of some well-chosen isogenies £ — J between fil-
tered group schemes, and their name comes from the fact that the exact
sequence 0 > G — & —» F — 0 is an integral model of the usual Kum-
mer isogeny. This sequence is especially well-suited for the description of
torsors under the group schemes at hand, which as we said before is one
of our motivations. We also point out that the isogenies are given by ex-
plicit equations, and hence so are the kernels. We formulate the following
conjecture:

CONJECTURE. — Any model of pyn g over O is a Kummer group
scheme.

Our aim is to give strong evidence for this statement. We remark that this
conjecture is true, without assuming the discrete valuation ring complete
with perfect residue field, in the case n < 2 (for n = 1 see e.g. [33], discus-
sion after Theorem 2.5, and for n = 2 see [31]). In order to explain why we
think it is true in general and what we actually do, let us first consider the
category of finite flat models of p,» i. Using scheme-theoretic closures, it
is not hard to see that any morphism G — G’ between finite flat O g-group
schemes factors as the composition G - G/N — H — G’ of the quotient
by a finite flat subgroup scheme, a morphism which is an isomorphism on
the generic fibre (a so-called model map) and the closed immersion of a
finite flat subgroup scheme. Models of ji,» g are special because they have
a unique (finite, flat) subgroup and quotient of a given order. Thus the
category of models of u,» x may be completely described by the subcat-
egory of groups with model maps as morphisms, which is just a partially
ordered set (%, =), and the two families of functors Q;, S; : €, — %; given
by the finite flat quotient of degree p”T1 %, and the finite flat subgroup of
degree p"*t1=¢ forie {1,...,n+1}.

Now let us describe what we do. As we said, we take up and extend a
construction of Sekiguchi and Suwa, and use it to produce models of pin,
the Kummer group schemes. These group schemes are parametrized by
matrices with coefficients in the ring of Witt vectors W (Og). The choice
of a uniformizer 7w for Ok allows to single out a certain set .#,, of upper
triangular matrices with an interesting structure: it is embedded in a bigger
set of matrices endowed with a non-associative product, giving rise to a
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1058 A. MEZARD, M. ROMAGNY & D. TOSSICI

natural order >. This set has also operators U* and £? that take a matrix
to its "upper left" and "lower right" square submatrices.

Then, we study Breuil-Kisin modules of models of y,» k. They can be
identified with u-integral lattices of the ring of Laurent series W, (k)((u)),
where k is the residue field of K. The set %, of lattices is ordered by
inclusion and is endowed with functors K;,I; : %, — %, given by the
kernel and image of the endomorphisms p” 1% and p*~! of a given lattice.
The lattices have unique distinguished systems of generators whose p-adic
coeflicients can be put together into an upper triangular matrix. In this
way, we obtain a set ¢, of matrices with coefficients in k((u)), with a non-
associative product very similar to that of ., and giving rise to a natural
order >. This set also has functors U* and £?.

Although not quite “isomorphic”, the partially ordered sets (%,,>=),
(M, >) and (%,,>) with their pairs of functors have strong analogies.
There are natural functors .#,, — %, — ¥, given by mapping a matrix to
the Kummer group scheme it defines, and then to the Breuil-Kisin module
of that group. The second functor is an equivalence, constructed in [16].
The basic idea to prove the conjecture above is to compute the Breuil-Kisin
modules of Kummer groups and check that all modules can be obtained
in this way. Unfortunately, there is no direct way to compute Breuil-Kisin
modules. However, computations for n = 2 (done by Caruso in [31] Appen-
dix A) and n = 3 (done in the present article) show a surprising phenome-
non: it seems that if we replace 7 by w in the matrix of a Kummer group,
we obtain the matrix of its Breuil-Kisin lattice. In fact, we set up a precise,
nontrivial dictionary that indicates how to translate the congruences in a
discrete valuation ring of characteristic O on one side, into congruences in
a discrete valuation ring of characteristic p on the other side. The reader
may be inspired by a look at the tables in 8.2.6 (comparison for n = 2) and
8.3.5 (comparison for n = 3 under a simplifying assumption). She/he will
see for her/himself how striking the correspondence is. However, we wish
to say that writing the dictionary already for n = 3 in the general case
seems challenging.

Finally we observe that in particular we prove that Breuil-Kisin modules

w parameters, as conjectured, in [13]

of models of p,» are classified by
and [8], more generally for all models of a fixed group scheme of order p".
Moreover the Kummer group schemes we constructed form a family with

exactly this number of parameters.

1.3. Summary of contents. Here is a short overview of the contents
of the article; each section starts with a more detailed introduction. The
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article is divided in two parts written to be readable independently (to a
reasonable extent). The first part (§§2-5) is devoted to Breuil-Kisin Theory
over a complete discrete valuation ring with perfect residue field. We apply
that theory in order to parametrize the models of j,» in terms of Breuil-
Kisin modules (§2). Then we explain the algebraic structure (called a loop)
of a certain set of matrices (§3) allowing us to rewrite Breuil-Kisin modules
in matricial terms (§4). The main result of this first part is Theorem 4.2.2
which is a computable interpretation of Breuil-Kisin Theory (§4.2). The
second part (§§6-8) is devoted to Sekiguchi-Suwa Theory over a general
discrete valuation ring of unequal characteristics. We recall the construction
of filtered group schemes and formalize it in matricial terms (§6). Then we
describe the conditions for certain model maps of filtered group schemes to
be isogenies, whose kernels are by definition the Kummer group schemes
(§7). Finally we proceed with the explicit computation of models of 1,3 (§8)
with a comparison of the congruences coming from Breuil-Kisin Theory and
Sekiguchi-Suwa Theory (8.2.6 an 8.3.5).

1.4. Acknowledgements. We thank Xavier Caruso, Marco Garuti,
Noriyuki Suwa and Angelo Vistoli for interesting conversations related to
this article. We are also grateful to Christophe Breuil for valuable com-
ments on the genesis of the classification of finite flat group schemes and
to Lindsay Childs who kindly sent us a version of the paper [13]. We thank
the referee for his careful reading which allowed to correct several inaccu-
racies. The first and second authors especially enjoyed a stay in the Scuola
Normale Superiore di Pisa where part of this work was done. The third
author had fruitful stays at the MPIM in Bonn, at the IHES in Bures-sur-
Yvette, and spent some time in Paris to work on this project invited by the
University Paris 6, the University of Versailles Saint-Quentin and the THP,
during the Galois Trimester. The three authors also spent a very nice week
in the CIRM in Luminy. We thank all these institutions for their support
and hospitality.

2. Breuil-Kisin modules and p-lattices

In this section, we recall the description due to Breuil and Kisin of the
category of finite flat group schemes (understood commutative, of p-power
order) in terms of modules with Frobenius. Then, we specialize to the
subcategory of models of the group scheme p,» of roots of unity.
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1060 A. MEZARD, M. ROMAGNY & D. TOSSICI

We fix the following notations. Let k be a perfect field of characteristic p,
W = W (k) the ring of Witt vectors with coefficients in k, and & = W{[u]].
We write W,, = W, (k) the ring of Witt vectors of length n and &,, =
Wy [[u]]. The rings & and &,, are endowed with a ring endomorphism ¢
which is continuous for the u-adic topology, defined as the usual Frobenius
on W, (k) and by ¢(u) = uP. Let Ky be the fraction field of W (k), let K /K
be a totally ramified extension of degree e and O its ring of integers. We fix
a uniformizer 7 of K and denote by E(u) its minimal polynomial over Ky
and v the p-adic valuation with v(7) = 1. We always use the phrase finite
flat group scheme as a shortcut for commutative finite flat group scheme
of p-power order. We denote by (Gr/Og) the corresponding category.

2.1. Breuil-Kisin modules of finite flat group schemes

2.1.1. — THE BREUIL-KISIN THEOREM. In recent papers, Breuil and
Kisin have proven a classification theorem for finite flat O g-group schemes,
in terms of the category (Mod /&) described as follows:

e the objects of (Mod /&) are the finitely generated G-modules 9t of
projective dimension 1, killed by some power of p, and endowed with
a ¢-semilinear map ¢on : MM — M such that E(u)M is contained in
the G-module generated by ¢on ().
e the morphisms in (Mod /&) are the G-linear maps compatible with
@.
For any 9 € (Mod /&), the map ¢y is called the Frobenius and most often
written simply ¢. Note that to ¢ is associated a linear map ¢*9M — M,
where ¢*M = M s, ©. The classification of Breuil and Kisin is the
following:

2.1.2. — THEOREM. There is a contravariant exact equivalence of cat-
egories (Gr/Ok) — (Mod /6).

One may compose with Cartier duality to get a covariant equivalence,
and in this paper this is what we will do.

The category (Mod /&) was introduced in [3]. To be more precise, Breuil
required moreover that the underlying G-module of an object (Mod /&)
should be a finite direct sum of modules &/p™&. He conjectured the ex-
istence of an equivalence between (Mod /&) and the category of finite flat
group schemes whose p"*-kernels are finite flat for all m, and he proved the
conjecture for group schemes killed by p, when p > 2. After that, Kisin re-
alized that arbitrary finite flat group schemes could be taken into account

ANNALES DE L’INSTITUT FOURIER
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by requiring the underlying modules merely to have projective dimension 1,
and he proceeded to prove the conjecture in general (see [16], Thm 0.5) for
p > 2. Later Lau [19] and Liu [20] independently proved that the statement
also holds for p = 2, which in fact was the original motivation of the note
of Breuil [3].

For the convenience of the reader, here is a very rough sketch of how
the equivalence of the theorem works. Let .S denote the p-adic completion
of the divided power envelope of W [u] with respect to the ideal generated
by E(u). There is a natural inclusion & — S but one has to notice that
the ring S is much more complicated than &. Breuil introduces a category
(Mod /S) whose objects are S-modules with a 1-step filtration and a semi-
linear Frobenius. On the syntomic site of the formal scheme Spf(Og), all
finite flat group schemes define abelian sheaves. Breuil constructs another
abelian sheaf (‘)E,“jr This sheaf plays the role of a sort of dualizing object:
Breuil shows that there is a contravariant equivalence (Gr/Og) — (Mod /S)
that takes a group scheme G to the module Hom(G, chfl;), with a quasi-
inverse that takes a module M to the group scheme that represents the
syntomic sheaf X — Hom(M, O™ (X)). Now there is a covariant functor
(Mod /&) — (Mod /S) given by tensoring with the map ¢ : & — S. Kisin
proves that for any M € (Mod /S) there is a unique sub-&-module 9t ¢ M
such that E(u)9 c {(p(M)) = M. Moreover we can recover M from this
submodule in the sense that M ~ M®e 4 S so that (Mod /&) — (Mod /S)

is an equivalence.

2.1.3. — GROUP SCHEMES KILLED BY p". The modules killed by p"
correspond to the group schemes killed by p™. We will use a somewhat
different description of the full subcategory of (Mod /&) of modules killed
by p™, based on the following lemma.

2.1.4. — LEMMA. Let 9 be an &-module endowed with a ¢-semilinear
map ¢ : M — M such that coker(p* M — M) is killed by E(u). Assume
that M is killed by p™. Then 9 is an G-module of projective dimension 1
if and only if M is a finite &, -module without u-torsion.

Proof. — Tt follows from [16], Lemma 2.3.2 that 901 has projective dimen-
sion 1 if and only if it is an iterated extension of finite free &/p&S-modules.
By induction, it is immediate that this is equivalent to the fact that 91 is
a finite &,,-module without u-torsion. O

Therefore, the full subcategory of (Mod /&) of modules killed by p" is
the category (Mod /&),, defined as follows:

TOME 63 (2013), FASCICULE 3



1062 A. MEZARD, M. ROMAGNY & D. TOSSICI

e the objects of (Mod /&),, are the finite &,,-modules M with no u-
torsion endowed with a ¢-semilinear map ¢ : 91 — 91 such that
coker(¢* M — M) is killed by E(u).

e the morphisms in (Mod /&),, are the &,-linear maps compatible
with ¢.

We now record some basic facts concerning (Mod /&).,,.

2.1.5. — LEMMA. For any object M of (Mod /&),, the map ¢*9M — M
is injective.

Proof. — This is [17], Lemma 1.1.9. O

2.1.6. — LEMMA. The category (Mod /&),, has kernels, cokernels, im-
ages and coimages. Kernels and images are given as the kernels and images
in the category of &-modules.

Proof. — Let us prove first that (Mod /&),, has kernels and images. For
a morphism f : 9 — N, let K and J be the kernel and the image in
the category of G,,-modules. It is easy to see that R and J are finite &,,-
modules, stable under ¢, with no u-torsion. Also note that the map f' :=
O*f 1 O*IM — ¢*MN has kernel ¢p*R (since ¢ is flat) and image ¢*J. The
main point is to see that F(u) kills the cokernels of the maps ¢*& — &
and ¢*J — J. We start with the kernel. For any x € 8 we have x € 9
and since the cokernel of ¢*9t — M is killed by E(u) there exists y € I
such that E(u)z = ¢(y). Then f’(y) maps to 0 in O and hence is 0 in
O*MN. It follows that y € ¢* R, as desired. We come to the image. Let x € J
so that © = f(y) for some y € 9. Then there exists z € ¢* such that
E(u)y = ¢(z). Therefore E(u)x = ¢(f'(2)) with f'(2) € ™7, as desired.

By Theorem 2.1.2, there is on (Mod /&),, a contravariant exact involu-
tive equivalence given by Cartier duality. It follows that (Mod /&), has
cokernels and coimages. 0

2.1.7. — Remark. In general, for a morphism f : 9T — 91 the ob-
jects coker(ker(f)) and ker(coker(f)) are not isomorphic. In the category
(Mod /&), this is not so easy to see, because we have not worked out the
description of cokernels. Things are a little easier in the category of finite
flat group schemes. There, the kernel of a map u : G — H is the scheme-
theoretic closure of the kernel of the generic fibre ux : Gx — Hg inside G,
and the cokernel is the Cartier dual of the kernel of the dual of u. For ex-
ample, if R contains a primitive p-th root of unity and v : (Z/pZ)r — pp.r
is an isomorphism on the generic fibre, then ker(u) = coker(u) = 0 even
though w is not an isomorphism.
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2.2. Lattices of W, ((u))

We shall see in 2.3 that the Breuil-Kisin modules of models of y1,» can be
identified with lattices in the W, [[u]]-module W,,(()). For this reason, it is
useful to collect some basic facts on these lattices; knowing their generating
systems will be particularly important in Section 4. Since the lattices we
are interested in are Breuil-Kisin modules, for simplicity we keep the letters
M, N (etc.) to denote them.

2.2.1. — DEFINITION. A lattice 2 is a finitely generated sub-W,,[[u]]-
module of W, ((u)) such that MM[1/u] = W, ((u)). We denote by .Z, the
partially ordered set of lattices with inclusions between them. If a lattice
Mt is contained in W, [[u]], we say that it is positive and we write 9t > 0.

Note that it is simpler here not to follow british mathematical usage, so
we say positive instead of non-negative.

For any two lattices 9,0, there exists a € N such that u™*91 < 9. We
define the volume (or index) of M with respect to M as

VOl(m, m) _ una—lg(ﬁﬁ/ua“ﬂ)

where lg denotes the length as a W,[[u]]-module. Using the fact that
lg(M/u*N) = na, one sees that the definition is indeed independent of
a. Although our base ring is not a Dedekind ring, this is the analogue of
the symbol x (91, 91) of [10], déf. 5 and [27], chap. III, no. 1. The volume
(or index) of M is defined by vol(9M) = vol(IM, W,,[[u]]), and we have
vol(9, 91) = vol(9M)/ vol(N).

2.2.2. — KERNELS AND IMAGES OF p. For any lattice 9t and any integer
i with 1 < i < n+ 1, we define M[i] = ker(p"T!=% : M — M) and
M(i) = im(p'=1 : M — M). We have M (i) = M[i] and these submodules
fit into compatible decreasing filtrations:

M= M1] 2 - 2 Mn] 2 Mr+1]=0
M= M1) 2 - 2 Mn) 2 Mh+1)=0.

For any two submodules 9,0V of W,,((u)), consider the ideal
M :N) = {z e W,[[u]], 20 < N}.
Let 1 <4< j <n+1 be integers. One can see easily, by inverting u, that

(5] = M[]) = (M(F) : M(3)) = p’~ Wal[u]].

TOME 63 (2013), FASCICULE 3
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Besides, since 9t has no u-torsion then 9[i] N M[7][1/u] = M[j] and the

map
Ma]/M[5] — M1/ ulMG][1/u]
is injective. Since
M][1/u] = p"~ Wa((w))
and
P ()P Wal(w) = Wimi((w),

this proves that 9t[¢]/9[;] is canonically a lattice of W;_;((u)). Exactly the
same arguments show that 91(¢)/9(j) is canonically a lattice of W;_;((u)).
In particular, for j = n + 1 this says that 9[¢] and (i) are lattices of

Wn+17i((u))'

2.2.3. — GENERATING SETS. For each z € k, let [x] € W (k) be its
Teichmiiller representative (see 3.1 for a reminder on this notion). The
map x — [z] is the unique multiplicative section of the projection onto the
residue field. If e1,...,e, is a set of generators for 9, then we will call
T-combination a linear combination tye; + - - - + t,e, where t1,...,t, are
Teichmiiller representatives. In the following result, and in other places of
the paper, we use the same letter for the valuation of a discrete valuation
ring and for the induced function on its artinian quotients.

2.2.4. — LEMMA. Let M be a lattice of W, ((u)) and let ey, ..., e, be a
system of generators. Let v, denote the p-adic valuation on W,,. Then the
following conditions are equivalent:

(1) For1 < i< n, we have vy(e;) =i — 1 and pe; € {€;11,...,€n).

(2) For 1< i< n, we have M[i] =e;y...,€n).

(3) For 1 <i < n, we have v,(e;) =i — 1 and each element x € M can be
written in a unique way as a T-combination x = [z1]e; + - + [z ]e, with

Proof. — (1) = (2). Set M; = {e;, ..., en). It is obvious that 9; < M(:],
so we only prove the opposite inclusion. Since v,(e;) = ¢ — 1, we have
N;[1/u] = p" W, ((u)). Let = € M[i] and write

/ /
T =x1€1 + -+ €6

for some coefficients =} € W, [[u]]. The fact that pe; € 9,11 implies that
this linear combination may be transformed into a T-combination x =
[z1]er + - + [zn]en. If  # O there exists v minimal such that x, # 0.
Then the assumption that x € D[] gives [z,]e, € M[i] + I, 1. After
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tensoring with W,,((u)) we obtain

P Wa((w) € p W ((w) + 0" Wa((w) = p I WL ()
hence v > i, so that =z € M.
(2) = (3). From M[i][1/u] = p*~ W, ((u)) we deduce by decreasing induc-
tion on 4 that vy(e;) = — 1. Now fix x € M. Since pM[i] < M[i + 1], we
have pe; € {e;11,...,eny for all i. Using this, we may as above write x as
a T-combination z = [z1]e; + -+ + [2,]e, with x; € k[[u]]. Moreover, if
[z1]er + -+ [zn]en = [2h]er + - - + [z}, ]en are two expressions for z, then
([z1] — [#1])e1 € M[2]. From the fact that (9M[2] : M[1]) = pW,,[[u]] it
follows that [z1] — [2]] € pWh41[[u]] and hence 21 — 2} = 0. By induction
we get similarly x; = 2} for all s.

e —

(3) = (1). Since vp(e;) = i — 1, the p-valuation of a nonzero element
[z1]er + - -+ [zn]en is equal to v — 1 where v is the least integer such that
2, # 0. For x = pe; we find v =i + 1, so that pe; € {e;y1,...,€n). |

2.2.5. — DEFINITION. A set of generators eq, ..., e, of a lattice 9 sat-
isfying the equivalent conditions of Lemma 2.2.4 is called a Teichmiiller
basis, or a T-basis for short.

