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W SPACES OF HARMONIC FUNCTIONS
by Linda LUMER-NAIM Q

Introduction.

It is a well known fact that the complex-valued harmonic
functions in the unit disk, whose L^-norms (1 ̂  p <; + oo) on
the concentric circles of radii r <; 1 are uniformly bounded
in r, are the Poisson integrals of LMunctions on the unit circle,
for 1 << p ^ + oo, and the Poisson integrals of finite complex
measures for p = 1; it is also known, by Fatou's theorem, that
these functions have non-tangential (hence radial) limits at
almost all boundary points (see for instance Hofmann [14]).
In 1951, Parreau [22] gave a similar characterization for har-
monic functions on a Riemann surface, using the Martin
boundary and related kernel; in 1960, Stein and Weiss [23]
extended the whole classical result to harmonic functions in
the n-dimensional half-space, with normal approach to the
boundary; various other extensions have been mentioned since
(for instance Doob [9]). It is our purpose to prove here a simi-
lar extension for the axiomatic functions of Brelot [2], using
essentially Gowrisankaran's results [11, 12] on axiomatic
Martin boundary and fine limits, and Doob's ideas on uniform
integrability [8].

More precisely, we consider, on a locally compact connected
and locally connected Hausdorff space Q, a harmonic class 96 of
complex-valued functions, called harmonic functions^ defined
from a presheaf of real-valued functions satisfying Brelot's
axioms as recalled in I, 1. We define the class 3 ,̂ 1 ̂  p ̂  + °° ?

(1) Supported by National Science Foundation, Grants G-24502 and GP-4653.



^26 LINDA LUMER-NAIM

as the set of those harmonic functions whose L^-norms, with
respect to the harmonic measures p^1 relative to a fixed
point XQ e: Q and the open relatively compact subsets o^ of
Q containing XQ, are uniformly bounded in i. ̂  is a Banach
space under appropriate norm. 3f>1 is the set of elements
of 3€ whose real and imaginary parts are differences of two
positive harmonic functions in 0; 3-600 is the set of bounded
elements of 3€. We prove that the functions in ^p are the
solutions of Dirichlet problems with the « minimal boundary »
AI of Q, the fine filters in Q, and boundary functions in L^Ai), for
1 <P^ + oo, the integrals of finite complex measures on Ai,
for p=i. It follows that every function in 3 ,̂ 1<^P<^+ °o,
has a finite fine limit eL^Ai) at almost every point of the
minimal boundary Ai. Similar results are obtained for classes
3^\ defined, like in Parreau [22], by replacing the function
tp, p ^ 1, ( ;> 0, by any positive convex increasing function
$, defined in [0, + oo[. We also study related classes ̂
3 ,̂ of positive subharmonic functions u in Q, defined like the*
Ws^ ^S-^ , and characterized by the fact that u has a harmonic
majorant in 3 ,̂ 3€^; a finite fine limit exists at almost every
point of the minimal boundary Ai, for any u e ̂ p, 3€^\ Various

* *
applications are given at the end, mainly in connection with
the so-called « strongly subharmonic » functions of Garding-
Hormander [10], and the notions of extremal function and
reproducting kernel also considered by Parreau [22].

The question of existence or non existence of non void
or non constant classes S^P, SC^^ in a given harmonic class 3€
pertains to the axiomatic extension of the classification of
Riemann surfaces. The notion of hyperbolic or parabolic
class 36 has already been introduced by Loeb [15]; the clas-
sification of hyperbolic classes 3€ by means of classes c ,̂
3^^, and the extension of Parreau's results [22] on the classi-
fication of hyperbolic Riemann surfaces, will be completely
developed elsewhere. We only give here a partial result,
deduced immediately from the general properties of the 3f>^
classes.

It would be of interest to extend whole or part of the
present research to other axiomatics, mainly to Bauer's [1].
In the particular case of a Green space, or an euclidian domain
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0, with the ordinary harmonic functions, it would also be of
interest to know if the functions in 3^ have limits, in a sense
or another, along the Green lines, or any other trajectories
to the boundary, replacing the radii in the unit disk. This
particular question will be studied elsewhere.

An abstract of the present research has been published in
the Notices of the AMS [19].
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CHAPTER I

PRELIMINARIES

1. Basis of Brelot's axiomatic theory
of harmonic functions [2], [4].

The set-up is a locally compact, non compact, connected
and locally connected Hausdorff space Q, with, on each open
subset co c Q, a real vector space of real-valued finite continuous
functions defined in 00, called harmonic functions in co, and
satisfying axioms 1,2,3 : 1. The harmonic functions form a
presheaf in 0; 2. There exists a base of the topology of Q
consisting of regular open sets; 3. The upper envelope of
an increasing directed set of harmonic functions in a domain
(A) is either + °° everywhere, or harmonic in co; (this last
axiom, together with 1 and 2, recently proved [16] to imply
the stronger axiom 37); the existence of a > 0 potential in Q
is usually assumed in order to avoid trivialities.

Topological notions in Q are in general relative to the
topology of the one-point compactification 0; for instance,
if E c Q, E usually denotes its closure in Q, and bE its boundary
in this space.

Notations. — Here, the real vector space of real-valued
(positive) harmonic functions in 0 will be denoted by ^(^n).
Wo = 3f)^ 4- i'3^)^ will denote the (complex) vector space of
complex-valued harmonic functions in Q, i.e. of functions
of the form f = u + i^, where u, v e 3-6 .̂ This 3€ we call

* *
harmonic class in OL Finally ^R ((%R, 3^^) will denote the

*
set of all superharmonic (positive superharmonic, subharmo-
nic) functions in Q.
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2. The (modified) Dirichlet problem with the minimal boundary
and the fine filters in Q (Gowrisankaran [11] [12]).

Adding the assumption of a countable base for the open sets
of Q, Ai, the « minimal boundary » of Q, denotes the set of
extreme harmonic functions (or minimal functions, after
Martin [21]) of a compact and metrizable base A of the cone
*

<%n, and, for each h e 3 ,̂ (JL^ denotes the unique ̂  0 measure
on A (or AI c A), such that |J^(A -— Ai) == 0, and h has the
integral representation

h{x) == f^ k{x) df^(/c), Vrr e Q

(Mrs. Herve [13]).
t^ /c j fceA,? denotes the family of fine filters in Q, and, (assu-

ming le^R with corresponding measure ^ on Ai), for any
real-valued weakly 1-resolutive (equivalently (Xi-integrable)
function f on Ai, ^i denotes the solution of a modified Diri-
chlet problem where the boundary conditions along the fine
filters are taken ^-almost everywhere on Ai, and writes

î(^) - f^ k{x)f(k) ̂ (/c), x e Q.

It is proved that the solution tfj^i has the (finite) fine limit
f at (J4 -almost every point of Ai, and that every positive
harmonic function is (uniquely) decomposed as the sum of a
function of type ^j-i .̂ 0, and a function e^R which has fine
limit 0 at p(.i -almost every point of Ai. As every potential is
also proved to have fine limit 0 at pii-almost every point of Ai,
one finally obtains the extension of Fatou-Doob's theorem [7]
for a Green space and its Martin boundary, namely: Every
function v > 0 superharmonic in Q has a finite fine limit ^
at pii-almost every point of the minimal boundary Ai, (and
this v is in L^pii)).

3. Doob^s results on uniform integrability.

The notion of uniform integrability has been successfully
used a few years ago by Doob [5, 6, 8] in some important
questions of potential theory, essentially in boundary value
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problems. His results, which we recall below in a slightly
extended form valid in the axiomatic setting, play a central
role in our study of ̂  spaces.

Let us first recall the definition, and some equivalent forms
of this notion :

^Xi^ei ls a family of measure spaces, with corresponding
measures tp^iei positive and such that sup ^i(Xi) << + oo;
jfi is a real-valued [x^integrable function on the space X^.

(1) The family {f^ei ls called uniformly integrable if

al™^^^^11^^09

uniformly on the index set I.
(2) This is equivalent to the following two simultaneous

conditions :

|(1) ^PjxJAI^^ + oo,

'(i i) lim(sup f \f,\d^) = 0,
e->o ' l J ' '

for any measurable subset ^ c X;, with ^(^) < £.
(3) The family \f^\ is uniformly integrable if and only if

there exists a positive Baire function 0 on the interval [0, + °°]
such that:

1(.) l.m^=+«,
) (•>-t-00 i

((i i) sup/^(])(|/l,|)^<+ oo,

and even a convex increasing such $ does exist, with $(0) == 0.
We shall mainly need the sufficient condition for

$(t) =y, 1 < p < + oo.

