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p-ADIC DIFFERENTIAL OPERATORS ON
AUTOMORPHIC FORMS ON UNITARY GROUPS

by Ellen E. EISCHEN (*)

Abstract. — The goal of this paper is to study certain p-adic differential
operators on automorphic forms on U(n, n). These operators are a generalization to
the higher-dimensional, vector-valued situation of the p-adic differential operators
constructed for Hilbert modular forms by N. Katz. They are a generalization to
the p-adic case of the C∞-differential operators first studied by H. Maass and
later studied extensively by M. Harris and G. Shimura. The operators should be
useful in the construction of certain p-adic L-functions attached to p-adic families
of automorphic forms on the unitary groups U(n)× U(n).
Résumé. — Nous construisons certains opérateurs différentiels C∞ et leurs

analogues p-adiques, qui agissent sur des formes automorphes (à valeurs vectorielles
ou scalaires) pour les groupes unitaires U(n, n). Nous étudions des propriétés de
ces opérateurs, et nous les utilisons à prouver quelques théorèmes arithmetiques.
Ces opérateurs différentiels sont une généralisation au cas p-adique des opérateurs
différentiels C∞ étudiés d’abord par H. Maass et étudiés ensuite en détail par M.
Harris et G. Shimura. Ils sont une généralisation au cas des opérateurs différentiels
p-adiques à valeurs vectorielles construits pour les formes modulaires par N. Katz.
Ils devraient être utiles dans la construction de certaines fonctions L p-adiques,
en particulier les fonctions L p-adiques attachées aux familles p-adiques de formes
automorphes pour les groupes unitaires U(n)× U(n).

1. Introduction

The goal of this paper is to study certain p-adic differential operators
on automorphic forms on U(n, n). This is one step in an ongoing project
to construct certain p-adic L-functions attached to p-adic families of auto-
morphic forms on U(n) × U(n). For example, in analogue with [16], these
differential operators will be used in [3] to generalize the construction of the

Keywords: p-adic automorphic forms, differential operators, Maass operators.
Math. classification: 14G35, 11G10, 11F03, 11F55, 11F60.
(*) This research was partially supported by a fellowship from the Lucent Foundation.



178 Ellen E. EISCHEN

Eisenstein measure in [8]. This, in turn, gives a more general construction
of the L-functions in [4] than the one proposed in [8].
The differential operators in this paper eliminate some of the restrictions

on the extent to which the construction of p-adic L-functions proposed in
[8] can be generalized to construct more general 2- or 3-variable p-adic
L-functions attached to families of automorphic forms:

(1) As the introduction of [8] notes, M. Harris, J.-S. Li, and C. Skin-
ner interpolate the L-function at a fixed point s0; removal of the
restriction that s0 be fixed requires the differential operators that
are the topic of this paper. This issue will be addressed in [3].

(2) No one has constructed p-adic L-functions attached to vector-valued
automorphic forms, only scalar-valued automorphic forms. The dif-
ferential operators are expected to make this generalization possi-
ble.

(3) In particular, no one has constructed p-adic L-functions attached
to vector-valued families of non-ordinary automorphic forms other
than modular forms. This project originated from my attempt to
construct (two- and three-variable) p-adic L-functions attached to
certain families of overconvergent automorphic forms on U(n, n).
This paper can be viewed as a step in that project, which has turned
out to be more widely applicable.

The length of this paper is due to the fact that much of the “background”
material provided here is not recorded elsewhere but is necessary for the
discussion in this paper. The details in the background sections should also
serve as a reference for others. For example, our discussion of the Kodaira-
Spencer morphism is more explicit than elsewhere in the literature and
includes a discussion at the level of coordinates. To date, this does not
appear elsewhere in the literature, but it is important for understanding
the action of the differential operators at the level of coordinates (rather
than just as abstract maps). Also, this paper provides a user’s guide to
q-expansions and the “Mumford object,” a generalization of the Tate curve
to the higher dimensional setting. The prior literature [20] on Mumford
objects and algebraic q-expansions is at the level of existence statements.
Since our intended applications require a more explicit description of the
Mumford object, we provide one here.
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p-ADIC DIFFERENTIAL OPERATORS 179

1.1. Motivation

As mentioned above, our motivation for studying the differential op-
erators comes from L-functions. Through the doubling method, one can
express special values of L-functions in terms of a finite sum of special val-
ues of Eisenstein series. So if each of the finitely many terms in the sum is
algebraic (or p-integral, or lies in a desired ring) up to a period, then the
same holds for the special values of the L-function. This is the approach
taken in [16, 8]. Many constructions of p-adic L-functions rely on p-adic
interpolation of special values of Eisenstein series [28, 15, 16, 25, 8]. In the
case of holomorphic Eisenstein series, the p-adic interpolation often takes
place through p-adic interpolation of Fourier coefficients. This approach
is in general not sufficient, though, because of the following issue: most
special values of L-functions come from non-holomorphic Eisenstein series,
which do not have Fourier expansions. This is closely related to the reason
that the L-functions L(s, f) in [8] are only p-adically varied at a fixed point
s = s0.

For the case of the unitary groups U(n, n), the p-adic differential op-
erators in this paper can be used to solve this issue.(1) These differential
operators are a p-adic analogue of a class of C∞-differential operators first
studied by H. Maass [21, 22] and later studied extensively by G. Shimura
[32, 31, 30, 29, 29, 30, 34] and M. Harris [7, 6]. (In the case of modu-
lar forms on the upper half plane, these C∞-differential operators are the
widely used operators g 7→ y−k( ∂∂z )(ykg) that map a weight k modular
form g to a weight k+ 2 modular form. More generally, they map a vector-
or scalar-valued automorphic function to an automorphic function of a
different weight.) These C∞-differential operators play an important role
in Shimura’s proofs of algebraicity properties of Eisenstein series and L-
functions. Shimura’s proofs, however, do not provide insight into p-adic
properties.
For Hilbert modular forms, N. Katz [16] reformulates Shimura’s C∞-

differential operators in terms of the Gauss-Manin connection and the
Kodaira-Spencer isomorphism. This algebraic-geometric approach is useful
because it allows Katz to construct a p-adic analogue of the C∞-differential
operators for Hilbert modular forms. This paper generalizes [16] to the set-
ting of automorphic forms on U(n, n), including the more general case of

(1)This paper generalizes almost immediately to the case of the symplectic groups Sp(n),
and it should be relatively straightforward to generalize to U(m, n). In the symplectic
case, similar operators were also discussed in [26, 1].
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180 Ellen E. EISCHEN

vector-valued forms. The author intends to apply these operators to con-
struct some of the more general p-adic L-functions mentioned above. The
differential operators allow one to show that the values of a certain p-adic–
in general non-algebraic–function at CM points over OCp are in fact not
only algebraic but also the same as the values of a closely related C∞–in
general non-holomorphic–function at CM points over OCp . So special values
of pairs of seemingly unrelated functions (namely, a C∞ non-holomorphic
function and p-adic function) are meaningfully compared and shown to be
equal. The possibility of constructing the p-adic L-functions relies upon
this remarkable feature.
The starting point for my construction and proofs is [16]; however, the

higher-dimensional, vector-valued situation is more complicated and in-
volves several obstacles not encountered in the one-dimensional case consid-
ered in [16]. My generalization involves a more delicate use of the Kodaira-
Spencer morphism (which, for the unitary case, is no longer an isomor-
phism) than in Katz’s situation. Also, unlike in [16], the action of the
operator on q-expansions is no longer in terms of a derivation on a commu-
tative ring, but rather a map (in general, not a derivation) on a ring that
is in general non-commutative; I formulate the precise action of this map
on coefficients of vector-valued q-expansions so that the description of the
resulting coefficients can be used to study p-adic interpolation. (Similarly,
there are other instances in which a commutative ring in [16] is replaced
with a non-commutative one in my situation.)