2.2.6. — Remark. Let eq, ..., e, be a T-basis of 9t and for each 1, let [;
be the u-adic valuation of the class of e; in M[:]/M[i + 1] which is a lattice
of k((u)). Then, we have I3 = Iy = -+ = [,. Indeed, by the definition
=1 mod p* with val,(c;) = l;. Therefore pe; =
i1, Since pe; € (i1, .., eny, it

of I;, we have e; = ayp
a;p' mod p*t! and e;11 = aj41p’ mod p
follows at once that I; > 1;11.

2.2.7. — PROPOSITION. Let 9 be a lattice of W,,((u)). Then there
exists a unique T-basis eq,...,e, of the form:

e; = up ™t + [aiia] P’ + [agise] o A+ @] P

where a;; € k[u,u'] is such that deg,(a;j) < l; for all i,j. Moreover, we
have ly = ls = -+ = l,. Finally 9 is positive if and only if l,, = 0 and
a;; € k[u] for all i, 3.

Proof. — Existence: we construct the e; by decreasing induction on i,
starting from ¢ = n. The module 9M[n] is isomorphic via a canonical iso-
morphism to a lattice of Wy((u)) = k((u)), hence generated by ul» for
a unique [, € Z. The preimage via this isomorphism of this generator is
€n = ul"p"_l. For ¢ < n, assume by induction that e;1,...,e, have been
constructed. The module M [¢]/M[i + 1] is again canonically a lattice of
k((u)), generated by u' for a unique I; € Z. Since M[i] < p'W,,((u)), a lift
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in M[7] of this generator may be written in the form

i—1 -1

e; = ulip™t (a1 ] P+ [aiis2] P A -+ [ain] p"

S series - —d Livigh
for some Laurent series a;; € k((u)). Now write a; ;41 = aj ;1 +u'*ta},;

where a2,¢+1 € k[u,u™'] is the truncation of a; ;1 in degrees > l;;1. Re-
placing e; by e; —[a}; ]eit1, and rewriting the p-adic expansion of the tail
e; — [a ;1] p', we can fulfill the condition deg,(a;;+1) < liy1. Applying
the same process to a; ;45 for s =1,...,n —4 we can fulfill the conditions
deg, (a;;) < for all j. This finishes the construction of e;, and by induc-
tion, of ej,...,e,. The elements e; are such that M[i] = {e;,...,e,) by
construction.

Uniqueness: the choice of the generator of M[¢]/M[i + 1] in the previous
induction is normalized by the fact that we are looking for generators e;
with leading coefficients u' p*~!. The choice of the remaining coefficients of
e; is imposed by the condition on the degrees. This proves that the system
€1,...,en is unique. Finally the inequalities between the [; are given by
Remark 2.2.6 and the statement about positivity is obvious. ]

2.2.8. — DEFINITION. The T-basis of Lemma 2.2.7 is called the distin-
guished basis of 1.

2.2.9. — Remark. Let 9 be a lattice with distinguished basis ey, . .., €.
Then there exist series b;; € k[[u]] and a set of equalities

R;: pe; =[bi]eit1 +- -+ [bin-1]en
for 1 < i < n. It can be proven that in fact
<€1,...,€n|R17...,Rn>

is a presentation by generators and relations of 9 as a W,,[[u]]-module.
We will not need this.

2.3. Breuil-Kisin modules of models of ji,» x

We finally specialize to our main object of interest, namely, the finite flat
models of ppn .

2.3.1. — MODELS AND pu-LATTICES. The natural morphisms between
models are the model maps, which are by definition morphisms of R-group
schemes inducing an isomorphism on the generic fibre. Let us see how the
category of models of pi,n i with model maps can be described concretely
in terms of Breuil-Kisin modules.
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Let K be an algebraic closure of K. For any two finite flat group schemes
G, G’ with associated Breuil-Kisin modules 91, ', we have:

Gy ~ G = GE)~G(K) < M[1/u] ~ M[1/u]

where G(K) and G'(K) are viewed as representations of the absolute Ga-
lois group Gal(K/K). The first equivalence is clear, let us explain briefly
the second. If we introduce the Kummer extension K, = U0 K( *J/7),
then a result of Fontaine says that the module 9[1/u] determines the
Gal(K /K, )-representation associated to G (see [11], Remark A.3.4.1). By
a result of Breuil ([4], Theorem 3.4.3), this representation in turn deter-
mines the crystalline Gal(K /K)-representation G(K).

Recall that we are using the covariant equivalence (Gr/Og) — (Mod /&)
given by 2.1.2 and Cartier duality. Thus the G-module associated to the
group scheme ppn g is M = &,, with its usual Frobenius. From this, we
deduce that 901 is the module associated to a model of u,» i if and only if
M[1/u] is isomorphic to &,[1/u] = W, (k)((u)) with its Frobenius. Since
M has no u-torsion, we may then see it as a submodule of W, (k)((u)).
As far as the morphisms are concerned, the model maps correspond to
inclusions between submodules of W, (k)((u)). We are lead to the following
notions.

2.3.2. — DEFINITIONS. A p-lattice is a lattice 9t < W,,((u)) such that
E(u)M c {p(M)> < M, where ¢ is the Frobenius of W,,((u)). We denote
by Z! the partially ordered set of u-lattices with inclusions between them.

The letter ’p’ reminds us of pyn. Note that since a p-lattice 9 is stable
under Frobenius, it is positive, for otherwise there would exist an element
x € M with negative u-valuation and then the valuation of ¢™(z) would
tend to —oo, in contradiction with the finite generation of 9t. What has
been said before means that the Breuil-Kisin classification gives an equiv-
alence of categories between Z# and the category of models of pp» with
model maps.

2.3.3. — KERNELS AND IMAGES OF p. Let G be a model of pp» . For
1 <i<n+1, define:

e G[i] the scheme-theoretic closure of ker(p"*t1=¢: Gx — Gx) in G,
e G(i) the scheme-theoretic closure of im(p'~! : Gx — Gx) in G.
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These are finite flat models of pi,n+1-i. By definition, there are exact se-
quences:

0 —— G[n+2—1] =G G(z) 0
0 Gli] = G(n+2—i) —=0

On the generic fibre, the vertical map p*~! : G — G vanishes on G[n+2—1]
and its image is a subscheme of G[i]. By taking closures, the same is true
everywhere. Therefore, this map induces a morphism of R-group schemes
G(i) — G[i] which is a model map.

Let 9 be the p-lattice associated to G. Starting from the exact sequences
above and using the fact that the Breuil-Kisin equivalence is exact, we see
that 9[7] is the p-lattice of G[i] and M(7) is the p-lattice of G(i). Moreover,
the inclusion M (7) < M[¢] and the model map G(i) — GJ[i] correspond to
each other.

3. The loop of y-matrices

In 2.2, we have seen that lattices have "nice" systems of generators. The
p-adic coefficients of such systems of generators may be put together into
"nice" matrices, called y-matrices. We will come back to this in more detail
in Section 4. In the present section, we focus on the abstract algebra of
the set of p-matrices. This set has a natural operation (A,B) — A« B
whose meaning is that if i : 9T — 91 is an inclusion of lattices, if A is
a matrix associated with a generating system of 9t and if B is a matrix
associated with the inclusion 4, then A # B is a matrix associated with a
generating system of 1. The operation # is unfortunately neither associative
nor commutative. Still, a good surprise is that y-matrices all lie naturally
in a set where the operation # becomes invertible on the left and on the
right; this set plays the same role as the symmetrization of a commutative
monoid. The structure that we obtain, called a loop, was considered by
Manin [21] in his study of rational points on cubic hypersurfaces, essentially
because the analogue of the addition of elliptic curves in higher dimensions
fails to be associative.

The key to everything in this section is the use of p-adic expansions,
which exist as soon as the coefficient ring of the Witt vectors is a perfect ring
of characteristic p. Thus we fix such a perfect ring throughout Section 3.
For simplicity we denote it by the letter k, but note that it need not be a
field. As before, we set W = W (k) and W,, = W, (k).
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Finally we point out that the role of Witt vectors will be very different in
Sections 6 to 8, where we will consider arbitrary Z,)-algebras as coefficient
rings. We will emphasize this in due time.

3.1. p-adic expansions

3.1.1. — p-ADIC EXPANSIONS OF WITT VECTORS. Recall that the ring
structure of W is given by universal polynomials with coefficients in Z
in countably many variables Xg, X1, Xs,... For example, there are poly-
nomials S; = S;(Xo,...,X;) and P; = Pi(Xo,...,X;), for i = 0, giving
the addition and the multiplication of two vectors a = (ag, a1, as,...) and
b = (bg,b1,ba,...) by the rules:

a+b=(S(a,b),S1(a,b),S2(a,b),...),
ab = (Po(a,b), Pi(a,b), Py(a,b),...).

Moreover, since k is perfect all elements have p-adic expansions:

_ _ 1/p 1/p?y 2

a = (ag,a1,az,...) = [ao] +[a;"]p +[as’" |p° + ...

where [z] := (z,0,0,...) is the Teichmiiller lift of z € k. Hence the functions
S; and P; defined by S;(a,b) := S;(a,b)"/?" and P;(a,b) := Pi(a,b)'/?"
satisfy

a+b=[So(a,b)] + [Si(a,b)]p + [Sa(a,b)] p* + ...,

ab = [Po(a, )] + [P1(a,0)] p + [P2(a, )] p* + ...
In fact, we can define functions S; and P; in any number r of variables by
the identities
ai+...+a.=[So(ar,...,a.)]+[Si(a1,...,a)] p+[Sa(as,...,a)]p*+. ..,
ay...ap = [IP’()(ah N ,a,«)]+[]P’1(a1, .. .,aT)]p—i-[IP’g(al, .. .,ar)]p2+. ..

3.1.2. — p-ADIC EXPANSIONS OF SERIES. We wish to extend the formal-

ism of p-adic expansions to the ring of Laurent series W((u)). For this, we

extend the definition of Teichmiiller lifts to elements = € k((u)) as follows:
ifo=3,,_, zju with z; € k, we set
[«] = >} [zj]u’ .
J»—x

Then it is easy to see that for a Laurent seriesa = >, ajul in W((u)),
by writing down p-adic expansions of its coefficients one obtains a p-adic
expansion

a = [ao] + [a1] p + [az] p* + ...
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Let a = Y, ,a;w/ and b= Y, bju’ be Laurent series with coeffi-

cients in W. We extend the definition of S; by setting

1/p*
Si(a,b) = Z S,;(aj,bj)uj = ( Z Si(aj,bj)ujp%>
J»— J»—x0

and one verifies immediately that the formula a +b = 3,_([Si(a,b)]p’
remains valid. Similarly, one extends the definition of S;(a,...,a,) for
Laurent series a; € W((u)) in an obvious way. We now come to products.
There are functions P; such that for any r Laurent series a; = Y.
with coefficients in W we have

i»>—0 asﬁ-ui
ay...qr = []P)o(al, .. .,(lr)] + [Pl(al,. .. ,ar)]p—i- []Pg(al, .. .,ar)]pQ + ...

It is a simple exercise to verify that

]P’l-(al,...,ar) :ZSl( s alvjl"'ath, )’U,Z
J

where the arguments of S; are all the finitely many possible products
a1,j, - - ar,j, indexed by r-tuples (41, ..., j,) such that j; +---+3j, = j. For
example, if a and b are power series (i.e. Laurent series with nonnegative
u-valuation) we have:

}P’i(a, b) = Z Si(aob]’, [N ,ajbo) uj .
J

3.1.3. — A WARNING ON THE USE OF S; AND P;. In the sequel, we
will most often use S; and P; for Teichmiiller elements a; = [z;]. In
this case, we will usually write S;(z1,...,z,) and P;(x1,...,2,) instead

of Si([z1],-..,[=+]) and P;([z1],...,[x,]). This is not dangerous, but for
x,y € k((u)) one must be careful to distinguish between the sum = + y in
k((u)) and the sum [z]+ [y] of their Teichmiiller representatives in W ((u)).
For example, the associativity of the sum of Witt vectors gives for any el-
ements a, b, c € W((u)) the formula S;(a,b,c) = S1(a + b,¢), and here the
sum a + b takes place in W((u)). The reader is invited to compare with
formula 3.1.4(1) below. Among the many formulas relating the S; and the
P;, most of them coming from associativity and distributivity of the sum
and product of Witt vectors, we give a few examples:

3.1.4. — LEMMA. Let a,b,c € k((u)) and let val denote the u-valuation.
We have:
(1) Si(a,b,c) =Si(a,b) +Si(a+b,c).
(2) Si(a,b—a) = Si(a,—b).
(3) val(S;(a,b)) = max(val(a),val(b)) for all i > 1.
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(4) [a][b] = [ab] if a or b is a monomial.
Note that the multiplicativity formula [a][b] = [ab] for a,b € k does not
hold in full generality if a,b € k((u)).

Proof. — (1) This comes from the associativity of the sum of Witt vec-
tors.

(2) It is enough to prove that Si(a,b—a) = Si(a, —b). This can be proven
over 7, where it follows from the formula S (z,y) = %(w” +yP — (x +y)P).

(3) This comes from the fact that if we write a = Y, a;u/ and b = Y bju?,
then S;(a;,b;) = 0 as soon as a; = 0 or b; = 0.
(4) This is clear. O

3.1.5. — p-ADIC EXPANSIONS OF VECTORS AND MATRICES. For the
computations inside lattices, we will use the notations of linear algebra.
The vectors are all column vectors. If A is a rectangular matrix with entries
a;; in k((u)) (for example A could be a column vector), we will denote by
[A] the matrix whose entries are the Teichmiiller representatives [a;;]. Thus
the entries of [A] are (possibly truncated) Witt vectors. We may as above
consider p-adic expansions of matrices with entries in W ((u)), but we will
have no need for this. For us, the most important vector will be

1

which for convenience may denote a vector with finitely, or infinitely many,
coefficients. Thus if z € W,,((uw))™ is a vector with components z1,...,z,
we have:

fapt =@y @ap o A aap T
If the z; are Teichmiiller representatives, then this linear combination is
called a T-combination. Of course, any linear combination can be trans-

formed into a 7T-combination:
3.1.6. — LEMMA. For any rectangular matrix A with entries in W, ((u))

with n columns, there is a unique matrix p(A) of the same size with entries
in k((u)) such that

Ap* = [p(A)]p" .
If the entries of A are power series in u, or Laurent polynomials, or polyno-
mials, then so are the entries of p(A). If A is upper triangular (resp. with
Teichmiiller diagonal entries), then so is p(A).
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Proof. — The equality Ap* = [p(A)]p* is equivalent to finitely many
equalities, one for each line of A. Thus it is enough to consider the case
where A has only one line A = (ay ...a,). Write the p-adic expansion

1 !

= [di]+ [a5]p+ -+ [a,]p

Obviously the desired matrix is p(A4) = (af ...al). The remaining asser-

tions are clear. O

n—1

ap +agp+ -+ app"

There is an algorithmic point of view on the computation of p(A) that
will be useful. In order to explain this, for a coefficient in position (4, j)
in an upper triangular square matrix, let us call the difference j — ¢ the
distance to the diagonal.

3.1.7. — LEMMA. Let & be the set of upper triangular square matrices
of size n with entries in W ((u)) with Teichmiiller diagonal entries. Define
a function F : & — & as follows. Given a matrix A, for i = 1 to n apply
the following rule to the i-th line:

o Flind the first non-Teichmiiller coefficient a; .
e Write the truncated p-adic expansion a;,p*~" = [a} Jp" "' +--- +
[ai.n]p
e Replace a;, by [aj,] and for j > i replace a;; by ai; + [aj;].
After the step i = n has been completed, call the result F(A). Then, for
all k = 0 we have:
e the coefficients with distance to the diagonal < k of the matrix
F*(A) are Teichmiiller, where F'* is the k-th iterate of F.
o FF(A)p* = Ap*.
In particular F"=1(A) = p(A).
Proof. — This is obvious. O

n—1

mod p™.

3.2. The loop of pu-matrices

3.2.1. — QUASIGROUPS AND LOOPS. We start with some definitions
from quasigroup theory, referring to the book of Smith [28] for more details.
A magma is a set X endowed with a binary operation X x X — X,
(z,y) — xy usually called multiplication. A submagma is a subset Y < X
that is closed under multiplication. A quasigroup is a magma where left
and right division are always possible, in the sense that left multiplications
L, and right multiplications R, are bijections. Given x,y € X, the unique
element a such that axz = y is denoted y/x (read “y over z”) and the
unique element b such that xb = y is denoted z\y (read “z into y”). A loop
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(boucle in French, and... loop in Italian) is a quasigroup with an identity
element, i.e. an element e € X such that ex = ze = z for all z € X.
Thus a loop is a group if and only if the operation is associative. A magma
homomorphism is a map f: X — X' such that f(z122) = f(x1)f(z2) for
all x1, 22 € X. Quasigroup homomorphisms and loop homomorphisms are
just magma homomorphisms.

3.2.2. — THE LOOP ¥, ((u)). In Section 4, to lattices of W, ((u)) we
will attach matrices. The matrices coming in this way appear naturally as
objects in a certain loop which we call the loop of p-matrices and denote
by 4, ((u)). As a set, it is composed of the upper triangular matrices of the
form

uht aie2 ais A1n
u?  ag Q2n
M(l,a) =
uln_l Gn—1,n
0 ulr
with 1 = (l1,...,l,) € Z" and a = (ai;)1<i<j<n Where a;; € k((u)). There

is a natural subset ¥, [u,u~!] composed of matrices with coefficients in
k[u,u=t]. In order to keep the notation light, we do not specify the coef-
ficient ring k in the symbols ¥, ((uv)) and ¥, [u,u~!]. Note also that as a
general rule, we write a;; instead of a; ;, unless this can disturb compre-
hension, for example when we write a,p .

If A, B are square matrices with entries in k((u)), we set A * B =
p([A][B]) where p is the map from Lemma 3.1.6. This matrix is char-
acterized by the equality:

[Al[B]p* = [A = B]p" .

By Lemma 3.1.6, if A, B are in %,((u)) resp. in %,[u,u"!], then A * B
also. It is clear that the identity matrix is a neutral element for this mul-
tiplication. Thus the triple (%,((u)), *,Id) is a magma with identity, and
(4, [u,u™t], #,1d) is a submagma. At this point, the reader may wish to
have a look at the shape of the multiplication # in the examples of 3.3
below.

We will now prove that (4, ((u)), *,1d) is a loop.

3.2.3. — PROPOSITION. Let A = M(l, a) and B = M (m, b) be elements
of 4, ((u)).
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(1) Any coefficient in position (i, j) of A+ B with distance to the diagonal
j —t =1 has the form:

terms depending on coefficients a; j» and by )

u™ag; + ulib; + . . A R
* * < whose distance to the diagonal is ' —i' < j — 1.

(2) The maps Ly : B+— A« B and Rp : A+~ A = B are bijections.
Thus, the triple (4,((w)), *,1d) is a loop.

Proof. — (1) The entry of [A][B] in position (3, j) is
j—1
ul [by] + ( > [aik][bkj]) + [aijJu™
k=i+1
The coefficients [a;;] and [by;] in the middle sum have distance to the diag-
onal strictly less than j —i. When applying the algorithm of Lemma 3.1.7
to compute A = B, at each step the entry (i,7) is replaced by itself plus
some terms involving coefficients as; and by of distance to the diagonal
t — s < j — 4. This proves the claim.

