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INTEGRAL MODELS FOR MODULI SPACES OF
G-TORSORS

by Martin OLSSON

Abstract. — Given a finite tame group scheme G, we construct compactifi-
cations of moduli spaces of G-torsors on algebraic varieties, based on a higher-
dimensional version of the theory of twisted stable maps to classifying stacks.
Résumé. — Étant donné un schéma en groupes fini modéré, nous construisons

des espaces de modules de G-torseurs sur des variétés algébriques, en utilisant une
version en grande dimension de la théorie des morphismes stables tordus dans les
champs classifiants.

1. Introduction

The work in this paper is a generalization to higher dimensions of a
particular application of the Abramovich-Vistoli theory of twisted stable
maps [3] (and its ‘tame version’ of Abramovich-Olsson-Vistoli [2]).

Let us begin by reviewing how the Abramovich-Vistoli theory gives com-
pactifications of moduli spaces for curves with (possibly non-abelian) level
structure. In what follows g denotes an integer > 2.

1.1. Let C/S be a smooth proper curve of genus g over a scheme S, and let
P be a finite set of prime numbers which includes all residue characteristics
of S. For any section s : S → C we then obtain, as in [11, 5.5], a pro-object
π1(C/S, s) in the category of locally constant sheaves of finite groups on
S whose fiber over a geometric t̄→ S is equal to the maximal prime to P
quotient of π1(Ct̄, st̄).
Now let G be a finite group of order not divisible by any of the primes

in P . Let H omext(π1(C/S, s), G) denote the sheaf of homomorphisms

Keywords: Compacitification, moduli spaces, torsors.
Math. classification: 14J15, 14D06, 14D20.



1484 Martin OLSSON

π1(C/S, s) → G modulo the action of π1(C/S, s) given by conjugation.
Then the sheaf H omext(π1(C/S, s), G) is a locally constant sheaf on S

which is canonically independent of the section s. It follows that for any
smooth proper curve C/S of genus g there is a canonically defined sheaf
H omext(π1(C/S), G) even when C/S does not admit a section. Following
[11, 5.6], we define a Teichmüller structure of level G on C/S to be a sec-
tion of H omext(π1(C/S), G), which étale locally on S can be represented
by a surjective homomorphism π1(C/S, s) → G for a suitable section s.
As in [11, 5.8] we define GMg to be the stack over Z[1/|G|] which to any
Z[1/|G|]-scheme S associates the groupoid of pairs (C/S, σ), where C/S is
a smooth proper genus g curve and σ is a Teichmûller structure of level G
on C/S.

1.2. The space GMg is connected with the Abramovich-Vistoli theory as
follows. Let GK ◦

g denote the stack over Z[1/|G|] which to any Z[1/|G|]-
scheme S associates the groupoid of pairs (C/S, P → C), where C is a
smooth proper curve of genus g over S and P → C is a principal G-bundle,
such that for every geometric point t̄→ S the fiber Pt̄ → Ct̄ is connected.
There is a morphism of stacks

GK ◦
g →Mg

sending (C/S, P → C) to the curve C/S (here Mg denotes the moduli
stack of genus g curves). The fibers of this morphism can be described as
follows. Let C/S be a curve defining a morphism

S →Mg,

and let s : S → C be a section (since C/S is smooth étale locally on S

there exists such a section). The fiber product

S := S ×[C],Mg GK ◦
g

is the stack over S which to any S-scheme S′ associates the groupoid of
G-torsors P → CS′ such that for every geometric point t̄→ S′ the fiber Pt̄
is connected.
The choice of the section s enables us to describe the stack S as follows.

For any object P → CS′ of S (S′), the pullback s∗P is a G-torsor with
action of π1(CS′/S′, s) on S′. Étale locally on S′ we can choose a trivial-
ization s̃ : S′ → s∗P of the G-torsor s∗P , and such a trivialization defines
a homomorphism

(1.1) π1(C/S, s)→ G.

Here we use the fact that π1(CS′/S′, s) is the pullback to S′ of π1(C/S, s).
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INTEGRAL MODELS FOR MODULI SPACES OF G-TORSORS 1485

The assumption on the connectedness of the geometric fibers Pt̄ implies
that the map (1.1) is surjective. It follows that the conjugacy class of the
homomorphism π1(CS/S, s)→ G is independent of the choice of s̃ and also
independent of the section s. We therefore get a well-defined section of

H omext(π1(C/S), G),

even when C/S does not admit a section. In fact we obtain a morphism of
stacks over Mg

(1.2) GK ◦
g → GMg,

and a straightforward verification, which we leave to the reader, shows that
this map identifies GMg with the relative coarse moduli space, in the sense
of [2, §3], of GK ◦

g →Mg.
On the other hand, the category of G-torsors over a smooth genus g-

curve C/S is equivalent to the category of morphisms C → BG. Therefore
the theory of twisted stable maps developed in [3] gives a natural com-
pactification GKg of GK ◦

g over Z[1/|G|]. Forgetting the G-torsor defines a
morphism GKg →M g extending (1.2), and therefore by passing to the as-
sociated relative coarse moduli space over M g we obtain a compactification
of GMg.

Example 1.1. — For a finite group G and a proper flat family of curves
C → S with possibly nodal fibers, the stack X /S which to any S′ → S

associates the groupoid of G-torsors on the base change CS′ is not proper in
general. For a simple example consider the case when S is the spectrum of
a discrete valuation ring V with separably closed residue field, and C → S

is a semistable curve whose generic fiber is smooth of genus 1 and whose
closed fiber is the nodal curve obtained from P1 by gluing together 0 and
∞. Let G be the group Z/(`) for some prime ` invertible in V . Let η ∈ S
(resp. s ∈ S) be the generic (resp. closed) point of S. In this case G-
torsors on C are classified by H1(C,Z/(`)), and G-torsors on the geometric
generic fiber are classified by H1(Cη̄,Z/(`)). Now a standard calculation
shows that H1(C,Z/(`)) is isomorphic to Z/(`), whereas H1(Cη̄,Z/(`))
has rank 2 over Z/(`). From this we conclude that there exist Z/(`)-torsors
over Cη̄ not induced by a torsor over C. Since the groups H1(C,Z/(`))
are invariant under finite base change V → V ′ of discrete valuation rings
(since H1(C,Z/(`)) ' H1(Cs,Z/(`))), we conclude that after making a
base change V → V ′, there exists a G-torsor over Cη which does not extend
to C, even after making further base change on S.

TOME 62 (2012), FASCICULE 4



1486 Martin OLSSON

1.3. It is natural to ask for an extension of the stable map spaces GKg to
schemes where |G| is not invertible. This appears intractable in general,
but as explained in [2] if G is a tame group scheme, as defined in [1], then
one can indeed develop a theory of twisted stable maps and the resulting
moduli spaces GKg are proper.
An interesting case to consider here is the case of G = µn for some

integer n. This group scheme is tame, and so we obtain a proper moduli
space µnKg over Z classifying µn-torsors over twisted curves. The substack
µnK ◦

g ⊂ µnKg classifies smooth curves C/S with a µn-torsor P → C.
Giving such a torsor P is equivalent to giving a pair (L, ι), where L is a
line bundle on C and ι : L⊗n → OC is an isomorphism. As before there is
a projection µnK ◦

g →Mg and since the automorphism group of any pair
(L, ι) as above is canonically isomorphic to µn acting on L, it follows that
the relative coarse moduli space of µnK ◦

g →Mg is equal to the n-torsion
subgroup scheme of the Jacobian of the universal curve over Mg. Therefore
the spaces µnKg enable one to obtain proper models over Z of the n-torsion
subgroup of the universal Jacobian. In the case g = 1, a discussion of the
models obtained in this way and their relationship with the Katz-Mazur
regular models for moduli spaces of elliptic curves with level structure is
given in [2, §6].

1.4. The construction of the compactification GKg is naturally viewed in
two parts. First one has the Deligne-Mumford compactification Mg ↪→M g

of Mg. Second, over M g there is the universal stable curve C → M g

restricting to the universal curve C →Mg, and if we view M g as the base
then GKg is a compactification over M g of the stack classifying G-torsors
on the fixed family of curves C →Mg.
Our aim in this paper is to generalize the second part of this construction

to higher dimensional varieties. The setup is the following. We consider a
flat proper morphism of log schemes f : (X,MX) → (S,MS) which is
semi-stable in a suitable sense (see 7.1 for the precise assumptions, and 2.1
for further discussion). For a tame finite flat group scheme G/S we then
construct a proper S-stack GKX/S whose restriction to the open subset
S◦ ⊂ S where X → S is smooth is simply the moduli stack of G-torsors on
X◦ := X ×S S◦.
In the case when S = M g and X = C is the universal curve over M g,

the log structures MC and MMg
on C and M g defined by the divisors at

infinity define a morphism of log stacks

(C ,MC )→ (M g,MMg
)

ANNALES DE L’INSTITUT FOURIER



INTEGRAL MODELS FOR MODULI SPACES OF G-TORSORS 1487

and our theory can be applied. In this case we obtain the spaces of stable
maps GKg.

In general, the object of GKX/S at the boundary can be described as
follows. The key observation is that to any simple extension of log structures
j : MS ↪→ NS on S (see 2.1 for the precise definition) there is an associated
tame stack Xj → X. The stack GKX/S is the stack which to any S-scheme
g : T → S associates the groupoid of pairs

(j : g∗MS ↪→ NT , P →Xj),

where j is a simple extension with associated tame stack Xj → X ×S T ,
and P → Xj is a G-torsor (we call such a pair (j, P ) a twisted G-torsor).
Furthermore this data is required to satisfy a suitable stability condition
(see section 7). Let us summarize the main properties here:

Theorem 1.2. — (i) The stack GKX/S is a proper algebraic stack over
S with finite diagonal.
(ii) The stack GKX/S is tame.

Remark 1.3. — The assumptions on X → S imply that the morphism
X → S is cohomologically flat in dimension 0 and therefore the relative
Picard functor PicX/S is an algebraic space [5, 7.3].

If the connected component of the identity in PicX/S of X/S is smooth
over S, then GKX/S is flat over S with local complete intersection fibers.
This follows from the same argument used in [2, §5].

Remark 1.4. — In the case when X → S is smooth and proper (so
there are no log structures), the stack GKX/S is simply the stack which
to any scheme S′ → S associates the groupoid of G-torsors on X ×S S′.
In the case when G is further assumed an étale group scheme over S, the
properness of GKX/S in this case follows from the deformation invariance
of the prime-to-p étale fundamental group.

1.5. The paper is organized as follows.
In section 2 we discuss the stacks Xj associated to a simple morphism

of log structures MS ↪→ NS as mentioned above. The construction of this
stack is a generalized ‘root stack’ construction, and is an application of the
ideas discussed in [19].
In sections 3, 4, and 5 we discuss various extension results for G-torsors,

where G is a tame group scheme. The key situation is the following. Let
V be a discrete valuation ring, and let G/V be a finite flat tame group
scheme. Let Pη be a G-torsor over the field of fractions of V . In section 4
we explain that after making a ramified base change of V , the G-torsor

TOME 62 (2012), FASCICULE 4



1488 Martin OLSSON

Pη extends to V . Moreover, we have a good understanding of the required
base change.
In section 6, we discuss the basic problem of when a torsor on a stack

descends to the coarse moduli space (or in a relative setting to the relative
coarse moduli space). These results will be used subsequently to associate
to an arbitrary twisted G-torsor a stable twisted G-torsor.
In section 7 we introduce the notion of twisted G-torsors and stability

for such objects, and define the stack GKX/S . In section 8 we give a differ-
ent characterization of the stability condition, which will be useful for the
proofs.
Then in section 9 prove that GKX/S is an Artin stack of finite type over

the base S with finite diagonal. Finally in section 10 and 11 we establish
the properness of GKX/S , and in section 12 we show that GKX/S is tame.

1.6. Acknowledgements: The author is grateful to Dan Abramovich,
David Rydh, and Angelo Vistoli for helpful conversations and comments.
We thank the referee for providing a very large number of helpful comments
and corrections which greatly improved the paper. The author was par-
tially supported by NSF grant DMS-0714086, NSF CAREER grant DMS-
0748718, and an Alfred P. Sloan Research Fellowship.

1.7. Conventions: We assume the reader is familiar with the basic of
logarithmic geometry in the sense of Fontaine and Illusie (see for example
[16] or [18]). In this paper we only consider fine log structures, and therefore
usually omit the adjective “fine”.
By a tame group scheme G over a scheme S we mean a finite flat linearly

reductive group scheme G→ S. See [1] for further discussion.
If S is a Deligne-Mumford stack, then a geometric point of S is a

morphism Spec(k) → S with k a separably closed field (this follows the
conventions of [10, Arcata, II 3.1]).

2. Stacks associated to simple extensions.

2.1. In general if Z is a scheme and h : M → N is a morphism of fine
log structures on Z we say that h is logarithmically semistable if for every
geometric point z̄ → Z there exists isomorphismsM z̄ ' Nr and N z̄ ' Nr+s
such that the map M z̄ → N z̄ is given by

(2.1) ei 7→
{

ei if i 6= r

er + er+1 + · · ·+ er+s if i = r,

where ei denotes the i-th standard generator of Nr.
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We say that h is a simple morphism if for every geometric point z̄ → Z

there exists isomorphisms M z̄ ' Nr and N z̄ ' Nr for some integer r such
that the morphism M z̄ → N z̄ is given by

(2.2) Nr → Nr, ei 7→ ai · ei

for some collection of natural numbers a1, . . . , ar ∈ N.

2.2. Let f : (X,MX)→ (S,MS) be a log smooth morphism with underlying
morphism X → S proper. Assume further that the map of log structures
f∗MS → MX is logarithmically semistable. This implies that for every
geometric point x̄→ X, with image in the singular locus of the morphism
X → S, there exists a unique irreducible element in MS,f(x̄) whose image
in MX,x̄ is not irreducible. In this way we obtain for every geometric point
s̄→ S a set map

{singular points of Xs̄} → {irreducible elements in MS,s̄}.

The morphism f : (X,MX)→ (S,MS) is special and essentially semistable
if for every geometric point s̄→ S this map induces a bijection between the
connected components of the singular locus of Xs̄ and the set of irreducible
elements in MS,s̄.

Remark 2.1. — Let f : X → S be a proper flat morphism of schemes of
finite type over an excellent Dedekind ring such that for every geometric
point s̄→ S and point of the fiber x ∈ Xs̄, there exists an étale neighbor-
hood U of x in Xs̄ and an étale morphism

U → Spec(k(s̄)[X1, . . . , Xn]/(X1 · · ·Xl)),

for some positive integers n and l, sending the point x to the point defined
by X1 = · · · = Xn = 0. In this case it follows from [20, 2.7] that if there
exists data (MS ,MX , f

b) consisting of a log structure MS on S, a log
structure MX on X, and a morphism of log structures f b : f∗MS → MX

such that the induced morphism of log schemes

(f, f b) : (X,MX)→ (S,MS)

is special and essentially semistable, then the triple (MS ,MX , f
b) is unique

up to unique isomorphism. Moreover, if there exists data (NS , NX , gb) con-
sisting of a log structureNS on S, a log structureNX onX, and a morphism
gb : f∗NS → NX such that

(f, gb) : (X,NX)→ (S,NS)

TOME 62 (2012), FASCICULE 4



1490 Martin OLSSON

is log smooth, integral, and vertical, then there exists a triple (MS ,MX , f
b)

extending f to a special and essentially semistable morphism of log schemes
(again by [20, 2.7]).