1.2. Organization of the paper

Sections 2 through 5 cover background information, much of which is not
available elsewhere in the literature. In addition to being necessary for our
discussion, these sections should be a useful reference for other researchers.
In Section 2, we review automorphic forms from several perspectives. Sec-
tion 3 discusses the Gauss-Manin connection and Kodaira-Spencer mor-
phism in more detail than one finds elsewhere in the literature. In particu-
lar, we give an explicit example, which is useful for the explicit description
of the differential operators given later. No similarly explicit examples are
currently found in the literature. In Section 4, we discuss Fourier expan-
sions and the algebraic theory of q-expansions. We describe the “Mumford
object,” the higher dimensional analogue of the Tate curve; this should also
serve as a “users’ guide” for others seeking an explicit description of the
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p-ADIC DIFFERENTIAL OPERATORS 181

Mumford Object. In Section 5, we discuss p-adic automorphic forms on
unitary groups, in a format analogous to the one in [16].
Our discussion of the differential operators occurs in Sections 6 through

10. In Section 6, we briefly review Shimura’s definition of C∞-differential
operators. The material in Sections 7 through 10 builds upon the mate-
rial in [16]. In Section 9, we give an explicit formula for the action of the
differential operators on vector-valued p-adic automorphic forms. This dif-
ferential operator, unlike the one in Katz, is not a derivation; indeed, it acts
on a non-commutative ring. We obtain a higher-dimensional, vector-valued
analogue of Ramanujan’s operator q ddq .

1.3. Notation

Our setup is exactly the same as the setup in Sections 0 and 1 of [8],
though our notation is not always the same. When appropriate, we adopt
the notation of [34], [6], [16], [8], and [9].

Fix a quadratic imaginary extension K of Q, and let OK denote the ring
of integers in K. Fix a CM type Σ of K, i.e. an embedding

K ↪→ C.(1.1)

We associate K with its image in C under the embedding (1.1). Let δK
denote the discriminant of K. Unless otherwise noted, we will always use
R0 to denote an OK-algebra. Let α be a generator of OK over Z.
Let Q̄ denote the algebraic closure of Q in C, and write incl∞ : Q̄ ↪→ C

to denote the given embedding of Q̄ in C. Fix a prime ideal (p) in Z that
splits completely in K. Denote the finite adeles of Q by Af , and write Apf
to denote the restricted product

∏′Ql over finite primes l 6= p. Let Cp
denote the completion of an algebraic closure of Qp, and fix an embedding
inclp : Q̄ ↪→ Cp. Given an embedding σ : K ↪→ Q̄, we write σ∞ to denote
the embedding incl∞◦σ : K ↪→ C, and we write σp to denote the embedding
inclp ◦σ : K ↪→ Cp.We write σ̄ to denote the composition of the embedding
σ with complex conjugation.

We now set some notation for modules. For any module M , we de-
note

∑∞
e=0M

⊗e by T (M). From now on, for any module M , we associate
Sym(M) =

∑
e Sym

eM with its image in T (M) =
∑
e T

e(M) via

Syme(M) ↪→M⊗e(1.2)

x1 · · · · · xe 7→
∑
s∈Se

xs(1) ⊗ · · · ⊗ xs(e),

TOME 62 (2012), FASCICULE 1



182 Ellen E. EISCHEN

where Se is the group of permutations of 1, . . . , e. Let r be a positive integer,
and let V be a vector space containing vectors vi indexed by a subscript
i. For any r-tuple λ = (λ1, . . . , λr) of integers, let vλ denote the tensor
product vλ1 ⊗ · · · ⊗ vλr of r vectors vλ1 , . . . , vλr . Denote the symmetric
product vλ1

1 · · · vλnn by vλ.We write ρst or simply st to denote the standard
representation of GL(V ) on a vector space V .
In parts of the paper dealing with a complex analytic approach, we pri-

marily use Shimura’s notation (used throughout his papers, e.g. as dis-
cussed in the Notation and Terminology section of [34]). We review some
of it here. For a ring R and positive integers r and c, we write Rrc to de-
note the R-module of r × c-matrices with entries in R, i.e. a matrix with
r rows and c columns. When necessary to distinguish between column and
row vectors, we shall take advantage of this notation. For a matrix z with
entries in C, we write tz to denote the transpose of z and z∗ to denote the
complex conjugation tz̄ of tz.

Throughout the paper, fix a positive integer n and set g = 2n. We write
1n to mean the n × n identity matrix. As in [34], let Hn = {z ∈ Cnn |

i(z∗ − z) > 0} and ηn =
(

0 −1n
1n 0

)
. The following notation will also

be helpful. If A is a matrix, let A+ denote A, and let A− denote tA. Given
a subgroup G of GLn(R), let G+ denote the subgroup of G consisting of
elements of positive determinant.
We now set some conventions for schemes. For any morphism of schemes

π : Y → Z, let (Ω•Y/Z , d) denote the complex of sheaves of relative differ-
entials on Y/Z (where d is the usual differentiation map). The de Rham
cohomology Hi

DR(Y/Z) is defined to be the hypercohomology Riπ∗(Ω•Y/Z).
Given a scheme X over a scheme S and a scheme T over S, we denote
by XT the scheme X ×S T . When working with a separated scheme S of
finite type over C, we write San to denote the associated complex analytic
space. We then write Ohol

S or OS(hol) (resp. OC∞S or OS(C∞)) to denote
the sheaf of holomorphic (resp. C∞) functions on San.

Acknowledgments
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p-ADIC DIFFERENTIAL OPERATORS 183

2. Certain abelian varieties of PEL type and automorphic
forms

In this section, following the perspectives of [34], [16], and [9], we dis-
cuss automorphic forms on the unitary groups U(n, n) and certain abelian
varieties with PEL structure.

2.1. Unitary groups

In order to discuss automorphic forms on unitary groups and abelian
varieties of PEL type, we need first to establish conventions for unitary
groups. In this subsection, we recall the notation and conventions concern-
ing unitary groups given in Section (0.1) of [8]; all the material in Section
(0.1) of [8] applies to our situation. Let V be an n-dimensional vector space
over K, and let 〈•, •〉V be a non-degenerate hermitian pairing on V relative
to the extension K/Q. We write −V to denote the vector space V over K
with hermitian pairing 〈•, •〉−V defined by 〈•, •〉−V = −〈•, •〉V . We write
2V to denote the K-vector space V ⊕V with the hermitian pairing 〈•, •〉2V
defined by

〈(v1, v2), (w1, w2)〉2V = 〈v1, w1〉V + 〈v2, w2〉−V
(= 〈v1, w1〉V − 〈v2, w2〉V )

for all vectors v1, v2, w1, w2 in V .
The Hermitian pairing 〈•, •〉V defines an involution c on End(V ) via

〈gv, v′〉 = 〈v, c(g)v′〉 for all g in End(V ) and v, v′ ∈ V . Note that for any
Q-algebra R, the involution c extends to an involution of V ⊗Q R.
For any vector space W with hermitian pairing 〈•, •〉W and Q-algebra

R, we define the following unitary groups over Q:
U(W )(R) = U(W, 〈•, •〉W )(R)

= {g ∈ GL (W ⊗Q R) | 〈gv, gv′〉 = 〈v, v′〉, for all v, v′ ∈W}
GU(W )(R) = GU(W, 〈•, •〉W )(R)

= {g ∈ GL (W ⊗Q R) | for all v, v′ ∈W, 〈gv, gv′〉 = ν(g)〈v, v′〉
with ν(g) ∈ R×

}
.

Then
U(2V )(R) ∼= U(n, n)(R) = {g ∈ GL2n(K ⊗Q R) | gηng∗ = ηn}

GU(2V )(R) ∼= GU(n, n)(R) = {g ∈ GL2n(K ⊗Q R) | gηng∗ = ν(g)ηn
some ν(g) ∈ R×

}
.

TOME 62 (2012), FASCICULE 1



184 Ellen E. EISCHEN

2.2. Certain abelian varieties of PEL type

In this subsection, we review certain abelian varieties of PEL type.
Our situation is similar to the setup in Sections 1.2 through 1.4 of [8]. We

review here the most important features of the setup in [8], following [8]
closely. Our notation in this section is not entirely the same as the notation
in [8]. (For details on the material covered in this section, the reader may
also find it helpful to look at chapters 1 and 2 of [20] and at chapters 6 and
8 of [23].)

Let G = GU(V ). Fix a compact open subgroup K = Kp × Kp of
GU(V )(Af ), with Kp ⊆ G(Qp) a hyperspecial maximal open compact sub-
group of G(Qp) and Kp in G(Apf ). (In applications, the maximal compacts
of interest will be those used in [8].) We recall the functor KAV from
schemes S over Q to the category of sets that is given in (1.3.1) of [8]:

S 7→ {(A, λ, ι, α)}(2.1)
where

• A is an abelian scheme over S, up to isogeny
• λ : A→ A∨ is a polarization
• ι : K → EndS(A)⊗Q is an embedding of Q-algebras
• α : V ⊗Af

∼→
∏
l Tl(A)⊗Q is an isomorphism of K-spaces, modulo

the action of K.
The above data are required to satisfy the Rosati condition, i.e. the follow-
ing diagram commutes:

A
λ //

ι(ā)
��

A∨

ι∨(a)
��

A
λ
// A∨.