(2) The argument is the same for L4 and Rp so we do only the case of L 4.
Assume that A«B = C with A = M(l,a), B=M(m,b),C = M(n,c). We
fix A and C and try to solve for B. We determine its entries by increasing
induction on the distance to the diagonal, called k. For k = 0 it is clear
that we have m; = n; —[;. By induction, using point (1), it follows directly
that the coefficients b;; of distance to the diagonal k are determined by the
entries of A, C' and the coefficients by ;» of lower distance to the diagonal. [

3.2.4. — SOME SUBLOOPS. THE HOMOMORPHISMS U AND L. There
are some important examples of subloops and loop homomorphisms. Of
course ¥, [u,u~!] is a subloop of ¥, ((u)). Another example is the subloop
of matrices with diagonal entries equal to 1. This is in fact the kernel of the
morphism of loops ¢ : 4,((u)) — Z" to the additive group Z" that maps
A to the tuple of its diagonal exponents.

For any square matrix A of size n with entries in some ring, we denote by
UA the upper left square submatrix of size n — 1, i.e. the matrix obtained
by deleting the last row and the last column of A. Similarly we denote by
L A the lower right square submatrix of size n — 1, obtained by deleting the
first row and the first column of A.

3.2.5. — LEMMA. The mappings U : 4,((v)) - %,—1((v)) and £ :
9, (1)) = 9,—1((u)) are commuting loop homomorphisms.

Proof. — Let 7 be the truncation map that takes a vector v with n
components to the vector whose components are the first n—1 components
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of v. Thus myp* is the vector analogous to p* in dimension one less. Then
simple matrix formulas yield:

[U(A * B)] rup” = (U[A * B]) rup” = u([A * B]p*) = nu([A][B] p")
= U[A] - U[B] rup* = [UAJ[UB] rup* = [UA » UB] rp* .

It follows that U(A = B) = UA = UB, that is, U is a loop homomorphism.
Let 7z be the truncation taking a vector v with n components to the
vector whose components are the last n — 1 components of v. Thus 7zp*
is the column vector with components p, p?,...,p" 1. It is still true that
if two square matrices A, B of size n — 1 with coefficients in k((u)) satisfy
[A] 7cp* = [B]rp* then A = B. Then a similar computation as before
shows that [L(A*B)] mop* = [LA=LB]| 74p*, so L is a loop homomorphism.
Finally, the fact that U and £ commute is clear. g

3.2.6. — POSITIVE MATRICES. We say that a matrix A € ¥,((u)) is
positive, and we write A > 0, if its entries are in k[[u]]. (Here, as in
2.2.1, we say positive instead of non-negative for simplicity.) We denote by
9, [[v]] the subset of positive elements of 4,,((u)). It is a submagma, but
not a subloop. Similarly %,[u, v 1] has a submagma %, [u] = %, [u,u"] N

Gnl[u]]-

3.3. Examples

Here is what the operation # looks like for n = 4. The product P = A% B
is given by

1 l
uttme by + w2 agy P13 D14
p— 0 ulztma u'2bog + u™ ags D24
0 0 ulstms u'abgy + u"azy
0 0 0 ylatma
with

P13 = u'tbiz + a1abaz + u™ a1z + Sy (ultbia, uars)
Pag = u'?boy + agzbzy + uM asg + Sy (u'2bas, u? ags)
p1a = utbig + a1oboy + ai3bzs + arau™ + So(ubia, uM2ays)+

+ S1(uh 13, a19bag, u™ arz, Sy (u'tbrg, u™ ars)) + Py (arz2, baz) -

Applying the homomorphism U (Lemma 3.2.5), these formulas contain also
the formulas of multiplication for n < 4.
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3.3.1. — FAILURE OF ASSOCIATIVITY. For n = 2, the loop % is a group:
in fact the multiplication # is the ordinary multiplication of matrices. For
n = 3, the multiplication #* is not associative. Let us check this. We have

whtm yhips + ™2, (A B)3
AxB = 0 ylatme ul2bys + um3ags
0 0 ylstms

with
(A% B)1g = ultbis + a1obas + u™ayz + Sy (ultbia, u™2ars) .
We now examine the coefficients in position (1, 3):
((A# B)» C)iz = ul'™™ g + (ubra + w2 arz)cas
+u" (ullblg + a12bo3 + u™ars + Sy (ubyo, um2a12))
+$; (ull+mlclg, u (ulr by + u™ alg))

and

(A * (B * C))13 =yl (umlclg + biocog + ubi3 + Sl(umlclg, u”zblg))
+aro(u™co3 + u™ba3) +u3 a5
+S; (ull (W™ 1 + u?b1a), u 2 ay)

Using the formula Sq(z,y, 2) = S1(z,y) + S1(x + ¥y, z) from Lemma 3.1.4,
we compute the difference:

(A% B)xC)ig— (A* (B *C)hs
=S (ul1+"3 bio, w2t alg) +$ (ul1+m10127 u™ (uhr by + u™2 alg))
— Sy (u ey, ul bi2)
— Sq (M (W™ ern + u"bia), w2 as)
= (u™ —u™)S; (ullblg,um2a12) .

This is not zero so # is not associative.

However, we see that this is zero on the subloop ker ¢ : %3((u)) — Z2,
which then is a group. Let us verify that for n > 4, the multiplication # is
not associative even if we restrict it to the subloop ker ¢ : % ((u)) — Z*.
We shall check this only for n = 4. We make the following observation:
the multiplication of ¢,,((u)) differs from that of the underlying group of
matrices by terms coming from the operations of Witt vectors, i.e. involving
the sum and product functions S; and IP;. Since the ordinary multiplication
of matrices is associative, the terms of the entries in (A#B)*C and A#(B*C)
that do not involve S; or IP; are equal. Consequently when we question

ANNALES DE L’INSTITUT FOURIER



MODELS OF GROUP SCHEMES OF ROOTS OF UNITY 1077

associativity it is enough to look at the terms that contain S; or PP;. Once
this is said, let us compare the entries in position (1,4) of (A * B) * C' and
A = (B * C). Looking at the above formulas, we see that among the terms
involving S; or P; the coefficient ¢34 is present in ((A * B) * ()14 whereas it
is absent from (A#*(B#*C))14. Then one can easily specialize the parameters
to obtain an example where ((A * B) # C) # ((A* B) = C'). We can also see
that = is not diassociative (i.e. the subloops generated by two elements are
not associative), and hence not a Moufang loop like the loops considered
by Manin in his book on cubic forms [21].

3.3.2. — FORMULAS FOR LEFT AND RIGHT DIVISION. Finally, we let
C = A+ B and give the formulas for A = C/B and B = A\C for n = 3.
We use the notations A = M (1, a), B = M(m,b), C = M(n,c).

The matrix A = C/B is determined by I, = n; —m; for i = 1,2,3 and:

clg —u™ by
g = —— =%

um2
Co3 — u"? " 2hog
ag3 = T
" c13 —u " "Mby3 — 7clru:;;mb” bag — S1(u™ ™ bg, c12 — u™ ™ byg)
13 =

ums
The matrix B = A\C' is determined by m; = n; —; for i = 1,2,3 and:

c12 —u™ " 2a,

bio =
12 "
—
b Ca3 — U™ Pagg
23 = Ul2
cos—u"3 734 —1 —1 —1
b c13 — a1 =28 — B a3 — Sy (e12 — U™ 2arz, u™ 2 arz)
13 =

1
U 1
When C' is the identity matrix, we see that left inverse and right inverse
coincide.

4. Relating lattices and matrices

In this section, we consider matrices adapted to well-chosen systems of
generators of lattices. More precisely, we define subsets

g () € F((w) = Gy (W) © Fu((w))

whose relation to lattices is the following. The set 47 ((u)) of T-matrices
corresponds to the nice systems of generators of lattices which we called T-
bases. The set 4¢((u)) of distinguished matrices corresponds to the distin-
guished T-bases, that is, to the lattices themselves. Finally the set 4% ((u))
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of p-matrices corresponds to the p-lattices. The final result is Theorem 4.2.2
which formulates the classification of models of jipyn g in terms of matrices,
well-suited for computations.

From now on, the ring of coefficients k is a perfect field and W = W (k),
W, = Wy (k).

4.1. Matrices and lattices

Recall that lattices, T-bases and distinguished bases are defined in 2.2.

4.1.1. — DEFINITION. For each A € %, ((u)) we consider the column
vector e, = [A]p*, its components ey, ..., e,, and the lattice I = M(A)
they generate.

(1) We say that A is a T-matrix if ey, ..., e, is a T-basis of 9.

(2) We say that A is distinguished if ey, ..., e, is the distinguished basis
of M.

We denote by 47 ((u)), resp. 49((u)), the set of T-matrices, resp. distin-
guished matrices, in ¢, ((u)). We have similar subsets 4*[[u]] € 9,[[u]],
G [u,u=t] € G [u,u™t], *[u] € 4, [u] with * € {T,d}.

Let ., be the set of lattices of W,,((u)). We have a well-defined map
Y (u) = &, , A-MA).

Denote by A(9) the matrix whose coefficients are the p-adic coeflicients
of the distinguished basis of 91. Then we have a section

Ly =G u,u™ G ((w) , M A(M).

4.1.2. — LEMMA. Let A€ %,((u)) and 9 = M(A). Then:
(1) A is a T-matrix if and only if UA/LA > 0, i.e. UA = B = LA for some
Be G, [|u]]
(2) A>=0 if and only if M > 0.

Proof. — (1) Set e. = [A]p*. Due to the shape of matrices in ¥, ((u)),
we have vp(e;) = i — 1. It follows from (1) of Lemma 2.2.4 that e, is a
T-basis if and only if pe; € {e;+1, ..., ey, for all 7. This is in turn equivalent
to the existence of elements b;; € k[[u]] such that

pe; = [big] €iv1 + -+ [bin—1]en

for all i. Let B be the upper triangular matrix with diagonal entries u!—li+1
and other entries b;; € k[[u]]. It is simple to see that the set of equalities
above is equivalent to UA = B = LA.
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(2) We have 9 > 0 if and only if e; € W, [[u]] for all i. Since e; = ulipi~! +
[aii+1]P" + -+ + [@in] p" 1, this means that u' and a;; belong to k[[u]]
for all 4, j. O

The construction of the distinguished basis in Lemma 2.2.7 shows that
the volume of a lattice (defined in 2.3) can be computed from a T-matrix
giving rise to it:

4.1.3. — LEMMA. For A € 97 ((u)) and 9t = 9M(A), we have vol(IM) =
det(A).

Proof. — Let « be an integer such that u*9 < W, [[u]]. Replacing 9t by
u®M and A by u*A, we may assume that o = 0. To simplify the notation,
we write M+ = W, [[u]]/9N. Write A = M(l, a). We have the following
diagram with exact rows and columns:

0 0 0

0— =Ml +1] —— > M[] —— M[]/M[i + 1] —— 0

0 —— Wi—i[[u]] —— Wi—isa[[u]] Wil[u]] ——0

0——=M[i + 1|7 ———= M[i]" —— (M[¢]/M[: + 1))t ——=0

0 0 0

Since A € ¥,[[u]], we have IMM[i]/M[i + 1] ~ ulik[[u]] and (IN[i]/M[i +
1)+ ~ k[u]/(u') of length I;. Then the result follows by induction, using
the additivity of the length. a

Let us now look at some natural lattices associated to a lattice 90t. We
defined the kernel M[i] and the image M (¢) in 2.2.2. The ring W, ((u))
is endowed with a Frobenius endomorphism ¢ whose restriction to W, is
the Frobenius of the Witt vectors, and such that ¢(u) = wP. This gives
rise to another interesting lattice, namely the lattice generated by ¢(9t).
Also, for a polynomial E(u) € Wy, [u] we can consider the lattice E(u)IN.
If M = M(A), we wish to express the matrices associated to these lattices
in terms of A. We will shortly give the result, but we first need a bit of
notation.
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4.1.4. — Notation. We denote by P the matrix operator taking a
square matrix M of size r to the square matrix of size r + 1 whose up-
per right block of size r is M and whose other entries are zero. In pictures,

PN = 0 M

0 0

The operator P* takes a matrix M of size r to the matrix of size 4+ whose
upper right block is M and whose other blocks are zero.

4.1.5. — DEFINITION. Let A € ¢4,,((u)) be a matrix and E(u) € W, [u]
a polynomial, with p-adic expansion E(u) = [Eo(uw)] + [E1(u)]p + -+ +
[En—1(u)]p"t. With the notation of 4.1.4, we define:
(1) E(u)oA = p(Z:.:Ol [E; Id «P“UF A]), where p is the map from Lemma
3.1.6.
(2) ¢(A) is the matrix obtained by applying Frobenius to all the entries of
A

The two operations ¢(—) and E(u)o— are compatible with U and £ in
the following sense.

4.1.6. — LEMMA. For all matrices A € ¢, ((u)) and polynomials E(u) €
W [u], we have:
(1) W(H(A)) = ¢(U(A)) and L($(A)) = ¢(L(A)).
(2) WE(u)oA) = E(u)oU(A), and L(E(u)oA) = E(u)oL(A),
where in E(u)oU(A) and E(u)oL(A) it is the image of E(u) in Wy,_1[u]
that is involved.

Proof. — (1) is obvious and we only prove (2). Let 7y be the truncation
map that takes a vector v with n components to the vector whose compo-
nents are the first n — 1 components of v, so Ty p* is the vector analogous
to p* in dimension one less, as in the proof of Lemma 3.2.5. Since PUA
is the matrix obtained from UPA by replacing the last line by 0, we have:
[PUA] Tup* = 7y [PA] p*. Tt follows that

n—2 n—1
T p* = Z (B[P U Al mp* = 7 (Z [E][PUA] p*>
i=0 i=0

=Ty ([E(u)oA] p*) .

But it is exactly the defining property of M = U(E(u)oA) that [M]mup* =
Tu([E(u)oA] p*). This proves that U(E(u)oA) = E(u)oU(A). The proof for
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the commutation with £ is similar: PLA is the matrix obtained from £LPA
by replacing the first line by 0, etc. O

4.1.7. — LEMMA. Let A€ 4, ((u)) and M € .%,.
(1) If M = M(A) then:

(a) M(i) = MU A),
(b) Mi] = M(L1A),
() <¢(9ﬁ)> M(P(A)),
(d) E(u)M =M(E(u)oA).

(2) If A is a T-matrix then U''A, Li7TA, ¢(A), E(u)o A are also T-
matrices.

(3) If A is distinguished then U=t A, Li=Y A, ¢(A) are also distinguished.

It is not true in general that if A is distinguished then E(u)oA is distin-
guished. There are obvious counter-examples for n = 2 as soon as l; = l+1.

Proof. — (1) Let e, = [A] p*. Let us fix i € {1,...,n} and define:

(a) fj=plejfor1<j<n+1—i,

(b) gj =e€j4i1for1<j<n+1—4,

(c) hj =¢(e;) for 1 <j<mn,

() £ = E(w)e; for 1 <j <n,
The elements f; generate M (i) and we have f. = [U=!A] p*, hence M(i) =
IM(U=L A). The elements g; generate M[i] and satisfy g. = [£*71A] p*, so
that 9M[i] = M(L71A). The elements h; generate {(p(9M)) and satisfy
he = [¢(A)]p* so {p(M)) = M(¢(A)). Finally the elements ¢; generate

E(u)9 and moreover a simple matrix computation shows that p'[A] p* =

[PIUA] p* s0
E(w)e. = (Y [E)[Alp* = Y [E][PWA] p*
= p(z E;1d«PUA)| p* = [E(u)oA] p*
It follows that E(u)0t = M(E(u)oA).

(2) Using the characterization 1) in Lemma 2.2.4, it is very easy to prove
that fs, g«, h«, ¢+ are T-bases.

(3) It is immediate that the matrices U"=1 A, £~ 4 and ¢(A) have Laurent
polynomial entries and satisfy the condition on the degrees required to be
distinguished. (|

4.1.8. — LEMMA. Let A, A’ be in%,,((u)) and I = M(A), M’ = M(A').
(1) Assume that A’ € 4T ((u)). Then M < M’ if and only if AJA’ >0
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(2) In particular, the T-matrices are the minimal elements among the ma-
trices A € 9,((u)) such that M(A) = M, in the sense that for any two ma-
trices A, A" with OM(A) = M(A") =M, if A’ is a T-matrix then A/A" > 0.
(3) Assume that A, A’ € 9T ((u)). Then M = M’ if and only if AJA" is
positive and unipotent.

Proof. — Let e, = [A] p* and ¢/, = [A’] p* be the associated generating
sets. Then Mt < M’ if and only if for each ¢ we have e; € M'[¢]. This means
that there exist scalars b;; € k[[u]] such that

e; = [bij] 6,1- + [bi,i+1] €;+1 + -+ [bh"] €n
Let B be the upper triangular matrix with coeflicients b;;. These equalities
amount to e, = [B]e), in other words [A]p* = [B][A']p* = [B = A']p*.
Thus A/A’ = B > 0 and this proves (1). Now (2) and (3) follow immedi-
ately. O

4.1.9. — Remark. It follows from this lemma that the relation > on
4T ((u)) defined by A > B if and only if A/B > 0 is reflexive and transitive.

4.2. Matricial description of Breuil-Kisin modules

Finally we arrive at the description in terms of matrices of the Breuil-
Kisin modules corresponding to a group scheme which is a model of pi,». We
recall that K is a finite totally ramified field extension of Ky, the fraction
field of the Witt ring W = W (k) of a perfect field k of characteristic p > 0,
and that E(u) is the Eisenstein polynomial of a fixed uniformizer = € Q.

4.2.1. — DEFINITION. We say that A = M(l, a) € 9,((u)) is a p-matrix
if it is distinguished and if
(1) ¢(A)/A =0,
(2) (E(u)oA)/¢(A) = 0.
We denote by 4 ((u)) the set of p-matrices in %, ((u)).

With the induced order of 41 ((u)) (cf Remark 4.1.9), the set ¥*((u))
is an ordered set. Since U and £ are loop homomorphisms (3.2.5), take
positive matrices to positive matrices (obvious), and commute with ¢ and
E(u)o— (4.1.6), one sees that if A € 4,((u)) is a p-matrix, then UA and
LA are also p-matrices.

4.2.2. — THEOREM. The maps G — 9 (G) and M — A(ON) give bijec-
tions between:
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e the set of isomorphism classes of R-models of jipyn g,

o the set LY of u-lattices, i.e. finitely generated sub-W,[[u]]-modules
of W,,((u)) satisfying E(u) < {p(M)) < M,

o the set ¥} ((u)) of p-matrices, i.e. matrices

I

u a2 ais . A1n
l
u? a3 Qzp,
A=
uln=t g
n—1,n
0 ubn

where | = (I1,...,1,) € N” and a;; € k[u] for all i, j, such that:

(1) deg,(aij) <; whenever 1 <i < j <n,

(2) UA/LA >0,

(3) ¢(A)/A =0,

(4) (E(u)oA)/¢(A) = 0.
These bijections are increasing: if G,G’ are models of pyn x with associ-
ated lattices M, M’ and distinguished matrices A, A’, then the following
conditions are equivalent:

e there exists a model map G — G’,
o MM,
o« A/A" > 0.

Finally, these bijections are "compatible with quotients and kernels":

e G(i), M(i) and UL A correspond to each other, and
e G[i], M[i] and L1 A correspond to each other.

Proof. — The increasing bijection between models of ji,» and p-lattices
is the Breuil-Kisin equivalence. The map 9t — A(9) is the map taking a
lattice to its distinguished matrix, so that A = A(ON) = M (I, a) satisfies
the conditions (1) and (2). It remains to prove that the additional con-
ditions satisfied by a p-lattice translate into the additional conditions (3)
and (4) in the theorem. Indeed, the condition (3) is a translation of the
fact that (¢p(9)) < M and the condition (4) is a translation of the fact
that E(u)Mt < M. Moreover, since I is positive (see 2.3), then so is A and
hence [; > 0. This gives the refinement in the statement of the theorem.
The fact that the bijection between p-lattices and p-matrices is increasing
is Lemma 4.1.8. The fact that the bijections are compatible with quotients
and kernels comes from Lemma 4.1.7 and the fact that U and £ preserve
p-matrices. (|
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4.2.3. — Remark. Let us recapitulate some of the information we have
on the parameters.