Doob was concerned with the uniform integrability condition
for the family of restrictions of a fixed real harmonic function
u, defined in Q, to the boundaries ^co^ of the open relatively
compact subsets (o^ of Q which contain a fixed point XQ e Q,
the corresponding measures being the harmonic measures p^;
relative to XQ and co; (whose total masses are uniformly boun-

ifi ->

ded in i if one assumes that 1 e 3€^ since then / rip^1 ̂  1
f It \ v oa)l °tor all (oj.
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In view of property (3) above, and the fact that if u is
subharmonic ̂  0 so is ^(u), (see chapter in, 1), it is equivalent
here to replace | co; j ^ g i by any increasing directed subfamily with
union il. Also, since axiom 37 (^=^ 3) is satisfied, this uniform,
mtegrability condition for u is independent of XQ ; it is actually
so for any family t/^,gi provided each ^(\f,\) be resolutive
on the corresponding ^.

Finally, if u is harmonic, this uniform integrability implies
at once that u is the difference of two positive harmonic func-
tions in Q, since

u^) = f^u d?^ = f^u+ d^1 - j^ u~ ^S V.T e ̂ ,

and the last two integrals are positive harmonic functions
(in (D,), uniformly bounded at the point XQ, hence increasing
to finite harmonic functions in Q.

Doob's main results can be stated as follows (see Brelot [3]
where the proofs are given in detail) :

THEOREM 1 (Doob). — Assume axioms 1, 2, 3, the existence
of a > 0 potential in 1}, and i e 3€^. Then a real harmonic
function u in il is uniformly integrable with respect to the har-
monic measures p^1 if and only if there exists, for any £ > 0,
two functions : ^ subharmonic bounded abo^e, ̂  superharmonic
bounded below, such that

^ < u < ^, and ^2(^0) — ^i(^o) < s.

As a consequence, we obtain the following useful.

COROLLARY 1.1. — In i], the positive harmonic functions which
are uniformly integrable with respect to the harmonic measures
p^1 are all the (finite) limits of increasing sequences of bounded
positive harmonic functions.

Proof. — If u is > 0, and uniformly integrable, then inf (u, n)
is > 0 superharmonic, and its greatest harmonic minorant u^
satisfies ?i <: u,, <: u <; ^3 for large n(^i, pg, functions of the
theorem), so that u^Xo) -> u{xo). But u^ increasing and < u,
converges in Q to a > 0 harmonic function Ui <, u, and equal
to u at the point XQ, hence equal to u everywhere.
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The converse is obvious, by taking for functions v^ ^i?
respectively u and a suitable element of an increasing sequence
converging to u.

It is easy to see that any solution of a Dirichlet problem
with the minimal boundary and the fine filters, as described
in 2, is uniformly integrable with respect to the harmonic
measures p^1, VrCo e Q. The important tact is the converse,
proved by Doob in the classical case of a Green space and its
Martin boundary, now extended to the axiomatic setting in
which Gowrisankaran's results hold :

THEOREM 2. (Doob). — Assume axioms 1, 2, 3, the existence
of a > 0 potential in Q, a countable base for the open sets of Q
and 1 <= <%R. Then every real harmonic function u uniformly
integrable with respect to the harmonic measures p^1 is the
solution of a Dirichlet problem with the minimal boundary Ai
and the fine filters in Q.

As a consequence, Doob obtains :

COROLLARY 2.1. — A positive superharmonic function in
Q is a potential if and only if it has fine limit 0 ̂ -almost every-
where on AI, and is uniformly integrable with respect to the
harmonic measures p^1.

Extension. — The uniform iritegrability condition makes
sense as well for complex-valued functions f = u 4- ^? and
is actually equivalent to the same condition for u and v
simultaneously. Theorem 2 still holds in this case, and will
be consistently used in the following.



CHAPTER II

96P SPACES OF HARMONIC FUNCTIONS 1 ^ p ^ + oo.

1. The Banach spaces S^P.
Hypotheses :

Axioms 1, 2, 3.
Existence of a > 0 potential in 0.

I€E^K.
From now on we shall consider complex-valued harmonic

functions f ==== u + i^ (^5 p? harmonic real) in C2, with modulus
|/1) = (u2 + ^2)l/2, this being a subharmonic function, because,
more generally:

LEMMA 3. — Let Ui, Ug, . . . , u^ be harmonic [or positive

( n V^
subharmonic) in Q. Then, for any real number p ̂  1 , ^ u2 )
is subharmonic in Q. i=:l /

Proof. — It suffices to prove the lemma for p = 1; more
precisely, that for any x e CS and regular open set (D a .r,

( n M/2 /* / n X1^
Su2^)) < ( (s^ 2 ) .̂
i==l / J^(0\i==i /

Each |ui| is subharmonic, so, except when j j ^ | r f p^==0 ,
V i, in which case the above inequality is clearly true, we have

\1/2 / " / /. ^\112
\ ^ I ^ I / , . ^^\2\

/ » \1/2 / n .(s^)) <(s(^j^i^p
\i==l / \i==l

^ I -i I -ra-

. i(iu..i^juj^)
=: j _l=i——————————— do"

^(fMYY''
/ n \ 1 /2 / n , vA^ 2

. (5^) (5 /Ju.W 2) . / n y/.
< J ^--^^-^———v/r2-^^! (Su2) d^.

Jiiu / v / /' 1 | J M \ 2 Y J8h)\i=i /
IS (J,,|U.|̂ ) )^V^,^~r»/ y
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We shall denote by |<^ijiei ^e increasing directed set
of all open relatively compact subsets of Q, containing a
fixed point XQ e Q, and by p^1 the harmonic measure on ^)(o;,

0 * /•relative to XQ and (i);; since 1 e 96^ f d^ ̂  1, Vi e I.

DEFINITION. — A harmonic function f == u 4- i^ belongs
to the class 3 ,̂ 1 ̂  p ̂  + °°9 ^f ^^ o^ly if the L^norms,
with respect to the harmonic measures p^1, of the restrictions of
f to the boundaries 6(1^, are uniformly bounded in i.

In other words, fe 3^ if and only if there exists a constant
M, independent of i, such that ||/'||p,. ̂  M, Vi e I, where

(11/11^ = (/.J^^o)^ for 1 < p < + ̂
/II/ 'Boo. i ̂  ess. sup |/*|;
\ ?)t0i

f === u + IP is in 3^ if and only if both u and ^ are.
Note that ||/]̂  === H,^p(a;o), p < + oo, while H/'H^^ is equal

to sup [/*) in the connected component co^ of o^ which contains
o;o, this last property coming from the fact that on 5co^ the
sets of harmonic measures p^1® (hence the ess. sup norms with
respect to these measures) zero are independent of x e o ,̂
which implies that sup \f\ == ess. sup |/1], while p^1 which has

tOia 6(01,
support ^)(o^ coincides there with p!^1®.

Also note that, in the definition, it is equivalent to replace
f ^ i j i e i by any increasing directed subfamily ^c^ j with union Q.
In fact, for p< + °°9 |^|p is subharmonic in Q, so j/'l^'^H.'0^
in any (o^ ; a given (x)^ is contained with its closure in some (o..,
hence H^p < H,̂  in co,, H/1!!^, - H,X^) < H^o) < M^,
and jfe^. For p == + oo, since the connected component (o^
of co^ which contains ^o ls contained in the similar component
(QI of some (D; , we have

llflloo.. - sup |^| < sup |̂ | = \\f\\^ < M, and /•e^00.
(Oio ^'fro

Finally, axiom 37 (-<==^ 3) shows that the class ^^

1 < P < + oo,

does not depend on the particular choice of the point Xy, and
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it is obviously the same for the class 3f>00. This also comes
from the following:

THEOREM 4. — The harmonic function f is in the class 3 ,̂
1 ^ p << + °°5 if and only if \f\p has a harmonic majorant
in Q.

Proof. — If such a U does exist, then, for each ci^,

H,><H^==U,
and H/11^ - W^W < U^o) = M,

so feS^P. This in turn implies that H^p, uniformly bounded
in i at the point XQ, increases to a finite harmonic function
in Q, which dominates \f\p^ (and is in fact the smallest harmo-
nic majorant of \f\p in (2).