Furthermore, the isomorphism α must identify the Hermitian pairing on V
with a multiple of the one coming from the Weil pairing associated to λ.
We call the tuples (A, λ, ι, α) abelian varieties of PEL type.

Given a vector space W over K with a non-degenerate hermitian pairing
on W , one can canonically associate to the group G = GU(W ) a Shimura
datum (G,X) and a Shimura variety Sh(W ) = Sh(G,X). The complex-
valued points of Sh(G,X) are given by

Sh(G,X)(C) = lim
K
G(Q)\X ×G(Af )/K,

where the limit is over all open compact subgroups of G(Af ). Let KSh =K

Sh(V ) =K Sh(G,X) be the variety whose complex points are given by
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p-ADIC DIFFERENTIAL OPERATORS 185

G(Q)\X × G(Af )/K; the complex points of this variety classify complex
abelian varieties satisfying the above moduli problem. If U is a compact
closed subgroup of GU(Af ), we use the notation USh(V ) to mean the tower
of the varieties KSh =K Sh(V ) with K ⊂ U a compact open.
We remind the reader of Theorem (1.3.2) in [8], which is originally due

to Shimura:

Theorem 2.1. — Whenever K is sufficiently small (“neat”, in the sense
of [20], suffices), the functor KAV is representable by a quasi-projective
scheme KM over Q. The scheme KM is the canonical model for KSh(V ).
As K varies, the natural maps between the above functors induce the nat-
ural maps between the varieties KSh(V ). The action of GU(V )(Af ) on
KSh(V ) preserves the Q-rational structure.

Now we consider a similar but slightly different moduli problem that
is discussed in Section (1.6) of [8]; it will be useful for the p-adic theory,
which we will discuss later. Fix a sufficiently small compact open subgroup
K = Kp × Kp ⊂ G(Af ) as above. Consider the above moduli problem
with ι replaced by an injection (OK)(p) ↪→ EndS(A) ⊗ Z(p). As explained
in [19], this moduli problem is represented by a smooth integral scheme
KS(G,X) over Z(p), which is a smooth integral model for KSh(G,X). This
moduli problem is closely related to the moduli problem we now describe.
Let KpAp be the functor S 7→ {(A, λ, ι, αp)} with A an abelian scheme
over S up to prime-to-p isogeny, λ a polarization of degree prime to p,
ι : (OK)(p) → EndS(A) ⊗ Z(p) an embedding of Z(p)-algebras, and αp :
V (Apf ) ∼→ V f,p(A) a prime-to-p (OK)(p)-linear level structure modulo Kp.
This functor is representable over Zp by a scheme also denoted KS(G,X).
The forgetful map gives an isomorphism KAV

∼→Kp Ap.
We denote by M a moduli space over an OK-algebra in the situation

where we want to remain ambiguous about the level structure or any other
details about the moduli problem; we also use this notation when it is clear
from context which moduli space we mean. We write Auniv to denote the
universal abelian variety overM:

Auniv

π

��
M.

TOME 62 (2012), FASCICULE 1



186 Ellen E. EISCHEN

We define

ω := π∗(ΩAuniv/M)
H1
DR := H1

DR(Auniv/M).

Note that we will always take M to be over an OK-algebra. Working
over OK affords us the following convenient splittings. The embedding ι :
K → EndS(A)⊗Q makes ω and H1

DR into OK-modules through the action
defined by a · v = ι(a)∗(v) for each a ∈ OK. Similarly, since A lies over
an OK-scheme S, the action on ω and H1

DR induced by the composition of
morphisms of structure sheaves OK → OS → OA also makes ω and H1

DR

into OK-modules. The isomorphism

OK ⊗Q OK
∼→ OK ⊕OK

a⊗ b 7→ (ab, āb)

extends to an isomorphism

OK ⊗Q OS
∼→ OS ⊕OS(2.2)

a⊗ b 7→ (ab, āb).

So there is a splitting over OS ω = ω+ ⊕ ω−, where ω+ is the OS-module
defined by ω+ := {w ∈ ω|ι(a)∗w = aw, a ∈ OK} and ω− is given by
ω− := {w ∈ ω|ι(a)∗w = āw, a ∈ OK}. There is a similarly defined splitting
H1
DR = H1

DR
+ ⊕H1

DR
−. We shall sometimes denote H1

DR
± by H±.

2.3. The complex analytic viewpoint (Shimura’s perspective)

In this section, for a fixed open compact K, let Γ be the congruence
subgroup of GU(ηn) defined by Γ = K ∩G(Q).

2.3.1. Transcendental description of abelian varieties of PEL type

In this section, we follow the approach of Shimura in [34] and [33]. Let
A = (A, λ, ι, α) be a complex abelian variety of PEL type. Then Aan is a
complex torus C2n/L, for some Z-lattice L in C2n, which can be obtained
as follows. Let {ω+

i }ni=1 be a basis for ω+
A/C, and let {ω−i }ni=1 be a basis for
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p-ADIC DIFFERENTIAL OPERATORS 187

ω−A/C. Then, we define the Z-lattice L(A, {ω+
i }ni=1, {ω

−
i }ni=1) to be

L(A, {ω+
i }

n
i=1, {ω−i }

n
i=1) =





∫
γ
ω−1
...∫

γ
ω−n∫

γ
ω+

1
...∫

γ
ω+
n



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
γ ∈ H1(A,Z)


.

The complex abelian variety Aan is isomorphic to

Cg/L(A, {ω+
i }

n
i=1, {ω−i }

n
i=1).

The polarization λ on A corresponds to a Riemann form on

L(A, {ω+
i }

n
i=1, {ω−i }

n
i=1).

The morphism ι : K ↪→ EndQ(A) corresponds to the action ι of K on
L(A, {ω+

i }ni=1, {ω
−
i }ni=1) given by ι(a)v = Ψ(a) · v for all a in K and v in

L(A, {ω+
i }ni=1, {ω

−
i }ni=1), where Ψ : K → C2n

2n is given by

a 7→ diag[ā · 1n, a · 1n].

The level structure α : V (Af ) ∼→ V f (A) mod K corresponds to a map
V (Af ) ∼→ L(A, {ω+

i }ni=1, {ω
−
i }ni=1) ⊗ Af mod K, with a compatibility of

pairings as above.

2.3.2. Families of complex abelian varieties of PEL type

We now recall Shimura’s construction (Section 4 of [34]) of some families
of complex abelian varieties of PEL type. Throughout this section, fix a
Z-lattice L in K1

2n.
For each z ∈ Hn and each row vector x in K1

2n, let pz(x) be the vector
in C2n defined by

pz(x) =
(
[z 1n]x∗, [tz 1n] · tx

)
.

The function pz(x) is holomorphic in z.
We define LL(z) = pz(L). Then pz(L) is a lattice in Cg. Let Az be

the complex torus defined by Az = C2n/pz(L). Let Cz be the polariza-
tion on Az given by the Riemann form Ez defined by Ez (pz(x), pz(y)) =
tr (K⊗QR)/R (xηny∗) . Every complex-valued point (A, λ, ι, α) of the Shimura
variety KSh(V ) is isomorphic for some z to Az with polarization Cz and
action of K given by ιz(a)·v = diag[ā·1n, a·1n]·v. To specify a finite ordered
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set of points t1(z) . . . , ts(z) of finite order on Az, it is equivalent to specify
a finite set of elements u1, . . . , us in L⊗Q/L such that ti(z) = pz(ui).
We conclude this section by giving a more explicit classification of ana-

lytic families of complex abelian varieties of PEL type. Fix a finite set of
points {u1, . . . , us} in K1

2n. Consider the quintuple

Ω = {K,Ψ, L, ηn, {ui}si=1} .(2.3)

Such a quintuple is called a PEL-type. Let P = (A,C, ι; {ti}si=1) be a tuple
consisting of a complex abelian variety A, a polarization C, a set of points
t1, . . . , ts of finite order on A, and a ring injection ι : K ↪→ EndQ(A) that
is stable under the involution of EndQ(A) determined by C.
We say that P is of type Ω if the following holds: there is a Z-lattice Λ;

a homomorphism ξ : Cg → A; an R-linear isomorphism q : C1
g → Cg such

that q(ax) = Ψ(a)q(x) and ι(a) ◦ ξ = ξ ◦ Ψ(a) for all a ∈ K and x ∈ C1
g

and such that q(ui) = ti for each i; a Riemann form E determined by C
that satisfies E(q(x), q(y)) = trK/Q(xηny∗); and a commutative diagram
(Figure (4.3) in [34])

0 // L //

��

C1
g

//

q

��

C1
g/L //

��

0

0 // Λ // Cg
ξ // A // 0.