(1) We have Iy = Iy = --+ = 1, since UA/LA > 0 (A is a T-matrix). In
fact, the positivity of UA/LA corresponds to the existence of the model
maps G(i) — G[i] of 2.3.3, for all i.

(2) We have I; > 0 and val,(a;;+1) = li4+1/p, for all i. Indeed, since
#(A)/A = 0 there exists a positive matrix B = M (m, b) such that ¢(A) =
B x A. Comparing the diagonal entries, we get (p — 1)l; = m; = 0 thus
l; = 0. Comparing the entries at distance 1 from the diagonal, we get
(ai,iH)p = u(”_l)l"ai,iﬂ + uli+1bi7i+1. Thus (ai,i+1)p =0 mod uli+1.

(3) We have e/(p — 1) = I3 since (E(u)¢A)/p(A) = 0. Indeed, the upper
left entry of E(u)oA is u¢T!t and the upper left entry of ¢(A) is uPt. The
result follows.

Theorem 4.2.2 gives already very precise information on the structure of
the set of models of up». In a naive way, it is parametrized by n integers
0<!l,<--<li <ef(p—1) and at most Z?;ll il; elements of k (the
coefficients a;;), as follows from condition (1) in Theorem 4.2.2.

4.2.4. — DEFINITION. The parameters (l1,...,l,) of a model of p,~ are
called the type of the model.

The geometric interpretation of the type of a model of p,» is quite clear.
Theorem 4.2.2 gives a precise geometric interpretation for the other (some-
how more mysterious) parameters of the Breuil-Kisin modules: some of
them parametrize flat subgroup schemes or quotients, and some others pa-
rametrize extensions between such subquotients, models of p,s and p,- for
1<rs<n—1.

4.2.5. — Remark. A remaining open question is the structure of this
set of parameters. The explicit computation of relations is completed for
n = 3 in Section 5. Since the functions S; and P; involved in the operation
A = B are defined by exponentiation with respect to negative powers of
p, a high enough power of Frobenius transforms the constraints defining
p-matrices into polynomial relations between the coefficients of the a;.
Hence up to Frobenius, we can easily define the variety of models of p,n.
The study of the dimension and irreducible components of this variety has
to be compared to the works of Imai and Caruso ([6], [14]) on Kisin’s moduli
space of models of fi,n ([17]).
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5. Computation of y-matrices for n = 3

Since the bijections in Theorem 4.2.2 are compatible with quotients and
kernels, the matricial formulas for the models of j,» contain the matricial
formulas for the models of y,: for all i < m. In this section, we work out
the conditions in Theorem 4.2.2 for n = 3 and p > 3. We stress that they
include also the case n = 1,2. And in these cases one gets the formulas
obtained by Caruso in [31], Appendix A.

5.1. Computation of the matrices

We have
5
U a1z ais .
ut a2
A= 0 ul2 a93 s UA = . )
0 wu"
0 0 s
la
a23
LA =
0 uls
Using Examples 3.3 we find
uli—l2 ajo—u'17"2as;
UA/LA = u's
0 utz—ls
Moreover we have
uPhtafy iy
= U a
p(A)=1 0 > db
0 0 uPls
and
p _ . (p—1)l1
—1)1 a u a2
uP—Dh e P13
p _ . (p—1)lg
_ (p*l)lz Ay3—U az23
o(4)/A 0 u D
0 0 wP—1lis
where
o (p—1)l
—1)1 al,—u a12 —1)I
_afy —uP gy — Mt B2 a0 — ) (ulPDhayy, —aly)
p13 = s .
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Finally we compute FE(u)oA. Note that for n = 3 we have E; Id *P"U'A =
E;P*UPA for all i, but this is false already for n = 4, because of the fail-
ure of multiplicativity of Teichmiiller representatives of polynomials (see
Lemma 3.1.4). Thus

weth wlayy + UM By ufais + a12Ey + S (uars, ut Ey) + uh By

E(u)oA = 0 uetl ufags + u2 By
0 0 ue+l3
and
pe— (=1l “6012+"“E;;'Ze*(p*l)lla‘h T3
(E(u)oA)/p(A) = 0 e~ (=12 “6023'*'71'1253;;:6_(’)_')12’1?3
0 0 we— (=13
where
s = ufars + a12F1 + Sy (ufar, vl By) 4 uht By — ue=(P=DhgP,

uPlx

wCais+ull By —ue— (=Dl
uPl2

P
Nz2ah, — Sy (ue= PVl wfary + ult By —uem (P Dhgh)

wpls

5.2. Translation of the conditions of the theorem

 Condition (1) yields:

’degu(alg) <lp—1 ‘ , ’degu(alg,) <lz—1 ‘ and ’degu(agg) <l3—1 ‘ )

 Condition (2) yields:

ll_l?agg =0 mod u’?

112122l3 and ’alg—u

 Condition (3) yields:

aby —uP™ Vg, =0 mod u'? |

abs — uP™Vgy0 =0 mod ul®
and
P (p—1)
a u a
P —1) 12 12
ays — uP Vg g — a93

ulz
- S (u(p_l)llalg, —aly) =0 mod uls .
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Since (p — 1)l = g, the first two are equivalent to:

a?y =0 modu'2| and |ab; =0 mod u'?

Concerning the third, observe that since (p—1)l; > I3 the term wPDhg,,
can be neglected. Also since val,(Si(z,y)) = max(val,(z),val,(y)) by
Lemma 3.1.4, we see that the S; term can be neglected. Finally the term
u(p’1)11*12a12a23 can also be neglected: indeed ply > 2l; > 5 + I3 implies
that its valuation is at least

L s

((p 1)[1—12)4‘ D +E = I];((p—l)(pll—lg)-‘rlg) 2 ((p—l)lg +13) = 13 .

==

So the third condition is equivalent to:

P =l P = I3
ajs —u 2ajya03 =0 mod u

 Condition (4) yields:

uea12 + ullEl _ uef(pfl)lla;il2 =0 mod Upl2

uCags + ul? By — ue~ (Pl ab; =0 mod uP'

and

ufars + a1oEq + Sq(ufaqs, ullEl) +ul By — ue*("*l)llali)3

_u Cara+ull By —ye~ (= DigP
upl2

zags — Sl(uef(pfl)llaﬁ’z, —ufayz —ul Ey) =0 mod uPls.
Finally the last but one boxed congruence implies that
Sy (u® —p=Dhgp Py uais + W By — ue*(pfl)lla’b) =0 mod uP.

Hence it vanishes also modulo u?* and we obtain:

uars + a12E1 + S1(utars, u Er) +ult By — ue*(pfl)llapg

_u Carotull By —ut (P~ 1)lla 2ap

= pl3
o =0 modwu

5.2.1. — COROLLARY. Let p = 3. Let M € (Mod /&)s3 be the Breuil-
Kisin module of a finite flat R-model of pys r. Then there exists a unique
family of parameters (11, 12,13, a12, a13, ass) composed of three integers 0 <
I3 <ly <y <e/(p—1) and three polynomials a12, a13, ass € k[u] satisfying:

i) deg, a2 <lo—1, deg, a13 <l3—1, deg, ass <l3—1,

(ii) a1z —u''""2ay3 =0 mod u%, aly =0 mod u'?, ab; =0 mod u's,

iii) afy —u™2alya03 =0 mod ul
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iv) uay + uh By — ue’(pfl)llafz = 0 mod u”2 and uass + u2E; —
ut= P Vkgl =0 mod uP's,

V) uai3 + a9 + S (Uealg, ’U,llEl)‘i‘
+ul1 E, — ue—(P—l)hall’S _ uea12+ul1El*ue_(p_l)hazljz 4

T abs =0 mod uPls,
such that I = M(A) with

u' [aip] [a1s]
A= 0 Ul2 [agg]
0 0 uls

5.3. The tamely ramified case

In the tamely ramified case (e, p) = 1, some of these congruences can be
simplified. To begin with, let us prove that

Let us prove the first inequality. If [, = 0 there is nothing to show. Other-
wise we have l3 > 0 and we claim that the only monomial of degree [y in
the polynomial
ufais + ul By — u‘g‘f(pfl)llaf‘f2
is u!t 1 (0). Indeed the first term has valuation
val(u®ain) Ze+la/p>e=(p—1)l1 =1 .

Moreover since af, is a p-th power, the degrees of the monomials of
ut~(P=Dh P, are of the form

e—(p—Dli+ip=e+1l; —p(ly — i)
for some integer i. Since (e, p) = 1, this degree is not congruent to I; modulo

p. This proves that ut E;(0) is the only monomial of degree [; and then
the congruence

uCays + Ul Ey — ue_(p_l)llall’2 =0 mod uP"

forces l; = ply. The proof that Iy > pls is similar.

It follows that the condition given by the congruence ajs — u*~*2as3 = 0
mod u'3 is empty since we already know that both terms have valuation at
least [3.

Tt follows also that the congruences implied by condition (4) become:

weP=VhgP =0 mod w2 | | |utT PV =0 mod uPh
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and

uCayy +ult By —ut~P=Dhgh,
upl2

a12 4 —ue_(p_l)llalf3 — ab; =0 mod uP'

Then, in the tamely ramified case, the parametrisation of models of 1,3
is much easier:

5.3.1. — COROLLARY. In the tamely ramified case (e, p) = 1, the models
of s over O are classified by three integers 0 < p?ls < pla <11 < e/(p—1)
and three polynomials ay2, a3, azs € k[u] satisfying:

(i) deg, a2 <lp —1, deg, a1z < I3 —1, deg, a3 < I3 — 1,

(i) ue= (=Dl =0 mod uP'2, u¢~P~Hizgh, =0 mod uP's,

e 1 gy, —qye— (=11 4P
_ oe—(p=Dly . p _ utantulEi—u @12 P — pl
(iii) a12B1 —u (p=1) lafs T3 a5 =0 mod uP'3.
5.3.2. — Remark. The tamely ramified case seems to be easy to compute

in higher dimension. In Corollary 5.2.1, even for n = 3, we can see that
ramification intervenes in the computation in a very delicate way: not only
through the coefficient F5 of the Eisenstein polynomial but also through
the lifting modulo p? of the parameters via S;(u®ao, u'* Ey).

6. Sekiguchi-Suwa Theory

In this section, we recall and complement some aspects of Sekiguchi-Suwa
Theory. The main definitions and results are given in Subsections 6.1, 6.2,
6.3. For an extended version, see [22]. We also give an interpretation of these
results from a matricial point of view: we introduce the set .#,, of matrices
parametrizing filtered group schemes, and study its basic properties. This
is the topic of Subsection 6.4.

6.1. Some definitions about Witt vectors

6.1.1. — THE MAPS V, F, T. We recall here some definitions about Witt
vectors. We emphasize that in contrast with Sections § 2 to § 5, we consider
Witt vectors with coefficients in an arbitrary ring, not necessarily perfect
of characteristic p. In particular, we need to consider quotients of a discrete
valuation ring of unequal characteristics. For r > 0, we recall the definition
of the r-th Witt polynomial:

(I)T(XO’ R Xr) = X(I))T +prT_l + - +pTXr.
Then for each ring A the following maps are defined:
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- Verschiebung:
V:W(A) — W(A)
(ag,a1,as,...) — (0,a9,a1,as,...)
- Frobenius:
F:W(A) — W(A)
a = (ag,a1,az,...) — (Fo(a), Fi(a), Fy(a),...)
where the polynomials F,.(X) = F,.(Xo,...,X,) € Z[Xo, ..., Xr+1]
are defined inductively by
@, (Fo(X), F1(X), ..., Fr(X)) = @41 (Xo, ..., Xry1)-
- T map:
T:W(A) x W(A) — W(A)
(a,z) — Tyx = (To(a, x), Ti(a,x), Tr(a, z),...)

where the polynomials T,.(A,X) = T,.(Ao,..., A, Xo,..., X,) €
Z[ Ao, ..., A, Xo, ..., X,] are defined inductively by

®(To,. .., To) = D 0" (Anei)? ®i(Xo, ..., Xi).
=0

Since ®,,(T0,...,Ty) is linear in the variables ®;(Xy,...,X;), we see that
for fixed @ the map T, is a morphism of additive groups. Moreover, it
is easy to see that for any ring A and Witt vectors a,xz € W(A) with
a = (ag,...,an,...) we have explicitly Toz = Y., _, V*([ar]z) (see [25],
Lemma 4.2). For instance if @ = [ag] is a Teichmiiller element then T}, is
nothing else than left multiplication by [ag], and in particular T is the
identity. If & = [z¢] is Teichmiiller then Ty ([x0]) = (aozo, a120, a2zo, . .. ).
For each ring A an element A\ € A, we set

AaZ (Nag, Aar, Aas, ...) = Ta([N]).

Clearly A1.(A2.a) = (A1A2).a which will usually be written A\ A2.a. The
ideal \.W(A) is the kernel of the morphism of rings W(A) — W(A/\A).
If two vectors a, b are congruent modulo A\.W(A), we sometimes write
simply @ = b mod A. We will also have to consider the following type of
Witt vectors with coefficients in the ring A[1/A]:

adr (G0 a1 G2

X (7’7’7"")'

The notations %a or a/\ may also be used when it is convenient.

ANNALES DE L’INSTITUT FOURIER



MODELS OF GROUP SCHEMES OF ROOTS OF UNITY 1091

6.1.2. — DEFINITION. For any ring A, we define the subfunctor of finite
Witt vectors by

W/(A) = {(ao,a1,az,...) € W(A); a; =0 for i » 0}
and the completion of W(A) by
I//[\/(A) = {(ao,a1,az,...) € W(A) ; a; =0 for i » 0 and a; is nilpotent for all i}.

Note that W7 (A) is not a subgroup of W(A), but W(A) is an ideal in
W (A) which is stable under F and V (see [22], 2.2.1, 2.2.3, 2.2.4).

6.1.3. — THE T-MULTIPLICATION. We shall define a new product be-
tween matrices whose entries are Witt vectors. We need to start with some
elementary properties of the map 7" when one of the variables is fixed.

6.1.4. — LEMMA. Let A be a ring and a = (ag, a1, ag, ...) € W(A) with
ag not a zero divisor. Then the morphism T, is injective. If aq is invertible
then it is an isomorphism.

Proof. — Let us suppose that ag is not a zero divisor and that T, =0
with @ = (zg, 1, ...) € W(A). We prove, by induction, that x,, = 0 for any
n. Since @ (Tyx) = apzo = 0 and since ag is not a zero divisor then z¢ = 0.
We now suppose that x; = 0 for ¢ < n. This means that £ = V" !y with
Y= (Tnt1,---, Tpy...) € W(A). Therefore

o0 ntl

Tox = Z Vk([ak]VnJrl(y)) _ Vn+1(2 Vk([az ]y)) —0.
k=0 k=0

In particular we have agnJrlanrl = 0. Since ag is not a zero divisor then
Tpt+l1l = 0.

Let us now suppose that ag is invertible. Let y € W(A). Let p,, : W(4) —
Wp(A) and pp i : Wp(A) — Wi(A), if n = k, the natural projections.
We now prove that for any n € N there exist x, € W, (A) such that
Ty, (ayZn = Pn(y) and py n—1(x,) = @, 1. This clearly implies that there
exists & € W(A) such that T,z = y.

We prove the above statement by induction. Clearly zo = (20) = (£2) €

A. Let us suppose that there exists &, = (o, ..., %,) such that T}, (a)T, =
pn(y). The required @, is given by (xq, ..., ZTnr1) With 2,1 such that
n+1

V' agzni1] = pasa(y) — O, Vilail(zo, - .., 20, 0)) —[ao] (o, - - -, 7, 0).
i=1
The existence of x,, .1 is ensured by the fact that ag is invertible and by the

fact that the projection of the right hand side on W, is zero by induction.
|
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6.1.5. — LEMMA. For any & = (zg,21,%2,...) € W(A) with xg not a
zero divisor, the map T, is injective. If x is invertible then it is bijective.

Proof. — Let a = (ag,a1,as,...) and b = (bg,b1,bs,...) as above. We
will prove by induction that a,, = b,, for any n. If T, = Ty in particular
apxro = boxg. Since xg is not a zero divisor them ag = bg. Now let us suppose
that a; = b; for i < n. We prove a,, = b,,. By hypothesis, we have

0 s}
Tuz—Tyw = Taz = Y, VE(lar] = [n)z) = 3} VE(lar] = b)) = 0
k=0 k=n+1
In particular we have a,41x9 = bpr1xo which implies a,+1 = b,41 since
T is not a zero divisor. To prove the surjectivity when g is invertible
one proceeds in a similar way as in the previous lemma and it is even
simpler. O
We now introduce a new, nonassociative product between matrices with
Witt vector entries.

6.1.6. — DEFINITION. Let M = (m?) and N be two matrices belonging
to M, (W(A)). We define the T-multiplication by
M *7 N := TM (N)
where Ty is the matrix of operators (T ;)i<i j<n-

Endowed with this composition law, M, (W(A)) is a magma and the
identity matrix is a two-sided unit element. We will now consider the set
H,(W(A)) € M, (W(A)) of upper triangular matrices of the form

1 a2 3 n
a; ai ay ... af
2 3 n

0 a3 a; ... aj

with a,g = (ago,agl,agQ, ...) and a}, not a zero divisor. We refer to 3.2.4
for the definition of the operators U and £, taking a square matrix to its
upper left and lower right codimension 1 submatrices.

6.1.7. — LEMMA. The set 5, (W (A)) is a submagma of M,,(W (A)) and
the cancellation laws hold, i.e. if M p N = M’ »p N then M = M’ and if
M *p N = M xp N' then N = N'. Moreover if A is a field then 5, (W (A))
is a loop.
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Proof. — Tt is easy to prove that ¢, (W (A)) is stable under *7. We now
prove that the cancellation laws hold by induction on n. For n = 1 this is
just lemmas 6.1.4 and 6.1.5. Let us suppose that the cancellation laws hold
in J#,(W(A)) and prove them for /%, 1(W(A)). We observe that for any
M, N € #;,.1(W(A)) we have

W(M *7 N) = U(M) 7 U(N)
and
Therefore if M xp N = M'+p N we have, by induction, that U(M) = U(M")
and L(M) = L(M’). Similarly if M xp N = M %7 N’ then U(N) = U(N')

and L£(N) = £(N'). It remains to prove that m?™' = m/7*" and n7*!

'nH . We begin with the first. From
(M *p N)i ™ = (M %7 N)7*!

it follows that

n+1 n+1
Z T Jnn+1 Z T /J nn+1
Since m] = m'] for j = 1,...,n it follows that
n+l n+l

T, ”+lnn+1 =T ’”+1nn+1

which implies m?! = m/,;"*! by Lemma 6.1.4. Now from

(M* N)’n+1 (M* N)’ﬂ+1

it follows that
n+1 n+1

) +1 _ o+l
ETm{n? _ZTm{nj :
j=1 j=1
Since nd = n'J for j =1,...,n it follows that
Tpuni ™ = Tpan'y ™
which implies n?*! = n/7*" by Lemma 6.1.5.

To prove the fact that 7%, (W,,(A)) is a loop if A is a field one proceeds
similarly, using the second part of Lemmas 6.1.4 and 6.1.5. (|
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6.2. Deformed Artin-Hasse exponentials

In this section we introduce some deformations of Artin-Hasse exponen-
tials which we will need in the following.