This can for example be applied as follows. Suppose k is an algebraically
closed field, and S/k is a smooth k-scheme. Let f : X → S be a morphism
of schemes as above. Suppose there exists a divisor with normal crossings
D ⊂ S such that the following hold: if s̄ → D is a geometric point and
t1, . . . , tr ∈ OS,s̄ are coordinates for the branches of D at s̄, then for every
geometric point x̄→ Xs̄ there exists an étale neighborhood U of x̄ in X×S
Spec(OS,s̄) and an index i ∈ [1, r] such that U admits an étale morphism
to

Spec(OS,s̄[X1, . . . , Xn]/(X1 · · ·Xl − ti)),

for some integers n and l, mapping x̄ to the point defined by X1 = · · · =
Xn = 0. Let NS (resp. NX) be the log structure on S (resp. X) defined by
the divisor D (resp. f−1(D)). Then the resulting morphism of log schemes

(X,NX)→ (S,NS)

is log smooth, integral, and vertical. By [20, 2.7], we can therefore also find
a triple (MS ,MX , f

b) such that

(X,MX)→ (S,MS)

is special and essentially semistable, and the results of this paper apply.

2.3. Let f : (X,MX)→ (S,MS) be a log smooth proper special and essen-
tially semistable morphism. For a simple morphism j : MS ↪→ NS of fine
log structures on S we define an algebraic stack Xj over X as follows. For
any X-scheme g : Y → X define Xj(Y ) to be the groupoid of commutative
diagrams of fine log structures on Y

g∗MX
a // NY

g∗f∗MS
j //

OO

g∗f∗NS ,

b

OO

where a is a simple morphism and b is logarithmically semistable.

2.4. In local coordinates the stack Xj can be described as follows. First of
all, as discussed in [20, 2.2] and [17, 3.4] we can fppf locally on S and X

ANNALES DE L’INSTITUT FOURIER
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find a diagram of charts

MX

Nr+s

β
;;xxxxxxxx

MS

fb

OO

j // NS

Nr

h

OO

γ
<<xxxxxxxxx a // Nr,

γ′
=={{{{{{{{

where h is given by the formula (2.1) and a denotes the map (2.2) for
a = (a1, . . . , ar) (note that in [17, 3.4] it is assumed that the integers ai are
invertible in S, but the same proof applies in our context if we allow fppf
localization and not just étale localization). Let

χa : Nr+s → Nr+s

denote the map given by

ei 7→ aiei, i < r

and
ei 7→ arei, i > r.

We then have a commutative diagram

(2.3) Nr+s
χa // Nr+s

Nr
h

OO

a // Nr.

h

OO

Let ∆ denote the kernel of the map of group schemes
s∏
i=0

µar → µar (ζ0, . . . , ζs) 7→ ζ0 · · · ζs.

The commutative square (2.3) defines a morphism

δ : Z[Nr]⊗a,Z[Nr],h Z[Nr+s]→ Z[Nr+s].

The group scheme ∆ acts on Spec(Z[Nr+s]) over

Spec(Z[Nr]⊗a,Z[Nr],h Z[Nr+s]).

If we write Z[z1, . . . , zr+s] for Z[Nr+s] then (ζ0, . . . , ζs) ∈ ∆ acts by

zi 7→ zi (i < r), zi 7→ ζi−rzi (i > r).
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Proposition 2.2. — The stack Xj is isomorphic to the fiber product
of the diagram

(2.4) [Spec(Z[Nr+s])/∆]

��
X // Spec(Z[Nr]⊗a,Z[Nr],h Z[Nr+s]).

Proof. — Let S denote the fiber product of the diagram (2.4). The stack
S can be described using the theory of toric stacks in [19] as follows. Let Q
denote the pushout in the category of integral monoids of the diagram

Nr h //

a

��

Nr+s

Nr,

and let P denote Nr+s. Let
l : Q→ P

be the morphism defined by the commutative square (2.3). Let
Spec(Z[P ]) (resp. Spec(Z[Q])) denote the monoid scheme over S defined by
P (resp. Q), and let SP (resp. SQ) denote the stack quotient of Spec(Z[P ])
(resp. Spec(Z[Q])) by the action of the group scheme Spec(Z[P gp])
(resp. Spec(Z[Qgp])) (see [19, p. 777] for the notation). The map l induces
a morphism of stacks

S (l) : SP → SQ.

The group scheme ∆ is the kernel of the morphism of group schemes

Spec(Z[P gp])→ Spec(Z[Qgp])

induced by l, so from the projection maps

Spec(Z[Nr]⊗a,Z[Nr],hZ[Nr+s])→ SQ, Spec(Z[Nr+s]) = Spec(Z[P ])→ SP

we obtain a commutative diagram

[Spec(Z[Nr+s])/∆]

��

// SP

��
Spec(Z[Nr]⊗a,Z[Nr],h Z[Nr+s]) // SQ,

which is cartesian by the following lemma.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.3. — Let S be a scheme, and let

1 // K
i // G

π // H // 1
be an exact sequence of flat finitely presented S-group schemes. Let X be a
locally finitely presented S-scheme with G-action, let Y be a locally finitely
presented S-scheme with H-action, and let f : X → Y be an S-morphism
such that the diagram

G×X action //

π×f
��

X

f

��
H × Y action // Y

commutes. Then the induced commutative square of stacks

[X/K] //

��

[X/G]

��
Y // [Y/H]

is cartesian.

Proof. — Let R denote the fiber product

R := Y ×[Y/H] [X/G],

and let γ : [X/K] → R be the induced map. The stack R associates
to any Y -scheme T the groupoid of triples (P, ε, δ), where P → T is G-
torsor, δ : P → X is a G-equivariant Y -morphism, and ε : T → π∗P

is a trivialization of the H-torsor π∗P obtained from P by pushout. On
the other hand, [X/K] is the stack which to a Y -scheme T associates the
groupoid of pairs (Z, λ), where Z → T is a K-torsor and λ : Z → X is a
K-equivariant Y -morphism. The map

γT : [X/K](T )→ R(T )

sends such a pair (Z, λ) to the triple (i∗Z, εcan, i∗λ), where i∗Z is the
pushout to a G-torsor of Z, i∗λ : i∗Z → X is the G-equivariant map
induced by λ, and εcan is the canonical trivialization of π∗i∗Z. On the
other hand, we also have a map

IT : R(T )→ [X/K](T )

sending (P, ε, δ) to the K-torsor Z of trivialization of P lifting the trivial-
ization δ together with the map to X obtained by restricting g. It follows
immediately from the construction that the maps γT and IT are inverse
equivalences which implies the lemma. �
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From this and [19, 5.20] we get that the stack S is isomorphic to the stack
which to any scheme g : Y → X associates the groupoid of commutative
diagrams of fine log structures

(2.5) g∗MX
a // NY

g∗f∗MS
j //

OO

g∗f∗NS ,

b

OO

together with a morphism τ : Nr+s → NY which locally on Y lifts to a
chart and such that the diagram

(2.6) Nr+s
β

%%KKKKKKKKKK

χa // Nr+s
τ

%%KKKKKKKKKK

g−1MX
a //

h

OO

NY

Nr

h

OO

γ

%%KKKKKKKKKK
a // Nr

γ′

%%KKKKKKKKKK

(fg)−1MS

j //

fb

OO

(fg)−1NS

b

OO

commutes. Note that the commutativity of (2.6) implies that the square
(2.5) defines an object of Xj(Y ). We therefore obtain a morphism of stacks

S→Xj

over X. Furthermore, to prove that this is an equivalence it suffices to show
that for any square (2.5) over g : Y → X defining an object of Xj(Y ) there
is a unique morphism τ : Nr+s → NY which locally lifts to a chart and such
that the diagram (2.6) commutes. By the definition of Xj for any geometric
point ȳ → Y there exists such a map τ : Nr+s → NY,ȳ, and by spreading
out we obtain the map τ in some étale neighborhood of ȳ. On the other
hand, the map τ is clearly unique as the cokernel of χa : Nr+s → Nr+s is
torsion and Ngp

Y is torsion free. Therefore these locally defined maps τ glue
to a unique global map. This completes the proof of Proposition 2.2. �

Corollary 2.4. — The stack Xj is tame.

Proof. — Indeed this can be verified fppf-locally on X, where it follows
from 2.2 which shows that Xj is the quotient of a scheme by a finite flat
tame group scheme. �
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Example 2.5. — Let S = Spec(k) be the spectrum of an algebraically
closed field, and let X/k be a proper k-scheme. Assume that X has two
irreducible components Y1 and Y2, both of which are smooth over k, and
that the intersection Z := Y1∩Y2 is a smooth connected divisor in both Y1
and Y2. Assume further that in an étale neighborhood of any point of the
singular locus of X there exists a smooth morphism

X → Spec(k[x1, x2]/(x1x2)).

Fix an integer n.
Let i : Is ⊂ OYs (s = 1, 2) be the ideal defining Z, so Is is an invertible

sheaf. We can then consider the n-th root stack of Ys with respect to Is (see
for example [8, §2]). This is the stack Ys → Ys which to any morphism t :
T → Ys associates the groupoid of triples (L, ρ, σ), where L is an invertible
sheaf on T , ρ : L→ OT is a morphism of OT -modules, and σ : L⊗n → t∗Is
is an isomorphism of invertible sheaves such that the diagram

L⊗n

ρ⊗n

""DD
DD

DD
DD

σ // t∗Is
t∗i

}}zz
zz

zz
zz

OT

commutes. We refer to the data (L, ρ, σ) as an n-th root of (Is → OYs).
Note that this definition makes sense for any line bundle I with a map
I → OYs (for example the zero map). In local coordinates, if f ∈ OYs is an
element defining Is, then we have

Ys = [Spec(OYs [w]/(wn − f))/µn],

where ζ ∈ µn acts by w 7→ ζw. In particular, the restriction

Gs := (Ys ×Yj Z)red ⊂ Ys

is a smooth divisor and the projection

Gs → Z

is a µn-gerbe over Z. The corresponding cohomology class (here cohomol-
ogy is taken with respect to the fppf topology)

cl(Gs) ∈ H2(Z, µn)

is the first Chern class of the line bundle Is|Z .
Combining [13, 2.3] and [15, 11.7 (2)], we get that the structure morphism

X → S extends to a log smooth special and essentially semistable morphism

(X,MX)→ (Spec(k),Mk)
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if and only if

(2.7) I1|Z ⊗ I2|Z ' OZ .

Assume this is the case for the rest of this example.
Note that Mk is non-canonically isomorphic to k∗ ⊕ N (since Z is con-

nected). Fix such an isomorphism and consider the map

k∗ ⊕ N→ k∗ ⊕ N, (u,m) 7→ (u, nm).

This map defines a simple extension j : Mk ↪→ Nk (thoughNk is isomorphic
to Mk we differentiate the two in the notation). We can then consider the
resulting stack

Xj → X.

This stack Xj glues together the two stacks Ys → Ys along an isomorphism
of stacks (not of µn-gerbes)

G1 → G2.

This isomorphism is linear with respect to the map ι : µn → µn sending u
to u−1, or equivalently is induced from a morphism of µn-gerbes

G1 ×ι,µn µn → G2.

Note that this is consistent with the assumption that we have the isomor-
phism (2.7) which implies that

cl(G1) = −cl(G2)
in H2(Z, µn).

3. A description of G-torsors.

It follows from [1, 2.17] that if G/S is a finite flat tame group scheme,
then étale locally on S the group G can be written as an extension

1→ ∆→ G→ H → 1,

where ∆ is a diagonalizable group scheme and H is an étale group scheme
of order invertible in S (a tame étale group scheme). In what follows, when
studying G-torsors it will often be convenient to reduce problems to the
diagonalizable and tame étale cases separately. To this end, we discuss in
this section some generalities about G-torsors for G an extension as above.

3.1. Let S be a scheme, and let G/S be a finite flat group scheme which
sits in an extension of group schemes

1→ ∆→ G→ H → 1,
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where ∆ is diagonalizable and H is constant. For a G-torsor P →X over
an algebraic S-stack X /S, let P denote the quotient P/∆, which is an
H-torsor over X .

Since ∆ is abelian the conjugation action of G on ∆ descends to an action

ρ : H → Aut(∆).

For h ∈ H the map ρh : ∆ → ∆ sends a local section δ ∈ ∆ to h̃δh̃−1,
where h̃ ∈ G is a (local) lifting of h.

3.2. For h ∈ H, let Qh denote the sheaf of liftings of h to G. Then Qh is a
(∆,∆)-bitorsor through the left and right translation actions.

For a ∆-torsor P →X over an algebraic stack X /S, let Qh ∧P denote

Qh ∧ P := Qh ×S P/ ∼,

where ∼ is the equivalence relation

(q, p) ∼ (qδ−1, δp), q ∈ Qh, p ∈ P, δ ∈ ∆

The space Qh ∧ P is a ∆-torsor over X with δ ∈ ∆ acting by

δ ∗ (q, p) = (δq, p).

Note that there is a canonical isomorphism of torsors

Qh′ ∧Qh ' Qh′h,

for h, h′ ∈ H.

3.3. Fix an algebraic stack X /S. Define C to be the category whose objects
are collections of data

(P , P → P , {χh}h∈H),

as follows:

(1) P is an H-torsor over X .
(2) P is a ∆-torsor over P .
(3) For each h ∈ H

χh : Qh ∧ P → h∗P

is a morphism of ∆-torsors over P .
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(4) For any two elements h, h′ ∈ H the diagram

(3.1) Qh′ ∧ (Qh ∧ P )

'
��

χh // Qh′ ∧ h∗P

'
��

Qh′ ∧Qh ∧ P

'
��

h∗(Qh′ ∧ P )

χh′

��
Qh′h ∧ P

χh′h // (h′h)∗P

commutes.

3.4. There is a functor

F : (G-torsors over X )→ C

defined as follows.
Given a G-torsor P → X let F (P ) be the object of C given by the

∆-torsor P → P over P , and the maps

χh : Qh ∧ P → h∗P

given by the map
Qh × P → P

provided by the action of G on P . Then one verifies immediately that
(P , P → P , {χh}) is an object of C .

Proposition 3.1. — The functor F is an equivalence of categories.

Proof. — Given an object (P , P → P , {χh}) the ∆-torsor P → X in-
herits an action of G by noting that

G =
∐
h∈H

Qh

and therefore the maps
χh : Qh × P → P

define a map
G× P → P.

We leave to the reader the verification that this action makes P a G-torsor,
and that we obtain a quasi-inverse to F . �
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Proposition 3.2. — Let T be a regular scheme, and let T ◦ ⊂ T be an
open subset with codim(T\T ◦, T ) > 2. Let G/T be a finite flat tame group
scheme. Then the restriction functor

(3.2) (G-torsors over T )→ (G-torsors over T ◦)

is an equivalence of categories.

Proof. — In the case when G is an étale group scheme this follows from
[14, X.3.3].
In the case when G is diagonalizable the result can be seen as follows.

The scheme G is isomorphic to a finite product of group schemes of the
form µn so it suffices to consider the case when G = µn. In this case the
category of G-torsors is equivalent to the category of pairs (L, ι), where
L is a line bundle and ι is a trivialization of Ln. The result in this case
therefore follows from the fact that the restriction functor

(line bundles on T )→ (line bundles on T ◦)

is an equivalence of categories.
For the general case, we may work étale locally on T , and may therefore

assume that there exists a short exact sequence

1→ ∆→ G→ H → 1,

where ∆ is diagonalizable and H is étale.
Let C (resp. C ◦) be the category defined in paragraph 3.3 with S = T

(resp. S = T ◦). Then it suffices to show that the restriction functor

R : C → C ◦

is an equivalence. For the essential surjectivity, let

(P ◦, P ◦ → P
◦
, {χh}) ∈ C ◦

be an object. By the case of an étale group scheme, P ◦ extends uniquely
to an H-torsor P → T . Now by the case of a diagonalizable group scheme
applied to P ◦ ⊂ P the ∆-torsor P ◦ → P

◦ extends uniquely to a ∆-torsor
P → P , and furthermore the maps χh also extend uniquely. The resulting
collection of data

(P , P → P , {χh})
defines an object of C as the commutativity of (3.1) can be verified after
restricting to T ◦. This proves the essential surjectivity of R.