The classification of complex abelian varieties of type Ω, which we now
make precise, will be useful for understanding how the classical (analytic)
definition of automorphic forms motivates the algebraic-geometric defini-
tion of automorphic forms. For each z inHn, let Pz = (Az, Cz, ιz; {ti(z)}si=1)
with Az, Cz, ιz, and {ti(z)}si=1 defined as above. Then, Pz is of type Ω for
each z in Hn. Furthermore, Theorem 2.2 (Theorem 4.8 in [34]) classifies

abelian varieties of type Ω. An element α =
(
A B

C D

)
∈ U(ηn) acts on

Hn by αz = (Az +B)(Cz +D)−1.

Theorem 2.2. — The tuple Pz is of type Ω for each z in Hn, and
every tuple of type Ω is isomorphic to Pz for some z in Hn. Tuples Pz
and Pw are isomorphic if and only if there is an element γ in the group
Γ = {α ∈ U(ηn)|Lα = L and uiα−ui ∈ L for each i} that satisfies w = γz.

Remark 2.3. — Taking L to be the lattice in K1
2n generated by the

standard basis vectors e1, . . . , e2n and the vectors α · e1, . . . , α · e2n (with α
a generator of K over Q), we see that there is an analytic family of abelian
varieties Auniv overHn such that the fiber of Auniv over each point z = (zij)
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in Hn is the abelian variety Az := Cn/Lz, where Lz is the Z-lattice in C2n

generated by:
zj = (z1j , . . . , znj , zj1, . . . , zjn),(2.4)

ej = vector with 1 in the j-th and j + n-th positions
and zeroes everywhere else

(2.5)

z′j = (α∗z1j , . . . , α
∗znj , αzj1, . . . , αzjn)(2.6)

e′j = vector with α∗ in j-th position, α in j + n-th position,
and zeroes everywhere else

,(2.7)

with j = 1, . . . , n. We will work with this family of abelian varieties in
examples in future sections.

2.3.3. Complex analytic automorphic forms

In this section, we recall the classical definition of automorphic forms
over C, following [34].

For α =
(
A B

C D

)
∈ U(ηn) and z ∈ Hn, we defineMα(z) = M(α, z) =

(µ(α, z), λ(α, z)), where µ(α, z) = Cz +D and λ(α, z) = C̄ · tz + D̄. Let X
be a finite-dimensional vector space, and fix a representation ω : GLn(C)×
GLn(C) → GL(X). For any map f : Hn → X and α ∈ U(ηn), define
f‖ωα : Hn → X by (f‖ωα) (z) = ω (Mα (z))−1

f(αz).
Let Γ be a congruence subgroup of U(ηn). A (holomorphic) automorphic

form of weight ω with respect to Γ is a holomorphic function f : Hn → X

that satisfies
f‖γ = f(2.8)

for each γ ∈ Γ. When n = 1, we also require that f is holomorphic at the
cusps.
We denote the space of all (holomorphic) automorphic forms of weight

ω with respect to Γ by Mω(Γ), and we set Mω = ∪ΓMω(Γ). A C∞-
automorphic form of weight ω with respect to a congruence subgroup Γ is
a C∞-function f : Hn → X satisfying (2.8) for each γ ∈ Γ.

2.4. Automorphic forms from another perspective

Our discussion here is a generalization to abelian varieties (of type Ω) of
the situation for elliptic curves discussed in Appendix A1.1 of [14].
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Let Ω be as in (2.3). Let (L, E, {ti}si=1) be a tuple consisting of a lattice
L in Cg such that there is an R-linear isomorphism

q : C1
g → Cg(2.9)

satisfying q(L) = L and q(ax) = Ψ(a)q(x) for all a ∈ K and x ∈ L, a
finite set of points {t1, . . . , ts} in L ⊗ Q such that q(ui) = ti for all i, and
a Riemann form E = Eq on Cg relative to L such that

Eq(q(x), q(y)) = trK/Q(xηny∗)(2.10)

for all x, y ∈ Cg. We call such a tuple (L, E, {ti}si=1) a lattice of type Ω. We
define an action of GLn(C) × GLn(C) on the set of tuples (L, E, {ti}si=1)
of type Ω via α · (L, E, {ti}si=1) = (αL, Eα, {αti}si=1), where Eα is defined
by Eα(αz, αw) = E(z, w). Observe that, modulo the action of GLn×GLn
on lattices of type Ω, there is a natural correspondence between lattices of
type Ω and isomorphism classes of abelian varieties of type Ω.

Theorem 2.4. — Fix a CM type Ω. Let L be a Z-lattice in Cg, and
let f be an automorphic form of weight ω with respect to a congruence
subgroup Γ of U(ηn) containing the group

Γ′ = {α ∈ U(ηn)|Lα = L and uiα− ui ∈ L for each i}.(2.11)

There exists a unique function fL of lattices (L ⊂ Cg, E, {ti}si=1) of type
Ω with Nui ∈ L for all i, such that for each α ∈ GLn(C)×GLn(C),

fL(α · (L, E, {ti}si=1)) = ω(tα)−1fL(L, E, {ti}si=1)(2.12)

and such that

fL(pz(L), Ez, {pz(ui)}si=1) = f(z)(2.13)

for all z in Hn.

Proof. — Let (L ⊂ Cg, E, {ti}si=1) be a lattice of type Ω such that Nti ∈
L for all i, and let q be as in (2.9) through (2.10). Then, as explained
in the first paragraph of Theorem 4.8 of [34], there is a diagonal matrix
S ∈ GL2n(C) and an element z ∈ Hn such that

q = S · pz,(2.14)

i.e. such that (L ⊂ Cg, E, {ti}si=1) = S · (pz(L), Epz , pz(ui)). Therefore, if
the function fL exists, then by (2.12) and (2.13), its value at L must be
ω(tS)−1f(z).
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Now we show that the function fL exists. For this, it suffices to show
that if there exist matrices S and T in GLn(C)×GLn(C) and elements z
and w in Hn such that

(L ⊂ Cg, E, {ti}si=1) = S · (pz(L), Epz , pz(ui))(2.15)
and

(L ⊂ Cg, E, {ti}si=1) = T · (pw(L), Epw , pw(ui)),(2.16)

then

ω(tT )−1f(w) = ω(tS)−1f(z).(2.17)

For the remainder of the proof, suppose that both (2.15) and (2.16) hold.
Then the abelian varieties of type Ω attached to (pz(L), Epz , pz(ui)) and
(pw(L), Epw , pw(ui)) are both isomorphic to the abelian variety of type Ω
attached to (L ⊂ Cg, E, {ti}si=1). Therefore, by Theorem 2.2, w = γz for
some γ ∈ Γ′ ⊂ Γ ⊂ U(ηn). By line (4.31) of [34],

pz(xα) = tM(α, z)pαz(x)(2.18)

for all x ∈ Cg and α ∈ U(ηn). Since L = Lα for all α in Γ′, (2.18)
shows that pz(L) = tM(γ, z)pw(L). Since ui − αui ∈ L for each α in Γ′,
pz(uiα) = pz(ui) for each α in Γ′. Since γ ∈ U(ηn), γηnγ∗ = ηn, Hence, it
immediately follows from the definition of Ez that Epz (pz(xα), pz(yα)) =
Epz (pz(x), pz(y)). So

(pz(L), Epz , pz(ui)) = tM(γ, z) · (pw(L), Epw , pw(ui))

Therefore T = S · tM(γ, z), so the right hand side of (2.17) is equal to

ω(tT )−1ω(M(γ, z))f(z) = ω(tT )−1f(γz).(2.19)

Since w = γz, the right hand side of (2.19) is equal to the left hand side
of (2.17). So Equation (2.17) holds, which proves the existence of the func-
tion fL. �

Having reformulated the definition of automorphic forms in terms of
functions of lattices of type Ω, we now reformulate it again in terms of
functions of complex abelian varieties of type Ω. Observe that giving an
ordered basis {ω±i }ni=1 of ω± is equivalent to giving an element of the
module E±A = IsomC(Cn, ω±A). (This equivalence is via 〈ei 7→ ω±i 〉ni=1 ↔
{ω±i }ni=1, with ei standard basis vectors in Cn.) The group GLn(C) acts
on EA± via

(α · λ)(v) := λ(tα · v)(2.20)
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for all v ∈ Cn and α ∈ GLn(C). We define EA by EA := E−A ⊕ E
+
A . Then

the action of GLn(C) on E±A given in (2.20) induces an action of GLn(C)×
GLn(C) on EA, and to give an element of EA is equivalent to specifying an
ordered basis of ω+ and an ordered basis of ω−.
Let L(A) be the lattice of type Ω attached to A as in Section 2.3.1. Then

we see that for each α ∈ GLn(C)×GLn(C) and λ ∈ EA,

α · L = L(A,α · λ).(2.21)

Let (ω, V ) be a finite-dimensional representation of GLn(C)×GLn(C),
and let f : Hn → V be an automorphic form of weight ω with respect to
some congruence subgroup Γ of U(ηn) containing Γ′ (with Γ′ defined as in
(2.11)). We define FL to be the unique function from pairs (A, λ) (where
λ is an element of EA) to V satisfying both FL(A,αλ) = ω(tα)−1FL(A, λ)
and FL(A, λ) = fL(L(A, λ)). Thus, an automorphic form f of weight ω on
Γ corresponds to a function F from pairs (A, λ) to V satisfying

F (A,αλ) = ω(tα)−1F (A, λ).(2.22)

Now we explain how to view functions F satisfying (2.22) as certain
functions on abelian varieties A of type Ω. Given a ring R and a group
B that acts on R-modules V1 and V2, we define the contracted product
V1×B V2 to be V1⊕V2 modulo the relation (v1, v2) ∼ (bv1, bv2). Let Hω :=
GLn(C)×GLn(C) act on EA by the action induced by (2.20), and let Hω

act on V via v 7→ ω(th)−1v. We define EA,V,ω to be the contracted product
EA,V,ω := EA×H

ω

V. To give a function F from pairs (A, λ) to V satisfying
(2.22) is equivalent to giving a function F̃ from abelian varieties A of type
Ω to EA,V,ω. This equivalence is via F̃ (A) = (λ, F (A, λ)).

Letting Aan
univ be the universal family of abelian varieties of type Ω over

Γ\Hn, we see that giving a holomorphic automorphic form f is equivalent
to giving a section of the Ohol

Hn -module

Ean
V,ω := EAan

univ
,V,ω ⊗Ohol

Hn .

Similarly, giving a C∞-automorphic form f is equivalent to giving a section
of the OHn(C∞)-module

EV,ω(C∞) := EAan
univ

,V,ω ⊗OHn(C∞).
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2.5. Algebraic geometric approach to automorphic forms on
unitary groups

The approach in this section is similar to the one in Section 1.2 of [16].
Fix an OK-algebra R0. Let V be an R0-module. For any R0-algebra R,

we denote by VR the R-module V ⊗R0 R obtained by extension of scalars
R0 → R. Let (ρ, V ) be an algebraic representation of GLn × GLn that is
defined over R0. That is, for each R0-algebra R, ρ defines a homomorphism

ρR : GLn(R)×GLn(R)→ GL(VR)

that commutes with extension of scalars R→ R′ of R0-algebras.
Fix a compact open subgroup K of G = GU(n, n). We denote by Γ the

congruence subgroup G(Q) ∩K. For each abelian variety A = (A, λ, ι, α)
in KAV (R) over an R0-algebra R, we now define modules E+

A/R, E
−
A/R,

and EA/R. Like in Section 2.4, we define E±A/R = IsomR(Rn, ω±A/R) and
EA/R = E−A/R ⊕ E

+
A/R. To give an element of λ ∈ E±A/R is equivalent to

specifying an ordered basis ω1, . . . , ωn of ω±A/R; the equivalence is via

λ ∈ E±A/R ↔ λ(e1), . . . , λ(en) ∈ ω±A/R.

So giving element of EA/R is equivalent to specifying an ordered basis of
ω− and an ordered basis of ω+. The group GLn(R) acts on E±A/R via

(α · λ)(v) := λ(tαv).(2.23)

The action of GLn(R) given in (2.23) induces an action of GLn(R) ×
GLn(R) on EA/R. Let Hρ = GLn(R)×GLn(R) act on VR via v 7→ ρ(tα)−1v

and act on EA/R through the action induced by (2.23). Similarly to in Sec-
tion 2.4, we denote by E(A,V,ρ)/R the R-module EA/R ×H

ρ

V. Observe that
formation of E(A,V,ρ)/R commutes with extension of scalars R → R′ of
R0-algebras.

Definition 2.5. — An automorphic form of weight ρ, defined over R0,
is a function f from the set of pairs (A, λ), consisting of A in KAV (R)
over an R0-algebra R and an element λ in EA/R, to VR such that all of the
following hold:

(1) The element f(A, λ) depends only on the R-isomorphism class of
(A, λ).

(2) The formation of f(A, λ) ∈ VR commutes with extension of scalars
R→ R′ of R0-algebras, i.e.

f(A×SpecR R
′, λ⊗R R′) = f(A, λ)⊗R 1 ∈ V ⊗R R′.
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(3) For each (A, λ) over R and α ∈ Hρ(R), f(A,αλ) = ρ(tα)−1f(A, λ).
We writeMρ(R0) to denote the R0-module of automorphic forms of weight
ρ defined over R.

Definition 2.6. — An automorphic form of weight ρ defined over R0,
is a rule f̃ that assigns to each A in KAV (R) over an R0-algebra R an
element of E(A,V,ρ)/R such that both of the following conditions hold:

(1) The elementf̃(A) in E(A,V,ρ)/R depends only on the R-isomorphism
class of A.

(2) The formation of f̃(A) commutes with extension of scalars R→ R′

of R0-algebras, i.e.

f̃(A×SpecR SpecR′) = f̃(A)⊗R 1 ∈ E(A,V,ρ)/R ⊗R R′.

The equivalence of these Definition 2.5 with Definition 2.6 is through
f̃(A) = (λ, f(A, λ)).
The perspective of Definition 2.6 leads us to another (equivalent) formu-

lation of the definition of automorphic forms in the case where KAV (R) is
representable (i.e. in the case where K is sufficiently small). In this case,
consider the scheme

M :=MR(K) :=K Sh(V )×OK R

��
SpecR

We denote by E± the locally free sheaf E± = IsomOM(OnM, ω±) of OM-
modules onM, and we denote by E the locally free sheaf E = E− ⊕ E+ of
OM-modules onM. We denote by EV,ρ, the locally free sheaf E×HρV . Then
an automorphic form of weight ρ is a global section of the sheaf EV,ρ on
MR(K). Note that for any representation (ρ, V ) that can be decomposed
as a direct sum (ρ1 ⊕ ρ2, V1 ⊕ V2), the map

EV,ρ → EV1,ρ1 ⊕ EV2,ρ2(2.24)
(λ, v) 7→ ((λ, v1), (λ, v2))

is an isomorphism. Therefore, to give an automorphic form of weight ρ is
equivalent to giving an automorphic form of weight ρ1 and an automorphic
form of weight ρ2.
Since GLn is reductive, each finite dimensional representation ρ can be

written as a direct sum of irreducible representations ρ = ρ1⊕ · · · ⊕ ρm for
some m. Every irreducible representation of GLn can be realized as a sub-
representation of one of the representations constructed as follows. For each
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set Λ of ordered integers λ1 > . . . > λn, there is a representation (ρΛ, VΛ) of
highest weight Λ. The representation (ρΛ, VΛ) can be realized explicitly by
taking VΛ = Sym(λ1−λ2)(Rn) ⊗ Sym(λ2−λ3)(∧2Rn) ⊗ · · · ⊗ Symλn(∧nRn),
and letting ρΛ be the GLn-action on VΛ induced by the standard represen-
tation of GLn(R) on Rn. If λn is negative, then by Symλn(∧nRn), we mean
the dual representation of Sym−λn(∧nRn), which is just the representation
in which each g ∈ GLn acts on each v ∈ R by v 7→ det gλnv. (Note that
the highest weight vector in VΛ is (e1)(λ1−λ2)⊗ (e1∧e2)(λ2−λ3)⊗· · ·⊗ (e1∧
· · · ∧ en)λn .) Every irreducible representation of GLn ×GLn is of the form
ρ− ⊗ ρ+ with ρ± irreducible representations of GLn.
Let W be a free rank n R-module. We write W ρΛ to denote

Sym(λ1−λ2)(W )⊗ Sym(λ2−λ3)(∧2W )⊗ · · · ⊗ Symλn(∧nW ).