6.2.1. — DEFINITION. Given indeterminates A, U and T, we define a
formal power series in T with coefficients in Q[A, U] by

—(u
I

B0 AT) = (1 +AT)E [ (14 art gty (D7)
k=1

It satisfies basic properties such as E,(0,A,T) =1 and E,(MU, MA,T) =
E,(U,A, MT), where M is another indeterminate. It is a deformation of the
classical Artin-Hasse exponential E,(T) = [[,—, exp(Tpk /p*) in the sense
that E,(1,0,T) = E,(T). To see this it is sufficient to observe that, for any

1—AP

k

: kpk i(¥—+) . ko k.——\ P
k, the series (1-|—Ap TP )Pk Ak AP/ g equal to (]_ + AP TP )APk ,
and this gives exp(T”k/pk) for A = 0.

6.2.2. — DEFINITION. Given a vector of indeterminates U= (Up, Uy, .. .),
we define a power series in T with coefficients in Q[A, Uy, Uy, ...] by

Is's)
EP(U7A7T) = 1_[ Ep(vaApszpé)'
£=0

We have the following fundamental lemma.

6.2.3. — LEMMA. The series E,(U, A, T) and E,(U, A, T) are integral at
p, that is, they have their coefficients in Z,)[A, U] and Z,)[A, Uy, Uy, . . . ]
respectively.

Proof. — See [26], Corollary 2.5. O
It follows from this lemma that given a Z,)-algebra A, elements \,a €
A and @ = (ap,a1,...) € AN, we have specializations E,(a,\,T) and

E,(a,\,T) which are power series in T with coefficients in A. We usu-
ally consider a as a Witt vector, i.e. as an element in W (A).

6.2.4. — Remark. Let A* = Spec(Z,)[A]) be the affine line over the ring
of p-integers Z,), with coordinate A, and write W1 for the scheme of Witt
vectors over Al. We remark (see [26], Corollary 2.9.1) that, generalizing
what happens for the Artin-Hasse exponential, the deformed exponential
of Definition 6.2.2 gives a homomorphism

WAl —> A-Al
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where Ay1 = Spec(Zgy[A, X1,..., Xy, .. .]) is the Al-group scheme whose
group of R-points, for any Z,)[A]-algebra R, is the abelian multiplicative
group 1 + TR[[T]]. (We hope that the difference between the symbols A
and A is visible enough.) The above homomorphism is in fact a closed
immersion. We also note that there is an isomorphism:

H WAl ~ AAl
ptk

which works as follows. With any Z,)-algebra R, any element A € R, and
any family of Witt vectors ay = (ako,ak1,ak2,...) € W(A) indexed by
the prime-to-p integers k, this isomorphism associates the series F(T') =
[ Ep(ar, A, T*) (see [22], Lemma 3.1.2). O

Here are a couple more definitions which will be useful in the sequel. We
set

ﬁEP(U’ A7T) = EP(V(Uga Ufz . ')7A7T)'

where V is the Verschiebung. Using the isomorphism kap Wyt =~ Apn
described above, one extends this definition to any element of

1+ TZyy[Us, ..., Un, AJ[[T]].
The result is a group scheme endomorphism
ﬁ: AAI —_— AAI .

In [25] this operator is called [p], but we prefer p to avoid confusion with
Teichmiiller representatives. Also, we define an additive endomorphism
FA = F — [AP7'] : Wy — Wy For each element A in a Z,)-algebra
R, this gives an endomorphism F* : Wr — Wx. When R is a discrete val-
uation ring with uniformizer 7 and A = 7! for some [ > 0, we will sometimes
write F() instead of F™ (see e.g. the statement of Theorem 6.3.4).

6.2.5. — DEFINITION. Let Ay be another indeterminate. For any H in
L+ TZy[Us, ..., Uy, A][[T]] we define the series

i ey (M2 (W))
E (W, Ao, H) = H™ H prag . (6.1)

From the definition, one sees that EP(W, A, H) gives a bilinear group
scheme homomorphism

WAl X AAI - AAl.

With some quite simple computations one shows the following lemma.
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6.2.6. — LEMMA. In the group 1+ TZ,)[W, 1~ LA, AS][[T]], we have
Ey(W, A, By (U, A;T)) = Ep(Tya, W, A; T).

Proof. — See [25], Proposition 4.11. O

In particular, we have EZ,(\W7 A 1+AT) = E,(W,A; T). Finally we define
the following series.

6.2.7. — DEFINITION. For any H as above, we define
Gp(W, Ay, H)

]. ]_ rApT q’r—1(W) 1
_ U ( + ( )P ) : € 1+ TQIW, U, A, Ay, ][I,

Using [26], Lemma 2.8, one sees immediately that

Ep(W, Ay; =1
G (F™= (W), Ay, H) = Ep(W. A 7). (6.2)
Ep(W, Ao, H)

We remark that for any H as above we have
Gp(Wa A2a H) GP(W/? A2a H)

= Gy (W + W', Ay, H) € 1+ TQ[W, W, U A, A ][[7]] (63)
2

where W + W is the sum of Witt vectors. We finally have the following
lemma.

6.2.8. — LEMMA. We have

U
Gy (W, Az, Ey(U, A T)) € Zy [W, 3, A, ASJ([T])

Proof. — See [25], Proposition 4.12. O
It is quite simple to verify the following equality.
6.2.9. — LEMMA. We have

Ep(wa A37 GP(U7 A27 H)) = GP(TU/A:;Wa A27 H)

Proof. — See [25], Proposition 4.13. O
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6.3. Main theorems of Sekiguchi-Suwa Theory

In this section, we briefly recall the main results of Sekiguchi-Suwa The-
ory, stated in [25]. One can also find a summary of this theory in wider
generality in [22]. From now on, we denote by R a discrete valuation ring
of unequal characteristics. We stress that, in contrast with Sections § 2
to § 5 we do not assume that R is complete and neither that its residue
field is perfect. We will denote by 7 a fixed uniformizer of R and by v the
valuation of R.

6.3.1. — DEFINITION. Let [,11,...,[, be integers.
(1) We let G be the group scheme Spec(R[T, 1/(x'T + 1)]) with group
law T+T' = T +T' +7'TT’, the unique group law such that the morphism
a : Spec(R[T,1/(r'T+1)]) = G, = Spec(R[T,1/T]) given by T + 1+7'T
is a group scheme homomorphism.
(2) Let € be a flat R-group scheme. If there exist exact sequences of flat
R-group schemes

0— Gl ¢ —& 1 -—0

for 1 < ¢ < n,with &g =0and &,, = &£, we call the sequence of flat R-group
schemes
&1=6" &y 8, =8

or, sometimes, simply €, a filtered R-group scheme of type (I1,...,1,).

6.3.2. — Remark. One can define a group scheme G for each \ € R,
in such a way that G := 9(”1) is just the group scheme defined in 6.3.1.
In this article, we care only about the isomorphism class of G which
depends only on A up to units, so we prefer to adopt the more compact
notation.

6.3.3. — THEOREM. Let & = (€4,...,&,) be a filtered group scheme of
type (l1,...,1,), with l; > 0 for each i. Then there are compatible open
immersions of & — A’ and elements

Di € HO( 11.37 OA’R) = R[Tla cee aTz]
such that, for each 1 < i < n, the Hopf algebra of &; is given by

1 1 1
R[E; =R[T....T- ]
[ 1] 1, s Ly 1+7rl1T1’D1(T1)+7rl2T27 7D¢,1(T1,...,TL;1)+7TZIT1'

The group law of &; is the one which makes the morphism

ag, : & — (Gm,R)i
(T17' .. 7Tz) — (1 +7T11T1,D1(T1) +7['l2T2,. .. ,Difl(Th. .. 7Ti71) +7TZ’TZ')
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a group-scheme homomorphism and the reduction modulo '+ of the
function D; : A% — A} factors into a group scheme homomorphism
Dije, 8i,R/7r’i+1R - Gm,R/ﬂLH'lR < A}Q/ﬂii+1 R

Moreover if l,,11 is a positive integer and D,, : A%, — A}Q is a function
whose reduction modulo w'»+1 factors into a group scheme homomorphism

Dn|£n : gn,R/Trl"‘HR - Gm,R/Trl”+1R S A}Q/ﬂ—ln+1R
then
R[€,21] := R[E,] [Tn+1, 1/(Dn(Th, ..., T,) + 7+ Ty 1) |

is the Hopf algebra of a filtered group scheme &,.1 of type (l1,...,ln+1),
where the group scheme structure is the only one which turns into a group
scheme homomorphism the morphism ae,,, : €ni1 — (G, r)"™ " which
extends ag, and sends Ty41 to Dy, (Ty, ..., Ty) + wn 1T, 4.

Finally, a polynomial D], € R[Ty,...,T,] with the same reduction mod-
ulo wln+1 as D,, gives the same filtered group scheme up to isomorphism.

Proof. — See [25], Theorem 3.2 and Theorem 3.3. O

In fact one can describe very explicitly the polynomials which appear in
the above theorem. In the next statement and in the rest of the article, we
sometimes write f : X © for a map f: X — X from some set to itself.

6.3.4. — THEOREM. Let € be a filtered group scheme of type (I, .., 1)
with I; > 0 for each i. Then there exist elements a] € W/(R) with 1 <i <
j < n, whose reductions modulo 7' are in W (R/n'i R), such that

e one can take, for any j =1,...,n—1, D;(Ty,...,T;) as the trun-

cation of
Ey((al*)1<igy, (M )i<usyi Ths -, T)
in degree r, where Ep((agﬂ)l@gj, (7" )1<k<ss Thy - ,Tj) is the se-

ries defined by induction

J
, T
E, (a7t . ! >
il p< b T Ep((al)1gs<iot, (M) 1<k<io1; Thy -, Tim)

7

and r is the degree of the reduction of this series modulo wli+t,
which is a polynomial;

e the reduction modulo % of each (al)1<i<j—1 is in the kernel of the
operator

Ui~ W(R/AD R ©
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defined as follows: U" is defined as FW) := F — [z(P~Dh] and we

define
FD Ty Ty ... =Ty
0 F) Ty ... Ty
ur = : 0
0 0 o =Ty
0 0 .0 F)

where W(U™) = U™~! and L(U™) are defined by induction and

Trin

1 n—1 n—1 n iem
b = (Ful)a? = Tb;a?> _ U@ hsicn,

1 P ln
e for any | € N, we have an isomorphism
ker (U" : I//I\/(R/WZR)" ‘Q) — Homp/rip- e (i*E, Gy myniR),
given by
" — Ey(c™, () 1<jcns Thy - Th),s
where i is the closed immersion Spec(R/7'R) — Spec(R).

Proof. — See [25], Theorem 5.1 and Theorem 5.2. O

6.4. Sekiguchi-Suwa Theory from a matricial point of view

Our purpose here is to introduce "simple" matrices parametrizing filtered
group schemes (6.4.1) and to translate in matricial terms the main opera-
tions on group schemes: quotients and subgroups (6.4.5) and model maps
(6.4.7). In the following, we always suppose that the parameters I; of the
filtered group schemes we are considering are positive (I; > 0).

Let 5,(W(K)) be the loop constructed in 6.1.7. For matrices A, B €
H,(W(K)) we will make use of the notations A/B and A\B as defined
in 3.2.1. In a similar way as in 3.2.6 we will say that a matrix A in
(W (K)) is positive, and we will write A > 0, if it belongs to 5, (W (R)).

6.4.1. — THE SET .#,. To start with, we need a technical remark al-
lowing to reformulate the congruences in Theorem 6.3.4. We consider an
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upper triangular matrix of the following form:

[*1] & a3 ... a?
[7"2] a3
A= D e M, (W (R)), alll; > 0.
i
0 7]
6.4.2. — LEMMA. For each matrix A as above, let F(A) be the matrix

obtained by applying Frobenius to all entries. Then the following conditions
are equivalent:

(1) for each j € {1,...,n}, the reduction of (ag)lsig'—l belongs to
W (R/n' R)’~1 and

j—1 j — l;
U’ (a'g)lgisj—l =0 mod 7"

where U7~ is defined by induction in Theorem 6.3.4.
(2) F(A4)/A >0,

Note that the operator U7~! in (1) depends only on the vectors a* €
W(R)* with 1 <k <j—1.
Proof. — In fact, we have
[r(P=D0] BT b} by
0 [(P=DE] b3 by
F(A)/A = € Hn (W (K))

[ﬂ-(p_l)lnfl] p"

n—1

0 e . 0 [r(P=Din]

where the b are defined as in 6.3.4. By the definition of b/, this matrix is
in ,(W(R)) if and only if the congruences in (1) are satisfied. It remains
to prove that if F/(A)/A = 0 then for each j the reduction of (a{)lgsj_1
belongs to I//I\/(R/wlf R)?~1. We prove this by induction on n. We observe
that since the entries of A are in W (A), then this condition simply means
that the entries of A are congruent to 0 modulo 7, i.e. A/[r]Id is positive.
For n = 1 there is nothing to prove. Let us suppose the statement true for
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n and prove it for n 4+ 1. Then one has

UF(A)/UA F((a7 ") 1<icn) =Taurcayua (a7 i<icn

F(A)/A = o
0 . 0 [r(P=Dint1]
(6.4)
and
[ﬂ.(p—l)lnﬂ] F((a{)2stn+1)*T(LLF(A)/LA)(a{)2<j<n+1
Vil
0
F(A)/A =
: LF(A)/LA
0

where we use the notation Th;(N) from Definition 6.1.6. By the inductive
hypothesis, the matrices UA/[7]Id and LA/[r]1d are positive. Therefore
it remains to prove that a?** =0 mod 7. Since F(A)/A is positive and

lpe1 > 0 then from (6.4) we derive
F(ai*") = Tarayuay (@) 1<icn  mod m.

Since by induction @’ ™' =0 mod 7'+t fori=2,...,nand UF(A)/U"A=

([xP=Vh]) with 1 > 0, then we have
F(ap™) = [ "aj™ =0 mod .

This implies that ™ =0 mod . O

Theorems 6.3.3 and 6.3.4 imply that to any matrix satisfying the equiv-
alent conditions of Lemma 6.4.2 one can attach a unique filtered group
scheme &(A). Conversely, for any filtered group scheme € one can find a
matrix A satisfying these conditions such that & = E(A). This leads us to
introduce the relevant set of matrices. Note that if € is given, then a matrix
A such that € = £(A) is not unique. So we have to identify the equivalence
relation saying that two matrices define the same filtered group; this will
be done in 6.4.7.

6.4.3. — DEFINITION. Let n € N and I = (Iy,...,1l,) € (Nsg)”. We
define

M= {A= (al) e M,,(W/(R)), upper triangular, a} = [r] for 1 <i<n
and F(A)/A > 0}
and ., = |J.#], the union being over all I € (Nx¢)".
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6.4.4. — Remark. If A € #,, then it is not necessarily the case that
F(A) € A,. There are counterexamples already for n = 2, with lo » ;.

By Theorems 6.3.3, 6.3.4 and Lemma 6.4.2, one can associate with any
A€ 4] afiltered group scheme E(A) of type (I1,...,1,). It is constructed
by successive extensions defined by deformed exponentials D; (T, ..., T;)
equal to the truncation of E,((a]™)i<i<j, (7" )1<k<j; Th, - - ., T;) in degree
r, where r = r; is the degree of the reduction modulo 7li+1 of this series.
We call D; the truncated exponential associated with (az+1)1gigj. (Note
that similar truncated exponentials appear in the work [13].) With the
vocabulary introduced in the article [22] (see especially 3.2 and 4.3 there),
the vectors a’/ are frames for the filtered group €(A), and the matrix A

may be called a matrix of frames.

6.4.5. — OPERATORS U AND £ VERSUS QUOTIENTS AND SUBGROUPS.
It is clear that for each A € .4, and i € {1,...,n} we have U""'A € .#;
and L'A € .#,_;. Here is the precise meaning of the operators U and £ for
filtered group schemes.

6.4.6. — PROPOSITION. Let € = (€4, ..., &,) be a filtered group scheme
of type l= (I1,...,l,), and A€ #}. For 1 <i <n—1 consider the exact
sequence 0 — 8,,_; — &, — Q; — 0 where Q; := &; (quotient of dimension
i) and 8,,_; := ker(&,, — &;) (subgroup of codimension i). Then:

(1) Q; is a filtered group scheme of type (ly,...,l;). If &€ = &(A) then
Q; = &(UntA).
(2) 8,,—; is a filtered group scheme of type (l;+1,...,0,). If € = E(A) then
Sn—i = E(LTA).

Proof. — Assertion (1) comes from the inductive construction of &,,. For
the proof of (2), we set K4 = ker(€y4 — &;) for each d > i+1. First, we show
by induction on d that X, is a filtered group scheme of type (l;y1,...,lq)-
The initialization at d = ¢ + 1 is clear and the inductive step is verified
since the morphism vy : €441 — €4 with kernel Ga+1) induces an exact
sequence:

0 —> §lart) — Ky 25 Kg — 0.

In order to prove that 8, ; = E(LPA) if € = E(A), we examine more closely
the way these extensions are built. The extension €41 is constructed from
€4 using a morphism Dy : €4 — 4G, where i : Spec(R/ml*+1R) —
Spec(R) is the closed immersion. This morphism is the deformed exponen-
tial defined by the coefficients a?*! in the (d+1)-th column of A. The exten-
sion K41 is constructed from X4 using the morphism Dy|x, : Kg — .Gy,
In the coordinates 17, ..., Ty of 6.3.4, the closed subgroup scheme Xy c €4
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is defined by the vanishing of the coordinates T1,...,7T;. It follows that
Dg|x, is obtained from the deformed Artin-Hasse exponential D4 by set-
ting aft! = a4t = ... = @™ = 0. Hence the matrix of coefficients that

defines X4 is the boxed middle matrix:

(] * %
]
A= 0 ®
[x'4]
. . [Trld+1]

In symbols, Ky = E(ULIA). For d = n, we get 8,,_; = K, = E(L'A).
O

6.4.7. — POSITIVE MATRICES VERSUS MODEL MAPS. We use the word
unitriangular as a synonym for upper triangular unipotent.

6.4.8. — PROPOSITION. Let &€ = E(A) and & = E(A") be two filtered
group schemes, with A, A' € #,.

e There exists a (unique) model map € — &' which commutes with
ag and ag if and only if AJA" > 0. In particular, the relation
> in M, given by A > A" if and only if A/A" > 0, is transitive.
Moreover € and &' are isomorphic if and only if A/A’ is positive
and unitriangular.

o If p: & — & is such a model map, the morphism of groups

T2 HomR/ﬂ'ZR— Gr(i*ela GTmR/ﬂ”R) - HomR/ﬂ"’R-Gr(i*Sv GTmR/Tr’R)

is given, using the isomorphism of Theorem 6.3.4, by the operator
TA/AI .
Proof. — We prove by induction on the dimension n the following more

precise statements:

e There exists a (unique) model map &€ — &’ which commutes with
ag and ag if and only if A/A" = 0.

e Let Dy,...,Dp 1 (vesp. Dy,..., D! ;) be the truncated polynomi-
als determined by A (resp. A’). If a model map " : € — &' exists
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then it is given by " = (:)1<i<n, where ¢1(Ty) = 74~ and
SDi(Tlv v 7TZ)
Diy(Ty, ..., Tic) = Diy(p1(Th), -, i1 (Th, ..., Tic1))
= o
+ Wli_lgTi
for all 4 > 1.

e Write A = (a?) and A’ = (a’}) in 4, with ai = [7%] and a}’ =

[7li] for 1 < i < n. Let (w})1<icn € W(R)™ be a vector whose
reduction modulo 7! belongs to
ker(U™ : W(R/x'R)" ©).
Let H; =1+ 71Ty and
= Ep((a?)lsz-gnfl’ (" h1<isn—1, T) (1 +ln Ep((aZ")lsl'Sn—T:l(w”)1<i<n—1,T))
! Ep((a’})1<i<n—1, (11 )1<i<n, ¢™(T))
for n > 1. Then

Ep(wn? (ﬂ-llv' .- aﬂ-ln)a Qpn(T)) =E (TA/A’(wn)7 (Trllw .- 771.171,)7 T)

~ H G Un ,wn v H, 1) (65)
2<r<n
where U" is the r-th row of U"”, and
I _Ep ((a?)1<iscn—1 — Tuajua (@] )1<icn—1, (7', ... wln=1); T)

H2<7<n (Un( n)’ﬂllr;Hr_l) (66)

x B ([Wl"’] win T )
! T Ep((@)igign—1, (M )1gign—1,9™(T)) )
Note that (6.5) implies that ¢* is given by the operator T4, 4/, as asserted
in the statement of the proposition.