The full faithfulness is shown similarly. �

For later use, let us also record the following mild generalization of 3.2:

TOME 62 (2012), FASCICULE 4



1500 Martin OLSSON

Corollary 3.3. — Let X be a regular algebraic stack over a base
scheme S, and let X ◦ ⊂ X be an open substack with complement of
codimension > 2. Then for any tame group scheme G over S the restriction
functor

(G-torsors over X )→ (G-torsors over X ◦)
is an equivalence of categories.

Proof. — Let T → X be a smooth surjection, and let T ◦ ⊂ T be the
inverse image of X ◦. By descent theory the category of G-torsors over
X (resp. X ◦) is equivalent to the category of pairs (P, ι), where P is a
G-torsor over T (resp. T ◦) and

ι : pr∗1P → pr∗2P

is an isomorphism of G-torsors over T ×X T (resp. T ◦ ×X ◦ T ◦) such that
the usual cocycle condition on T ×X T ×X T (resp. T ◦ ×X ◦ T ◦ ×X ◦ T ◦)
holds. Therefore it suffices to show that for any i > 1 the restriction functor

(G-torsors over T (i))→ (G-torsors over T (i)◦)

is an equivalence of categories, where T (i) (resp. T (i)◦) denotes the i-fold
fiber product of T (resp. T ◦) with itself over X (resp. X ◦). This reduces
the proof to the case when X is an algebraic space. In this case, repeating
the above argument with an étale cover of X by a scheme we are then
further reduced to the case of a scheme, which is Proposition 3.2. �

4. Extending torsors over discrete valuation rings.

4.1. Let A be a strictly henselian discrete valuation ring over k with residue
field L and fraction field K. Fix a uniformizer π ∈ A.
Let G/A be a tame finite flat group scheme. Let ∆ be the connected

component of the identity so we have an exact sequence

1→ ∆→ G→ H → 1,

where H is tame and étale. Let Pη → Spec(K) be a G-torsor.
For a positive integer r, let Ar denote the finite A-algebra

A[t]/(tr − π).

Let Kr denote the field of fractions of Ar. Note that Ar is a strictly hen-
selian discrete valuation ring with uniformizer t, and that Kr ' Ar ⊗A K.
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Proposition 4.1. — There exists a unique integer e = e(Pη) such that
Pη|Ke extends to Ae, and such that if f is any other positive integer for
which Pη|Kf extends to Af then e|f .
Moreover, the integer e is independent of the choice of the uniformizer

π, and for any integer f divisible by e an extension of Pη|Kf to Spec(Af )
is unique up to unique isomorphism.

Proof. — Let us first make some elementary observations about µn-
torsors over a scheme S. Consider the short exact sequence of fppf-sheaves

0 // µn // Gm
u7→un // Gm // 0

which gives rise to a long exact sequence

0 // µn(S) // Γ(S,O∗S) u7→un // Γ(S,O∗S) // H1(S, µn) // Pic(S).

If Pic(S) = 0, which we assume for the rest of the proof (since we are
interested in the case S = Spec(Af )), then this sequence identifies the
isomorphism classes of µn-torsors on S with

Γ(S,O∗S)/Γ(S,O∗S)n.
If P → S is a µn-torsor, then the corresponding class

[P ] ∈ Γ(S,O∗S)/Γ(S,O∗S)n

can be described as follows. The µn-torsor P corresponds to a pair (L, ι),
where L is a line bundle on S and ι : L⊗n → OS is an isomorphism. Now
since Pic(S) is trivial, the line bundle L is trivial. Let f ∈ L(S) be a basis.
Then the image of f⊗n under ι is an element u ∈ Γ(S,O∗S) and we define
[P ] to be the class of u. Note that a different choice of basis f changes u
by an element of Γ(S,O∗S)n so the class [P ] is independent of this choice.
We apply this observation with S either the spectrum of A or K, or one

of the extensions Af or Kf . Let ν : K∗ → Z be the valuation, normalized so
that ν(π) = 1. From the snake lemma applied to the commutative diagram

0

��

0

��
µn(A) ' //

��

µn(K)

��
0 // A∗

·n
��

// K∗

·n
��

ν // Z

·n
��

// 0

0 // A∗ // K∗
ν // Z // 0
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we obtain an exact sequence

0 // A∗/(A∗)n // K∗/(K∗)n ν̄ // Z/(n) // 0.

If Pη → Spec(K) is a µn-torsor over K, then it follows that Pη extends to
a µn-torsor over A if and only if ν̄([Pη]) = 0.
These remarks enable us to prove the proposition in the case whenG = ∆

is a diagonalizable group scheme as follows. If the Cartier dual of ∆ is equal
to Z/(n1)× · · · × Z/(nr), then the torsor Pη corresponds to a collection of
pairs {(Li, ιi)}ri=1 where Li is a line bundle on Spec(K) and ιi : L⊗nii → K

is an isomorphism. Fix trivializations si ∈ Li and let ui ∈ K∗ be the image
of s⊗nii under ιi. Then it follows from the preceding discussion that Pη|Kf
extends to Af if and only if

ν(ui) · f ≡ 0 (mod ni)

for all i. In this case we therefore take e to be the least common multiple
of the integers ni/gcd(ni, ν(ui)).
Note also that it is immediate that the functor

(∆-torsors over Spec(A))→ (∆-torsors over Spec(K))

is fully faithful.
Next consider the case when G = H is a tame étale group scheme. Fix

an algebraic closure K ⊂ K and let π1(K)′ be the prime-to-p fundamental
group of K with respect to this base point, where p is the characteristic of
the residue field L. Then since L is separably closed we have a canonical
isomorphism π1(K)′ ' Ẑ(1)′, where Ẑ(1)′ denotes

Ẑ(1)′ := lim←−
n,p-n

µn(K).

The torsor Pη is then defined by an H-conjugacy class of homomorphisms

ρPη : Ẑ(1)′ → H,

and Pη extends to Spec(A) if and only if ρPη is trivial.
For any integer f , the restriction of Pη to Kf corresponds to the conju-

gacy class of homomorphisms defined by

π1(Kf )′ ' Ẑ(1)′
·f // Ẑ(1)′

ρPη // H.

It follows that in the case when G is tame and étale we can take e in the
proposition to be the order of the image of ρPη (which depends only on the
conjugacy class of ρPη ).

For the general case we combine the previous two cases as follows. Let
P η be the H-torsor Pη/∆ over Spec(K). Let ē denote e(P η), so we have
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an extension P → Spec(Aē). Since the residue field of Aē is separably
closed the torsor P is trivial, and therefore the underlying scheme of P is
non-canonically isomorphic to∐

h∈H

Spec(Aē).

We can therefore apply the diagonalizable case to the ∆-torsor Pη → P η
for each connected component of P . Let e′ be the least common multiple of
these integers and let e = e′ · ē (note that e does not depend on the choice
of π). Then by construction we obtain a ∆-torsor P → P |Ae restricting to
Pη|Ke . Moreover, by the uniqueness of the extension in the diagonalizable
case we obtain maps

χh : Qh ∧ P → h∗P

of ∆-torsors over PAe as in paragraph 3.3, inducing the given maps over
Ke. These maps give P the structure of a G-torsor extending Pη|Ke .

By a similar reasoning one obtains the uniqueness of the extension of Pη
and the remaining statements in the proposition. �

Remark 4.2. — Note that it follows from the proof that the integer e
in Proposition 4.1 divides the order of G.

Corollary 4.3. — Let V be a discrete valuation ring, and let Y/V be
a quasi-compact smooth V -scheme. Let G/V be a tame finite flat group
scheme, and assume Pη → Yη is a G-torsor over the generic fiber Yη of Y .
Then after making a finite flat base change V → V ′ there exists a unique
extension P → Y of Pη to a G-torsor over Y .

Proof. — Let π ∈ V be a uniformizer. For each geometric point η̄ → Y

mapping to a generic point of the closed fiber, the ring OY,η̄ is a discrete
valuation ring with uniformizer the image of π. Therefore by 4.1 after mak-
ing a finite ramified base change V → V ′ we may assume that Pη extends
to Spec(OY,η̄) for each geometric generic point of the closed fiber. By a
standard limit argument, it follows that Pη extends to an étale neighbor-
hood of each geometric generic point of the closed fiber. By the unique-
ness statement in Proposition 4.1 these extensions are unique up to unique
isomorphism, and therefore we get by descent an open subset U ⊂ Y con-
taining the generic fiber Yη and each generic point of the closed fiber, such
that Pη extends to U . By Proposition 3.2 it follows that Pη extends to all
of Y . �

4.2. With notation as in 4.1, let f be an integer divisible by e. Let Vf
denote the stack-theoretic quotient of Spec(Af ) by the action of µf for
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which ζ ∈ µf sends t to ζt. Then

Vf ×Spec(A) Spec(K) ' [Spec(Kf )/µf ] ' Spec(K),

and the resulting inclusion

Spec(K) ↪→ Vf

is a dense open immersion.
The stack Vf has the following modular description: For any A-scheme

g : T → Spec(A) the category Vf (T ) is equivalent to the category of triples
(M,γ, ι), where M is an invertible sheaf on T , γ : M → OT is a morphism
of line bundles, and ι : M⊗f → OT is an isomorphism of line bundles on T
such that the diagram

M⊗f
ι //

γ⊗f

""EE
EE

EE
EE

OT
π

}}{{
{{

{{
{{

OT

commutes.
In terms of this description, the inclusion Spec(K) ↪→ Vf corresponds

to the trivial line bundle L = K · b (where b denotes a basis element)
with the map γ sending b to 1 ∈ K and the isomorphism ι being given by
multiplication by π−1.

Proposition 4.4. — The torsor Pη → Spec(K) extends uniquely to a
G-torsor Pf → Vf .

Proof. — Let P → Spec(Af ) denote the extension of Pη|Kf provided by
Proposition 4.1. Let

ρ : Spec(Af )× µf → Spec(Af )

be the map giving the action. To give an extension of P to Vf is equivalent
to giving an isomorphism

γ : pr∗1P → ρ∗P

over Spec(Af )×µf satisfying the following cocycle condition (thereby giv-
ing descent data for P to Vf ). Let

m : µf × µf → µf
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be the map giving the group multiplication. Then the cocycle condition on
γ is that the diagram over Spec(Af )× µf × µf

(4.1) pr∗1P
' //

'
��

(1×m)∗pr∗1P
(1×m)∗γ// (1×m)∗ρ∗P

'
��

(pr1 × 1)∗pr∗1P
γ // (ρ× 1)∗pr∗1P

(ρ×1)∗γ// (ρ× 1)∗ρ∗P

commutes. From this it follows that if an extension exists then it is unique
up to unique isomorphism.
To construct the extension Pf , consider first the case when G = µn for

some integer n. In this case, the torsor Pη corresponds to the trivial line
bundle Lη = K · b with an isomorphism

ση : L⊗nη = K · b⊗n → K

sending b⊗n to some element g ∈ K∗. After possibly changing our choice
of basis b for Lη we may assume that g ∈ A. Write

g = uπr,

where u ∈ A∗ and r > 0. By definition of the integer e, the product fr is
divisible by n. Let Lf = Af · b′ denote the trivial line bundle on Spec(Af ),
and let

σ : L⊗nf → Af

be the isomorphism sending b′⊗n to u. This data defines a µn-torsor over
Spec(Af ). Moreover, the isomorphism

Lf ⊗Af Kf → Lη ⊗K Kf , b′ 7→ π
−fr/n
f · b

is compatible with the maps to Kf and therefore defines an isomorphism
of µn-torsors over Kf . The µf -action on Spec(Af ) lifts to a µf -action on
(Lf , σ) as follows. Let R be an A-algebra and let ζ ∈ µf (R) be an R-valued
point. Then the action of ζ on Af ⊗A R is given by the map

ζ∗ : Af ⊗A R→ Af ⊗A R, πf 7→ ζπf .

Let
ζ̃ : Lf ⊗Af (Af ⊗A R)→ Lf ⊗Af (Af ⊗A R)

be the ζ∗-linear map given by

b′ 7→ ζ−fr/n · b′.

Then this defines a µf -action on the pair (Lf , σ), so the µn-torsor corre-
sponding to this pair descends to a µn-torsor Pf over Vf . Furthermore,
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note that the isomorphism between (Lf , σ)|Kf and (Lη, ση)|Kf is compat-
ible with the µf -actions. Therefore Pf gives the desired extension of Pη

to Vf . This completes the case when G = µn.
From this we also obtain the extension in the case when G is diagonal-

izable as in the proof of Proposition 4.1.
In the case when G = H is a tame étale group scheme, let P → Vf be

the normalization of Vf in Pη. By the construction of the integer e, the
stack P is an H-torsor over Vf as this can be verified after pulling back to
Spec(Af ). In fact the pullback of P to Spec(Af ) is trivial (as Af is strictly
henselian local) and therefore as a stack P is isomorphic to a finite disjoint
union of the form

P '
∐
j

[Spec(Af )/µfj ],

for some integers fj |f , where the action of µfj is through the natural in-
clusion µfj ⊂ µf .
For the general case one proceeds as in the proof of Proposition 4.1 using

the diagonalizable and tame étale cases by writing G as an extension

1→ ∆→ G→ H → 1,

where ∆ is diagonalizable and H is tame and étale, and considering the
quotient H-torsor Pη/∆. We leave the details to the reader. �

4.3. There is a more global version of Proposition 4.4 which we now describe.
Let X be a smooth scheme over a separably closed field, and let D ⊂ X

be a connected divisor with local normal crossings. Let X◦ denote the
complement X\D, and let P ◦ → X◦ be a G-torsor.
The divisor D defines a log structure MD on X. For a geometric point

x̄ → X the stalk MD,x̄ is equal to the free monoid on generators the
branches of D at x̄. Let XD,r be the stack over X which to any X-scheme
f : T → X associates the groupoid XD,r(T ) of morphisms of log structures
f∗MD →MT on T such that for every geometric point t̄→ T there exists
a commutative diagram

MD,t̄
//

'
��

MT,t̄

'
��

Nq
×r // Nq

for some integer q.
Locally the stack XD,r can be described as follows. Suppose given ele-

ments f1, . . . , fq ∈ OX such that D is defined by f1 · · · fq and the zero locus
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of each fi is a smooth divisor in X. Then XD,r is the quotient of

SpecX(OX [t1, . . . , tq]/(tr1 − f1, . . . , t
r
q − fq))

by the action of µqr given by

(ζ1, . . . , ζq) ∗ ti = ζi · ti.

Note that this local description implies that XD,r is flat over X.
If η̄ → D is a geometric generic point and A := OX,η̄ (which is a discrete

valuation ring with separably closed residue field) then we have

Vr 'XD,r ×X Spec(A),

where Vr is defined as in paragraph 4.2. Let eη̄ denote the least integer
such that the G-torsor

Spec(A)×X P ◦ → Spec(A)×X X◦

extends to Veη̄ .

Proposition 4.5. — The G-torsor P ◦ → X◦ extends to XD,r if and
only if eη̄ divides r for all geometric generic points η̄ → D. In this case the
extension is unique up to unique isomorphism.