COROLLARY 4.1. — 9&1 is the class of f s whose real and imagi-
nary parts are differences of two positive harmonic functions
in Q; Wo^ is the class of bounded harmonic functions in Q;
and for any finite q ̂  p ̂  1, we have the inclusions

wr c w c WP c ̂ .
Proof. — u real e961 implies that u4" and u~ have smallest

harmonic majorants Ui, Ug ^> 0, (because \u\ does);

u^x) == lim f^ u+ d^, u^x) = lim f^ u- d^,

and u{x) = (^ u+ d^ ~ ̂  u- rfp:?., V^ e (o,,

so that u == Ui — Ug in Q. Any difference u == ^i — Wg of two
positive harmonic functions is conversely in ^( ju j ̂  w^ + ^2)?
and the corresponding above decomposition is extremal in
the sense that Ui, ^3, respectively, minorize any such w^, Wg.

Next, f e 3^00 is equivalent to : sup \f\ ̂  M for any relatively
^if,

compact domain OD^ 3 ̂ o, which obviously means that f is
bounded in Q.

The final inclusion comes from the elementary inequality
\t\P < 1 + \t\\ for any finite q > p > 1.

COROLLARY 4.2. — Any mi( harmonic function u e ̂  15 ̂
difference of two positive harmonic functions in S^P^ and
conversely.
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Proof. — By the above corollary, it suffices to show that,
for 1 << p < 4" 00? the smallest harmonic majorants Ui and
1^2 of u^ and u~, respectively, are both in ^6P.

But, by Holder's inequality

^.^^^(.^.(^^•^''(.^.^^^(L/"-)^?^)1^
(1/P+ I/?- 1), SO, V.T6Q,

u^x) == lim (J^u+^)p<lim^(u+)^. < U(.r),

since [u^, hence (u"^, has a harmonic majorant U in U;
this proves Ui^^; similarly Ug e 3•6P, whence the corollary.

THEOREM 5. — For 1 <; p ^ + °°? ^p is a Banach space
under the norm \\f\\p = sup \\f\\p^ For p < + °o? ^^ equalsi
[pA^o)]1^? where pf denotes the smallest harmonic majorant of
\f\p in Q; for p == + °°9 ^l5 l5 /u6^ ^p i f l -

Q
Proof. — It is clear that all ^^ are linear spaces over the

complex field K. For 1 ̂  p <; 4- 00? we have already noted
that ||/*||^,t === H^^rco), and that the harmonic function H^jp
increases, following the increasing directed set i^iii^i^ t°
the smallest harmonic majorant pf of \f\p in Q, so that in this
case \\f\\p = sup \\f\\p^ == [pfix^ < + oo. This \\f\\p is a norm
in 3€P: relations \\OLf\\p = |a| \\f\\p, a e K, and

ll^+^KIIfilp+llgllp,
come from the similar ones for the norms \\f\\p^ ^d \\f\\p == 0
implies pf(xo) = 0, hence pf=0 everywhere in 0, and /'^0.
Finally, if ^/^| is a Cauchy sequence in 3 ,̂ i.e. if

Ifn-fn'lp-^O, n,n' -^+ oo,
pyn — fn-) (^o) -> 0, yZ, n1 -> + 00 ;

with axiom 3', this positive harmonic function ^(/^ — /^)
converges to 0 everywhere in 0, and uniformly locally; hence
fn also converges, uniformly locally, to a harmonic function f
in Q, which is in 3 ,̂ since

jLj/̂ PS?. -^J^P^s ^ ̂  + ̂ ,
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and
II /n lip.. < II fn lip,

uniformly bounded in n, and is limit in norm, since

II/1 - /X < II/1 - /'Jlp + IIA - /njlp,

where no î ay be choosen so that ||/n—/,j|p -^ e, Vn ̂  ̂ 0,
(whence ||/» — /'Jp,( < e, Vre > no, Vi <= I), while

H/--/-JI,- sup |i/--/-J^== sup ( lim ||/n-/,Jp.,)<£.
t t H->+ao

For p = 4- QO) it is clear that sup \\f\\^ i == sup |/*|, so ||/*[|̂
1 . ' . Q

is the usual sup norm in £2, under which <%00 is complete (and
even a Banach algebra, under suitable multiplication, as
was announced in a preliminary report [18], and will be
developed elsewhere).

2. Characterization and boundary properties of 9&P functions.

Hypotheses :

i Axioms 1, 2, 3.
} Existence of a >> 0 potential in 0.
) A countable base for the open sets of Q.
\ 1 e 3%.

We now proceed to prove the extended characterization
mentioned in the introduction, showing the role of uniform
integrability in the study of 3^ functions. The close connec-
tion, (and in some sense equivalence) between these two
concepts will appear more clearly in chapter in, when we
study the Wf^ classes of harmonic functions in Q.

We recall that ^4 is the measure on Ai representing 1 in
the integral representation 1 = f k{x) d^(k), x e Q.

THEOREM 6. — A harmonic function f belongs to the class ^y
1 < P ̂  ~1~ (x>? if and only if f is the solution of a Dirichlet
problem with the minimal boundary Ai, the fine filters in 0,

v

and boundary function f e L^pii).
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Moreover, if the extreme harmonic functions are normalized
so as to be equal to 1 at the point XQ, |[ f ||p = [| f|[p, and the
correspondence f — f is an isometric isomorphism of the Banach
space ̂  onto L^jjii).

Proof. — By property I.3.(3), any /*e^, 1 < p <: + oo,
is uniformly integrable with respect to the harmonic measures
p^1, hence (th. 2) is the solution of a Dirichlet problem with
the minimal boundary Z\i, the fine filters in 0, and boundary
function /*; moreover f has the fine limit f at (JE.I -almost every
point of AI.

If p = -|- oo, this f is obviously bounded, where defined,
hence £L°°((Jii); if 1 < p < + oo, this feL^i), for \f\P is
dominated by the pii -integrable boundary function of the
positive harmonic function pf in Q.

Now, let f ̂  L^((Xi), 1 < p < + oo, and f= ̂ i,

f{x)=f^k(x)f(k)d^(k^ x.Q.

If p == -}- oo, f is bounded in Q, hence e3600, and it is clear
that H/11, = ||f ||,.

If !<<?<;+ ̂  Holder's inequality

\f^ k{x)f(k) d^(k) | < (^ k(x)\f{k^d^(k) )l/p (f^ k{x) d^{k) ̂

(1/p + ifq = 1) shows that

\fW^^^{x^ V^eQ;

so l/*^ has a harmonic majorant in Q, hence feSi^. As

l^<p^<^,i.

we see that pf is also a solution, and has fine limit l/*^ ^-
almost everywhere, therefore pf= ^|/|P,I and

ll̂  = [pA^o)]^ = {f^fV d^Y = \\f\\,.

The isometric isomorphism of the theorem follows at once.
For p = 1, there is a fundamental difference in the charac-
terization of <%1 functions. By corollary 4.1, we have :

17
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THEOREM 6'. — A harmonic function f belongs to the class
<%1 if and only if f is the integral^ with kernel k e= Ai, of a finite
complex measure v on the minimal boundary Ai, and

ii^-JJ^l.
Any fe W- has a finite fine limit f e L^^i) [^-almost every-

where on the boundary, and if f e L^pii), then /'==9^e<%1,
if= ^1/1,15 and ||/*[|i == ||f ||i. But there may exist in 961 non-
zero functions with fine limit 0 p4 -almost everywhere on
the boundary, so the characterization of theorem 6 fails to
hold, and f -> f is no more isomorphic.

We emphasize the following:

COROLLARY 6.1. — Every function fe^y 1 <^ p ̂  4" °°
has a finite fine limit f e L ĵjii) at ^-almost every point of the
minimal boundary Ai.

COROLLARY 6.2. — IffeLP(^), l<p<+ oo, andf=iff^
then the smallest harmonic majorant of \f\ in Q (resp. of [/'j^
^f P < + Qo) is ^1/1,1 (resp. ^i/ipi), and

^f\ =^hi -^ l<p<+ ^o,
^l^-^l^i -^ l<p<+ <x),

where Wi, w are positive potentials in 0.
These are just the Riesz decompositions of (/*[, l/*^, in Q.

Note that ^/.^e^, while ^f^e961.