If n =1 we have & = G and & = G(1) for some positive integers I, 1.
In this case A/A’ > 0 simply means [; > [ and the above statement is
known: see [24], Proposition 1.4 for the first part and second part and [26],
Remark 3.8 for the third part.

We now suppose that the three statements hold true for some n > 1 and
we prove them for n + 1. We have

(@i ) icicn—Tuajuar (@7 icizn)
Ajuar 1 AV
A/A/ = u /u 7rl"+1

0 . 0 [7‘(’ln+17l’n+1]
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Let Dy,...,Dpt1 (resp. Di,..., D)) be the truncated exponentials that
define & (resp. &’). The model map ¢,,+1 which we are looking for should
commute with ag and agr, so if it exists it is unique. So one sees immedi-
ately that it exists if and only if there exists a model map €,, — &/, and, if

we write "1 = (¢;)1<i<nt1, the polynomial

(intl(Tl, e ,Tn+1)

Dol To) = Dier(T).onTie T)) g,
e n+1

belongs to R[T1,...,T,]. Therefore, by the inductive hypothesis, there ex-
ists a model map between & and &’ if and only if UA/UA’ is positive,
lns1 =1, and

Do(Ty,...,T,) = D (o1 (Th), ..., on(Ty,...,T,)) mod wn+i.  (6.7)

By induction we have that

90* : HomR/TrlR- Gr(Z*g(u(Al))a Gm,R/Tr’R)
- HomR/ﬂ'lR— Gr(l*e(u(A))v Gm,R/ﬂ'lR)

is given by the operator Ty 4/ as- This means that the equation (6.7) is
equivalent to

(@l Mi<icn = Tuaua (a7 )1<i<n) mod whues,
Thus we have proved the first and second part of the statement for n + 1.
It remains to prove the formulas (6.5) and (6.6) for n+ 1. But the second
one clearly follows from the first one, so we just have to prove (6.5). Let us
suppose that (6.5) is true for n and prove it for n + 1. We clearly have

Ep((wr ) 1<rensn, (a', . w9 TH(T)) =

EP ((w?Jrl)lSrSnv (71_[17 e 77Tl")1 ‘Pn(T)) EZD (wzih Trln+1 I

n+1(T) ) )

Ep((a/} ) 1<icn: (T 1<i<n, ¢™(T))

Moreover, by induction

EP ((w?Jrl)lSiéna (7Tl17 s 77rln)v @n(T))

= Ep (TuA/uA/(’w?Jrl)lgisn, (T(ll goae ,7Tl”), T)
x ] GO (W)™ hicicn), 7" s Hya). (6.9)
2<r<n
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Now
T8 (= LT, L ) )
n )
Ep(( @’} i<izns (M) 1<i<n, ¢™(T))
-1
_ n+1 +1
- Ep(w7l+1’ "
7|'n+1
(6.2)
E, Zii 7T"+1 n+1wn11 ﬂ—lnﬂ:Hn
= Ep(T n+ +1 wn L (xh atn); T
(a; " )1gisn— uA/uA'(“ Jigisn N+ Yy )
alntl
T
1 l n+1
x E. (T v wll gl
P lpy1—1 n+1» ’ +1 )
[wr ] Ep((a] )1<ign—1, (") 1<i<n, ¢™(T))

X H Gp ( — TUp(a?)1<i<n71 wZiL wlntt ; H,n,l) Gp (Fln+1 wnii int1 , Hn)
r=2 rlntl

where in the last equality we have used Equation (6.6), Lemma 6.2.6,
Lemma 6.2.9, Equation (6.3) and the fact that EP(W,A,H) gives a bi-
linear group scheme homomorphism Wy x Ay — Ay Now using (6.8)
and (6.9) one gets the result.

Finally we remark that if A/A" > 0 and A’/A > 0 then necessarily A/A’
and A’/A are unitriangular, as it is very easy to verify. a

The order relation > from the previous proposition induces an equiva-
lence relation on .,:

6.4.9. — DEFINITION. For any A, A’ € #,, we write A ~ A’ if and only
if A/A’ is positive and unitriangular.

This relation characterizes when two matrices in ., define the same
filtered group scheme:

6.4.10. — COROLLARY. The map A — E(A) induces an increasing bi-
jection between the set .#,/ ~ ordered by the relation > and the set of
isomorphism classes of filtered group schemes of dimension n ordered by
the existence of a model map.

7. Kummer group schemes

In this section, following Sekiguchi and Suwa’s approach, we specify The-
orem 6.3.4 for filtered R-group schemes containing a model of jyn. The
main result (7.1.1 below) is a generalization of Theorem 9.4 of [25], which
covers the particular case where the finite flat subgroup is the constant
group scheme (Z/p"Z)g. As it turns out, the main difficulty is to find the
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statement of the generalized theorem, for then the proof of [25] carries over
smoothly.

We point out an important fact: the computation of successive exten-
sions by groups (), which is the essence of the existence of filtered group
schemes, proceeds differently when [ > 0 and when [ = 0. The former case
is treated by Theorem 7.1.1, and we indicate in Remark 7.1.4 how to handle
the easier case [ = 0.

7.1. Finiteness of closures of finite flat subgroups

Let & = &, be a filtered group scheme of type (I1,...,0l,). Let a : & —
(Gn)™ be a morphism of filtered R-group schemes which is an isomorphism
on the generic fibre. Let ©" : (G,,,)" — (G,,,)™ be the morphism defined
by

O (Th,...,Ty) = (TP, TYT ..., TPT ).

The kernel of ©" is a subgroup isomorphic to pp» g which we call the
Kummer p,» of G}},. Via the map o, we can see the Kummer pipn g as a
closed subscheme of €. We define the pre-Kummer subgroup G,, as the
scheme-theoretic closure of y,» g in €, and we call it the Kummer subgroup
when it is finite over R. In spite of the notation, GG, depends on the choice
of a (see Theorem 6.3.3). If G,, is finite, then the quotient F, is a filtered
group scheme and the quotient map ¥" : £, — F, is an isogeny. In this
case, for each ;1 € R we have a pullback map

(\Iln)* : HomR/MR— Gr(?n7 Gm) - HomR/uR— Gr(gn; Gm)

We know by Theorem 6.3.4 that using the deformed Artin-Hasse exponen-
tials, the groups on both sides may be identified with suitable kernels of
additive operators U™ on Witt vector groups. Once this is done, Sekiguchi
and Suwa express (U")* by a matrix called T™. Let us give some details in
the case n = 1 that initiates the induction. Then we have & ~ G(1) and
the closure of u,  is finite flat if and only if v(p) = (p — 1)l3, see e.g. [22],
Lemma 5.1.1. Moreover ¥, = &, /G; ~ G(11) and one may check that the
pullback (¥1)* is expressed by the one-term matrix Y1 = (Tpra /a7 )- Note
that the operator Tjy,1/x» indeed takes the kernel of F(1) into the kernel
of FW) see [22], Lemma 5.2.8. Let us come back to an arbitrary dimension
n.

In this setting, we can characterize the situation where the pre-Kummer
group scheme G, inside a filtered group scheme &, is finite and flat.
In the statement below, we will denote by U? the matrices involved in the
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construction of €, like in Theorem 6.3.4, and U’ the matrices involved in
the construction of F,, (this is the notation of [25]). Note that the inductive
construction of U" is included in the statement of the theorem via the
vectors u".

7.1.1. — THEOREM. Let n > 1, l = (I1,...,l,+1) with [; > 0 for each
i, and A € M}, . Let & = E(A) = (E1,...,En11) be the filtered group
scheme of type l defined by A. Assume that G,, < &, is finite flat. Then,
the following conditions are equivalent:

(i) Gn41 Is finite flat,
(i) v(p) = (p — 1)l,s1 and there exist vectors u"*' and v"*! in
WZ(R)"™, with the reduction of u"+! modulo 7P!»+1 lying in ker(U™ :
W (R/mPln+1 R)™ ©), such that
pa;wrl _ c;(hLl _ (Tnun-&-l)i — ﬂ_pln_'_l-,U?Jrl
for all 1 < i < n, where ¢ = ¢ = [71'] € W(R), c"*! =
(a™, [7!"]) € W(R)™ for n > 2, with a” = (a)1<i<n-
In this case, the filtered group scheme F,.1 = &,4+1/Gpni1 Is obtained
from &,,/G,, using the deformed Artin-Hasse exponential defined by u"*!.
Moreover, if U"+1 : €, 1 — F, 41 is the induced morphism and if 1 € R\{0}
then the morphism

(U"*  Hompypg-cr(Fot1, Gm) = Homp),r-cr(Ent1, Gim)

is given by

Tl = " Tyn+1
0 e O Tp[ﬂln+1]/ﬂpln+1

Proof. — We make an induction on n. It is convenient to set £y = {1}
and to start the induction at n = 0, in which case the result is known (see
e.g. [22], Lemma 5.1.1). For the last statement we will prove something
more precise. Write &,,11 = E(A) and F,,11 = E(B) with A = (a{) and

B = (ul) in My, with a! = [74] and u! = [7P4] fori =1,...,n+1. Let
Ko := (1 + 7" TP = E,(p[r"], 7", T})

and for r > 1 let

K, = (Ep(a™, (') 1<icr, T) + 7'+ Ty 1)P € R[Th, ..., Tr41]
" (By(ar, (19 1<icr—1, T) + 7 T) Ep(ur+t, (7h) 1<i<rr, ©7(T)) v
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Given w" € W(R)"™ whose reduction belongs to ker(U™ : W(R/,uR)” ),

we will prove that
E,(w", (7Pt ... qPlner) U™(T)) =

By (X" (w), (x1, .. oxt ), 1) [T GO, 7, K, ), (D)

where U™ is the 7-th row of U™. Since G,,(U? (w"), 7P!*; K,_1) € 1+TR[[T]]
for each r > 1 ([25], Prop. 9.3), Equation (7.1) implies
Eypa” — ¢ = X7, (.., b)) By (plto+ ), s o o

" 1—12:1 Gp(Uir(ur)vﬁpl”UKi—ﬂ

(7.2)
For n = 1 the formula (7.1) follows from 6.2.6 and (6.2). We now suppose
that the theorem and the formula (7.1) are true for n — 1 and we prove
them for n. We do this in three steps (a)-(b)-(c).

(a) We prove that (i) is equivalent to (ii). Among the objects constructed
inductively at the same time as the filtered groups &,,,F,,, we consider the
polynomials D,., D!, (truncated exponentials associated respectively to &,
and F,) and the isogenies ¥" : €. — F,., for 1 < r < n — 1. We also
introduce the notation:

On+1 = CTL+1(T17 s 7TI’L+1)
= (Dn(TIa v aTn) + 7Tln+1Tn+l)p(Dn71(Tla s 7Tn71) + 7TlnTn)_1~
We have K[Gp+1] = K[Gpn][Tn+1]/(Crns1 —1). Assume that G,,41 is finite

over R; then it is finite over G,,. It follows ([9], Prop. 4.1) that C\,41 —1 =0
mod 7Pln+1 and

Chn+1 — 1>'

7-(-Pln+1

R[Gous1] = RIGW)[Tu)/( (73)

In particular C),+1, seen as an element of HomR/sznHR(Gn,Gm), is the
trivial morphism. If we apply the functor Hom y (= Gp) to the
short exact sequence

i o
0—G,—>¢&, —F, —0,
we obtain a long exact sequence

nyk
0 —> Hom st i1 (T Gn) 23 Hom ot (€ Gin)

Sk
1
n, HomR/ﬂpanR(Gn, Gm) — ...
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As we noticed before, the element C,, 41 lives in ker(:}) and hence is equal
o (I™)*(D),) for some D), € HomR/ﬂpan(&"nH,Gm). Now we use the
description of groups of homomorphisms from a filtered group scheme to
G,,, in terms of vectors, as given by the third point of Theorem 6.3.4. Let
u"tl e W(R)"™ be a lift in W(R)™ of a vector corresponding to D!,. The
equality
Cry1 = (¥")*(Dy,)

translates to n equalities pa ™' — ¢! = (Ymun*l), in W(R/xPln+1 R)™,
for 1 < i < n. Lifting this to W(R)™ shows that (ii) holds. Conversely,
if (ii) holds then Cj41 is of the form (¥™)*(D)) for some D!, hence it

has trivial image under i*. Thus C,,;; =1 mod 7P'»+1 and the expression
(7.3) defines a finite flat group scheme G,,11 over R.

(b) Let Fy41 = Ent1/Gry1. Now we prove that F,,4q = I, where I,

is the filtered group scheme obtained from J, using the vector u™*!. The
R-algebra of J7, ; is

R[F)[To1,1/(Dy, + 741 T 1)),

where D!, € R[Th,...,T,] is the truncation of
u" ) H withal T/ By ('™ (), T))

as defined in Theorem 6.3.4. Let Wy,..., V¥, be the polynomials defining
the isogeny U™ : £,, — F,. Let
U1 (Th, ..., Th)

_ 1 (Dn(T1,~-- 7Tn) +7Tl"+1Tn+1)p
B anl(Tlv'“aTnfl) +7rl"Tn

7-rpln+1

_ D! (¥,(T), . .,wnm)) |

Then the morphism R[F,1] — R[&n+i1], Ti — U;(T1,...,T;) defines an
isogeny €,41 — J7,,, with kernel Gy,;1. Therefore ¥, is isomorphic to
g’/

n41 as a filtered group scheme.

(¢) We now prove the formula (7.1). We have

Ep (,wnJrl7 (ﬂ,pll b .’ﬂ_pln+1)7 \I,nJrl(T)) —

T)
E n+1 r<n Pl ply, (T E. n+1l _plpy ’n+1(
P ((wr )1< <n (ﬂ' ) s T )1 ( )) P wn+1 ™ ) Ep(u"‘“l ( 1<7,<717 )
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By the induction hypothesis we have
EP ((w:LJrl)lSrSnv (71.1’)117 te 77Tplﬂ )’ \Pn(T)) =
Ep (ann+1’ (77]17 e 77Tln)’ T) H Gp (Uryly((wny+1)1§s§n)7 ﬂ'pl"Jrl’ Kr—l) . (75)

s
1<r<n

Moreover we have
v (T
n+1 __plny1 n+1
E:D (wn+177r " 1 .
P

Kn - 1
n+1 ]Jl +
= Ep (wn 1,7T " 1,

(6.2)
= B, (w1, 7Pl K, G ( F®ne) gt pplees
= E (T n+1 I by.
= P (pan_cn—l_'rnun+1)wn+17(7T yeeey T ),

APlng1

T

1 1 n+1

% T | ,wn+ intti.

Ep plrin+1 n+1s ’ i

< plw nt1] E (a1, (mh)1<i<n, T)

Plnt1

1 )
X H Gp < - TU?un+1 ’wﬁil, 7Tpl”+1;KT1)

1<r<n APln+1

x Gy (Pl wit] ate K, )

where in the last equality we have used Equation (7.2), Lemma 6.2.6,
Lemma 6.2.9, Equation (6.3) and the bilinearity of EP(W,A,H) : W X
Ap1 — Ayr, see 6.2.5. Now using Equations (7.4) and (7.5) one gets the
result. g

7.1.2. — DEFINITION. Let &(A) = (&1,...,&,) be a filtered group
scheme. We say that A satisfies the integrality conditions if for any 1 < i <
n, the upper left square submatrix U™ A of A satisfies the conditions (ii)
in Theorem 7.1.1 applied to an i-dimensional matrix.

In other words, A satisfies the integrality conditions if and only if the
pre-Kummer subgroups G; are finite flat in &;, for 1 < ¢ < n. From the
proof of Theorem 7.1.1, we deduce an explicit formula for these models of
Hpn K -

7.1.3. — COROLLARY. Let &, = £(A) be a filtered group scheme given
by a family of parameters A = (a{ ) satisfying the integrality conditions.
Let Di(T1) € R[Ti] be any lifting of Ep(a?,7"*,T;) mod «'2,..., and
D, 1(Th,...,T,—1) € R[T,...,T,—_1] be any lifting of

E,(a", (xlr, .., 7l=1), Ty, ..., Th_1) mod 7l
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as defined in Theorem 6.3.4. Then G,, is a finite flat R-group scheme,
defined in affine n-space in coordinates 11, ..., T, by the n equations:

(1+7TZ1T1)p—1 (D1+7Tl2T2)p(1+7Tl1T1)_1—1

Wpll ’ 7'('1712 ’ T
(Dp—1 + 70 T)P(Dyyg + 1T )71 — 1
. T .
Proof. — This is a translation of Theorem 7.1.1. O
7.1.4. — Remark. In the statement of Theorem 7.1.1, it is assumed

that I; > 0 for all i. Here is what to do so as to obtain a description of
all Kummer group schemes, including the case where some [; vanish. We
make some preliminary observations. First, as it is easy to see from the case
n = 2, the type of a Kummer group is necessarily ordered: [y = ls = --- > [,
(see 8.2.5). Second, there are no nontrivial extensions of a filtered group
scheme by G, (see [25], Prop. 3.1). Third, it is easy to see that the only
Kummer group scheme of (G,,)"™ with type (0,...,0) is ppn. After these
preliminaries, it remains to see how to describe Kummer groups of type
lwithly =2--- 21, > 1,41 = -+ =1, = 0. Such a Kummer group G
lies in a filtered group & = G " x &(A’) where &'(A’) is filtered of type
U= (l1,...,1.). We define E(A) := & when

A0
A=
0o Vv

with V unipotent in M,,_,.(W7(R)) (therefore equivalent to the identity,
since invertible: use Lemma 6.1.4). Moreover, G is an extension of a finite
flat Kummer group G’ of & by fi,n—r. Using the same argument as in [31],
Prop. 3.6 there is an exact sequence:

0— Z/prZ - Eth(G/?/’Lp"*’") - H1(57 (G/)v) —0

where S = Spec(R) and (G')Y is the Cartier dual of G’. Then with the
same proof as in [31], Cor. 3.20 we see that the Kummer subgroups of
& are given by the image of 1 € Z/p"Z. They have the following ring of
functions:

RIG|[T: 1]

(T2 (Dyoy + 70 T) =1 = 1)

R[G] =
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7.2. Matricial translation of the integrality conditions

We translate the previous results on Kummer group schemes in terms
of matrices, in order to emphasize the formal similarities with the classifi-
cation of models of y,» by their Breuil-Kisin lattices in 4.2.2. Up to now
in Sections §6 and §7, we followed Sekiguchi and Suwa’s notation a{ for
the entries of matrices. However, in order to compare the parameters with
those of the Breuil-Kisin classification, we will henceforth write a;;. In the
statement of the following result, we use the operator P introduced in 4.1.4.

7.2.1. — THEOREM. Let G be a Kummer group scheme. Then there
exists L = (l1,...,1,) € (N)™ and upper triangular matrices
[ﬂ'll] a2 as - ain
[7'2]  aps azn
A= ,

[7"=1] ap—1m

0 ("]
[’/Tpll] b12 b13 N bln
[xP!2]  bos b2

[ﬂ-plnfl] bnfl,n

0 [wPin]

with entries in W/ (R), satisfying

(1) F(4)/A >0, F(B)/B >0,

(2) (pA—2PUA)/B =0,
such that G is the kernel of an isogeny E(A) — &(B). Moreover when A
is chosen, B is unique up to the equivalence relation ~.