When ρ is an arbitrary representation whose decomposition into irreducible
representations is ρΛ1 ⊕ · · · ⊕ ρΛm , we denote by W ρ the module
W ρΛ1 ⊕ · · · ⊕W ρΛm . Given another free-module W0 of rank n and a repre-
sentation ρ = ρΛ1 ⊗ ρΛ2 , we write (W ⊗W0)ρΛ1⊗ρΛ2 to denote the module
W ρΛ1 ⊗W ρΛ2

0 . Given an arbitrary representation ρ whose decomposition
into irreducible representations is ρ1 ⊕ · · · ⊕ ρm, we write (W ⊗W0)ρ to
denote the module W ρ1 ⊕ · · · ⊕W ρm .
Let Λ be an ordered set of integers λ1 > . . . > λn, corresponding to

the representation of GLn of highest weight Λ. Each λ± ∈ E± induces an
isomorphism λ±,ρΛ : VΛ = (Rn)ρΛ → (ω±)ρΛ defined by v1 · v2 · · · · · vm 7→
λ(v1) · λ(v2) · · · · · λ(vm) where each vi is in Rn and each · denotes the
symmetric, tensor, or alterating product (according to VΛ). Observe that
(α · λ)±ρΛ = λρΛ(ρΛ(tα)v). So given a representation ρΛ− ⊗ ρΛ+ of GLn ×
GLn, each isomorphism (λ−, λ+) ∈ E = E− ⊕ E+ induces an isomorphism
λρΛ−⊗ρΛ+ : VρΛ−

⊗ VρΛ+
= (Rn)ρΛ− ⊗ (Rn)ρΛ+

∼→ (ω−)ρΛ− ⊗ (ω+)ρΛ+

via v− ⊗ v+ 7→ λρΛ− (v−) ⊗ λρΛ+ (v+). Observe that (α · λ)ρΛ−⊗ρΛ+ (v) =
λρΛ−⊗ρΛ+ (ρΛ− ⊗ ρΛ+(tα)v). Therefore, there is an isomorphism

EVΛ−⊗VΛ+ ,ρΛ−⊗ρΛ+

∼→ (ω−)ρΛ− ⊗ (ω+)ρΛ+ ,(2.25)

defined by (λ, v) 7→ λρΛ−⊗ρΛ+ (v). Thus, at least in the case in which K is
sufficiently small (i.e. when the moduli problem KAV is representable), au-
tomorphic forms of weight ρ̃ (with ρ̃ a subrepresentation of ρ = ρΛ−⊗ρΛ+)
are sections of (ω− ⊗ ω+)ρ. This last perspective (i.e. viewing automor-
phic forms as sections of (ω−⊗ω+)ρ will be particularly useful to us when
defining the differential operators.
When working over C, the following theorem, which relates algebraic

automorphic forms to holomorphic ones, is useful.
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Theorem 2.7. — If n > 1, then f 7→ fan gives an isomorphism

Malg(C)(ρ,Γ)→Man(ρ,Γ).

This fact involves the existence of toroidal compactifications and the
analytic Koecher principle. The reader may see [5] for additional details.

2.6. C∞-automorphic forms

For any sheaf F onM, we let F(C∞) be the sheaf obtained by tensoring
F with the C∞-structural sheaf ofMan.
Note that we have inclusions (analogous to (1.8.1) of [16])

Malg = H0(MC, EV,ρ) ⊂Mhol = H0(Man, EV,ρ ⊗Ohol
M ) ⊂MC∞

= H0(M, EV,ρ ⊗OC
∞

M )

3. The Gauss-Manin connection and the Kodaira-Spencer
isomorphism

Throughout this section, let π : X → S and π′ : Y → S be smooth,
proper morphisms of schemes, and suppose that S is a smooth scheme over
a scheme T .

3.1. The Gauss-Manin connection

In this section, we review the construction of the Gauss-Manin connec-
tion ([13], [17], [11], [18]).
Consider the decreasing filtration of (Ω•X/T , d) defined by

F i = Fili(Ω•X/T )
= Image(π∗ΩiS/T ⊗OX Ω•−iX/T → Ω•X/T ),(3.1)

where the morphism in (3.1) is the canonical one. The associated graded
complex is Gr(Ω•) = ⊕p>0Gr

p, with Grp = F p/F p+1. As explained in [17]
and [13], there is a spectral sequence (which converges to Rp+qπ∗(Ω•X/T ) =
Hp+q
DR (X/S)) with E1 term given by Ep,q1 = Rqπ∗(Grp). The Gauss-Manin

connection is the differential d1 : E0,q
1 → E1,q

1 .We denote the Gauss-Manin
connection by ∇.
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Observe that Gri ∼= Ω•−iX/S⊗OX π
∗ΩiS/T for all i. In particular, we see that

E0,q
1
∼= Hq

DR(X/S) and E1,q
1
∼= Hq

DR(X/S)⊗OS Ω1
S/T . So the Gauss-Manin

connection is the map
∇ = d1 : Hq

DR(X/S)→ Hq
DR(X/S)⊗OS Ω1

S/T .

We will always take q = 1 when applying the Gauss-Manin connection.
Observe that by construction of ∇, if f is an endomorphism of X over

S, then
∇(f∗(v)) = (f∗ ⊗ Id)(∇(v))(3.2)

for each v in H1
DR(X/S). As a consequence of (3.2), we see that if A is an

abelian variety of type (2.1) over an OK-scheme S and v is in H1
DR(A/S)+,

then (ι(a)∗⊗ Id)(∇(v)) = ∇(ι(a)∗v) = ∇(a · v) = a∇(v) = (a⊗ Id)∇(v), so
∇
(
H1
DR(A/S)+) ⊆ H1

DR(A/S)+ ⊗ Ω(3.3)
Similarly,

∇
(
H1
DR(A/S)−

)
⊆ H1

DR(A/S)− ⊗ Ω.(3.4)

3.1.1. An important example

If we trace through the map given by the Gauss-Manin connection, we
see that it involves lifting a relative form to an absolute form, differentiating
the absolute form, and then projecting down to an element of H1

DR(X/S)⊗
Ω1
S/T . This idea is best made clear in an example over C, which we will

now provide. This example not only explicitly illustrates how the Gauss-
Manin connection acts in one of the main cases that interests us (the other
example being over a p-adic base); it also will be useful later when we
explicitly describe the action of our C∞-differential operators and when
we relate our C∞-operators to the ones in [34]. This example is strongly
inspired by sections 4.0-4.2 of [6], and the construction here is directly
analogous to and closely follows what Harris does for symplectic modular
forms. Our example is the U(n, n) analogue of the example for symplectic
groups in sections 4.0-4.2 of [6].
As noted in Section 2, we will work over the underlying C∞-manifold of

our moduli space. In the example, we will consider Auniv over Hn over C,
as in Section 2.3. The sheaf H1

DR(C∞) has a splitting
H1
DR(C∞) ∼= ω(C∞)⊕ Split(C∞),(3.5)

where ω(C∞) is the space of holomorphic one-forms (which is the C∞ vec-
tor bundle corresponding to the sheaf of relative one-forms ω=π∗ΩAuniv/Hn)
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and Split(C∞) is the space of anti-holomorphic one-forms. Also, recall that
the fiber H1

DR(C∞)z of H1
DR(C∞) over a point z ∈ Hn is the de Rham

cohomology of that fiber (i.e. Az, in the notation of Section 2.3) and that
the splitting (3.5) induces the Hodge decomposition of H1

DR(C∞) at each
fiber.
Let u1, . . . , u2n denote standard coordinates in C2n. Then the global

relative 1-forms du1, . . . , du2n form a basis of the fiber of ω over each point
z ∈ H.