3. ^p classes of positive subharmonic functions.*

If we look at the definition and properties of ̂  functions
f == u + iv, l ^ p ^ + ° ° ? we see that they essentially
involve the positive subharmonic functions \f\, and their
powers l/*^. Therefore it seems worth introducing in general
positive subharmonic functions in Q satisfying the same
condition as the above |/'[, fe 3^; they will by definition belong
to the class S ,̂ whose properties are rapidly studied in the

*
present section.
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Hypotheses are first those of section 1; ^ijiei is the same
family as above.

DEFINITION. — A positive subharmonic function u belongs
to the class ^p, 1 <; p ̂  + oo, if and only if the LP'norms,
with respect to the harmonic measures p^1, of the restrictions of
u to the boundaries ^(1^5 are uniformly bounded in i.

In other words, u e ̂  if and only if there exists a constant
*

M, independent of i, such that ||u[|p^ <; M, Vie I, where

K- == (VL^^r. ^ i <p < + 00,
ML, i == ess. sup u.

btOi

Here \\u\\?p^ ^> H^p(rro), p <; + oo, (with equality if up is
resolutive), while \\u\\^ ̂  ̂  sup u in the connected component
of (Oi which contains XQ.

It follows that a positive subharmonic function u is in the
class 3 ,̂ 1 <; p <; + °° 5 if ^d on^ if up ^as a harmonic^
maforant in Q; u is in the class 96°° if and only if u is bounded
in Q.

Consequence. — It is equivalent, in the definition, to replace
^itiei ^y ^y increasing directed subfamily |co^ ^ with
union Q; the class ^p is independent of the point XQ, and
for any finite q ̂  p ̂  1, we have the inclusions

^"c^c^c^.
3(< * * *

Obviously /*== u + ̂  e ̂ p it and only if |/'[ e 3-6^ Moreover :

THEOREM 7. — A positive subharmonic function u belongs
to the class ^^ 1 ̂  p <^ + °° ? l^ ayl6^ on^t/ if u has a harmonic*
majorant in the class 96?.

Proof. — Any u e 9&P has a smallest harmonic majorant
*

U == lim H^1, obviously bounded if u is, otherwise in 3 ,̂
i

p < + oo, because VP is then dominated by any harmonic
majorant of up in Q. The converse is obvious.

17.
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We shall denote by iU (resp. pU, if p < + oo) the smallest
harmonic majorant of u (resp. u?) in Q; iu e ̂  while pU e 3-61,
and we have the Riesz decompositions

u == iu — î, J^P = pU — w,

where ^i, w are positive potentials in Q.
^p is a convex cone containing the cone (3^)$ of positive

functions in 3 ,̂ but obviously not a linear space. Let @R,
I ^5 P ̂  + °° ? he the real vector space of differences of
functions in ^^ with the obvious addition and scalar multi-*
plication; Sp contains the real vector space (%R. For
u — u ' e g R , (u, u'€=3^), de/me \\u—u'^p as |[iu--i^||p, norm
of the function iU — ^u' in the Banach space 3 .̂ It is easy to
see that this depends only on the difference u — u ' , and is a
semi-norm on 8{a, the condition \\u — uf\\^=0 being equivalent
to u — u' equal to the difference of two potentials in Q. On
3 ,̂ || || *p is equal to the ^-norm; and if u e ̂

*
||u||^ = sup ||u||p^, while [ |u | |^==0 here implies that u = 0.
Finally, if |(i^ — u'n)\ is a Cauchy sequence in gp, i.e. if
II {Un — Un) — (u^ — u^p -> 0, m, n, ->• + oo, then (^ — ^Un) is
a Cauchy sequence in the Banach space <%R, hence converges
there to a function h — h' :

HlUn - lU'n) - {h - h1)^ -> 0, n -> + 00.

It follows that \{u^ — u'n)} is || || ̂ -convergent to h — A',
but this || H^-limit is only defined up to the difference of
two positive potentials in Q.

If we want uniqueness, we must therefore introduce the
linear subspace 0 of Sp consisting of the above differences,
and the quotient space 8^/0. On this, || ||^ induces a norm,
because || ||^ is the same for two elements of Sp equal mod 0,
whence the required uniqueness, and 8^/0 is a Banach space
in which the equivalence classes mod 0 of the elements of ̂

*
form a complete although non linear subspace. Note that
the latter are also the equivalence classes of the elements of
(^&)4"? while SR/O is the set of equivalence classes of elements of
<^R-
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The above could as well be done in the complex setting,
with ^p == &R + ^R? but all this has limited interest so far,
and will not be pushed further.

Under the hypotheses of section 2, we now study the boun-
dary behavior of W functions. We have :

THEOREM 8. — Every function u e 3 ,̂ 1 ̂  p ̂  + oo, has a
*

finite fine limit u e L^ î) at ^-almost every point of the minimal
boundary Ai. If 1 <; p ̂  + °°5 then the smallest harmonic majo-
rant ofu (resp. ofu1', if p <i -}- oo), in Q is ̂ i (resp. ^up,i) and

^ = ^u,! — Wi, 1 < p < + 00,

(uP = ̂ p,i — w, 1 < p < + oo,

w/iero î, w are positive potentials in Q.

Proof. — We already know that u e ̂  has the Riesz decom-
*

position u == i U — w^, where i^e^, and ^i is a positive
potential in Q. So u has a finite fine limit u <= L^pii) (Xi-almost
everywhere on Ai, as ^u does, and u •==• iU pii-almost every-
where on Ai.

This, for p > i, implies that iU === ̂ i (th. 6), whence
u == ̂ i — Wi, then, for 1 < p < + oo, \jf <; ̂ pi, whence
pU == ^up,i, and the second decomposition of the theorem.

As a consequence^ we see that if u real s^, p > 1, then
the positive harmonic functions Ui, Ug of the extremal decom-
position u = Ui — ^ of corollary 4.1 are ^u^i? ^u-,i respec-
tively.

Application. — Instead of a single function u, one may
consider an n-tuple (ui, Ug, . . ., uj of real harmonic (or posi-
tive subharmonic) functions in Q, and the condition u e 3 ,̂

/ n \ i /2 ^ ^
for the positive subharmonic function u = ( ^ u2) . This is

\i==l /
equivalent to the simultaneous conditions

\Ui\ e^, i == 1, 2, . . ., n,

and gives various properties of the components u^ in parti-
cular boundary properties, which were consistently used
in the already mentioned paper by Stein and Weiss [231.
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4. Relative classes 96^ 3̂ .

The study of the preceding sections can be carried over
to A-harmonic and sub-Ti-harmonic functions (the quotients of
harmonic and subharmonic functions by a fixed > 0 finite
continuous function h in Q, which satisfy the basic axioms)

and the related A-harmonic measures p^°1 = ,-—- p^1, provided
h[XQ)

the proper hypotheses be made on h (which replaces the cons-
^

tant function 1) : h e Wo^ or he 3^$, which permits the develop-
ment of a Dirichlet problem relative to A, parallel to the one
described in 1.2.

This gives relative classes 96^, 3€^ 1 ̂  p ^ + °°? ot /i-har-
monic, positive sub-^-harmonic, functions in Q, to which
all results of the case h = 1 do extend. For instance: A
complex-valued A-harmonic function f is in the class 3 ,̂
1 <^ p <^ + oo, if and only if l/*^ has a A-harmonic majorant
in Q $ in the class 96^ if and only if f is bounded in Q.

The 3^ functions /*, 1 <: p ^ + oo, are the solutions of
(relative to h) Dirichlet problems with the minimal boundary
Ai, the fine filters in Q, and boundary functions ^eL^^),
((^h ̂  0 representing h in the integral representation

h{x) = f^k(x) dy.,{k)),

and W^ is a Banach space isometrically isomorphic to L^JJ^).
Every /i-harmonic function f e W^ has a finite fine limit
f e L^JJ^) ^-almost everywhere on Ai, and similarly for every
positive sub-^-harmonic function u e 3-6 .̂

One can try to compare relative classes corresponding to
two functions Ai e 36 ,̂ Ag e S^R, when a relation such as

^1/^2 ̂  m

holds. But except in the case p == + oo, this gives in general
no significant property.



CHAPTER III

^ CLASSES OF HARMONIC FUNCTIONS

1. The ̂  classes.

Hypotheses :

Axioms 1, 2, 3.
Existence of a > 0 potential in Q.
le^R.