Proof. — Let η̄ → D be a geometric generic point, and set A := OX,η̄.
If P ◦ extends to XD,r then P ◦ ×X Spec(A) also extends to

XD,r ×X Spec(A) ' Vr,

and therefore by Proposition 4.4 we must have eη̄|r.
Conversely suppose eη̄|r for all η̄. Then P ◦ extends to XD,r×X Spec(A),

and by a standard limit argument there exists an étale neighborhood U →
X of the generic points of D such that P ◦ extends to XD,r ×X U . By the
uniqueness if V ⊂ X denotes the union of X◦ and the image of U then
P ◦ extends to V ×X XD,r. By Corollary 3.3 it follows that P ◦ extends
uniquely to all of XD,r. �

5. More extension results.

In this section we gather together some more local results about extend-
ing G-torsors. These results will be used in section 11 to verify the valuative
criterion for properness for the stacks GKX/S .

Throughout this section V denotes a discrete valuation ring with residue
characteristic p (possibly equal to 0).
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Proposition 5.1. — Let n > 2 be an integer, and let X denote the
spectrum of the strict henselization of

V [x1, . . . , xn]/(x1 · · ·xs), (s 6 n)

at the point {x1 = · · ·xn = 0}. Let Xsing ⊂ X denote the singular locus
of X, and let X◦ ⊂ X denote the complement of the intersection of Xsing
with the closed fiber. Let G/V be a tame finite flat group scheme. Then
the restriction functor

(5.1) (G-torsors on X)→ (G-torsors on X◦)

is an equivalence of categories.

Remark 5.2. — Note that since X is strictly henselian local, if G is
étale over V then any G-torsor on X is trivial. Since both X and X◦

are connected, proposition 5.1 is therefore equivalent in this case to the
statement that any G-torsor on X◦ is trivial.

The proof of Proposition 5.1 will be in several steps (5.1)–(5.6).

5.1. Let R denote the coordinate ring of X, and let m ⊂ R denote the
maximal ideal. We begin the proof with some observations about the ring
R. For a subset I ⊂ {1, . . . , s}, let RI denote the quotient of R by the ideal
generated by xi (i ∈ I). More generally, for an R-algebra A, let AI denote
A⊗R RI . Let C ·A denote the complex

0→ A→
∏

I,|I|=1

AI →
∏

I,|I|=2

AI → · · · ,

where for I ⊂ {1, . . . , s} we write |I| for the cardinality of I. The differ-
entials in C ·A are obtained by taking alternating sums of the restriction
maps. If A = R we write simply C · for C ·R, and if A = R/mt+1 we write
C ·t for C ·R/mt+1 . Finally we write mtC ·A for the image of the natural map
of complexes

mt ⊗R C ·A → C ·A.

Note that m0C ·A = C ·A. As above we write simply mtC · for mtC ·R.

Lemma 5.3. — For every t > 0, the complex mtC · is acyclic.

Proof. — Let S = V [x1, . . . , xn]/(x1 · · ·xs), and for I ⊂ {1, . . . , s} let
SI denote the quotient of S by the ideal generated by xi (i ∈ I). Let K ·
denote the complex

0→ S →
∏

I,|I|=1

SI →
∏

I,|I|=2

SI → · · · ,
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defined analogously to C ·. Also let J ⊂ S be the ideal generated by
(x1, . . . , xn), and let J tK · denote the image of the natural map of com-
plexes

J t ⊗K · → K ·.

Then J tK · defines a complex of coherent sheaves on Spec(S), whose stalk
(in the étale topology) at the point defined by x1 = x2 = · · · = xn = 0 is
the complex mtC ·. It therefore suffices to show that the complex J tK · is
acyclic.
For this note that there is a natural grading on J tK · obtained by looking

at monomials
xa1

1 · · ·xann ,
∑

ai > t.

This grading breaks up J tK · into the direct sum of complexes of the
following form. Let (a1, . . . , an) ∈ Nn be such that

∑
ai > t, and let

Σ = {i ∈ {1, . . . , s}|ai 6= 0}. Associated to this data is the complex

0→ V →
∏

|I|=1,I∩Σ=∅

V →
∏

|I|=2,I∩Σ=∅

V → · · · ,

where again the transition maps are given by restriction. Since this complex
is acyclic by remark 5.4 below, and J tK · is isomorphic to a direct sum of
such complexes with Σ 6= {1, . . . , s}, it follows that J tK · is also acyclic. �

Remark 5.4. — Note that if J is a nonempty finite set and H an abelian
group, then the complex

0→ H →
∏

I⊂J,|I|=1

H →
∏

I⊂J,|I|=2

H → · · ·

is acyclic. Indeed, if we delete the first H, the resulting complex computes
the cellular homology of the |J |-simplex with coefficients in H, and in
particular is quasi-isomorphic to H.

For later use we also record the following immediate corollary of 5.3.

Corollary 5.5. — For every t > 0 the complex

κt := mtC ·/mt+1C ·

is acyclic.

5.2. We will also need a multiplicative version of the above results. For
an R-algebra A we can also consider the following complex, which will be
denoted D·A,

A∗ →
∏

I,|I|=1

A∗I →
∏

I,|I|=2

A∗I → · · · ,
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where as before the transition maps are obtained from the natural restric-
tion maps.
Fix now a flat R-algebra A which is equal to the strict henselization of

a finite type V -algebra at some point, and let At denote A/mt+1A.

Lemma 5.6. — For any t > 0 the complex D·At is acyclic.

Proof. — Let J ⊂ {1, . . . , s} denote the subset of indices i for which xi
maps to the maximal ideal of A. Then the complex D·A is given by

A∗ →
∏

I⊂J,|I|=1

A∗I →
∏

I⊂J,|I|=2

A∗I → · · · ,

and similarly for D·At .
We prove the lemma by induction on t. For t = 0, it suffices to apply

remark 5.4 with H = A∗0.
For general t, note that there is a natural exact sequence of complexes

(using the flatness of A over R)

0→ κt ⊗R A→ D·At → D·At−1
→ 0,

and by corollary 5.5 the complex κt is acyclic. �

Lemma 5.7. — Let {M ·t}t>0 be a projective system of complexes of
abelian groups such that for every t and i the mapM i

t →M i
t−1 is surjective.

Let M · denote lim←−M
·
t . If each M ·t is acyclic, then M · is also acyclic.

Proof. — This is a well-known fact; see for example [12, 0III 13.2.3]. �

Corollary 5.8. — Let Â denote the m-adic completion of A. Then the
complex D·

Â
is acyclic.

Proof. — This follows from Lemmas 5.6 and 5.7, combined with the fact
that D·

Â
= lim←−tD

·
At
. �

Lemma 5.9. — The complex D·A is acyclic.

Proof. — Let x ∈ Di
A be a closed element. Consider the functor

Fx : (A-algebras)→ Set,

which to any A-algebra B associates the set

{y ∈ Di−1
B |dy = x},

where we abusively write also x for its image in Di
B . This functor is clearly

locally of finite presentation in the sense of [4, 1.5], and Fx(Â) is non-empty
by Corollary 5.8. By the Artin approximation theorem [4, 1.12] it follows
that Fx(A) is also nonempty. �
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5.3. For I ⊂ {1, . . . , s}, let XI ⊂ X denote Spec(RI) ⊂ Spec(R). We write
simply OXI and O∗XI for the pushforwards of these sheaves to X. The above
results can be sheafified as follows. Again using the natural restriction maps
we get a complex

(5.2) 1→ O∗X →
∏

I,|I|=1

O∗XI →
∏

I,|I|=2

O∗XI → · · · .

Lemma 5.10. — The complex (5.2) is acyclic.

Proof. — Note that if x̄→ X is a geometric point, then the stalk of (5.2)
at x̄ is the complex D·OX,x̄ . �

5.4. Turning now to the proof of Proposition 5.1, consider first the case
when G is a tame étale group scheme. In this case we prove the proposition
by showing that any finite étale covering of X◦ is trivial as in remark 5.2.
For this, let Xi (i = 1, . . . , s) denote the irreducible component defined

by xi = 0, and for indices i1, . . . , it define

(5.3) Xi1···it := Xi1 ∩Xi2 ∩ · · · ∩Xit .

By proper descent theory for étale morphisms, the category Fet(X) of fi-
nite étale X-schemes is equivalent to the category of collections {(Pi →
Xi, σij)}, where Pi → Xi is a finite étale morphism and for every i, j

(5.4) σij : Pi|Xij → Pj |Xij
is an isomorphism such that the diagrams over the triple intersections

(5.5) Pi|Xijk
σij //

σik

%%
Pj |Xijk

σjk // Pk|Xijk
commute.
Similarly if we set Xo

i := Xi∩Xo etc., then giving a finite étale morphism
P o → Xo is equivalent to giving a collection of data {(P oi → Xo

i ), σoij},
where P oi → Xo

i is a finite étale morphism and

(5.6) σoij : P oi |Xoij → P oj |Xoij
is an isomorphism such that the analogue of (5.5) commutes.
Now given such a collection of data {(P oi → Xo

i ), σoij}, let Pi → Xi be the
normalization of Xi in P oi . Since Xi is regular and of dimension > 2 (by our
assumption on n), the morphism Pi → Xi is étale by purity. Furthermore,
since Xij is normal the restriction functor

(5.7) Fet(Xij)→ Fet(Xo
ij)
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is fully faithful. It follows that the σoij extend uniquely to isomorphisms

(5.8) σij : Pi|Xij → Pj |Xij .

Furthermore, since the intersections Xijk are also normal the diagram (5.5)
commutes as its restriction to Xo

ijk commutes.
We therefore obtain a collection of data {(Pi→Xi), σij} inducing {(P oi →

Xo
i ), σoij}.

5.5. For the case of general G, note first that by making a finite étale
extension of V (which is permitted by descent theory), we may assume
that G fits into an exact sequence

1→ ∆→ G→ H → 1,

where ∆ is diagonalizable and H is étale and tame.
Let us first show that the restriction functor (5.1) is fully faithful. Let

P1 and P2 be two G-torsors over X, and set

P i := Pi/∆,

which is an H-torsor over X. Assume given an isomorphism of G-torsors

ρ◦ : P ◦1 → P ◦2

over X◦. By the étale case, the induced isomorphism

ρ̄◦ : P ◦1 → P
◦
2

extends uniquely to an isomorphism of H-torsors over X. Since the P i
are trivial H-torsors (being étale torsors over the spectrum of a strictly
henselian local ring), the underlying scheme of P i is isomorphic to a disjoint
union of copies of X. Now to find a dotted arrow

P1
ρ //___

��

P2

��
P 1

ρ̄ // P 2

filling in the diagram and restricting to ρ◦, it suffices to find an extension
of ρ◦ which is compatible with the ∆-action (since the compatibility with
the G-action can be verified after restriction to X◦). This reduces the proof
of full faithfulness to the case when G = ∆. Since ∆ is equal to a finite
product of copies of µn for various n, one further reduces to the case of
∆ = µn for some integer n. In this case the category of µn-torsors (over
either X or X◦) is equivalent to the category of pairs (L, ι), where L is a
line bundle and ι is a trivialization of Ln.
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Let Pi correspond to (Li, ιi) (i = 1, 2). The isomorphism ρ◦ corresponds
to an isomorphism λ : OX◦ → L2⊗L−1

1 such that the induced isomorphism

λ⊗n : OX◦ → L⊗n2 ⊗ L⊗−n1

is equal to ι2 ⊗ ι−1
1 . The full faithfulness therefore follows from part (i) of

the following lemma.

Lemma 5.11. — (i) The restriction map

Γ(X,O∗X)→ Γ(X◦,O∗X◦)

is an isomorphism.
(ii) The restriction map

H1(X,µn)→ H1(X◦, µn)

is an isomorphism (here cohomology is taken with respect to the fppf-
topology).

Proof. — Statement (i) follows immediately from the exactness of (5.2)
(by Lemma 5.10), and the fact that the XI (I 6= ∅) are normal, and of
dimension > 2 for |I| = 1.
For (ii), consider the short exact sequence of sheaves on X

0 // µn // Gm
u7→un // Gm // 0,

which upon taking cohomology gives a commutative diagram with exact
rows

Γ(X,O∗X) ×n //

'
��

Γ(X,O∗X)

'
��

// H1(X,µn)

��

// Pic(X)

��
Γ(X◦,O∗X◦)

×n // Γ(X◦,O∗X◦) // H1(X◦, µn) // Pic(X◦),

where the vertical maps are the restriction maps. The two left-most vertical
arrows are isomorphisms since X is normal and X −X◦ has codimension
> 2, and also Pic(X) = 0 since X is strictly henselian local. Therefore to
prove (ii) it suffices to show that the torsion subgroup

Pic(X◦)tors ⊂ Pic(X◦)

is zero.
For this let X◦I denote XI ∩X◦, and consider the resolution (5.2) of O∗X

restricted to X◦. The complex

K · :
∏

I,|I|=1

O∗X◦
I
→

∏
I,|I|=2

O∗X◦
I
→ · · ·

TOME 62 (2012), FASCICULE 4



1514 Martin OLSSON

is filtered by the subcomplexes σ>pK · with

(σ>pK ·)n =
{

0 if n < p

K n if n > p.

The hypercohomology spectral sequence of a filtered complex (see for ex-
ample [9, 1.4.5]) applied to K · with this filtration can then be written
as

Epq1 =
∏

I,|I|=p+1

Hq(X◦I ,O∗X◦
I
) =⇒ Hp+q(X◦,O∗X◦).

In particular we have an exact sequence

0→ H1(E·01 )→ Pic(X◦)→ Ker(
∏

I,|I|=1

Pic(X◦I )→
∏

I,|I|=2

Pic(X◦I )).

Now for |I| = 1 the complement of X◦I ⊂ XI has codimension > 2 so the
restriction map

0 = Pic(XI)→ Pic(X◦I )

is an isomorphism. Therefore

H1(E·01 )→ Pic(X◦)

is an isomorphism.
The complex E·01 is the complex of global sections∏
I,|I|=1

Γ(X◦,O∗X◦
I
)→

∏
I,|I|=2

Γ(X◦,O∗X◦
I
)→

∏
I,|I|=3

Γ(X◦,O∗X◦
I
)→ · · · .

We have a commutative diagram
(5.9)∏

I,|I|=1 Γ(X,O∗XI ) //

��

∏
I,|I|=2 Γ(X,O∗XI ) //

��

∏
I,|I|=3 Γ(X,O∗XI )

��

// · · ·

∏
I,|I|=1 Γ(X◦,O∗X◦

I
) //

∏
I,|I|=2 Γ(X◦,O∗X◦

I
) //

∏
I,|I|=3 Γ(X◦,O∗X◦

I
) // · · · ,

where the vertical maps are restriction maps, and the top complex has no
cohomology in degrees > 0 by Lemma 5.9. If s > 2 then for |I| 6 2 the
map

(5.10) Γ(XI ,O
∗
XI )→ Γ(X◦I ,O∗X◦

I
)

is an isomorphism (since XI−X◦I has codimension > 2) and for |I| = 3 the
map (5.10) is injective. Therefore when s > 2 the map of complexes (5.9)
induces an isomorphism on H1 whence H1(E·01 ) = 0.
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If s = 2, then the terms in (5.9) with |I| = 3 are zero, the first vertical
map is still an isomorphism, and the second vertical map is identified with
the map

(5.11) R∗ → (R[1/π])∗,

where R denotes the strict henselization of V [x3, . . . , xn] at the origin of
the closed fiber and π ∈ V is a uniformizer. If

η0 ∈ Spec(R)

denotes the generic point of the closed fiber, then the local ring at η0 is
a discrete valuation ring with uniformizer π, and the associated discrete
valuation induces an isomorphism between Z and the cokernel of (5.11).
We therefore find that if s = 2 then H1(E·01 ) ' Z, and in particular this
group is torsion free. �

5.6. Returning finally to the proof of essential surjectivity in Proposi-
tion 5.1, note that by a similar reduction as in the start of the proof it
suffices to consider the case when G = µn. In this case the result follows
from Lemma 5.11 (ii). �

6. Coverings of tame stacks and their coarse spaces.

6.1. Let S be a scheme and let X /S be a tame stack. Let π : X → X

be the coarse moduli space. For every geometric point x̄ : Spec(k) → X

let Gx̄ denote the automorphism group scheme of x̄ (a finite tame group
scheme over k). If L is a line bundle on X , then the pullback x̄∗L is a rank
1 representation of Gx̄.
Similarly, if P → X is a finite étale morphism of stacks, then the fiber

product Px̄ := x̄ ×X P is a finite disjoint union of copies of Spec(k) and
there is a natural action of Gx̄ on Px̄.