We now define some global relative 1-forms that have constant peri-
ods across the fibers of Auniv/Hn. We define them to be dual to the one-
cycles (in homology) defined in terms of the basis for Lz given in Equations
(2.4-2.7).
We consider the R-linear global relative one forms (for i = 1, . . . , n)

which are given over z = (zij) in Hn by

αi

 n∑
j=1

ajej +
n∑
j=1

bjzj +
n∑
j=1

a′je
′
j +

n∑
j=1

b′jz
′
j

 = ai(3.6)

βi

 n∑
j=1

ajej +
n∑
j=1

bjzj +
n∑
j=1

a′je
′
j +

n∑
j=1

b′jz
′
j

 = bi(3.7)

α′i

 n∑
j=1

ajej +
n∑
j=1

bjzj +
n∑
j=1

a′je
′
j +

n∑
j=1

b′jz
′
j

 = a′i(3.8)

β′i

 n∑
j=1

ajej +
n∑
j=1

bjzj +
n∑
j=1

a′je
′
j +

n∑
j=1

b′jz
′
j

 = b′i,(3.9)

for each ai, bi, a′i, b′i in R. (Here we are using the notation for the basis of
Lz given in Equations (2.4-2.7).)
Observe that these forms have constant periods along the fibers. There-

fore,

∇ (αi) = ∇ (βi) = ∇ (α′i) = ∇ (β′i) = 0 for i = 1, . . . , n.(3.10)

That is, the sections αi, βi, α′i, β′i are horizontal. Now we express
du1, . . . , du2n and ¯du1, . . . , ¯du2n in terms of αi, βi, α′i, β′i. Using the defini-
tions of ei, zi, e′i, z′i (as in Equations (2.4-2.7)) and αi, βi, α′i, β′i (as above),
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we see that for i = 1, . . . , n,

dui = αi +
n∑
j=1

zijβj + ᾱα′i + ᾱ

n∑
j=1

zijβ
′
j(3.11)

dūi = αi +
n∑
j=1

z̄ijβj + αα′i + α

n∑
j=1

z̄ijβ
′
j ;(3.12)

and for i = n+ 1, . . . , 2n, we have

dui = αi +
n∑
j=1

zj,i−nβj + αα′i + α

n∑
j=1

zj,i−nβ
′
j(3.13)

dūi = αi +
n∑
j=1

z̄j,i−nβj + ᾱα′i + ᾱ

n∑
j=1

z̄j,i−nβ
′
j(3.14)

Since ∇ is a connection, ∇ (a · v) = a∇ (v) + v ⊗ da, for any a ∈ OHn
and any v ∈ H1

DR. This, combined with Equations (3.11) - (3.14) shows
that for i = 1, . . . , n,

∇ (dui) =
n∑
j=1

βj ⊗ dzij + ᾱ

n∑
j=1

β′j ⊗ dzij

=
n∑
j=1

(
βj + ᾱβ′j

)
⊗ dzij(3.15)

∇ (dui+n) =
n∑
j=1

βj ⊗ dzji + α

n∑
j=1

β′j ⊗ dzji

=
n∑
j=1

(
βj + αβ′j

)
⊗ dzji(3.16)

One can similarly compute ∇
( ¯dui

)
. For our purposes, however, we will

only be interested in the application of ∇ to the holomorphic differentials.
(This is because automorphic forms are associated with the holomorphic
differentials.)
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From Equations (3.11) - (3.14), we see that β1 + αβ′1
...

βn + αβ′n

 = (zt − z̄)−1

 dun+1 − dū1
...

du2n − dūn

(3.17)

 β1 + ᾱβ′1
...

βn + ᾱβ′n

 = (z − z∗)−1

 du1 − dūn+1
...

dun − dū2n

(3.18)

Remark 3.1. — We revisit (3.2) in the context of our example. Consider
an endomorphism f : Auniv → Auniv over Hn. Then f (Lz) ⊂ Lz, and so f∗
maps the horizontal sections αi, βi, α′i, β′i to horizontal sections. (i.e. Forms
with constant periods are mapped to forms with constant periods.) Let v
be an element of H1

DR. Then we can write v =
∑
fiγi for some horizontal

sections γi and some sections fi ∈ OHn . Since f is a morphism over Hn,
we see that f∗ (v) =

∑
fif
∗γi. So

∇ (f∗ (v)) = f∗γi ⊗ dfi = (f∗ ⊗ Id)∇
(∑

fiγi

)
= (f∗ ⊗ Id)∇ (v)

This completes our example (for now) regarding the action of the Gauss-
Manin connection. This perspective will be useful again when we define the
C∞-differential operators.

3.1.2. Remark about some related connections

From the Gauss-Manin connection, we can construct connections on
(H1

DR)⊗m, ∧H1
DR, and SymH1

DR through the product rule. For example,
for any v and w in H1

DR, we set

∇ (v ⊗ w) = σ (∇ (v)⊗ w) + v ⊗∇ (w) ,(3.19)

where σ is the canonical isomorphism switching the order of the last two
components of the tensor product:

σ : H1
DR ⊗ Ω⊗H1

DR
∼→ H1

DR ⊗H1
DR ⊗ Ω

v1 ⊗ v2 ⊗ v3 7→ v1 ⊗ v3 ⊗ v2

We similarly define ∇ on higher tensor powers of H1
DR inductively.
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3.2. The Kodaira-Spencer isomorphism

We briefly review the Kodaira-Spencer isomorphism. For more detailed
treatments, see [20, 5].

From now on, X is an abelian scheme. Let ωX := π∗ΩX/S and ωX∨ :=
π∗ΩX∨/S , where X∨ denotes the dual of X. Hypercohomology gives a
canonical exact sequence

0→ ωX ↪→ H1
DR(X/S)→ R1π∗(OX)(3.20)

We then have canonical isomorphisms
H1
DR(X/S)/(π∗ΩX/S) ∼→ R1π∗(OX) ∼→ (ωX∨)∨.

Define
(3.21) KS′ : ωX → (ωX∨)∨ ⊗ ΩS/T
to be the composition of canonical maps

(3.22) ω ↪→ H1
DR(X/S) ∇→ H1

DR(X/S)⊗ ΩS/T
� R1π∗(OX)⊗ ΩS/T

∼→ (ωX∨)∨ ⊗ ΩS/T .
Tensoring each side with of 3.21 with ωX∨ , we obtain a morphism KS :
ωX ⊗ ωX∨ → ΩS/T , making the Diagram (3.23) commute.

ωX ⊗ ωX∨
KS //

KS′⊗Id ((RRRRRRRRRRRRRR
ΩS/T

(ωX∨)∨ ⊗ ΩS/T ⊗ ωX∨
f⊗g⊗h7→f(h)⊗g

66nnnnnnnnnnnnn

(3.23)

In Subsection 3.2.1, we explicitly describe the Kodaira-Spencer morphism
in coordinates in an example over C. In our example, we will be able to
explicitly give the kernel of KS. For more general cases, the kernel of KS is
provided in [20]; we provide the relevant result from [20] in Subsection 3.3.
However, while the abstract result from [20] is useful, it is also important
(for our particular situation) to keep in mind the example in coordinates
that we work out in Subsection 3.2.1.