Following an idea of Nevanlinna, Parreau [22] studied on a
Riemann surface what we define here as the 96^ classes of
harmonic functions, and used them in the general problem of
classification of Riemann surfaces. The idea was that since a
subharmonic function gives another one by substitution into
any convex increasing function, and since the ^p spaces center
around properties of the subharmonic functions I/*)?, fe^y
one should replace the function ^p, (<= [0, + oo [, p ^ 1, by
any positive convex increasing function <&, defined in [0, + °° [?
and obtain essentially the same results. This was actually the
case, except for a few particular points, and we shall have
similar extensions in our axiomatic setting.

First:

LEMMA 9. — Let u be subharmonic in Q, and T convex
increasing defined, at least on the range of u. If Ie 3fo^ or if
Y(0) ̂  0, then ^¥{u) is subharmonic in Q.

Proof. — If suffices to verify the mean-value inequality
^¥{u{x)) ̂  L T(u) d^ fo1* each xeQ where u is finite, and
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every regular open set co a x. But

w^^(f^. ^\<^p^/-^\
\ j ^ ) U.̂ /

+(l-JL^)m
(inequality of convexity, with f^dp^ ̂  1, and = 1 if 1 e ̂ n),
and

T/ M(a;) ̂ ^(f^^}^^^
\f^/ [ f^ / f^

(Jensen's inequality for convex functions), so

¥(u(.r)) </^T(u) ̂  + (1 - J^p?) m

which gives the result.
In the following, a positive convex strictly increasing func-

tion $ defined in [0, + oo[, with $(0) == 0, will simply be
called « convex »; $ will be called strongly « convex » if moreoverw^+«,^+«.

Note that for any « convex » ^&, lim —v-/ always exists,
(->4-oo ^

finite or + °° 5 and that a « convex » ̂  is necessarily continuous.
XQ e Q, I^L^ei? and pS^S are the same as before.

DEFINITION. — A harmonic function f = u + w belongs to
the class 96^, $ « convex », if and only if there exists a constant M,
independent of i, such that f^ ^d/*!) dp^ ̂  M, V i e I.

If y == u + ^ is in <%^, then both u and v are, but the
converse is not necessarily true, as we shall see.

As before, /^(l/l) d^ = H^,^o), with W\) subhar-
monic in Q, so it is equivalent, in the definition, to replace
l^iLei ^y any increasing directed subfamily ̂  j with union
Q, and, because of axiom 3' ("^^ 3), the class 96^ is independent
of the point XQ. Like in the ^p case, this also comes from :

THEOREM 10. — The harmonic function f is in the class 96^,
^ « convex », if and only if ^(|/^|) has a harmonic majorant in Q.
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COROLLARY 10.1. — For every « convex » <I>, «%i00 c 3€^ c 3-61,
and if a « convex » ̂ i dominates $ in ^ome interval

[<o, + ^[c[0, + 0)[,

^en 3^1 c a .̂ /n particular, if ̂  -> 0, ^ -> + oo, (p > 1),

(Aen a-^c^, one? if (--[/ has a finite > 0 limit {t -> + oo),
then W = ̂ . l

Proof. — We only prove the first statement. Let f^Wo^y
and U a harmonic majorant of ^d/*)) in Q. We have

1^1 < ̂ (U),
superharmonic in Q($""1 reciprocal of <!>), hence

!^\f\ ̂  ̂ ^(U) d^ < ̂ (U)^),

and /•e^1.

COROLLARY 10.2. — Any real harmonic function u e 96^
is the difference of two positive harmonic functions in Wo^.

Proof. — As seen above, u real i3€^ can be written as
u = Ui — Ua, with

ui(̂ ) = lim J^ u+ rfp^-, u^x) == lim ̂  u~ dp ,̂

both positive harmonic in Q. If U denotes a harmonic majo-
rant of ^(M) in Q, we have

^(f^^^f^W d^1 < U(^), ^. co,
hence, by continuity of <&,

$(ui(^)) =lim<S>(f^u+d^)^V(x), x^Q,

and Ui e Wo^; so does Ug e 3;6 ,̂ whence the corollary.
38^ is a convex, but not in general linear, subset of the

vector space c%. It is linear when 0, for instance, satisfies for
large ( a relation <I>(2() < C<I>((), C > 0 constant, which limi-
tates its growth at infinity, (example: $(t) == (log (1 + t))-

For a general « convex » $, we define 96^ as the largest
linear subspace of 3€ contained in S-6 ,̂ W^ as the smallest
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containing 3f^. It is easily checked that

^ = [f^^: OLfe^ Va>0 j ,
and

^={fe96: afe^0 forborne a>0^ ,

both equal to 96^ when this is linear.
On each ^co^, we also consider the Orlicz space of complex

p^'-measurable functions f such that / ^(a[/*|) dp^ <; + oo
for some a > 0, with the Minkowski norm:

H/114,,. = inf j^- : /c. > 0 3 /^(Wl) ̂  < ij,

equivalent to the Orlicz norm, as described for instance by
Luxemburg [20].

THEOREM 11. — For each « convex » $, 961^ is a Banach
space under the norm \\f\\^ = sup |[/'|]4),t? a^50 equal toi

inf j^-: /c>03Sup^(P(^|)^<ij.

T/i^ convergence lim ||/^ — /*[|(i> === 0 15 equivalent to
n->-+-oo

^Hmjsup/^^(a|/, - /•[) dp^ =0, Va > 0,

and 96^ is a closed linear subspace of this Banach space W^.

Proof. — Let feWo'^, ^ « convex »; \\f\\^^ < + oo for each
i e I, increases with (o^ and the limit \\f\\^ = sup ll/1!^^ is

r l
finite since ^ ^Wf\) d^ < M < + oo, Vi e I and some
a > 0, implies ^ ^(a.\f\) dp^ < Mi = sup (M, 1), hence

f ^(^l^^^f -Wf\)^<^J?)(0i V^1! / JbtOt^1!

Mand l|/1kt<-l<+ oo, V ieL
(X.

That H/'H^ is a norm in 96'^ comes from the same fact for
each |]/1|<i),r., i e I: for instance \\f\\^ == 0 implies \\f\\^^ == 0,
whence \f\ == 0 p^-almost everywhere on ^o^, H,̂  == 0, and
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/•=== 0 in Q. As f ^f—fn ̂  < 1, for each i €E I, we also
^^i Ml/ll^.t/

see that sup f (])^IA.\^^I^ 50 that
1 J ^ , Wlk/

||^>inf^: /c>03sup^$(/c|/'|)^<lj,

and the equality follows.
The completion of 3-6^ under the above norm is a consequence

of the equivalence stated in the theorem, which we first prove :
Assume ||/, - f\\^ -> 0, n -> + oo, (/•„, fe W^), and let a > 0;
for each i e I

f $(a|/-, -/-I) d^ = f $(a||/-, - ̂  . J - ^ W
«^&"i ^S(0, \ ||/n — /||4,/

<a||^-^f ^X.ZJI)̂

n large ( . a|)A - ̂  < 1), J"1 WB - w

< "II/. - /•Ik,
hence sup f^Wfn — f\} d^ -> 0, re ̂  + oo ; this in turn
shows that sup J^ $(a|/, - /•|) dp^ < 1 Vre > n,, therefore

1
11/n — /'11<1> <S—' arbitrarily small for a sufficiently large.

So if \f^\ is a Cauchy sequence in 36'^, it must satisfy,
Va > 0, sup J^(a|/-, - /•,,)) d^ -> 0, n, n' -> + oo ; for
a = 1, this means that the smallest harmonic majorant of
^(IA — /»'!) m Q converges to 0 at the point Xy, hence every-
where in 0 and uniformly locally; therefore /"„ also converges,
uniformly locally, to a harmonic function f in Q, which is in
38;'*, since

X>.Wn|) ̂ o -^^Wl) fc n^ + oo, Va> 0,

and for some OQ > 0

f ^(ool/nl) ̂ . < f ^f,,^1)^ < 1, Vn,
J^ ^ato> \l l /nll<I>/
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and is limit in norm, since

^P f^ W- - A'l) ^o1 < 1. Vn, n' > n,

whence

sup F $(a|/, ~ f\) d^ < 1 and [[/, - /•^ < -1,
1 c7^(oi a

again arbitrarily small for a sufficiently large.
Finally, if /,e^f> and \\f^-fU -> 0, ^ -> + oo, (/•e^;^),

one has

f ^W|) ̂  < -1 f ^(2a|A - f\) d^
^ ̂ i ^ J ̂ ,

+4 f ^(2a|/-J)^,a>0;
zi J?)CO^

for large n, the first integral on the right is arbitrarily small,
uniformly in i, and for fixed n the second one is uniformly
bounded in i; therefore /*e^, and this completes the proof
of the theorem.