Proposition 6.1. — The pullback functor

π∗ : (line bundles on X)→ (line bundles on X )

induces an equivalence of categories between the category of line bundles on
X and the category of line bundles L on X such that for every geometric
point x̄ : Spec(k)→X the action of Gx̄ on x̄∗L is trivial.
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Proof. — It is clear that if M is a line bundle on X and L := π∗M ,
then for any geometric point x̄ of X the action of Gx̄ on x̄∗L is trivial.
Therefore π∗ induces a functor between the indicated categories.

To see that π∗ is fully faithful, assume M and M ′ are line bundles on X.
Giving a mapM →M ′ is equivalent to giving a global section ofM−1⊗M ′,
and similarly giving a map π∗M → π∗M ′ is equivalent to giving a global
section of

π∗M−1 ⊗OX π∗M ′ ' π∗(M−1 ⊗OX M
′).

To prove the full faithfulness it therefore suffices to show that the natural
map

M−1 ⊗M ′ → π∗π
∗(M−1 ⊗M ′)

is an isomorphism. This can be verified locally on X, so it further suffices
to consider the case whenM andM ′ are trivial. In this case it follows from
the fact that OX → π∗OX is an isomorphism (see for example [3, 2.2.1
(5)]).
For the essential surjectivity, let L be a line bundle on X such that for

every geometric point x̄ : Spec(k)→X the action of Gx̄ on x̄∗L is trivial.
We claim that in this case the sheaf π∗L is a line bundle on X and that
the adjunction map

π∗π∗L→ L

is an isomorphism.
This can be verified locally in the fppf topology on X. From this, a

standard limit argument, and [1, 3.2 (c)] we may assume that X = Spec(R)
for some strictly henselian local ring R and

X = [Spec(A)/G]

where A is a finite R-algebra and G is a tame group scheme acting on A.
In fact we can even base change to the completion of R along its maximal
ideal, so may further assume that R is complete local with maximal ideal
mR. Let N be the free A-module of rank 1 with action of G corresponding
to L, and let Nn denote N/mnRN . Since A is finite over R, N is a finitely
generated R module so

N = lim←−Nn,
and since G is linearly reductive we also have

NG = lim←−N
G
n .

It therefore suffices to show that for every n the R/mnR-module NG
n is free

of rank 1, and that the map

NG
n ⊗R/mnR (A/mnRA)→ Nn
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is an isomorphism. This reduces the proof to the case when R is artinian
local with separably closed residue field k. By [1, 3.7], the inclusion mor-
phism

Spec(k) ↪→ Spec(R)
lifts to a morphism

ξ : Spec(k)→X .

Let Gξ denote the stabilizer group scheme (which is linearly reductive since
X is tame), so we have a closed immersion

BGξ ↪→X .

As in [1, Proof of 3.6, Step 1], the trivial torsor

Spec(k)→ BGξ

lifts to a Gξ-torsor
Spec(Aξ)→X

which gives a presentation

X ' [Spec(Aξ)/Gξ].

Replacing A by Aξ and G by Gξ we may assume that A is artinian local
with residue field k, and that G acts trivially on the residue field. In this
case by assumption the action of G on N/mAN is trivial. Since G is linearly
reductive we can find an invariant section e ∈ NG which maps to a basis
for N/mAN . Since N is a free module over A of rank 1, we conclude that
the map

A→ N

defined by e is an isomorphism. Then π∗L corresponds to the R-module
AG · e = R · e which is of rank 1 and the map

A⊗R NG → N

is an isomorphism. �

Proposition 6.2. — Let Fet(X) (resp. Fet(X )) denote the category
of finite étale morphisms Y → X (resp. Y →X ).
The pullback functor

π∗ : Fet(X)→ Fet(X )

induces an equivalence of categories between Fet(X) and the category of
finite étale morphisms of stacks P → X such that for every geometric
point x̄ : Spec(k)→X the action of Gx̄ on Px̄ is trivial.
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Remark 6.3. — A priori, Fet(X ) is a 2-category. However, it is in fact
equivalent to a 1-category since a finite étale morphism is in particular
representable.

Proof. — For the full faithfulness let P1 and P2 be two finite étale X-
schemes. Let M or(P1, P2) be the sheaf of sets on the étale site of X given
by

(U → X) 7→ {U -morphisms P1,U → P2,U}.

Similarly define M or(π∗P1, π
∗P2) to be the sheaf on the étale site of X

(not X !) given by

(U → X) 7→ {XU -morphisms π∗P1|XU
→ π∗P2|XU

}.

There is a natural map of sheaves

M or(P1, P2)→M or(π∗P1, π
∗P2)

which we need to show is an isomorphism. For this we may work locally on
X, and hence may assume that both P1 and P2 are trivial in which case
the result is immediate.
For the essential surjectivity let P →X be a finite étale morphism such

that for every geometric point x̄ : Spec(k)→X the action of Gx̄ on Px̄ is
trivial.
By the full faithfulness already shown, to prove that P is in the essential

image of π∗ we may work fppf locally on X. By [1, 3.2 (c)] we may therefore
assume that

X = [Spec(A)/G]

and
X = Spec(AG),

as in the proof of Proposition 6.1, and by a standard limit argument we
may even assume that R = AG is strictly henselian local. In this case A is
also strictly henselian local and so the restriction of P to Spec(A) is trivial.
It follows that P |Spec(A) is isomorphic to

π0(P |Spec(A))× Spec(A)

and so to show that P is obtained by pullback from Spec(R) it suffices to
show that the action of G on π0(P |Spec(A)) is trivial. This can be verified
after base change to the closed point of Spec(A) in which case it holds by
assumption. �
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6.2. Let D/S be a tame finite flat group scheme. For a geometric point
x̄ : Spec(k) → X we write Dx̄ for the pullback of D along the composite
morphism

Spec(k) x̄ // X // S.

If P →X is a D-torsor over X then the pullback x̄∗P is a Dx̄-torsor over
Spec(k) which comes equipped with an action of Gx̄, compatible with the
action of Dx̄.

Proposition 6.4. — The pullback functor

π∗ : (D-torsors on X)→ (D-torsors on X )

induces an equivalence of categories between the category ofD-torsors onX
and the category of D-torsors P →X on X such that for every geometric
point x̄ : Spec(k)→X the action of Gx̄ on Px̄ is trivial.

Proof. — In the case when D is an étale group scheme the result follows
from Proposition 6.2.
If D is diagonalizable the proposition can be seen as follows. Let T be

the Cartier dual of D (a finite abelian group) and write

T = Z/(a1)× · · · × Z/(ar)

for some positive integers ai. Then the category of D-torsors on X is equiv-
alent to the category of collections {(Li, ιi)}ri=1, where Li is a line bundle
on X and

ιi : Laii → OX

is an isomorphism of line bundles. The category of D-torsors on X is
described similarly. In the case when D is diagonalizable Proposition 6.4
therefore follows from Proposition 6.1.
For the general case, we may work fpqc locally on S and therefore by [1,

2.16] may assume that D fits into an exact sequence

1→ ∆→ D → H → 1,

where H is tame and constant and ∆ is diagonalizable.
For the full faithfulness we proceed as in the proof of Proposition 6.2.

Let P1 and P2 be two D-torsors over X and define M or(P1, P2) (resp.
M or(π∗P1, π

∗P2)) to be the sheaf on the fppf site of X which to any
U → X associates the set of morphisms P1,U → P2,U of D-torsors over U
(resp. the set of morphisms π∗P1|XU

→ π∗P2|XU
of D-torsors over XU ).

We then need to show that the map of fppf sheaves

(6.1) M or(P1, P2)→M or(π∗P1, π
∗P2)
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is an isomorphism. This is an fppf-local assertion so it suffices to consider
the case when P1 and P2 are trivial. Fixing trivializations, the map on
global sections defined by the map (6.1) is identified with the natural map

HomS(X,D)→ HomS(X , D)

which is a bijection since X is the coarse moduli space of X .
For the essential surjectivity, let P → X be a D-torsor such that for

every geometric point x̄ : Spec(k) → X the action of Gx̄ on Px̄ is trivial.
We descend P to a D-torsor on X as follows. Let P denote the quotient
of P by the ∆-action, so that P is an H-torsor over X . Then by the case
when D is an étale group scheme there exists an H-torsor Q → X such
that Q×X X ' P . Observe that Q is the coarse moduli space of P by [3,
2.2.2 (1)].
Now P is a ∆-torsor over P so by the case of a diagonalizable group

scheme applied to the stack P we obtain a ∆-torsor Q → Q inducing P .
Furthermore, by the full faithfulness already shown, the maps of ∆-torsors

χh : Qh ∧ P → h∗P

over P defined as in paragraph 3.3 , descend to maps of ∆-torsors

Qh ∧Q→ h∗Q

giving Q the structure of a D-torsor, inducing the D-torsor structure on
P . �

6.3. There is also a relative version of Proposition 6.4.
Let f : X → Y be a morphism of tame stacks, and let

X
π // XY

// Y

be the relative moduli space (see for example [2, §3]).
For any geometric point x̄ → X we have a map of linearly reductive

finite flat group schemes over x̄

AutX (x̄)→ AutY (f ◦ x̄).

Let Kx̄ be the kernel of this homomorphism, so Kx̄ is also a linearly reduc-
tive group scheme over x̄ [1, 2.5].
Now let D be a linearly reductive finite flat group scheme over S and

let P → X be a D-torsor. Then as in paragraph 6.2 there is an induced
action of Kx̄ on Px̄ compatible with the Dx̄-action.

Proposition 6.5. — The functor

π∗ : (D-torsors on XY )→ (D-torsors on X )
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induces an equivalence between the category of D-torsors on XY and the
category of D-torsors P on X such that for every geometric point x̄→X

the action of Kx̄ on Px̄ is trivial.

Proof. — All the categories considered in the proposition are stacks over
Y with the fppf topology. It therefore suffices to consider the case when Y

is a scheme, in which case the result is Proposition 6.4. �

Proposition 6.6. — With notation as in paragraph 6.3, let P → X

be a D-torsor. Then there exists an open substack U ⊂ X such that a
geometric point x̄→X factors through U if and only if the action of Kx̄

on Px̄ is trivial.

Proof. — Let Y → Y be a smooth surjection with Y a scheme. Then
it clearly suffices to prove the proposition for X ×Y Y → Y . We may
therefore assume that Y = Y is a scheme. Let X → X be the coarse
moduli space. We may then further assume that Y = X.

Let I → X be the inertia stack of X , and let G denote the automor-
phism group scheme over X of P . Since P is a D-torsor the group scheme
G over X is a twisted form of D. There is a canonical homomorphism of
relative group schemes over X

ρ : I → G .

We need to show that there exists an open substack U ⊂X such that for
any geometric point x̄→X the homomorphism

ρx̄ : x̄∗I → x̄∗G

is trivial if and only if x̄ has image in U .
This follows from the following lemma. �

Lemma 6.7. — Let S be a noetherian scheme, let I/S be a finite (but
not necessarily flat) group scheme such that for every point s ∈ S the fiber
Is → Spec(k(s)) is linearly reductive, and let G/S be a linearly reductive
finite flat group scheme. Fix a homomorphism

ρ : I → G.

Then the set of points s ∈ S for which the homomorphism of group schemes
over k(s)

ρs : Is → Gs

is trivial is an open subset of S.
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Proof. — We show that the set of points s for which ρs is trivial is
constructible and stable under generization.
For the constructibility, note that since I is finite over S there exists a

stratification of S such that the restriction of I to each stratum is finite
and flat. It therefore suffices to consider the case when I is finite and flat
over S. In this case we claim that the set of points s ∈ S for which ρs is
trivial is an open and closed subset of S.
For this note that we can without loss of generality replace S by a fpqc

covering, so we may by [1, 2.16] assume that both I and G are well-split in
the sense of [1, 2.6]. Write

I = ∆ oH, G = Σ o Γ,

where ∆ and Σ are diagonalizable of order a power of a prime p, and H

and Γ are tame étale group schemes of order prime to p.
The homomorphism ρ is then induced by homomorphisms

ρ1 : ∆→ Σ, ρ2 : H → Γ.

The condition that ρ2 is trivial is clearly an open and closed condition, and
the condition that ρ1 is trivial is equivalent to the condition that the map
on Cartier duals

Hom(Σ,Gm)→ Hom(∆,Gm)

is trivial, which is also clearly an open and closed condition. This completes
the proof of the constructibility of the set of points s ∈ S for which ρs is
trivial.
For the stability under generization, we may without loss of generality

assume that S = Spec(V ) is the spectrum of a discrete valuation ring. Let
η ∈ S (resp. s ∈ S) be the generic (resp. closed) point of S. We need to
show that if ρs is trivial, then ρη is also trivial.
Let I ′ ⊂ I denote the scheme-theoretic closure of Iη in I. Then I ′ is

a finite flat group scheme over S and I ′ is linearly reductive as the closed
fiber of I ′ is a closed subgroup scheme of a linearly reductive group scheme.
Moreover the map I ′s → Gs is trivial since ρs is trivial, and hence by the
same reasoning used above it follows that ρη is also trivial. �

6.4. We conclude this section with a consequence of Proposition 6.5 which
we will use in what follows. With notation as in paragraph 4.1, let A be
a strictly henselian discrete valuation ring over k with residue field L and
fraction field K. Fix a uniformizer π ∈ A, and let G/A be a tame finite flat
group scheme.
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Let f be an integer and let Vf be as in paragraph 4.2, and let P → Vf
be a G-torsor, and let Pη → Spec(K) be the restriction of P to the generic
point of Vf . From this torsor and Proposition 4.1, we then get an integer e
dividing f .
On the other hand, there is a natural inclusion

Bµf = [Spec(L)/µf ] ↪→ Vf ,

induced by the closed point Spec(L) ↪→ Spec(Af ). Pulling P back along this
closed immersion we get a G-torsor over Bµf , or equivalently a conjugacy
class of homomorphisms

(6.2) µf → G.

Let δ denote the order of the kernel of this homomorphism (note that it
depends only on the conjugacy class of the map).

Lemma 6.8. — We have δ = f/e.

Proof. — We have a commutative diagram

Bµf
� � //

��

Vf

��
Bµe

� � // Ve,

and by Proposition 4.4 the torsor P is pulled back from Ve. Therefore the
kernel of the homomorphism

µf → µe, u 7→ uf/e

is in the kernel of the homomorphism (6.2), and f/e divides δ.
This implies that the number f/δ divides e and we get a diagram of

stacks
Vf → Ve → Vf/δ.