If there exists A and B as above then E(A) contains a finite and flat
Kummer subgroup scheme G and £/G ~ &(B).

Proof. — Let us first suppose that (I1,...,l,) = (0,...,0). Then the
unique Kummer scheme of type (0,...,0) is ppn. In this case any matrix
as in the statement is unipotent and so is equivalent to the identity, since
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it is invertible. Therefore such a matrix gives rise to the group scheme pi,n.
Conversely A = B = Id satisfy the conditions of the theorem.

We will now suppose that all the [; are all strictly positive. The case with
some [; equal to zero can be deduced form this one using Remark 7.1.4.

By definition of a Kummer subgroup, it is embedded in a filtered group
scheme E(A), for some A € #, of type l. Moreover by 7.1.1 it is easy to
see that

pA—PUA =V, xp B,

where the matrices B,,, V,, are defined by induction:

Bn un+1
Bpy1 =
0 ... 0 [rPln+1]
and
Vn vn+1
Vn+1 =
0 ... 0 p[rl+]/gPlets
with u"*! and v"*! as in the statement of Theorem 7.1.1. It follows from
the same theorem that £(A)/G ~ €(B). Similar argument for the converse.
O
7.2.2. — Remark. One significant difference between this theorem and

Theorem 4.2.2 is that here we do not provide a normal form, or distin-
guished choice, for a matrix A defining a Kummer group scheme. Theo-
rem 4.2.2 suggests that maybe one could choose a pair (A, B) of the form
(A, F(A)). This is true for instance for n = 2 and at least in some cases for
n = 3, as we will see in the next section.

This theorem should be seen as the analogue in Sekiguchi-Suwa Theory
of Theorem 4.2.2 in Breuil-Kisin Theory.

8. Computation of Kummer group schemes for n = 3

In this section, we apply the general theory to compute some Kummer
group schemes for n = 3, that is to say, those models of j,3 constructed
using Sekiguchi-Suwa Theory. From the start, we see that the complexity
of the computations with Witt vectors is a serious obstacle. In fact, the
difficulty increases with the number of nonzero coefficients of the vectors. It
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is therefore interesting to know if in Theorem 7.2.1 we can choose matrices
A and B with "short" Witt vector entries. The results of [31] show that in
the case n = 2, any Kummer group scheme may be described by matrices
A, B such that A has Teichmiiller entries. We could not settle the question
whether this is possible for all n, but in our opinion it is not very likely. It is
much more plausible that A may be chosen with entries of bounded length;
more precisely, it seems reasonable to hope that each Kummer model of p,»
may be defined by a matrix A all whose entries are Witt vectors of length
at most n — 1. However, it is probably impossible to make simple choices
simultaneously for A and B, which means that one should not make a priori
assumptions on B. Because of these remarks, here we compute the Kummer
groups defined by matrices A, B € .#5 such that A has Teichmiiller entries
and B is arbitrary.

Even though this is not essential, it will simplify matters to assume
throughout that p > 3. Recall that R is a discrete valuation ring of charac-
teristic 0, residue characteristic p, uniformizer 7, valuation v and v(p) = e.
For [ > 1, we denote again by v the induced valuation on R/mw!R. When-
ever the context does not allow confusions, we keep the same notation for
a Witt vector a = (ag,ai,...,a;...) € W(R) and its image in W (R/7'R).
Following the comments at the beginning of 7.2 and the notation in 7.2.1,
in this section we will write a;; the entries of the matrices.

8.1. Two lemmas

We collect two easy lemmas for future reference.

8.1.1. — LEMMA. Letl > 1 be an integer. Then the following statements
hold.
(1) If pe = (p — 1)l, then for any a € ker(F : W(R/ﬂlR) ) we have
v(a;) = 1/p for all i > 0.
(2) For all a,be W\(R/WZR) such that v(a;) = l/p and v(b;) = I/p for all
1 >0, we have a+ b = (ag + bg,a1 + by,...).

Proof. — This is Lemma 2.4 of [31]. More precisely, (1) and (2) are
proven in the proof of loc. cit. and the assertion of Lemma 2.4 itself is
a combination of these statements. d

8.1.2. — LEMMA. Let X = (X0, X1,Xo,...) and Y = (Yp,Y7,Y5,...)
be sequences of indeterminates and Sy, S1,S2,... the polynomials giving
Witt vector addition (see 3.1).

TOME 63 (2013), FASCICULE 3



1116 A. MEZARD, M. ROMAGNY & D. TOSSICI

(1) If the variables X;,Y; are given the weight p®, then the polynomial
Sn(X,Y) € Z[X, Y] is homogeneous of degree p".
(2) We have Sp(X,Y) = Xy + Yo,

S1(X,Y) = So(X1, Y1) + 01(Xo, Yo)

with
Xg + Yop — (Xo + Yo)p

p

01(Xo,Yp) =
and
S2(X,Y) = So(Xz,Y2) +01(X1, Y1) + 01 <X1 +Y1,01(X0,Y0)) +02(Xo, Yo)
with
2 2 2
X§ +Y5 = (Xo+Yo)” —pai(Xo, Yo)?
p? '
(3) We have 0i(X, ~Y) = 03(X,Y — X) and (X, —Y) = 0:(X, Y — X).
(4) For any l > 1, a,be R/m'R and i = 1,2 we have:
v(oi(a, ) = min (B = o(a) +v(®), (' = u(®) + v(a) ).

(5) If p = 3, then in the ring W(Z) we have

0-2(X07YE)) =

— p—1 p—1 p—1 p—1
p=1—p" " ep’ eap” eap’ )
where €9, €3, €4, ... are principal p-adic units.

Proof. — (1) is obvious and well-known, (2) is a simple computation,
(3) is proven in 3.1.4, (4) follows from (2) with the help of the binomial
theorem, and (5) is proven for example in Lemma 5.2.1 of [22]. O

8.2. Computations for n = 2

As already said, the case n = 1 is well-known (see for instance [22]
Lemma 5.1.1). All the models of p,, K are given by certain group schemes,
called G ; with [ € N such that = 45 = [. If | = 0 we obtain the group
scheme p, r © G,,,. One proves (see [31] § 1) that there exists a model map
between G, and Grm ; if and only if I > m. Using Lemma 4.1.8, this
implies that for models of i, i, the covariant equivalence of Kisin described
in § 2.1 is given by G ; — u'k[[u]]. We recall that the matrix associated
to the Breuil-Kisin module u'k[[u]] is the 1 x 1 matrix (u!).

We now consider the case n = 2. First we recall the following lemma.

8.2.1. — LEMMA. If G is a Kummer group scheme of type (l1,l3) then
I1 = ls.
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Proof. — If G is of type (l1,l2), it is an extension of G, ; by G, g
so the result follows from [31], Lemma 3.2. Another way to see this is to
argue that by 2.3.3 there is a model map G i, ; = G, ; and this forces
ly = 1o, as recalled above. Finally, in the case l1,ls > 0 one can also obtain
the lemma using Theorem 7.2.1. g

Now fix l1,ls > 0. We consider a matrix

U B B Py

0[]

8.2.2. — LEMMA. The condition A € #5, that is to say F(A)/A >0, is
equivalent to the congruence F")(a;5) =0 mod n'>. Moreover let

Then a}, = a;» mod 7’2 if and only if A’ € .M, and E(A) ~ E(A').

Proof. — By definition we have F(A)/A > 0 if and only if there exists a
positive matrix

[r(P=Dl] C1o

C =
0 [r(P—Di2]

such that F(A) = C 1 A. The equality of entries in position (1,2) gives
F")(ay5) = n*2.¢15. This is equivalent to F()(ay) = 0 in W(R/7"2R),
which is the first assertion. In order to prove the second assertion, let
A" € My(W/(R)) be as in the statement. If a}, = a;s mod 72, then:

(i) F)(a!,) = F"(a5) =0 mod 2,
(ii) there exists 7 € W(R) such that @}y = a1z +7'2.7, 50 A’ = D *p A

with D = (; 7).

By (i) and the first assertion of the lemma we have A’ € .5, and by
(ii) and Prop. 6.4.8 we have £(A’) ~ E(A). Conversely if A’ € .#5 and
E(A) ~ E(A"), then by Prop. 6.4.8 there exists a unitriangular matrix D
as above such that A’ = D x7 A. It follows that @}, = a1z + 2.7 and
a}y = a;z mod 7', O

Now we use Theorem 7.2.1 in order to tell exactly when A gives rise to
a model of 12, in the case A is a matrix with Teichmiiller entries.
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8.2.3. — PROPOSITION. Let

be a matrix with Teichmiiller entries and l1,ly > 0. Then A belongs to .#5
and &(A) contains a finite flat Kummer subgroup G if and only if

(i) ;5 2L =1y

(ii) aly =0 mod 7'2, and

(iii) pajp —mh
In such a case, we have £(A)/G ~ E(F(A)). Moreover, if we set D1(T) =
SP_Lak,TF k), then

_ ]
-~ (@12)? =0 mod 72,

)

G = Spec (R[T17T2]/((1 +a )P =1 (Dy(Th) + 72 To)P(1 + 71 Th) " — 1)) ,

hp Pl2

Finally G depends only on the reduction of a5 modulo 7'2.

Proof. — If I; = 0 or I3 = 0, the result comes from the case n = 1 (see
7.1.4) and is easy so we suppose that l,lo > 0. By Theorem 7.1.1 and
Lemmas 8.2.1 and 8.2.2, the matrix A gives a finite flat Kummer group
G if and only ﬁ =1l =g, F(ll)([alg]) = 0 mod 72 and there exists a

vector u = w13 € W/ (R) with reduction in ker(F®h) : W(R/ﬂplzR) )
such that:

p[alg] — [7Tll] = Tp[ﬂ.ll]/ﬂ.pll (u) mod 7Tpl2. (81)

Since I; > lg, the congruence F(ll)([alg]) = 0 mod 72 is equivalent to
als, =0 mod 7'2. It remains only to prove that (8.1) and (iii) are equivalent
equations.

First, let us consider the left hand side of the congruence (iii). Using
the expression p = (p,1 — pP~1,...) € W(R) recalled in 8.1.2(5) and the
minoration v(a12) = la/p, we find:

plaiz] = (pai2, (1 — p* *)(a12)?,0,0,...) € W(R/x""*R).
Since p > 3, we have v(pP~!) = (p— 1)e = (p — 1)%lz = ply. Thus in fact:
plarz] = (paia, (a12)?,0,0,...) mod 7.
Using Lemma 8.1.1(2) we obtain

plaiz] = [7"'] = (parz — 7", (a12)?,0,0,...) mod =Pz (8.2)
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Now let us turn to the right hand side. We set w := —F55-. In the same
way as before, we obtain
plr"]
7rpl1
It follows that Tpp.i1/men & = [w]u+Vu in W(R/mP"> R). Now note that in
W (R/mP"2 R) we have ker(F(¥1)) =ker(F), so it follows from Lemma 8.1.1(1)
that

= (w,1,0,0,...) mod 7P,

wu=0 mod 7',
hence also
[Wu=Vu=0 mod r'.
Thus by Lemma 8.1.1(2), their sum in W (R/7P"2R) is computed compo-
nentwise:

2 3
Tylrin]fara U = (qu,wpul + ug, WP ug + uy, WP uz + ug, . ) :

Since u has finitely many nonzero coefficients, we may call uy the last of
them. It follows from the above that

l
(paiz — 7, (a12)",0,...)
P p’ p°
= (wuo,w u1 + ug,w” U + U, ... W Uk +uk_1,u;€...).

This is possible only if & = 0, hence u = (ug,0,...) = [ug] in W(R/7P2 R).
Now if we identify

Tp[ﬂ.ll]/ﬂpll u = ((.U’U,O, Uugp, 0, 0, ces ) = (pll12 - 7Tll, (alg)p, O7 . )7
we obtain ug = (a12)? mod P2 and the congruence

p
pary =" = rp—Dh (a12)? =0 mod 7.

This finishes the proof of the first assertion of the proposition. As a bonus,
we see that w = F([a12]) is a solution to (8.1). Then Theorem 7.2.1 shows
that £(A)/G ~ E(F(A)). The final expression for the function ring of G
follows from the general theory, which of course provides also the group
law. The final statement follows from the above lemma. O

8.2.4. — Remarks. (1) In the set of conditions (i)-(ii)-(iii) of the propo-
sition, the inequality Iy > [y is a consequence of the rest. Indeed, if we
assume the three conditions satisfied except that I; < Iy, it is clear that
(iii) has no solution.

(2) We recover, with essentially the same proof, all the group schemes
exhibited in Tossici’s paper [31]. In loc. cit. it is also proven with some
more work that if (11,12, a12) and (I1,l2, a)5) give rise to isomorphic group
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schemes then ais = af, mod 7’2, and that all models of p1,2 are obtained
in this way. Moreover Proposition 3.34 in loc. cit. can be complemented
by saying that the existence of model maps corresponds to the divisibility
between their matrices (with Teichmiiller entries). All these things works
also in characteristic 2.

The following remark is the equivalent of 4.2.3.

8.2.5. — Remark. The above results for n = 2 have consequences for
general n. Let G be a finite flat Kummer group scheme in a filtered group
scheme E(A) of type (I1,...,1,) € N*. Then

(1) 35 =14,

(2) ll >l2 2 Zl'rm

(3) if @iit1 = (af;1,0] 4100 ,af’iﬂ, ...) then v(af_’iﬂ) > l;+1/p for

all 7, k.

In fact point (1) is already known (first sentences of 8.2). For n = 2, point
(2) follows from Lemma 8.2.1 and point (3) follows from Lemmas 8.2.2 and
8.1.1(1). The statement for arbitrary n follows simply by considering the
n— 1 subquotients of G of order p?, whose matrices are the diagonal blocks
of size (2,2) of the matrix A (see Proposition 6.4.8).

8.2.6. — COMPARISON SEKIGUCHI-SUWA THEORY / BREUIL-KISIN
THEORY FOR n = 2. The existence of a link between these two theories was
already known in [31], Appendix A but in a less precise way. Explaining
it in details using our formalism will give an idea of what the problems
are for n > 2. We shall construct an explicit bijection between the set of
matrices parametrizing models of p,> viewed as Kummer group schemes,
and the set of matrices parametrizing Breuil-Kisin lattices.

We recall the setting: R is a complete discrete valuation ring with perfect
residue field k, totally ramified over W (k). We fix a uniformizer = € R and
we call F(u) its minimal polynomial over K, so that u — = induces an
isomorphism W (k)[u]/(E(u)) ~ R. Note that since E(u) is Eisenstein, we
have E(u) = u® + p[F1(u)] mod p? with Ey(u) € k[u], deg(E1(u)) < e
and E1(0) # 0.

The central point in the dictionary between the two theories is the map
(=)* : k[[u]] — R sending a power series ¢ = ..~ c;u’ to c* = Y7 [e;]7'.
It is an isometry for the u-adic distance on the domain and the m-adic
distance on the target, which means simply that f = ¢ mod u' if and only
if f* = ¢* mod 7, for all I > 0. Moreover, we have the property (u"c)* =
7"c*. For each [ > 1, the map ¢+ c* induces a map k[u]/u'k[u] ~ R/7'R
which for [ < e is an isomorphism of rings but is neither additive nor
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multiplicative in general. Now, using (—)* we map any matrix
A= € % ((u))

to the matrix
A* — [Wll] [aik2] c MQ(W(R))
0 [rl2]

We claim that A is a p-matrix if and only if A* gives rise to a model of
Hp2. In order to prove this, we just have to check that the congruences in
the two columns correspond to each other:

Breuil-Kisin (c¢f 5.2.1) Sekiguchi-Suwa (cf 8.2.3)
pil >l1>l2 pil 2[1212
(a12)? =0 mod u'2 (a¥,)P =0 mod 2
uars + By (u)ult —ue= =Dl (gy9)P paty — ' — P (af,)?
=0 mod uP' =0 mod 7P

Since Iy < e, the equivalence between the congruences in the second line
comes from the isomorphism k[u]/u'k[u] ~ R/x!R. It remains only to prove
the equivalence of the congruences in the third line: this is not immediate
since R/7P2 R is not isomorphic to k[u]/uP' if ply > e. So we look at the
image under ¢ — c¢* of the Breuil-Kisin congruence

uCars + By (u)ut = u~ PV (g15)P  mod P, (8.3)

We compute the image of both sides. Since, for «, 8 € k, the difference
[a + B] — [o] — [B] € W(k) is a multiple of p, one sees that the difference
between (u®ajz + Eyi(u)u*)* and w¢a¥, + [E1](7)7!* is a multiple of pre.
Hence using the fact that 2e > ply we see that

(uCars + By (u)ut)* = 1¢a’y + [F1](n)7 mod nP'2,

where [E1](r) is the evaluation of the polynomial [E4] at u = m. Now using
valy(a12) = lo/p and p%l > Iy, one sees using the binomial theorem that
((a12)P)* = (a¥,)? mod 7P!2. Putting things together, it follows that the
image of the congruence (8.3) is:

meaty, + [Ei](m)r! = 7o~ P~V (¢%,)P  mod 7Pz,
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Since E vanishes at u = 7, we have 7¢ + p[E1](7) = 0 mod p* (beware
that [E1(u)] evaluated at u = 7 is [E1](7)). Given that p? =0 mod 7'z,
we may replace 7¢ by —p[E1](n) in the previous congruence and obtain:

p[Er](m)afy — [Er](m)x't + ﬁ[fﬁ](ﬂ)(a’fg)p =0 mod 7.

Since [E1](7) is invertible mod 7P'2, this is indeed equivalent to the equa-
tion on the Sekiguchi-Suwa side in the third line. Our claim is thus proved.

As we noticed in 8.2.4(2), the results of [31] imply that in fact the
matrices with Teichmiiller coefficients that we are considering above on
the Sekiguchi-Suwa side are in one-one correspondence with the models of
Hp2 k- Since the map A — A* also preserves divisibility between matrices,
it follows that we have set up a covariant equivalence between the category
of p-matrices and the category of models of p,> k. We have not proven
that this equivalence is the covariant equivalence constructed by Kisin, but
it seems natural to conjecture that they are indeed the same.

8.3. Computations for n =3

Fix Iy, 15,13 > 0. We consider a matrix:

[ﬂ'll] a2 as

A= 0 [71'l2] a3 € %(Wf(R))
0 0 [x%]

8.3.1. — LEMMA. The condition A € .#3, i.e. F(A)/A > 0, is equivalent
to the congruences:
(1) F")(ay3) =0 mod 72, F{2)(ay3) =0 mod 7's, and
(2) F)(ay3) = TF(zl)l(m) (az3) mod 73,

wt2
Moreover if A" = (a’;;) € M3 then E(A") ~ E(A) as filtered group schemes
if and only if a'1s = a;2 € W(R/72R), a's3 = az3 € W(R/73 R) and
a'13 = a3 + Ta/12_a12 (023) mod 7Tl3. (84)
wt2

If A has Teichmiiller entries [a;;] and Iy > lo = I3 then F(A)/A > 0 is
equivalent to the congruences:
(1) a4 =0 mod 72, ab; =0 mod 7', and
(2) m'2aly = agzal, mod ml2tis,
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Moreover if A’ = ([a';;]) € #4(W7(R)) with a'; = w'¢, then A’ € .45 and
&(A) ~ E(A') as filtered group schemes if and only if a';3 = a1z mod 72,
(1/23 = a923 mod 7Tlg and

a'ia — ai)ass
[a13] — [a13] = [%] mod 7. (8.5)
8.3.2. — Remark. Here is a remark for later use. Let us suppose that
pe = (p —1)l3 and I1,lp > I3. Let a;3 = (a?g,allg,...,afg,...) for 1 =

1,2. Then, if a13 and ao3 satisfy the congruences of the first part of the
above lemma then v(a13) = l3/p?. To prove this we first observe that since
F(az3) = 0 mod 7% it follows from Lemma 8.1.1(1) that v(a;) > I3/p,
for any k. Hence from
F(ll)(alg) =T r1) () (a23) mod wls
B

it follows that all the components of F(a13) have valuation at least I3/p.
Again by Lemma 8.1.1(1) we obtain v(a¥;) > I3/p? for any k.