2. Characterization and boundary properties of ̂  functions.

Hypotheses :

Axioms 1, 2, 3,
Existence of a > 0 potential in 0.
A countable base for the open sets of Q.
le3^.

We have already noted that if w has a finite limit asi/
t -> + oo? then 96^ == 3-61; so the only case to study here is

the one where —u - ^+00 , ( -> -)- oo, i.e. <& strongly
« convex ».

THEOREM 12. — A harmonic function f belongs to the class
96^, $ strongly « convex », if and only if f is the solution of a
Dirichlet problem with the minimal boundary Ai, the fine filters
in Q, and boundary function f <= L^ (p-i).
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This extends to functions feW^ and f e L^((Jii), the Orlicz
space associated to $ on Ai. Moreover, if the extreme harmonic
functions are normalized so as to be equal to 1 at the point
^ \\f\\^ == || /*[|(i), Minkowski norm off in L^([Jii), and tAe cor-
respondence f —> f is an isometric isomorphism of the Banach
space W^ onto L^pii).

Proof. — By the hypothesis <P strongly « convex », and pro-
perty 1.3.(3), any fe96^ is again uniformly integrable with
respect to the harmonic measures p^1, hence (th. 2) is the
solution of a Dirichlet problem with the minimal boundary
Ai, the fine filters in Q, and boundary function f, and f has
the fine limit f at (^"almost every point of Ai. This f e L^pii),
since ^(|/|), fine boundary function of $([/'|), is dominated
by the ^ -integrable boundary function of any positive har-
monic majorant of ^d/*)) in Q.

Let conversely /^e L^^i), and ^==^/.i?

f{x)=j\k{x}f{k)d^(k), x^Q.

By Jensen's inequality,

^ ( j[ k(x)f{k) d^{k}\) <^ k{x) ^\f\){k) dy.,{k),
i.e. ' ^(|/'|)<^(,/i),i in 0;

so ^(l/l) has a harmonic majorant in Q, hence fe96^,
If ^f denotes the smallest harmonic majorant of ^(|/'|)

in Q, (/'e^), we thus see that $(|/*|) < ^/*< ^(|/D,I, hence
4)/*is also a solution, and has fine limit ^( j f ) ) (^i-almost every-
where on AI$ therefore ^f=== ^(I/D,!; in particular

^)=f^{\jt\){k}d^(k).
This shows that

||/-||<l> = inf S 1 : X > 0 ̂  ̂ f){x,) < I?
( )

= inf S-^-: X > 0 a ^/^ <I>(Xl^|)(/c) dy.,(k) < li

== 11/11^ (/•^;<r,/eL;V)),
which suffices for the second part of the theorem.
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We explicit the following:

COROLLARY 12.1. — Every function fe3€^, $ strongly
((convex)), has a finite fine limit feL^{^) at ^-almost every
point of the minimal boundary Ai; the smallest harmonic majo-
rant of <!>{\f\) in Q is ^4<,/,),i, and 0(|/'|) == ̂ ,/,̂  -- w, where w
is a positive potential in Q.

3. 9fo^ classes of positive subharmonic functions
and relative classes 3 ,̂ ̂ .

Hypotheses are first those of section 1; \^^\^ils ^e same
family as before.

DEFINITION. — A positive subharmonic function u belongs
to the class 3S0, $ « convex », if and only if there exists a cons-

tant M independent of i such that ( ^(u) dp^ <: M, Vi e I.
We have ^ ̂ {u) d^ > H^ {x^ ^with equality if $(u),
subharmonic, is resolutive), whence : a positive subharmonic
function u is in the class S-6^, <I> « convex », if and only if ̂ (u)

has a harmonic majorant in Q; so it is equivalent in the defi-
nition to replace ^i^gi by any increasing directed sub-
family ^co^ j with union 0, and the class 3^ is independent
of the point XQ\ classes 96^ corresponding to different ^s
are compared like the WQ^'S were, and for any « convex » <&,
^c^c^i. f=u+iv^96^ if and only if [fje^;
* * * *

moreover:

THEOREM 13. — A positive subharmonic function u belongs
to the class 560, <& « convex », if and only if u has a harmonic

majorant in the class 96^.

Proof. — Similar to the one of theorem 7.
We shall denote by iU (resp. ^u) the smallest harmonic

majorant of u (resp. <D(u)) in Q; ^ue96^, while $ue5^1,
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and we have the Riesz decompositions

u = iU — Wi, ^(u) = ̂ u — w,

where ^i, w, are positive potentials in Q.
9fo^ is a convex set, containing the set (S^^^ of positive

functions in 96^, but not a cone nor a linear space.
Let W^ == \ u ̂  0 subharmonic : au e 3@0 for some a > 0 L

* - '' * '
§^ the real vector space of differences of functions in W^\
u^W^ if and only if u has a smallest harmonic majorant
lUe^0, and ||i^ — ^ll^ == ||i^ — i^ll^) defines in 8^ a
semi-norm to which the development of 11.3 relative to 8^
does extend immediately.

As for the boundary behavior of 36^ functions, we have,
under the hypotheses of section 2:

THEOREM 14. — Every function u e S ,̂ $ « convex », has a

finite fine limit u e L^(p.i) at ^-almost every point of the minimal
boundary Ai. If $ ^ strongly « convex», (Aen (Ae smallest
harmonic majorant of u (resp. of ^(u)} in Q 1*5 9^ [resp. ^<i)(n),i),
and

^ ^ == ̂ .i — î,
^(u) ==^^~ w,

where w^ w, ar^ positive potentials in Q.

Proof. — Similar to the one of theorem 8.
To finish, we just mention here the possibility of extending,

with the appropriate modifications mentioned in 11.4, all
preceding results to relative classes S ,̂ 5 ,̂ of A-harmonic,
sub-A-harmonic functions in Q, defined by replacing the cons-
tant function 1 by any finite > 0 continuous non-constant

*
super-harmonic function h e 3 ,̂ or any > 0 harmonic func-
tion h e 3@R. Corresponding results are easy to rephrase.



CHAPTER IV

SOME APPLICATIONS

1. Strongly subharmonic functions.

In this section, we want to show how a result given by
Garding-Hormander in a short Note [10], and yielding in
particular a very simple proof of the classical F. and M. Riesz
theorem, is actually an easy consequence of our results on Wft
classes, and therefore also valid in our present set-up. At
the same time, we give, for positive subharmonic functions, a
general theorem which can be considered as the subharmonic
version, and extension, of the Phragmen-Lindelof principle
for analytic functions in the unit disk.

Following [10], a positive subharmonic function u in Q
will be called strongly subharmonic if y"1^) is subharmonic,
for some function 9, positive convex strictly increasing in

]— oo, + ^E? with lim y(() = 0 and lim '^ =4-00
(•>—oo (->4-oo (

(y is the determining function).
For strongly subharmonic functions, theorem 8 can be

complemented in the following important way:

THEOREM 15. — Let u be a positive subharmonic function,
contained in the class W-. If u is strongly subharmonic, then the
smallest harmonic majorant of u in Q is precisely the solution
^up i.e. u = if^ — w^ where w^ is a positive potential in Q.

(ue L^i) is the fine boundary function of u on Ar)

Proof. — Consider in [0, 4- °°[? ^e function

^)==^)-9(0);
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it is strongly « convex », and the hypothesis u €E 961 shows that
*

the positive subharmonic function ^^(u)^ is in the class
96^; therefore (theorem 14), its smallest harmonic majorant U
in Q is precisely the solution ^j^ corresponding to its fine
boundary function U on Ai.

As ̂ (u) <^ U, and 9~l(u) has the fine limit y^u) pii-almost
everywhere on Ai, it follows first that ^(u) <= L^pii); next,
that the smallest harmonic majorant V of y^u) in Q, which
is <; U and has fine limit V = ^(u) ^ -almost everywhere
on Ai, satisfies V < ̂  == ^-i(u).i, because U — V > 0
harmonic in Q can be written as

u-v^^-v.i+w,
where W ̂  0 harmonic in Q has fine limit 0 p4 -almost every-
where on Ai, and U = tfy^.

So 9~l(u) <; ^-^^^, whence, by the Jensen inequality
for convex functions, u ̂  ̂  in Q, which finishes the proof
of the theorem.