To prove the lemma it suffices to show that P descends to Vf/δ, for then
by the minimality of e we must have e = f/δ. This follows from Proposi-
tion 6.5, since the relative moduli space of

Vf → Vf/δ

is Vf/δ itself, and by construction for every geometric point x̄ → Vf the
kernel of the induced map of inertia groups acts trivially on Px̄ (there
are only two points two check, and this condition on the generic point is
trivial). �
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7. Twisted G-torsors and stability.

In this section we introduce the notion of a stable twisted G-torsor, and
define the stack GKX/S . The setup will be the following:

Setup 7.1. — Let (X,MX) → (S,MS) be a log smooth special and
essentially semistable morphism (in the sense of paragraph 2.2), with X →
S proper.

7.1. Let G/S be a tame finite flat group scheme. We define a twisted G-
torsor on X to be a pair (j : MS ↪→ NS , P ), where j is a simple extension
and P →Xj is a G-torsor on Xj , where Xj is defined as in paragraph 2.3.

7.2. A key notion in what follows will be the notion of a stable twisted
G-torsor which we now define. This notion will be defined pointwise, so let
us first discuss the definition over a separably closed field.
Assume that S = Spec(k) is the spectrum of a separably closed field and

that (j : MS ↪→ NS , P ) is a twisted G-torsor. Let Z ⊂ X be the singular
locus of X with the reduced structure. Étale locally X is isomorphic to

Spec(k[x1, . . . , xn]/(x1 · · ·xr))

for some r 6 n, in which case Z is the union of the closed subschemes
defined by the ideals (xi, xj) (1 6 i < j 6 r).
Let Z1, . . . , Zt be the connected components of Z. Recall (see the dis-

cussion in paragraph 2.2) that there is a canonical bijection between the
connected components Zi of Z and the irreducible elements in MS ' Nr.
This bijection is characterized by the condition that for any geometric point
z̄ → Zi the irreducible element ei ∈ MS is the unique irreducible element
whose image in MX,z̄ is not irreducible.

Notice also that the map Xj → X is an isomorphism over the comple-
ment of Z. This follows for example from the local description in Proposi-
tion 2.2.

For each irreducible element ei ∈MS there exists a unique integer ai such
that the image of ei in NS is equal to ai times an irreducible element of
NS . In this way we associate to each connected component Zi an integer ai.

On the other hand, consider a geometric generic point η̄ → Zi for
some connected component Zi of Z. Then Spec(OX,η̄) has exactly two
irreducible components, say W1 and W2. Moreover, the rings OWp,η̄ are
strictly henselian discrete valuation rings. Let πp ∈ OWp,η̄ (p = 1, 2) be
a uniformizer, and let Wp,η̄ denote Spec(OWp,η̄). Let W ◦p,η̄ ⊂ Wp,η̄ be the
generic point, and let

P ◦p →W ◦p,η̄
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be the restriction of P (since Xj → X is an isomorphism over W ◦p,η̄ this
makes sense). By Proposition 4.4 there exists a minimal integer eη̄,p such
that P ◦p extends to

Wp,eη̄,p := [Spec(OWp,η̄[t]/(teη̄,p − πp))/µeη̄,p ].

Lemma 7.2. — We have eη̄,1 = eη̄,2.

Proof. — Note that we have a natural isomorphism

(7.1) Wp,ai ' (Wp ×X Xj)red.

Indeed it follows from the local description of the stack Xj in Proposi-
tion 2.2, that we can find two elements x1, x2 ∈ OX,η̄ defining the irre-
ducible components W1 and W2 respectively, such that the stack

Spec(OX,η̄)×X Xj

is isomorphic to the stack

[Spec(OX,η̄[t1, t2]/(tai1 = x1, t
ai
2 = x2, t1t2))/µai ],

where ζ ∈ µai acts by t1 7→ ζ · t1 and t2 7→ ζ−1 · t2. From this we find that

(W1 ×X Xj)red ' [Spec(OW1 [t2]/tai2 = x2)/µai ]

and
(W2 ×X Xj)red ' [Spec(OW2 [t1]/tai1 = x1)/µai ].

This gives the isomorphism (7.1) using the choice of coordinates. To make
it canonical, note that if

λp : (Wp ×X Xj)red →Wp

is the projection, then

(λ−1
p (W1 ∩W2))red ⊂ (Wp ×X Xj)red

is an effective Cartier divisor whose ai-th power is λ−1
p (W1∩W2). From this

and the modular description of Wp,ai in paragraph 4.2, we get a morphism

(Wp ×X Xj)red → Wp,ai

which the calculation in coordinates shows is an isomorphism.
In particular the torsor P →Xj restricts to a torsor Pp → Wp,ai .
Therefore we must have eη̄,p|ai. Let fp denote the ratio ai/eη̄,p. We can

then describe the integer fp as follows. The pullback of Wp,ai to the closed
point of Wp is a nilpotent thickening of the classifying stack Bµai , so we
have an inclusion

Bµai ↪→ Wp,ai .
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Pulling back Pp along this inclusion we obtain a G-torsor over Bµai which
corresponds to a conjugacy class of homomorphisms ρp : µai → G. The
order of the kernel of this homomorphism depends only on the conjugacy
class and by 6.8 is equal to fp.
Now observe that the two composite inclusions for p = 1, 2

Bµai ↪→ Wp,ai ↪→Xj ×X Spec(OX,η̄)

differ by the automorphism of Bµai given by ζ 7→ ζ−1. It follows that
f1 = f2, and therefore also eη̄,1 = eη̄,2. �

Remark 7.3. — In what follows we write simply eη̄ for eη̄,1 = eη̄,2.

Definition 7.4. — We say that (j : MS ↪→ NS , P ) is stable if for each
connected component Zi of Z the integer ai is equal to the least common
multiple of the integers eη̄ as η varies over the generic points of Zi.

Remark 7.5. — Note that for each geometric point η̄ → Z mapping to
a generic point of some connected component Zi, the integer eη̄ divides
|G| by Remark 4.2. It follows that if (j : MS ↪→ NS , P ) is stable then the
integer ai is also a divisor of |G|.

Example 7.6. — Suppose X/k is a nodal curve. In this case the sub-
scheme Z ⊂ X is the set of nodes with the reduced structure, and Xj → X

is a twisted curve in the sense of [2, 2.1]. A torsor P →Xj is stable if and
only if the map

Xj → BG

corresponding to P is representable.

7.3. For a general base scheme S, a twisted G-torsor (j : MS ↪→ NS , P )
over S is stable if for every geometric point s̄ the pullback of this twisted
G-torsor to s̄ is stable.

7.4. Let GKX/S denote the stack over S which to any S-scheme T associates
the groupoid of stable twisted G-torsors (j : MS |T ↪→ NT , P → Xj) over
T . The main result, whose proof occupies the following sections 8 through
12, is then theorem 1.2.

Example 7.7. — The stacks GKX/S are connected with the Abramovich-
Vistoli theory of twisted stable maps to BG as follows.

Fix a genus g > 2 and a finite flat tame group scheme G/S. Let M g

denote the moduli stack of genus g stable curves over S. The universal
stable curve Y →M g extends naturally to a morphism of log stacks

(Y ,MY )→ (M g,MMg
),
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which is special and essentially semistable [22, §3]. Let GK →M g denote
the stack which to any morphism S →M g, corresponding to a stable curve
C/S, associates the groupoid GKC/S(S), where the extension of C → S to
a morphism of log schemes

(C,MC)→ (S,MS)

is obtained by pulling back the log structures MY and MMg
. So an object

of GK (S) consists of a stable curve C/S, a simple extension j : MS ↪→ NS ,
and a G-torsor P → Cj such that (using example 7.6) the corresponding
map

Cj → BG

is representable. By [2, A.5], the forgetful functor associating to

(C/S, j, P → Cj)

the twisted stable map Cj → BG defines an equivalence of stacks between
GK and the stack Kg(BG) of twisted stable maps to BG (notation as in
[2, 4.2]).

Example 7.8. — Continuing with the example 2.5, let G = µn. In this
special case we can describe the stack µnKX/k as follows. First of all for
any k-scheme S and simple extension j : Mk|S ↪→ NS , the sheaf NS is
canonically isomorphic to N (because N has no automorphisms), and the
map j defines an inclusion

NS ↪→ NS

of constant sheaves on S. The quotient is therefore a locally constant sheaf
of finite order on S, which defines a locally constant function dS on S. It
follows that we have a decomposition

µnKX/k '
∐
d|n

µnK
(d)
X/k,

where µnK
(d)
X/k ⊂ µnKX/k is the substack classifying (j, P ) for which the

cokernel of Mk|S ↪→ NS is isomorphic to Z/(d).
To describe the stack µnK

(d)
X/k we will use the relationship between line

bundles and log structures (see for example [16, complement 1] and in
a very general setting [7] for more details). Recall that if T is a scheme
then there is an equivalence of categories between the groupoid of pairs
(MT , β : Nr → MT ), where MT is a fine log structure on T and β is a
map which étale locally on T lifts to a chart for MT , and the groupoid of
collections of data

(7.2) {(βi : Li → OT )}ri=1,
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consisting of r line bundles Li on T and maps βi : Li → OT of invertible
sheaves. This equivalence is obtained by associating to (MT , β : Nr →MT )
the following:

(1) Li is the line bundle corresponding to the O∗T -torsor of liftings of β
applied to the i-th standard generator of Nr.

(2) The map βi : Li → OT is induced by the map α : MT → OT .

The groupoid of collections (7.2) is also equivalent to the groupoid of mor-
phisms

T → [Ar/Grm],
where the action of Grm on Ar is the standard action.

Fix an isomorphism k∗⊕N 'Mk. The stack classifying simple extensions
j : Mk ↪→ N for which the cokernel N/Mk is isomorphic to Z/(d) is, using
the above discussion, isomorphic to the stack

Sd := [Spec(k[T ]/T d)/µd],

where µd acts by multiplication by on T . This stack can also be viewed as
the fiber product of the diagram

(7.3) [A1/Gm]

md

��
Spec(k) // [A1/Gm],

where the map md is induced by the maps

A1 → A1, f 7→ fd,

Gm → Gm, u 7→ ud,

and the map Spec(k)→ [A1/Gm] is induced by the zero section Spec(k) ↪→
A1.
For any geometric point x̄ → X mapping to Z, the stalk MX,x̄ is iso-

morphic to N2 and the two generators are canonically in bijection with the
branches of X at x̄. Namely if f ∈ MX,x̄ is a lifting of one of the stan-
dard generators of N2, then the image of f defines an ideal whose closed
subscheme is one of

Ys ×X Spec(OX,x̄) (s = 1, 2).

Since our components are ordered we get a global map N2 → MX |Z over
Z such that the first (resp. second) standard generator of N2 corresponds
to Y1 (resp. Y2). This map extends to a map b : N2 → MX over X. At a
geometric point x̄→ Ys\Z, where the stalk MX,x̄ ' N the map sends es to
1 and the other generator to 0. Let Ls be the line bundle corresponding to
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the O∗X -torsor of liftings of b(es) to MX . The morphism MX → OX defines
a morphism of line bundles βs : Ls → OX . Taking the d-th roots of these
pairs (βs : Ls → OX) we get a stack

X → X.

This stack is the fiber product of the diagram

(7.4) [A2/G2
m]

md

��
X

(βs:Ls→OX) // [A2/G2
m],

where again md is obtained by raising to the d-th power. It can also be
viewed as the stack classifying simple extensions MX ↪→ NX such that for
any geometric point x̄ → X there exists an isomorphism NX,x̄ ' MX,x̄

which identifies the map

MX,x̄ → NX,x̄

with the map

·d : MX,x̄ →MX,x̄.

Notice that the map Mk|X →MX induces a trivialization

ε : L1 ⊗ L2 ' OX

and that

β1 ⊗ β2 : L1 ⊗ L2 → OX

is the zero map. Given d-th roots (Ms, ρs, σs)s=1,2 of (Ls → OX)s=1,2 over
an X-scheme T , defining a morphism T →X , the tensor productM1⊗M2
with the maps

ρ1 ⊗ ρ2 : M1 ⊗M2 → OT , σ1 ⊗ σ2 : (M1 ⊗M2)d ' L1|T ⊗ L2|T ' OT

defines a d-th root of 0 : OT → OT and therefore a map

T → Sd.

In this way we get a morphism of stacks

X → Sd.
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This morphism fits into a commutative diagram

X

##GG
GG

GG
GG

GG
//

��

[A2/G2
m]

δ

md

&&LLLLLLLLLL

X //

��

��

[A2/G2
m]

δ

��

Sd

##GG
GG

GG
GG

G
// [A1/Gm]

md

&&LLLLLLLLLL

Spec(k) // [A1/Gm].

Here the bottom (resp. top) face of the cube is as in (7.3) (resp. (7.4)) and
the map δ is the map induced by the multiplication maps

A2 → A1, G2
m → Gm.

For any morphism T → Sd corresponding to a simple extension j :
Mk|T ↪→ NT the fiber product of the diagram

X

��
T // Sd

is the stack Xj over XT associated to the simple extension j as in para-
graph 2.3.
Let PicX /Sd

denote the stack over Sd which to any T → Sd is the
groupoid of line bundles on X ×Sd

T . Raising to the n-th power defines a
morphism of stacks

·n : PicX /Sd
→PicX /Sd

.

Let PicX /Sd
[n] denote the fiber product of the diagram of stacks

Sd

[OX ]
��

PicX /Sd

·n // PicX /Sd
.

As in [2, 2.7], an application of Artin’s criteria for verifying that a stack is
algebraic shows that the stacks PicX /Sd

and PicX /Sd
[n] are algebraic

stacks. The stack PicX /Sd
is the stack which to any k-scheme T asso-

ciates the groupoid of triples (j,M , ι), where j : Mk|T ↪→ NT is a simple
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extension defining a morphism T → Sd, M is a line bundle on Xj , and
ι is a trivialization of M⊗n. Such a pair (M , ι) is in turn equivalent to a
µn-torsor, so we can identify PicX /Sd

[n] with the stack whose fiber over
a k-scheme T is the groupoid of pairs (j, P ), where j : Mk|T ↪→ NT is a
simple extension defining a morphism T → Sd, and P →Xj is a µn-torsor.
From this we see that µnK

(d)
X/k is a substack of PicX /Sd

[n]. Let

Hom(µd, µn)

denote the constant sheaf on the big étale site of Spec(k) of homomorphisms
µd → µn, and let

Hom′(µd, µn) ⊂ Hom(µd, µn)
denote the constant subsheaf of injective homomorphisms µd → µn.
There is a morphism of stacks

(7.5) PicX /Sd
[n]→ Hom(µd, µn)

defined as follows. Let V1 ⊂X denote the substack

(X ×X Y1)red.

In local coordinates, if we have a smooth morphism

X → Spec(k[x1, x2]/(x1x2))

with Ys the zero locus of xs, then X is the stack

[SpecX(OX [w1, w2]/(wd1 = x1, w
d
2 = x2))/µ2

d],

where (ζ1, ζ2) ∈ µ2
d acts by

ws 7→ ζsws.

The stack V1 is then the stack

[SpecY1(OY1 [w2]/wd2 = x2)/µ2
d].

This implies that the map
V1 → Sd

factors through

Bµd
� � T=0 // Sd

and also that the square

V1

��

// Y1

��
Bµd // Spec(k)
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is cartesian. Here Y1 denotes the stack over Y1 of d-th roots of the divisor
Z, and the map V1 → Y1 is induced by restriction to V1 the universal d-th
root of L2 over X .

In particular, for any morphism T → Sd the pullback of Bµd ↪→ Sd is
a closed subscheme T ′ ↪→ T defined by a nilpotent ideal, and over T ′ we
have a closed immersion

Y1,T ′ ↪→X ×Sd
T ′.