Proof. — We begin with the general case. By definition we have
F(A)/A = 0 if and only if there exists a positive matrix

[P~ D] C12 c13
O = 0 [7-(-(1771)[2] Co3
0 0 [rr(P=1)is]

such that F(A) = C 1 A. By the case n = 2, this gives the congruences in
(i). The equality of entries in position (1, 3) gives:
F(ll)(alg) = TCIQ(azg) + 7Tl3.613.
The coefficient ¢12 is determined by the equality of entries in position (1, 2),
@y

namely it is equal to %.012- This gives the congruence (ii).

Let A’ be another matrix in .#3. Then by 6.4.7 we have £(A) ~ E(A’) as
filtered group schemes if and only if there exist Witt vectors 7/, ', ¢’ such
that

[7T'l1] a’12 a’13 1 r ¥ [7T'l1] aio ais
A= 0 [s2] aas|=|0 1 s|*r| 0 [72] a2
0 0 [rb] 0 0 1 0 0 [rb]

It is easy to see that ' = % and the rest follows.
We now show how things simplify if one supposes that A has Teichmiiller
entries and [; = Iy > 3.
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Formulas in (1) are immediate, under these hypothesis, from the general
case, and we already found them in the case n = 2. Now let us suppose
that

F(ll)([a13]) = TF(ll)([alz]) ([a23]) mod 3.

wl2

Since (p — 1)l; = 2ly > Iy + I3, this is equivalent to say
_ Q12 1
aly = 1,923 mod 73,

which is equivalent to (2).

We now study when two matrices with Teichmiiller entries are equivalent.
The assertions about a1 and as3 clearly come from the general case. Now
let us take an upper triangular matrix A" = ([a};]) € .#5. The condition
(8.4) reads, in this case,

[a15] = [a13] + T[a'lzlj[am] ([azs]) mod .
wt2

Since a}y = ajp + 7'2r for some r € R, Iy > I3 and v(a12),v(azs) = % we

have ,
Tt (fazs]) = K220 g e
So we get "
[a'13] = [a13] + l(ah12 = a13)az] mod 73,

le
as desired. ]

We now state our final result for n = 3, and we provide some comments
after the statement.

8.3.3. — THEOREM. Let 0 < I3 < ls < l; < e/(p— 1) be integers and
a12,a923,a13 € R elements satisfying the congruences:
a?y =0 mod 72 | ab; =0 mod " , 72a¥; = agab, mod w2t

Let A = ([ai;]) be the matrix with Teichihuller entries of .#3 defined by
these parameters (Lemma 8.3.1). Assume that Iy > pls. Then the pre-
Kummer subgroup G < &(A) is finite flat if and only if the following
congruences are satisfied:

Iy p

— P 4P = pl2
-1 12 =0 mod 72,

paiz —m

p
pags — w2 — - aby =0 mod nP's,

W(Pfl)l

L _ D P
~—Dip @12

7'('Pl2

p _ p P12 —T
ay3 = pa13 — 12 — Ao

l
— mod 7P*3.
7'((1’—1)11
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When this is the case, we have

(A+71 )P (D1(Ty)+7 2 T)P (1471 Ty) "1 -1

P ) pl2 ?
G = Spec R[Tl,TQ,Ts]/
(D2

(Ty,T2)+7 3 T3)P (D1 (Ty)+7'2To) "1 —1
7Pl3

where Dy (T) = Ep(a12T) = YP_0 a’fQTk—f and Do (T, Ts) is a lifting of

Ty
E,(a1sT))E ( 7) d s,
p(alg 1) P agng(Tl) moa m
which under the above congruences is a polynomial. Finally if A" = ([a/;;]) €
M3 then the finite and flat group scheme of E(A’) is isomorphic to G if
and only if a'1s = ajs € R/T2 R, a'93 = as3 € R/7 R and

[a'13] — [a13] = [(a/u;+)a23] mod 7's. (8.6)

8.3.4. — Remark. (1) This result says that we are able to describe com-
pletely the congruences satisfied by matrices with Teichmiiller entries giving
rise to Kummer group schemes of order p3, under the (light) assumption
that I3 > pls. Removing this assumption would require more work. See the
final remarks in 8.5 for more comments on the case l; < pl3. However we
do not know if Kummer group schemes of order p3 arising from matrices
with Teichmiiller entries provide all the Kummer group schemes of order
p?, under the hypothesis i, > pls.

(2) A consequence of the above statement is that in the situation of 8.3.3,
we may take B = F(A) in Theorem 7.2.1. See also Remark 7.2.2.

(3) In the third congruence of the second set of congruences, one may in fact
remove the term paq3 since e = [; = pls. But leaving it emphasizes the sim-
ilarity with the congruences we obtained with the Breuil-Kisin approach,
as we will see in 8.3.5.

Proof. — The dependency on the parameters (in the end of the state-
ment) follows from Lemma 8.3.1. The rest is proven by the general theory,
except for the precise shape of the congruences. Proposition 8.2.3 gives the
congruences for the subgroup and quotient of degree p? in G to be finite
flat, and fills up the upper left and lower right matrices of size 2. More
precisely, we have the congruences:

p
bz = ﬂ-ll B 7T(p—1)l1 (a12)p = 0 mOd 71-1712,

p .
paz3 — 7Tl2 — m(agg)p =0 mod 7Tpls.
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With the notations of Theorem 7.2.1, we have:

[7?h]  [afy]  wis

B=Byi=| o [ [o)]
0 0 [rxPb]
and
plr't]/mP V12 V13
Vs = 0 p[riz]/mPlz Va3
0 0 p[rls]/mPls

where v12 = v3 and va3 = v3 are the following vectors of W (R):

1

V12 = o (plara] - [7"] - Ty )fmrn [a12])
1
vag = —p (Plazs] = [7°] = Typriog e [a35]) -

Thus G is finite flat if and only if the previous congruences are satisfied as
well as the following last one:

plais] = [a12] = e jymons s — Ty [aB5] =0 mod 7.

It only remains to prove that this is equivalent to:

11 D p
pai2 — T — —n; A2
J— _ _ 4P (P 1 pls
D a5 = paiz — 12 — Goyy s mod 7P*3.
This is done in Subsection 8.4. g
8.3.5. — COMPARISON SEKIGUCHI-SUWA THEORY / BREUIL-KISIN

THEORY FOR n = 3. We proceed as in 8.2.6 to compare the two theories.
Since we conducted the computations only under the additional assumption
Iy = pl3 on the Sekiguchi-Suwa side, we will stay in this restricted setting.
We consider again the map (—)* : k[[u]] = R, 3., ciu’ — X7 [ei]n
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and the induced map on matrices:

U Q12 Aa13
A= 0 ut2 a23 € gi’)((u))
0 0 s
[7] [afs] [afs]
— A= 0[] [a%] |€ Mz(W(R)).

We want to check that A is a p-matrix if and only if A* gives rise to
a model of u,s. For this we compare the congruences from Breuil-Kisin
Theory (cf 5.2.1) on the left, and the congruences from Sekiguchi-Suwa
Theory (cf 8.2.3) on the right.

A ’ aly =0 mod u'2, ab; =0 mod u’ ‘

* P lo % P — ls
’ ajy’ =0 mod 7*2, a3;" =0 mod 7 ‘

utaig + ur By — u"‘_(f’_l)ha’f2 =0 mod uPl
utass + u2FEy — we=(P=1l2 agg =0 mod uPls

paty, — 't — o aly,” =0 mod Pl

pags — 7' — a3’ =0 mod 7'

It

C ’ a1z —u'™2a53 = 0 mod uls ‘

] 777 \

D| u2aly — afyaz3 =0 mod u'>*'s |

lo %P — % %P
’ m2aly =aszafy,” mod w

la+13 ‘

uaqz + a2 B + Sl(uealg, ullEl) + ullEg
uealg-&-ullEl—ue*(”*l)llafz
wPl2

—ue~(P=Dhgh abs =0 mod uPls

pa;szﬂll* ( = ] asz 1
P * P % %k % P ~(P=Dl pls
~-Dip @13 = PAyz — G190 — Qo3 pla mod 7
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One sees immediately that in the Breuil-Kisin side there is one more
equation. We will prove below that in fact this congruence is a consequence
of the others, so we do not bother considering it for the moment.

In fact, only conditions D and E need to be compared, since the previous
ones match by the case n = 2. The equivalence between the congruences
in D is immediate since the operator (—)* induces an isomorphism on the
truncations of level I3 + 13, given that e > I5 +15. We pass to E. Taking into
account our assumption that I; > pls, on the Breuil-Kisin side we have

U By = S1(uaia, ullEl) =0 mod uP'3.

With what remains, we can see that the two equations are equivalent in
the same way as in 8.2.6. It is still true that p> =0 mod 7P*. So we have
7¢ + p[E1](r) = 0 mod p? (beware that [E;(u)] evaluated at u = 7 is
[E1](m)). With no more difficulty than in the case n = 2 one shows, using
Iy = pls, that (af3)* = (a¥;)? mod 72, (abs)* = (ak;)? mod 7' and

ufarg +ult By —ue= (P Dhgl,
a
uPbl2
! —(p—1)l1 P
_ mafy + w1 [EL] () — 7 (P—Dhgh,

7('pl2

(uealg + a12E1 - 1273)* =

mays +ajy[Er](m) (a53)P mod s,

This gives the result.

We now prove that the congruence ais = uh2g9s mod u', in the
Breuil-Kisin side, is implied by the others. We first observe that by the
Breuil Kisin congruence in E, and since ab; =0 mod u'3, we have

a1oF = —ue*(”*l)lla?’f3 mod u'3.

P
So, using afy = agg% mod u'3, it follows that
l ay !
a1oF; = —ut~ P 1@3% mod u'3. (8.7)
u'2

But if we divide ufajs — utE; = ue’(”’l)llcﬂ’f2 mod u!?? by u'2, and we
consider what we obtain modulo u'3, we get

p
_ o1\ @

—uh Tl p = e 1)11—%22 mod u's.
U

Putting this congruence inside (8.7) one gets the claim. Finally the sets of
congruences on the left is equivalent to the set of congruences on the right.
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8.4. Five lemmas

The lemmas in this subsection complete the proof of Theorem &8.3.3.
We use all the notations introduced in the statement and the proof of the

theorem.
8.4.1. — LEMMA. Modulo 7P, we have:
1 ! P i ! P
v = (pllu -7t = maﬁ)mal(paw, —n) — oy (para — 7', ma%),a . ) .

Proof. — We will compute 77"2v15 = p[aia] =[] = T pr111/mr [(012)7]

modulo 7P+ Since v(ay2) = la/p, we obtain v(S;([a12], [a12])) = lap®
for each i € N. For i > 3, we have lop*~! > lyp? > ply + pls, hence

plasa] = (posz, (1 = p" ™) (arz)?, "~ (@) . ) € W(R/EH19R),

with v(#) > 0. Note that
V(PP Ha12)?") = e(p — 1) + pla = l3(p — 1) + plz = pla + pls
so finally
plars] = (para, (1 — pP~V)(a12)?,0,...) € W(R/z"(2+1) R).

We now compute:
plarz] — [x"]

= (parz — 7", (1 = p" ) (a12)” + o1(parz, —7™), Sa(plasz], —[7"]). . ..).

Using the minorations v(pais) = e, v(1 — pP~1)(a12)? = lo, v(7!t) =11, we
obtain S;(p[aiz], —[7"1]) = 0 in R/xPl2+) R,

v(oa(parz, —7)) = (p* = Dl +e
> (p* — D)l + (p— Dl = ply + (p* —2)ly = pla + pls
so finally
plar] = [7"] = (par2 — 7', (1 = p"~")(a12)? + o1(para, —7'),0,...) .

The last term contributing to v1o is

Tyrrijmrts [(a12)7]

L R
= <Z—7;l1(a12)p7 (1- pp—l)(am)P’ 0.. ) € W(R/ﬂ_p(lzﬂg,)R).
We add up and we obtain the lemma. -
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8.4.2. — LEMMA. In W(R/ﬁpl3R), we have the equality:

T'UIZ [(a‘23)p]
as3)? D azs)?
(82 (et - o) )

Proof. — Now we can compute, in V/[7(R/7Tpl3 R) this time:

(ag3)P
71'1712

p
(pa12 — 7l — 7)11(G12)p) ;

mp—1
az3)P P
(szz o1 (pau — m(au)p) ,0,... )

We simplify a little bit. Using the identity o1 (x,y) = o1(x, —y — ), we get

Ty, [(az3)?] = (

(az3)?
7TP12

o1 (paiz, —Wll) +

L)ll(au)p)

Iy
o a1o — T
1 (p 12 (-1

p
=01 (Palz — Wll,_m(am)p + mh —palz) .

We use the inequality v(o(a,b)) = min((p—1)v(a)+v(b), (p—1)v(b)+v(a))
from Lemma 8.1.2(4). In our case a = pajs — 71 has valuation l; and
b= —ﬁ(alg)p + 7!* — pais has valuation at least ply, and we find

aon)P .
v <(7r2p?22 01(a,b)> > I3 — ply + min ((p — 1)ly + plo, 11 + (p — D)pla) > pls

so this term vanishes. Finally we obtain the lemma. O
8.4.3. — LEMMA. We have the following equalities in W(R/thR):

plais] = [ar2] = Ty, [(a23)"]

= (paiz — ai2, (a13)? + o1(pais, —a12),0,...)

_ <(a23)p (pa12 _ b L(au)p) 7M01 (pa127 —wll) ,0, .. )

7Pl SN 7Pl

= (co,c1,C2,...)
with

(a23)”

_ l
co = paiz— a1z — 2 (pays —

- ,r(pgl)zl (a12)p)

¢ = (a13)?

and ¢; =0, 1> 2.
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Proof. — We have

plais] — [a12]
= (pais, (a13)?,0,...) — (a12,0,...)
= (pai3 — a1z, (a13)” +o1(pais, —ai12), 02(pais, —aiz2),...) € V/[?(R/Wpl3R)~
Recall from Lemma 8.1.2(4) that
v(o2(a, b)) = min ((p* — 1)v(a) + v(b), (p* — 1)v(b) + v(a)).
Using this we see immediately that o3(pay3, —a12) =0 mod 7P so that
plais] — [a12] = (pais — ai2, (a13)? + o1(pais, —a12),0,...) € I//V\(R/ﬂ'plsR).

So ¢p is as in the statement and

(az3)?

ﬂ'Pl2

aoa)P
+ o1 (pa13 — a2, — (7::;2 (pa12 — 7't — W(ppl)ll(am)p)) :
Then we have v(o1(pais, —a12)) = e+ (p— 1)la/p = (p — 1)l1 = pls,

U<(a23)p01 (paia, —7') ) Zl3—pla+li(p—1)+e+l/p=pls,

pl2
v<01 (pa13 — a2, — (Zﬁf (pa12 —rh — ﬁ(am)p)) )
O

c1 = (a13)? + o1(pais, —a12) — o1 (paia, —7'")

8.4.4. — LEMMA. For ui3 = (up,us,...), the condition
p[a13] - [a12] - Tp[ﬂ-ll]/ﬂ—pll U3 — Tv12 [agd] =0 mod 7Tpl3.

implies in R/7P R:
—_
Co = To—ni7 Yo

€1 —Up = (,rua—%)p“l

0'1(01, _UO) — Uy = 0

1
Proof. — Since p;:,i] = (ﬁ, 1,0,.. ) modulo 7P% | then

— p pl3
Tp[‘rrll] U3 = [m] w13 + Vugs mod 7P,

~Pl1
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Then by the condition in the statement it follows
[#] U3 = —Vu13+(co,cl,07 . ) = —(0,%0,’&1, . .)+(Co,01,07 ce )
71'(1” Dl

Remark that v(cp) = %‘ and v(c1) = I3/p. Also note that by Remark 8.3.2
it follows that v(u;) = l3/p, for all i = 0. We deduce:

_pr
- | “13
= (007 c1 — ug, o1(c1, —up) — u1, —ug, ..., —ug,0,.. ) € W(R/ﬂpl?’R)

where uy, is by definition the last nonzero term in 413 and —uy occurs here
at the (k + 1)-th place. On the other hand,

[z

2 k
B <7r(pp1)l1 Uo, (W(pljl)ll )pul, (ﬁ)p U,y (ﬁ)p ug, 0, .. )

where here the term involving ujp occurs at the k-th place. This is not
possible if k > 2. Hence k¥ < 1 and w3 = (ug,u1,0,...) € W(R/aPBR).
And we obtain the expected formulas. O

8.4.5. — LEMMA. We have u; = 0. Therefore ug = a}5 and the condition
of the previous lemma is equivalent to the congruence:

ol p p
p pai2 7T a(p—1)i1 aio

P !
ays = pajz — 12 — Gog mod 7P*3.

ap=1)h Pl2

p

Proof. — We have ug = ¢; — (ﬁ) o1(c1, —up). Since ¢; divides
o1(c1, —ug) € R/TPB R, ug = crugy with v(ug) = 0. Write 8 = ¢; (ﬁ)
then

co=p— (%)5 o1 (1, Uo)

P

and v(8) = v(c1) = l3/p. We obtain

)01 (1,up)(co + (ﬁ)ﬂpal(l,ug))p
)01 (1,up)ch € R/7P*R.

B=co+ (71'(19 1l

Co+(
'/T
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Recall that ¢y = paijz — aa — (ifj;p (pau —qh — ﬁ(alg)p). Hence
& = —al, € R/mP's R. Now we come back to the congruence
0 12 g
_h_ P P = pl
pais — ! -0 (a12)? =0 mod 7P*2.

If e+v(aiz) < e—l1(p—1)+pv(ai2) then v(ai2) = Iy and al, = 0 € R/7P R.
If e + v(a12) > e —li(p — 1) + pv(ai2), then e — l1(p — 1) + pv(ai2) =
min(pla, ;) and (ﬁ)a’b = 0 € R/7PsR. Hence 3 = ¢y € R/7P"*R.

Since 8 = (W(p%)ll)cl, we obtain the lemma. O

8.5. Conclusion

The case I; < pl3 excluded in Proposition 8.3.3 shows the complexity of
the ramification. To achieve this case, we should compute the integrality
conditions with matrices with non-Teichmiiller entries (see the introduction
of Section 8). More generally, for n > 4, in order to compute the Breuil-
Kisin modules of Kummer groups, we need to define adapted liftings of
parameters to R. In view of Theorem 4.2.2, these choices should be related
to F(u) mod p™ in some way.

We have seen that any p-matrix has to satisfy the condition UA/LA > 0.
This condition is not present in the context of the classification of Kummer
group schemes. And in the case n = 2 and n = 3 (with [; > pl3 and
matrices with Teichmiiller entries) we have seen that in fact this condition
is consequence of the others. We do not know if we could remove this
condition in the classification of p-matrices.

Let us emphasize that the explicit formulas for Kummer subgroups are
relevant not only in the perpective of classification of Hopf orders of rank
p™ ([8], [13]) but also for the computation of dimension and irreducible
components ([6],[14]) of Kisin’s variety parametrizing some group schemes
over Ok ([17]). At last, Kummer group schemes could be useful to give an
explicit form for Breuil-Kisin’s equivalence of categories between (Mod /&)
and the category of finite flat group schemes of p-power order.
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