COROLLARY 15.1. — Iffe 3-61, and \f\ is strongly subharmonic
{in particular if log \f\ is subharmonic), then /*== iff^ in Q.

The particular case is precisely the extended form of the
F. and M. Riesz theorem for analytic functions in the unit
disk.

As for the extended Phragmen-Lindelof principle, we have :

THEOREM 16. — Let u be a strongly subharmonic function,
with determing function 9. Assume that u <; 9 o \ for some
function \ in Q, positive and uniformly integrable with respect
to the harmonic measures p^1. Then:

(i) u has a finite fine limit u at ^-almost every point of the
minimal boundary Ai, and y^u) e L î).

(ii) If ueL^pii), ^ ((convex)), then ue^; if u e L°°((JLi),
then u is bounded in Q{eW0). *

*
Proof. — With the hypotheses made, ly"1^)!4" is subhar-

monic and uniformly integrable with respect to the harmonic
measures p^1, therefore, by property 1.3.(3), is in the class
3^0 corresponding to some strongly « convex » function <I>o.
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As seen above, this implies that y"1^) <; U, with

0 < U = ̂ ,,,

whence a finite fine limit u for u at (Xi-almost every point of
the minimal boundary Ai, and y^u) e L^i); moreover,
^(u) < Vw.i, whence ^) < $(?(^uJ) in Q.

If ueL/^i), i.e. <t>(u) e L^i), then the Jensen inequality
for convex functions, applied to <1? o <p, shows that

<I>(u) < ̂ ,

in Q$ therefore <&(u) has a harmonic majorant in Q, and
ue^.

*
If ueL^djii), one proves similarly that u ̂  ̂ p whence

obviously u e 3i6°°.*

2. Extremal functions. Reproducing kernel,
and Classification.

We begin with a result in the classification of harmonic
classes on Q, obtained as an almost immediate consequence of
the general properties of the W^ classes.

Our hypotheses are, as before, axioms 1, 2, 3, existence of
*

a > 0 potential in Q, and 1 e 3^ with greatest harmonic
minorant G3o in Q.

We denote by 3€'1 the class of all quasi-bounded harmonic
functions in Q, i.e. of all functions f == u + iv whose real
and imaginary parts are differences of two positive harmonic
functions, each of which being the limit of an increasing
sequence of bounded positive harmonic functions in Q.

Following the pattern used for Riemann surfaces, we
define 6^1 as the class of harmonic classes 96 on Q, which
satisfy the above hypotheses, and are such that every function
in 961 is a constant multiple of d3o. We similarly define C^'i,
e^ P >^ e^ ^ « convex », and (°^oo.

It is trivial that (°^oo = fi^/i.
According to corollary 1.1, property 1.3.(3), and corollary

10.2, the functions in W1 are all the complex harmonic func-
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tions in Q which are uniformly integrable with respect to
the harmonic measures p^1.

Therefore, (again by property 1.3.(3)), for every p > 1,
and for every strongly « convex » (^, we have the inclusions :

^c^c^^c^.

It follows that

e^ce^c^ce^.

As Q^ = C^i, we see that, like in Parreau [22], we have :

THEOREM 17. — For every p > 1, C^o == (3^p; for every
strongly « convex » (^, (3^oo == (5 .̂

The first relation C^oo == (3^p, p > 1, has also been obtained,
independently, by Loeb and Walsh [17], under the same
hypotheses.

We now assume^ in addition^ a countable base for the open
sets of Q, and 1 e 96^ which permits the consideration of the
minimal boundary Ai, and the corresponding Dirichlet pro-
blem already described. We want to show how in that case the
above result can also be obtained by making use of a certain
kernel function, whose idea for Riemann surfaces actually
goes back to Bader, as mentioned by Parreau [22], and which
has been used by the latter for the same purpose of classifi-
cation as we do here.

As usual, XQ is a fixed point eQ, and the extreme harmonic
functions are normalized at XQ. By theorem 2, the functions
in W1 are now all the solutions of Dirichlet problems (of the
described type) with boundary functions eL1^).

Let x be another fixed point &Q. By Harnack inequality,
k(x), considered as a function of /ce/\i, is bounded, hence
sL00^!). The corresponding solution

K^z) = ̂ i(z) = ̂  k(z)k(x) ̂ (/c), z e Q,

is therefore bounded > 0 harmonic in Q, and has fine limit
k{x) [J4 -almost everywhere on Ai. For another y e Q, we have,
similarly,

K,{z) - ̂ (z) == j^ k{z)k(y) d^{k), z e Q.
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It is clear that

K.(t/) =j\k{x) k(y) d^{k) = K,{x), x, y^Q.

The common value Ka,(y) == Ky{x) is by definition the kernel
function

K{x,y) = f^ k{x) k{y) d^{k), x, y e Q.

It is bounded > 0 harmonic in each variable when the other
one is fixed; at the point XQ,

KM = K(^ x,) =f^k{x) d^(k) = 1,
and

llK,L=||/c(^)L
while

II KJp = \\k{x)\\p, for every p > 1,
and

l|K,b=»/c(a;)b,

(the Minkowski norm), for every « convex » <&.

THEOREM 18. — Le< x be a fixed point eQ. The following two
conditions are equivalent:

(i) The function Ky; is identically 1 in Q (equi^alently,
k(^x) === 1 ^-almost everywhere on Ai).

(ii) For every f^W\ f{x) = f{x^).

Proof. — We use the last mentioned characterization of
W1 functions. If ICy = 1 in Q, then /c(a;) == 1 (Jii-almost every-
where on Ai, therefore, for every fe96'1:

f(x) = j[k{x)f{k) d^(k) = fj{k) d^(k) = /^o).

Conversely, if f{x) = f{xo) for every f^W1^ one has

K^)-K^o)==lVyeQ,

hence K^^l in Q.

COROLLARY 18.1. — Under the present assumptions, the
results of theorem 17 hold.
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Proof. — It suffices to prove the inclusion (°^oo c C '̂i with
the characterization of W1 functions as solutions.

But if every function in ^ is a constant, then K^ = 1
for every x e Q, therefore f{x) = f(xo) for every fef6'1 and
every x e Q, which shows that /* is constant in Q.

We shall now study further the structure of the Banach
space 382, and, following Parreau [22], solve a certain mini-
mum problem relative to its norm, leading very naturally
to the kernel function K(rc, y).

Let u, ^, real €K^\ Vi e I,

f u ^ - s r (u+^^- r u2^-- r ^p^1?.
i/?)(jL>i — (»y6(0i J 5ci)i t76(0i )

When (Oi increases to Q, each of the three integrals on the
right has a finite limit, hence lim / uv dp^ exists and

( A r \

is finite, actually equal to -^- \^(u + ^)(^o) — 2u(a;o) — 2^(lro) \ \
' r - ^The same is therefore true for lim fg rip^1, /, g, complex

^\ If we set l "l

(f,g)=limj^fgd^

we see immediately that this is an inner product in <%2, that
its quadratic form is the d^-norm, ||/'||| = (/, f), and that

and
{ f , g ) = J J W g ( k ) d ^ { k ) ,

(A l) = /^o).
For each re e Q, the evaluation at x: f -> f{x) is continuous

in 3-62, hence, according to the general theory of Hilbert func-
tion spaces, there exists for 9-62 a unique reproducing kernel,
i.e. a unique function 0(a;, y) defined in Q X Q, such that

(i) for each *reQ, 9a;(t/) = 0(.r, y} is in c^2;
(ii) for each /*e3^2, and each xeQ, f^x) = (/*, 9^), (repro-

ducing property).
Again, let x be a fixed point eQ. Let

^= t^2: A^)= iL
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which is a closed convex subset of <%2, and let

m o = i n f t 11/1,: /•e<U^,

which is < 1, since 1 e Ul, and > 0 as we shall see.
Consider in Ul a sequence \f^\ such that

ll/n!l2 -> ^0) 71 -> + 00.

By the elementary equality,

4rL^
1+11/n- l l

fn + /•„•

2

S)-

[>

/ra 1 /n'

2

mo)> it"a!?

sequence in U^, therefore converges in 9^ to a function /„,
which is in ^ and has norm \\f^ = TOO. Moreover, any
fi eU^ such that [I^Ha == TOO is equal to fy, since

f i -^o
2 fi III + 1 1 ^ 1 1 1 ^ ^+/,

2 < m§ — m§ = 0.