Given a µn-torsor P on X ×Sd
T , we can restrict P to the µd-gerbe

(Y1 ×Y1 Z)red × T ′ ↪→ ZT ′ .

Since µn is abelian this restricted torsor defines a homomorphism µd → µn
over ZT ′ which since Z is connected gives a homomorphism µd → µn
over T ′. Furthermore, since T ′ ↪→ T is defined by a nilpotent ideal, this
homomorphism lifts uniquely to a homomorphism µd → µn over T . In this
way we obtain the morphism of stacks (7.5). By the definition of stability,
the stack µnK

(d)
X/k is equal to the preimage of Hom′(µd, µn) under (7.5).

8. Reformulation of the stability condition.

Let (X,MX)/(S,MS) be as in paragraph 7.1, and let (j : MS ↪→ NS , P )
be a twisted G-torsor.

8.1. Assume first that S = Spec(k) is the spectrum of a separably closed
field k. Let X̃ → X be the normalization of X, and let Z̃ ⊂ X̃ be the
preimage (with the reduced structure) of the singular locus Z ⊂ X. Note
that X̃ is smooth and that Z̃ is a divisor with local normal crossings on X̃.

Let {Z1, . . . , Zr} be the connected components of Z, and let Z̃i ⊂ Z̃ be
the preimage of Zi so that

Z̃ = Z̃1
∐

Z̃2 · · ·
∐

Z̃r.

Also let Nr ' MS be the isomorphism obtained by ordering the compo-
nents Zi, and let {ai}ri=1 be the integers such that the map MS → NS is
isomorphic to the map ·a : Nr → Nr.

Let X̃◦ ⊂ X̃ denote the complement of Z̃, and let P̃ ◦ → X̃◦ denote the
pullback of P .
By 4.5 there exists a unique minimal set of integers b1, . . . , br such that

P̃ ◦ extends to (notation as in Proposition 4.3)

X
Z̃,b

:= X
Z̃1,b1

×
X̃

X
Z̃2,b2

×
X̃
· · · ×

X̃
X
Z̃r,br

.
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Lemma 8.1. — The twistedG-torsor (j, P ) is stable if and only if ai = bi
for all i.

Proof. — For each geometric point x̄→ X̃ mapping to a generic point of
Z̃i, the ring O

X̃,x̄
is a discrete valuation ring, and P restricts to a G-torsor

over the generic point of Spec(O
X̃,x̄

). By Proposition 4.1 we therefore have
an integer ex̄ associated to x̄. By Proposition 4.5 the integer bi is equal to
the least common multiple of the integers ex̄ as x̄ ranges over geometric
generic points of Z̃i.
Now the integer ex̄ is also equal to the integer associated to the composite

x̄→ X̃ → X as in paragraph 7.2. This implies the lemma. �

8.2. Next consider the case when S = Spec(V ) is the spectrum of a discrete
valuation ring and MS is induced by a chart Nr → V sending all nonzero
elements to 0. Let η (resp. s) denote the generic (resp. closed) point of S.

Lemma 8.2. — The restriction to the closed fiber (js, Ps) is stable if
and only if the restriction to the generic fiber (jη, Pη) is stable.

Proof. — As above, let X̃ be the normalization of X, and let Z1, . . . , Zr
be the connected components of the singular locus Z ⊂ X, ordered ac-
cording to the isomorphism Nr ' MS coming from our chosen chart. Let
Z̃i ⊂ X̃ be the preimage of Zi with the reduced structure. For a sequence
of integers d = (d1, . . . , dr) set

X
Z̃,d

:= X
Z̃1,d1

×
X̃

X
Z̃2,d2

×
X̃
· · · ×

X̃
X
Z̃r,dr

.

Let b (resp. b′) be the minimal sequence of integers for which P̃ ◦η → X̃◦η
(resp. P̃ ◦s → X̃◦s ) extends to X

Z̃,b,η
(resp. X

Z̃,b′,s
). It then suffices to show

that b = b′.
We claim that the torsor P̃ ◦ → X ◦

Z̃,b
extends to X

Z̃,b
. Indeed let U ⊂

X
Z̃,b

denote X
Z̃,b,η

∪X ◦
Z̃,b

. Then by construction the torsor P̃ ◦ extends to
U . Since X

Z̃,b
is regular and the complement of U has codimension > 2,

it then follows from Corollary 3.3 that P̃ ◦ extends uniquely to X
Z̃,b

. In
particular, we have b′i|bi for all i.
On the other hand, let fi denote bi/b′i, and let

Zi ⊂X
Z̃,b

be the smooth locus of the preimage of Z̃i (with the reduced structure). The
inertia stack IZi

is locally isomorphic to µbi . The fi define a well-defined
closed subgroup Ki ⊂ IZi

of the inertia stack of Zi, and the restriction of
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P defines a conjugacy class of homomorphisms Ki → G. The restriction to
the closed fiber of this conjugacy class of homomorphisms is the zero class,
and since Ki and G are tame group schemes it follows that it is zero over
all of Zi (see Lemma 6.7). From this we conclude that fi = 1 for all i. �

8.3. A similar argument also shows the following. Again assume that S =
Spec(V ) is the spectrum of a discrete valuation ring, but we do not assume
that there exists a chart Nr → V sending all nonzero elements to zero (so
in particular the closed fiber could have more singular components than
the generic fiber).

Lemma 8.3. — If the restriction to the closed fiber (js, Ps) is stable
then the generic fiber (jη, Pη) is also stable.

Proof. — After possibly replacing V by a finite extension, we may assume
that there exists a chart Nr → V for MS sending all nonzero elements to
the maximal ideal. Let Zi ⊂ X be the connected component of the singular
locus corresponding to the i-th standard generator of Nr.
After possibly reordering the generators of Nr we may assume that

Z1, . . . , Zs have nonempty generic fibers (for some s 6 r), and that
Zs+1, . . . , Zr are contained in the closed fiber.

For 1 6 i 6 s, let bi (resp. b′i) denote the least common multiple of the
integers ex̄ as x̄ varies over geometric generic points of the generic (resp.
closed) fiber of Zi. Then the proof of Lemma 8.2 shows that bi = b′i. If the
closed fiber (js, Ps) is stable then ai = b′i for all i 6 s and therefore bi = ai
also. This implies that the generic fiber of (j, P ) is stable. �

Corollary 8.4. — For arbitrary S there exists an open subset U ⊂ S
such that a geometric point s̄ → S has image in U if and only if the fiber
of (j, P ) over s̄ is stable.

Proof. — Combining Lemmas 8.2 and 8.3 one sees that the set of points
s ∈ S for which the fiber of (j, P ) is stable is a constructible set stable
under generization, and hence open. �

9. Algebraicity of GKX/S

Let (X,MX)/(S,MS) be as in paragraph 7.1.

9.1. Let S → S be the stack classifying simple extensions j : MS ↪→ N as
in [2, A.6]. As in loc. cit. the stack S is an algebraic stack. The universal
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simple extension over S then defines an algebraic stack XS → XS over
S . Now consider the relative hom-stack

H := HomS (XS , BG)

over S . By [2, C.2] the stack H is algebraic and of finite type over S and
the diagonal

H →H ×S H

is quasi-compact and separated.
The stack GKX/S is a substack of H , which is an open substack by

Corollary 8.4. In particular GKX/S is algebraic.

9.2. By the same argument as in the proof of [22, 1.11], for any integer
N there is a quasi-compact open substack S 6N ⊂ S classifying simple
extensions MS ↪→ NS such that for every geometric point s̄→ S the order
of

Coker(Mgp
S,s̄ → N

gp
S,s̄)

is less than or equal to N . Let M be an integer such that for any geometric
point s̄ → S the number of connected components of the singular locus
of Xs̄ is less than or equal to M . Then it follows from Remark 7.5 that
GKX/S has image in S 6N , where N = (#G)M .
In particular the stack GKX/S is quasi-compact and hence of finite type

over S.

Lemma 9.1. — The diagonal of GKX/S is quasi-finite.

Proof. — It suffices to show that if k is an algebraically closed field, Mk

is a log structure on k, and (j : Mk ↪→ Nk, P → Xj) is an object of
GKX/S , then the automorphism group of this object is finite. Since the
automorphism group of Nk over Mk is finite, it further suffices to show
that the automorphism group of the G-torsor P on Xj is finite. Write G
as an extension

1→ ∆→ G→ H → 1,
where ∆ is diagonalizable and H is tame and étale. Let P denote the
H-torsor P/∆. The sheaf on Xj of automorphisms of P , which commute
with the H-action, is a locally constant sheaf H locally isomorphic to H.
Furthermore, since ∆ is abelian the automorphism group of P over P is
isomorphic to ∆. To prove the lemma, it therefore suffices to prove the
following two statements:

(a) Let X /k be a proper algebraic stack, and let H be a locally con-
stant sheaf of finite groups on X . Then Γ(X ,H ) is a finite set.
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(b) Let Y /k be a proper reduced algebraic stack. Then the set of maps
Y → ∆ is finite.

For (a), let p : Y → X be a proper surjection with Y a scheme (such a
morphism exists by Chow’s lemma [21, 1.1]). Then the map

Γ(X ,H )→ Γ(Y, p∗H )

is injective. It therefore suffices to prove (a) in the case when X is a scheme,
in which case it follows from [6, XIV, 1.1].
For (b) note that any morphism Y → ∆ factors uniquely through

Spec(Γ(Y ,OY )). Since Y is assumed reduced, the scheme Spec(Γ(Y ,OY ))
is a finite disjoint union of copies of Spec(k). Statement (b) therefore follows
from the fact that ∆(k) is finite. �

Proposition 9.2. — The stack GKX/S is an Artin stack of finite type
over S with finite diagonal.

Proof. — It remains to verify the valuative criterion for properness for
the diagonal of GKX/S .

So assume that S = Spec(V ) is the spectrum of a discrete valuation ring
V and let π ∈ V be a uniformizer. We may also assume that we have a
chart Nr → MS defining an isomorphism Nr ' MS,s̄ (where s ∈ S is the
closed point). Observe then that for any simple extension MS ↪→ NS we
obtain an isomorphism NS,s̄ ' Nr and a sequence of integers a1, . . . , ar
such that the map MS,s̄ → NS,s̄ is identified with the map

(9.1) · a : Nr → Nr.

Now assume given two simple extensions j : MS ↪→ NS and j′ : MS ↪→
N ′S which become isomorphic over the generic fiber, and let P → Xj and
P ′ → Xj′ be two stable G-torsors whose restriction to Xj,η ' Xj′,η are
equal. We claim that, after possible making a base change V → V ′, there
is an isomorphism of log structures τ : NS → N ′S such that the triangle

MS

j

}}{{
{{

{{
{{ j′

!!CC
CC

CC
CC

NS
τ // N ′S

commutes. Let a (resp. a′) be the sequence of integers obtained from j

(resp. j′) as above. To prove that j is isomorphic to j′ it suffices to show
that ai = a′i for all i.

This can be verified on the closed fiber Xs of X, where it follows from
the definition of stable (note that the restrictions P ◦s̄ → X◦s̄ and P ′◦s̄ → X◦s̄
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are isomorphic, as the two torsors P ◦ → X◦ and P ′◦ → X◦ are isomorphic
by Corollary 4.3).
Fix now a simple extension j : MS ↪→ NS with corresponding sequence

of integers a.
Let f1, . . . , fr ∈ V be the images of the standard generators of Nr under

the composite Nr →MS → V . Then the stack classifying simple extensions
MS ↪→ N , such that the induced map MS,s̄ → N s̄ is given by (9.1), is
isomorphic to

[Spec(V [x1, . . . , xr]/(xaii − fi)
r
i=1/µa1 × · · · × µar ].

In particular this is a proper stack over V .
It follows that to verify the properness of the diagonal of GKX/S it

suffices to consider the following situation.
Assume given a simple extension j : MS ↪→ NS and let Xj → X be the

resulting stack. Let Pi →Xj (i = 1, 2) be two G-torsors, and assume given
an isomorphism ιη : P1,η → P2,η over the generic point η ∈ S. We then
must show that ιη extends uniquely to an isomorphism ι : P1 → P2.
By the uniqueness we may work étale locally on S, so we may assume

that G is equal to an extension

1→ ∆→ G→ H → 1,

where ∆ is diagonalizable and H is étale. Let P i denote Pi/∆, so P i is an
H-torsor and the projection Pi → P i realizes Pi as a ∆-torsor over P i.

By a standard limit argument it suffices to construct the extension of ιη
over the base change of Xj to the strict henselization of X at a geometric
point in the closed fiber. As in Proposition 2.2 we can write such a base
change as

[Spec(R)/D]
where R is either equal to the strict henselization at the point z1 = · · · =
zr = 0 of

(9.2) V [z1, . . . , zr]/(z1 · · · zs = πa)

for some a 6= 0, or the strict henselization of

(9.3) V [z1, . . . , zr]/(z1 · · · zs = 0).

Now any extension of ιη over Spec(R) is automatically compatible with
the D-action by flatness, so to construct the extension of ιη it suffices to
construct an extension over Spec(R).
First observe that the isomorphism P 1,η → P 2,η defined by ιη extends

uniquely to an isomorphism P 1 → P 2 over Spec(R). In the case when R
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is of the form (9.2) this is immediate as R is normal, which implies that
P i is equal to the normalization of Spec(R) in P i,η (i = 1, 2). In the case
when R is of the form (9.3) note that the category of torsors on Spec(R)
is equivalent to the category of collections (Pi, σij), where Pi is a torsor
over Spec(R/(zi)) (i = 1, . . . , s), and σij : Pi|R/(zi,zj) → Pj |R/(zi,zj) is an
isomorphism of torsors over Spec(R/(zi, zj)) satisfying a suitable cocycle
condition over the triple overlaps (as in the proof of 5.1). Since the rings
R/(zi) and R/(zi, zj) are normal, the isomorphisms over the generic fiber
extend uniquely.
Now observe that P i is isomorphic to a finite disjoint union of copies of

Spec(R), so to lift this isomorphism P 1 → P 2 to the Pi we are reduced to
the case when G is diagonalizable. In this case G is isomorphic to a finite
product of schemes of the form µn (for various n), which further reduces
the proof to the case µn. In this case Pi corresponds to a pair (Li, γi),
where Li is a line bundle and γi : Lni → R is an isomorphism. Let M
denote L1 ⊗ L−1

2 . Then M comes equipped with a trivialization f ∈ M⊗n
as well as a trivialization gη ∈ Mη such that gnη is equal to the restriction
of f . The claim is then that gη extends to a trivialization of M .
In the case when R is of the form (9.2) this is immediate as R is normal,

and in the case (9.3) this follows from Proposition 5.1. This completes the
proof that the diagonal of GKX/S is finite. �

10. Stabilization

10.1. Let (X,MX)/(S,MS) be as in paragraph 7.1 and let (j : MS ↪→
NS , P ) be a twisted G-torsor. We explain in this section how to construct
a subextension

(10.1) MS

j

!!j′ // N ′S // NS

and a natural morphism π : Xj →Xj′ such that P descends to a G-torsor
P ′ →Xj′ such that (j′, P ′) is stable.

10.2. Let us begin by considering the case when S = Spec(k) is the spectrum
of a separably closed field k.
Fix an ordering Z1, . . . , Zr of the connected components of the singular

locus of X, and recall that this defines isomorphisms

Nr →MS , Nr → NS
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such that we have a commutative diagram

Nr
a //

'
��

Nr

'
��

MS
// NS ,

for some sequence of positive integers a = (a1, . . . , ar).
On the other hand, for any geometric generic point η̄ → Zi we obtain by

Lemma 7.2 an integer eη̄, and we let bi denote the least common multiple
of the integers eη̄ as η̄ ranges over generic points of Zi. By the definition
of the integers eη̄ we have bi|ai. Let fi denote ai/bi.
Define N ′S ⊂ NS to be the fiber product of the diagram

NS

��
Nr

f
// Nr ' // NS ,

so we have a diagram of simple extensions

MS

j′ // N ′S // NS .

10.3. There is a natural morphism of stacks

π′ : Xj →Xj′

defined as follows.
Let g : Y → X be a morphism of schemes, and suppose given an object

(10.2) g∗MX
a // NY

g∗f∗MS

OO

j // g∗f∗NS

b

OO

of Xj(Y ). We claim that there exists a unique sub-log structure N ′Y ⊂ NY
containing the images of g∗MX and g∗f∗N ′S such that the resulting diagram

(10.3) g∗MX
a′ // N ′Y

g∗f∗MS

OO

j′ // g∗f∗N ′S

b′

OO

is an object of Xj′(Y ). The functor π′ is defined by sending (10.2) to (10.3).
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For this note first that N ′Y is determined by the subsheaf of monoids
N
′
Y ⊂ NY , and this subsheaf is in turn determined by its stalks. Now for

a geometric point ȳ we can identify the diagram of stalks

MX,g(ȳ) // NY,ȳ

MS,fg(ȳ) //

OO

N
′
S,fg(ȳ)

// NS,fg(ȳ)

OO

with the diagram
Nr+s

χa // Nr+s

Nr
h

OO

a

<<
b // Nr // Nr,

h

OO

where h and χa are defined as in paragraph 2.4, and a and b are collections
of integers as in paragraph 10.2 with bi|ai for all i. Let Fȳ ⊂ NY,ȳ ' Nr+s
be the submonoid generated by the elements fiei (i < r) and frei (i > r).
Then we want a sub-log structure N ′Y ⊂ NY such that NY ′,ȳ = Fȳ for all
ȳ → Y .
From this the uniqueness follows, and also it suffices to construct N ′Y

étale locally on X. Furthermore, it suffices to construct N ′Y in the universal
case, over Xj .

We can therefore assume that Xj is given by a fiber product as in Propo-
sition 2.2. Let

τ : Nr → Nr

be the map sending ei to (a/bi)ei, and let

ξ : Nr+s → Nr+s

be the map sending ei to (ai/bi)ei for i < r and (ar/br)ei for i > r. Also
let ∆′ denote the kernel of the map

s∏
i=0

µbr → µbr , (ζ0, . . . , ζs) 7→ ζ0 · · · ζs.

We then have a commutative diagram
(10.4)

[Spec(Z[Nr+s])/∆]
ξ //

��

[Spec(Z[Nr+s])/∆′]
��

X // Spec(Z[Nr]⊗a,Z[Nr],h Z[Nr+s]) τ⊗1 // Spec(Z[Nr]⊗b,Z[Nr],h Z[Nr+s])
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which defines a morphism

π′ : Xj →Xj′

by base changing to X. By construction there is a natural map π′∗NXj′ →
NXj

of tautological log structures, which has the desired properties on
stalks.

Remark 10.1. — Note that the preceding construction of the map

π : Xj →Xj′

works over any base scheme S and not just in the case when S is the
spectrum of a separably closed field.

Remark 10.2. — The local description of the map π′ : Xj → Xj′ in
terms of the diagram (10.4) also shows that the relative coarse moduli
space of Xj →Xj′ is equal to Xj′ .

10.4. We claim that P descends to a torsor P ′ →Xj′ . By construction this
torsor P ′ will be stable.
For a geometric point x̄ → Xj let Kx̄ denote the kernel of the map of

group schemes

(10.5) AutXj
(x̄)→ AutXj′

(π ◦ x̄).

By Proposition 6.5 it suffices to show that for every geometric point x̄→Xj

the action of Kx̄ on Px̄ is trivial.

10.5. If x̄ has image in the smooth locus of X then this is trivial since
the projections Xj → X and Xj′ → X are isomorphisms over the smooth
locus of X. Therefore assume that x̄ has image in Zi. Write the strict
henselization OX,x̄ as

OX,x̄ ' (k[x1, . . . , xn]/(x1 · · ·xs))sh,

where the right side denotes the strict henselization at the origin. For an
integer c let Hc ⊂ µsc denote the kernel of the sum map

µsc → µc, (ζ1, . . . , ζs) 7→
s∏
i=1

ζi,

and let Qc denote the stack quotient

Qc := [Spec((k[z1, . . . , zn]/(z1 · · · zs))sh)/Hc],

where ζ ∈ Hc acts by

zi 7→ ζizi (i 6 s), zi 7→ zi (i > s).
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Then by 2.2 we have

(10.6) Xj ×X Spec(OX,x̄) ' Qai , Xj′ ×X Spec(OX,x̄) ' Qbi ,

where the map

Qai → Spec(OX,x̄) ' Spec((k[x1, . . . , xn]/(x1 · · ·xs))sh)

is induced by the map

(k[x1, . . . , xn]/(x1 · · ·xs))sh → (k[z1, . . . , zn]/(z1 · · · zs))sh

sending xi to zaii for i 6 s and xi to zi for i > s. The map

Qbi → Spec(OX,x̄) ' Spec((k[x1, . . . , xn]/(x1 · · ·xs))sh)

is defined similarly with ai replaced by bi. The isomorphisms (10.6) identify
the map (10.5) with the natural map

Hai → Hbi .

Note also that we have a commutative diagram with exact rows

0 // Hai
//

��

µsai

��

// µai

��

// 0

0 // Hbi
// µsbi // µbi // 0,

which implies that the natural isomorphism

µsfi ' Ker(µsai → µsbi)

induces an isomorphism

Hfi ' Ker(Hai → Hbi).

This isomorphism identifies Kx̄ with Hfi , so we need to show that Hfi acts
trivially on Px̄.

10.6. For any 1 6 p < q 6 s there is an inclusion

σpq : µfi ↪→ Hfi

induced by the inclusion µfi ↪→ µsfi sending ζ to the element (αk) ∈ µsfi
with αp = ζ, αq = ζ−1, and αk = 1 for k 6= p, q.
Note that the images of the σpq generate Hfi . In fact the map

σ12 × σ23 · · · × σ(s−1)s : µfi × · · · × µfi → Hfi

is an isomorphism.
As before, write

Qai = [Spec((k[z1, . . . , zn]/(z1 · · · zs))sh)/Hai ],
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and let
Pai → Spec((k[z1, . . . , zn]/(z1 · · · zs))sh)

be the restriction of P , which comes equipped with an action of Hai lifting
the action on Spec((k[z1, . . . , zn]/(z1 · · · zs))sh).
For 1 6 p < q 6 s let Tpq ⊂ Spec((k[z1, . . . , zn]/(z1 · · · zs))sh) be the

closed subscheme defined by zp = zq = 0. Note that the action of the
subgroup scheme σpq(µai) ⊂ Hai on Tpq is trivial, therefore the restriction
P |Tpq induces a conjugacy class of homomorphisms σpq(µai)→ G. This con-
jugacy class of homomorphisms has a well-defined kernel Σpq ⊂ σpq(µai),
which is a diagonalizable group scheme being the kernel of a morphism from
a diagonalizable group to a tame group scheme [1, 2.5]. The restriction of
Σpq to the generic point of Tpq contains σpq(µfi) by construction, and there-
fore Σpq contains σpq(µfi) over all of Tpq. This implies that σpq(µfi) acts
trivially on Px̄, and therefore Hfi also acts trivially on Px̄.
This completes the proof that P descends to Xj′ .

10.7. For general S, note first that the subextension N ′S ↪→ NS is deter-
mined by the induced map of constructible sheaves N ′S ↪→ NS , and hence
the preceding case of a separably closed field implies that the factorization
(10.1) and the descended stable torsor P ′ → Xj′ are unique if they exist.
It therefore suffices to construct them étale locally on S.

10.8. Let s̄→ S be a geometric point and fix a commutative diagram

Nr
a //

'
��

Nr

'
��

MS,s̄
// NS,s̄

for some integers a1, . . . , ar. The case of a separably closed field then defines
a sequence of integers b1, . . . , br such that bi|ai for all i. As above we write
fi := ai/bi. Let N ′S,s̄ ⊂ NS,s̄ be the fiber product of the diagram

NS,s̄

��
Nr

×f
// Nr ' // NS,s̄.

We then have a diagram of simple extensions

MS,s̄ ↪→ N ′S,s̄ ↪→ NS,s̄.
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By a standard limit argument we can after replacing S by an étale neigh-
borhood extend this to a diagram of simple extensions of log structures

MS
� � j′ // N ′S

� � // NS .

Consider the resulting map Xj → Xj′ (see 10.1). By Propositions 6.5
and 6.6 there exists an open substack U ⊂ Xj containing the fiber over
s̄ such that P |U descends to the image of U in Xj′ . Let Z ⊂ Xj be
the complement of U . Replacing S by the complement of the image of Z

(which is closed since Xj is proper over S) we obtain an étale neighborhood
of s̄ such that P descends to a torsor P ′ → Xj′ . Now by construction
the fiber over s̄ of P ′ is stable, so by Corollary 8.4 there exists an étale
neighborhood of s̄ over which P ′ is stable.

Remark 10.3. — With notation as in paragraph 10.1, suppose s ∈ S is
a point such that the restriction of (j, P ) to (Xs,MXs) is stable. Then the
maps

π : Xj →Xj′ , N ′S → NS

restrict to isomorphisms over s. This follows from the preceding construc-
tion.

11. Verification of the valuative criterion for properness

We conclude the proof of Theorem 1.2 (i) by verifying the valuative
criterion for properness for GKX/S .

11.1. Let S = Spec(V ) be the spectrum of a discrete valuation ring V with
field of fractions K. We write η (resp. s) for the generic (resp. closed) point
of S, and denote the log structure MS by MV . Fix a uniformizer π ∈ V .

Assume given an object

(jη : MV,η ↪→ Nη, Pη →Xjη ) ∈ GKX/S(Spec(K)).

We must show that this object extends to an object of GKX/S(Spec(V )),
after possibly replacing V by a finite extension.

11.2. After possibly making an extension of V , we may assume that MV,s

is constant (note that MV,s is a locally constant sheaf on set). Choose an
isomorphism

(11.1) NI ⊕ NJ 'MV
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such that the induced map

NI →MV,η̄

is an isomorphism. We then have a canonical bijection between J (resp.
I) and the connected components of the singular locus which do not meet
(resp. meet) the generic fiber. Fix a lifting

β : NI ⊕ NJ →MV

of the isomorphism (11.1). Then there exists a unique set of natural num-
bers (ei)i∈I and isomorphism γ̄ such that the following diagram commutes

NI
(ei) //

��

NI

γ̄

��
MV,η̄

jη // N η̄.

After possibly replacing V by a finite extension we may assume that this
diagram can be lifted to a diagram

NI

β

��

(ei) // NI

γ

��
MV,η

jη // Nη.

Note that the map γ is a chart. Let fi ∈ V be the image of the i-th standard
generator of the composite

NI
β // Γ(Spec(V ),MV ) // V,

and let gi ∈ K be the image of the i-th standard generator under the
composite

NI
γ // Γ(Spec(K), Nη) // K.

Then by construction we have geii ∈ V which implies that in fact gi ∈ V .
Let N (0) be the log structure on Spec(V ) associated to the chart

NI ⊕ NJ → V

which restricts to β on NJ and sends the i-th standard generator of NI to
gi. We then have a simple extension

j(0) : MV ↪→ N (0)

over Spec(V ) restricting to jη over the generic point.
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We therefore get a stack

Xj(0) → Spec(V )

with a G-torsor
Pη →Xj(0),η.

11.3. Let Z ⊂ Xj(0) be the union of the connected components of the
singular locus of Xj(0) which are contained in the closed fiber, and let
Z ⊂ X denote the image in X. Then by Proposition 5.1 and Corollary 4.3
Pη extends to a G-torsor

P ′ →X ′
j(0) := Xj(0)\Z ,

after possibly making a base change V → V ′.

11.4. For each j ∈ J write the image of the j-th standard generator under
the map

NJ // Γ(V,MV ) // V

as ujπkj where uj ∈ V ∗ and kj ∈ N. Let N be the log structure on Spec(V )
induced by the map

NI ⊕ NJ → V

whose restriction to NI is the map defined by N (0) and which sends the
j-th standard generator of NJ to π. The map

NI ⊕ NJ → V ∗ ⊕ NI ⊕ NJ , ei 7→ ei (i ∈ I), ej 7→ (uj , 0, kjej) (j ∈ J)

induces a morphism of log structures N (0) → N . Let j : MV → N be the
composite

MV → N (0) → N.

We then obtain a morphism of stacks

Xj →Xj(0)

which is an isomorphism away from Z . In particular, the torsor P ′ can be
viewed as a torsor over

X ′
j := Xj ×X (X\Z).

Now observe that for any geometric point z̄ → Z there exists an étale
neighborhood U of z̄ in X such that

Xj ×X U ' [Spec(V [x1, . . . , xn]/(x1 · · ·xs − π))/∆]

for some s 6 n (here ∆ and the action is as in paragraph 3.3). It follows
that P ′ extends to a torsor P →Xj (by Corollary 3.3).
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11.5. We therefore obtain a twisted G-torsor (j : MV ↪→ N,P ) over X
whose restriction to Xη is our given object of GKX/S(Spec(K)). Applying
the stabilization construction of section 10, which does not change the
generic fiber of (j, P ) (see remark 10.3), we then obtain the desired object
of GKX/S(Spec(V )).
This completes the proof of Theorem 1.2 (i). �

12. The stack GKX/S is tame.

12.1. Let (X,MX)/(S,MS) be as in paragraph 7.1, and let (j : MS →
NS , P ) be an object of GKX/S(S). It suffices to show that the geometric
fibers of the automorphism group scheme of (j, P ) is tame. So we assume
that S = Spec(k) is the spectrum of an algebraically closed field, and let
A denote the automorphism group scheme of (j, P ). The group scheme B

of automorphisms of NS which restrict to the identity on MS is isomor-
phic to a product of group schemes of the form µa, and there is a natural
homomorphism

A → B.

Let K ⊂ A be the kernel of this homomorphism. Since B is diagonalizable,
to prove that A is tame it suffices to show that K is tame.

12.2. The group scheme K is the group scheme of automorphisms of the
G-torsor P over Xj . Write G as an extension

1→ ∆→ G→ H → 1,

where ∆ is diagonalizable and H is tame and étale. Let P denote the
quotient P/∆, which is an H-torsor over Xj . The automorphism group
scheme of P over Xj is a twisted form H of H. Let C denote the tame
étale group scheme over Spec(k) corresponding to the group Γ(Xj ,H ),
which is finite by the same argument as in the proof of Lemma 9.1. By
the proper base change theorem, C represents the functor which to any
k-scheme T associates the group of automorphisms of the base change of
P to T . We therefore have a natural homomorphism

K → C ,

whose kernel K ′ is the subgroup scheme of automorphisms of P over P .
To prove that K is tame it then suffices to show that K ′ is tame, and for
this in turn it suffices to show that the group scheme of automorphisms of
P over P is tame.

TOME 62 (2012), FASCICULE 4



1548 Martin OLSSON

12.3. Let Z/k denote Spec(Γ(P ,OP )). Since P is reduced the scheme Z is
equal to a finite disjoint union of copies of Spec(k). Since ∆ is abelian the
group scheme of automorphisms of P over P is canonically isomorphic to
the scheme

Homk(Z,∆),
which is isomorphic to a finite product of copies of ∆. In particular, this is
a tame group scheme.
This completes the proof of Theorem 1.2 (ii). �
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