So the problem of finding among the functions of 362 with
value 1 at the point x, a function minimizing the ^2-norm,
has a unique solution fy =f= 0, which we relate below to the
reproducing kernel in 3S62, and the kernel function K(a;, y).

It is immediate that fy is real-valued for, if fy = Uy + i^,
then Mo 6^l2, f luo la < H^ol lz , whence Uo = ^o by the uniqueness.
It is also clear, by an elementary computation, that fo is
orthogonal, in 962, to any fe W' which vanishes at x. Therefore,
for any fe 9^,

(f - fW, /o) = 0,
whence

(A /o) = {f^ /o) = f{x). (1, f,) == f{x) .f^);

in particular
/o(^o) = yo^o) = n^^o.

So, finally,
/•f^ — (A /o) __ //• fo \
lw ~~ ( I / 1 1 ! 2 ~' / 9 JiTlfzJ'll/oh \ ll/oh/
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or, setting

^ifr ^ew)
ll/oh

f{x) = (/; e,), vye^
(reproducing property). To another t /eQ, one associates
similarly 6y e 3^2 such that

M={f^yY V/^2.

In particular

9.(?/) - (9., e,) = (e,, e,) == w.
So there is symmetry, and the function 6(rr, y ) = Oa.(z/) == Oy^)
of {x, y) e Q x Q is the reproducing kernel in 962.

By the reproducing property,

f^ f{k) k{x) d^{k) = f^ f(k) W ^(/c),

for every f eL2^), in particular uniformly continuous on
AI; hence 6^(A*) = k{x) pii-almost everywhere on Ai, and
9a;==Ka;: 6(*r, y) coincides with the kernel function K{x,y).

The minimizing function fo has SC^-norm

1 1
/O i l2

Kj2 ||̂ )||/

and boundary function

fo{k) = ) pii-almost everywhere on Ai.\\k[x)\\^

THEOREM 19. — Let x be a fixed point eQ. The following two
conditions are equivalent, and equivalent to conditions (i) and
(ii) of theorem 18:

(iii) The constant function 1 minimizes \\f\\^, /ell^.
(iv) The minimum of \\f\\^ /'ell^, is equal to 1.
The same minimum problem can be solved in each S ,̂

for l < p < + o o , using the fact that L^i), hence 3 ,̂
1 < p < + °°? is uniformly convex, i.e. :

given £ > 0, there exists §(s) > 0, with lim ^(s) = 0, such
£->0
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that the inequalities

l l / ' l lp<l, l lg l lp< l , t±^
2 > 1 §(£), f, ge^

imply
l l / ' -g l lp<£.

Let a; be a fixed point e0. Let

W.= \f^^: f{x)==i\,

which is again a closed convex subspace of X>r, and let

mo= infill,: /•e^|,

which is < 1, and > 0.
Consider in U^ a sequence \f^\ such that

11/nllp -̂  TOO) n ̂ - + oo.

Fo. ", »• >"., IIAI, < r̂ ), IIA.II, < t^,^ II fn l ip < i——Q^—^ while

^^l^mo; therefore \\f^f^^^__:^ „ ^

Cauchy sequence in 3 ,̂ and converges in 9&P to a function f^
which is in ̂  and has norm \\fo\\p == mo.

The same type of argument shows that this minimizing
function is unique, and real-valued.

Apply now the Holder inequality to the right integral in

1 = f(x) = f^ k(x)f{k) d^(k), /-e ̂ .

This gives

i<ii^iip.n^)ii,, i--^^-=l,
hence

\\k{x) < 11/11 P? ^^.

But it is elementary to verify that the ^-function with

boundary values w?p is in U^ and has 3^-norm equal to
'[ ^ II^Wllg

n i , / M, > hence is equal to the minimizing function /o.
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In conclusion, the minimizing function f^ has W-norm

li/ollp = | | i / \ n )

II^Wllg
and boundary function

f (^ _ ̂ qlpfow - pc^n
p4-almost everywhere on Ai.

Preceding results can be extended to the space 380, $
strongly « convex », when this is uniformly convex (with
the Minkowski norm we considered). Sufficient conditions on
$ (implying among others that 36^ is linear) have been given
by Luxemburg [20].

For such <I>, we consider

Uf = !/•€= ̂  : f(x) = 1 } , x fixed £Q,
and

mo=inf||[/1|^: y^^;

mo< || lb, and > 0.
There exists in ll^ a unique real-valued function ^o, mini-

mizing the norm.
The explicit determination of fo is more delicate. (We refer

to Luxemburg [20] for all results used below.)
We first apply to the right integral in

1 = f{x) = f^ k{x)f(k) ̂ (/c), /•. ̂

a generalization of the Holder inequality to Orlicz spaces.
We obtain

l<||/^J|/c(o;)||t,
where

l lfb-ll/lk, f^L^i),
while

[|/c(^||y == supj/^ \f{k)\k{x) d^{k) : ̂  L<f(^), ||̂ ||̂  < lj ,

(the Orlicz norm), and Y is the complementary Young func-
tion of <I>, determined by the conditions

W = J^ ^t) dt, Y(yi) = f: ̂ ) dt,

and the functions 9, ^, are reciprocal.
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so „ , / Mi •< \\f\\^ vy6^; if we show that there exists
II^Wll^ ^ 1 . .

in ̂  a function with norm equal to —9 this will neces-
sarily be the minimizing f^. ll ^ /114r

But, as

1 = sup j^ |/WI ̂ ^ ̂ iW : ^ . L*((X,), [|f||4> < ij,

there exists 0 <; f^ e I/^i), such that [[fnl^ ̂  1, and

fj^^^ n -> -}- oo.

Given s > 0, it follows that, for n, n' ^ no,

1> ^IL>J:(-^-)W^^)>1-S(£)'/, + ̂ ^n + h

whence, by the uniform convexity of L^pii),

Ifn — fn\\ ̂  < S? ^ ^/ > ̂ 0-

So |/*,̂  converges, in ^((Jii), to a function /*o s L^((J(.i), ^ 0,
satisfying

llfob-1,
and j:/w p^w= 1-
(because /„ == ̂ i converges uniformly locally to /o == ^i).

f ^ °'
The function • „ , / ° „ is in W, and has norm ..,, ,,,—) therefore

\\k{x}\\^ ^ 11 )̂11^
equals the minimizing f^ (which is thus > 0).

On the other hand, for every fe3€^ which vanishes at x,
and every X complex, f^ + Xjfe0^, therefore

A.+V >i, /no = ll̂ )ll̂/no
and ^ +x^ | = 1 if and only if X = 0.

TOO |<i>
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This is equivalent to

f^f1-^^1)^^1^^1'^&i \ m^ /

and f ^^o+V^ (/c) ^(/c) = j. if and only it X = 0.
^A, \ "̂  /

So F(X) = F ̂  f^0^^ (A-) d(Xi(/f) is minimum for \ = 0.
^•A, \ ^0 /

As P(X) = r ̂ ^f'^—^) w ^s11 ^ + ̂ w ̂ l(^'
^ Ai "'O \ ^O /

we see that for every f e 3-60, which vanishes at ^,

f^^)^^^c/Ai ^o V^/
and for every /*e 380,

f hk) ̂ (f—}^d^== f ̂  ?f^w ̂ w-
•^A, V^O/ JA. Y^O/

•fj{k)k{x)d^{k).
This gives necessarily

f 9 (̂ ) (/c) ̂ lw = f ^(^ ^ (̂ -) (^ ̂ ^^^Ai V^O/ J^ \^0/

and ? (^)(/c) = ( f ^^) W ̂ i(^)) • ̂ N,
V^/ WAI Y^O/ /

whence

^w=»-((^»(^)w^w).^)).
(J4 -almost everywhere on Ai.

As there exists a unique ao > 0 such that

f 9-i(ao^))/c(:r) ^(/c) == -1-,
J^ rno

we see that necessarily

fyf^W^iW-ao,
^Ai V^/

and finally ^(k) = moy~l(ao/c(^)), pii-almost everywhere on Ai.
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In conclusion, the minimizing function f^ has 96^-norm

"Ab==^)^'
and boundary function

} (i,\ _ 9~l(«o^))
/ 0 ( ) ~ 11^)||^

p4-almost everywhere on Ai, ao being determined by the equa-
tion

f^-^k{x))k{x) d^(k) = ||/c(^)||^
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