3.2.1. Useful example over C

Like in Subsection 3.1.1, consider Auniv over Hn over C. We first describe
the polarization (for z in Hn)

λ := λz : Az → A∨z
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following section 3.3 of [33] and section 4 of [34]. Define 〈, 〉 to be the
non-degenerate symmetric R-bilinear pairing on C2n defined by 〈x, y〉 =∑n
i=1 xiȳi + x̄iyi for all vectors x = (xi) and y = (yi) in C2n. Let z∗j , e∗j ,

z′j
∗, e′j

∗ denote the elements of C2n such that for any vector v ∈ C2n

〈v, z∗j 〉 = βj(v)
〈v, z′j

∗〉 = β′j(v)
〈v, e∗j 〉 = αj(v)
〈v, e′j

∗〉 = α′j(v),

where βj , αj , β′j , α′j are defined as in Equations (3.6) through (3.9).
Let (, ) be the pairing on C2n defined by (x, y) =

∑n
i=1 x̄iyi for all vectors

x = (xi) and y = (yi) in C2n. Then we can write αi, βi, α′i, β′i as the sum
of its C-anti-linear and C-linear pieces as

αi(•) = (•, e∗j ) + (e∗j , •)
βi(•) = (•, z∗j ) + (z∗j , •)
α′i(•) = (•, e′∗j ) + (e′∗j , •)
β′i(•) = (•, z′∗j ) + (z′∗j , •)

Consider the Riemann form Ez on C2n defined on the lattice Lz by
Ez(pz(x), pz(y)) := tr C/R(xηny∗) for all x, y ∈ O2n

K , where pz(•) is defined
as in section 2.3.
Viewing Ǎz as

C2n/L∗z,(3.24)

where L∗z is the lattice spanned by z∗i , e∗i , z′∗i , e′∗i , we have that λ is the C-
linear map defined by 〈λ(u), v〉 = Ez(u, v) for all u, v in C2n. In particular,
we see that λ(ei) = 2z∗i + tr C/R(ᾱ)z′∗i and λ(e′i) = tr C/R(α)z∗i + 2αᾱz′∗i .
So for uj ∈ C, we have that for j = 1, . . . , n,

λ((0, . . . , uj , . . . , 0)) = ujλ

(
1

α− ᾱ
(αej − e′j)

)
= uj
α− ᾱ

((
2α− tr C/R(α)

)
z∗j + α

(
tr C/R(ᾱ)− 2ᾱ

)
z′∗j
)

= uj
(
z∗j + αz′∗j

)
and similarly, λ((0, . . . , uj+n, . . . , 0)) = ujλ

(
1

ᾱ−α (ᾱej − e′j)
)

= uj(z∗j +
ᾱz′∗j ).

Now let w1, . . . wn, wn+1, . . . , w2n be coordinates on C2n in terms of the
vectors z∗1 +αz′∗1 , . . . , z

∗
n +αz′∗n , z

∗
1 + ᾱz′∗1 , . . . , z

∗
n + ᾱz′∗n , respectively. Then
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for 1 6 j 6 n, λ∗(dwj) = duj . We are now in a position to look at the
action of the Kodaira-Spencer morphism KS on the basis dui⊗ dwj , i, j =
1, . . . 2n for ωAz ⊗ ωA∨z . We will do this by tracing dui ⊗ dwj step-by-step
through the composition of maps (3.22) and (3.23). For i = 1, . . . , n and
j = n+ 1, . . . , 2n,

dui ⊗ dwj
(incl.)
7−→ dui ⊗ dwj

∇⊗Id7−→
(

n∑
k=1

(βk + ᾱβ′k)⊗ dzik

)
⊗ dwj

(3.25)

mod ωAz7−→
n∑
k=1

((•, z∗k + ᾱz′∗k )⊗ dzik)⊗ dwj(3.26)

7→
n∑
k=1

(
(dwk)∨ ⊗ dzik

)
⊗ dwj 7→ dzi,j−n.(3.27)

(Note that in lines (3.24), (3.26), and (3.27), we are implicitly associating
the following via their canonical identifications: C2n, the tangent space of
A∨z , ω∨A∨z , HomC-anti-lin(ωAz ,C), and ω̄Az .)
So from lines (3.25) through (3.27), we see that

KS(dui ⊗ dwj) = dzi,j−n for 1 6 i 6 n and n+ 1 6 j 6 2n.(3.28)

Similarly, by tracing dui⊗dwj through the composition of maps (3.22) and
(3.23), one finds that

KS(dui ⊗ dwj) =


dzj,i−n if n+ 1 6 i 6 2n and 1 6 j 6 n
0 if 1 6 i, j 6 n
0 if n+ 1 6 i, j 6 2n

(3.29)

We thus find that IKS := ker(KS) is spanned by

(3.30) {dui ⊗ dwj − duj ⊗ dwi|1 6 i, j 6 2n}
∪ {dui ⊗ dwj |1 6 i, j 6 n or n+ 1 6 i, j 6 2n} .

This is a special case of the more general result given in Lemma 3.4. In Sec-
tion 8, the above description of IKS will be important in our consideration
of the action of ∇ on IKS (defined through the product rule).

Lemma 3.2. — KS induces an isomorphism (the “Kodaira-Spencer iso-
morphism”)

KS : ωAuniv ⊗ ωA∨univ
/IKS

∼→ ΩH/C.
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Associating ΩH/C with the complex vector space Cnn via

dzij ↔ eij := the n× n matrix with 1 in the ij-th position
and zeroes everywhere else,

we have that for all γ ∈ Kc ⊂ GL2n(C), h ∈ ωA ⊗ ωA∨ , and g ∈ ΩH/C,
KS ((ρSt ⊗ ρSt)(γ ⊗ γ)(h)) = τ(γ)g.(3.31)

Proof. — The isomorphism follows directly from the above example.
Equation (3.31) also follows from the above example, combined with the
definitions of ρSt and τ from Section 2.3. �

For convenience, we often associate ωA with ωA∨ via the isomorphism
λ∗ : ωA∨ → ωA

dwi 7→ dui

coming from the polarization λ.

Lemma 3.3. — ∇(IKS) mod (Split(C∞)⊗ Ω(C∞)) is contained in
IKS ⊗ Ω(C∞).

Proof. — We prove this lemma by showing that
∇(v) ⊂ I ⊗ Ω(3.32)

for all the elements v in the basis for IKS given in (3.30). Using the product
rule given in (3.19), we have that for all x and y in ω(C∞),

∇(x⊗ y − y ⊗ x) = σ(∇(x)⊗ y) + x⊗∇(y)− σ(∇(y)⊗ x)− y ⊗∇(x).
(3.33)

By (3.30), we know that for all x and y in ω(C∞) x ⊗ y − y ⊗ x lies
in IKS . Therefore, for all z and w in ω(C∞), z ⊗ ∇(w) − σ(∇(w) ⊗ z)
mod (Split(C∞)⊗ Ω(C∞)) lies in IKS ⊗ Ω. Consequently, from Equation
(3.33), we see that∇(x⊗y−y⊗x) lies in IKS⊗Ω mod (Split(C∞)⊗ Ω(C∞))
for all x and y in ω(C∞). In particular, for all i and j,

∇(dui ⊗ duj − duj ⊗ dui) mod (Split(C∞)⊗ Ω(C∞))
lies in IKS⊗Ω.Now, we check that∇(dui⊗duj) mod (Split(C∞)⊗ Ω(C∞))
lies in IKS ⊗ Ω(C∞) whenever 1 6 i, j 6 n or n + 1 6 i, j 6 2n. From
Equations (3.15) through (3.18), we see that for 1 6 i, j 6 n, ∇(dui)
mod Split(C∞)⊗Ω(C∞) is contained in the submodule of ω(C∞)⊗Ω(C∞)
generated by the set of elements {duk ⊗ w|1 6 k 6 n and w ∈ Ω(C∞)} ;
and similarly, ∇(dui+n) mod Split(C∞)⊗Ω(C∞) is contained in the sub-
module of ω(C∞)⊗ Ω(C∞) generated by the set of elements

{duk⊗w|n+ 16 k6 2n and w ∈ Ω(C∞)}.
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Therefore, we see that for 1 6 i, j 6 n, ∇(dui ⊗ duj) mod Split(C∞) ⊗
Ω(C∞) is contained in the submodule of ω(C∞) ⊗ ω(C∞) ⊗ Ω(C∞) gen-
erated by {duk ⊗ dul ⊗ w|1 6 k, l 6 n and w ∈ Ω(C∞)} , which is a sub-
module of IKS ⊗ Ω(C∞) (by 3.30). Similarly, we see that for 1 6 i, j 6 n,
∇(dui+n⊗duj+n) mod Split(C∞)⊗Ω(C∞) is contained in the submodule
of ω(C∞)⊗ ω(C∞)⊗ Ω(C∞) generated by

{duk+n ⊗ dul+n ⊗ w|n+ 1 6 k + n, l + n 6 2n and w ∈ Ω(C∞)} ,

which is a also submodule of IKS ⊗ Ω(C∞) (by 3.30). Since we have now
shown that (3.32) holds for all v in the basis for IKS given in (3.30), the
proof of the lemma is complete. �

3.3. The kernel of the Kodaira-Spencer isomorphism

We try as much as possible in this section to be consistent with the
notation of [20]. Let S0 be the base scheme over which KS is defined, and
let (A, λ, ι, α) be the tuple associated to a morphism S →K S.

Lemma 3.4 ([20], part of Proposition 2.3.4.2). — The kernel IKS of
KS : ωA/S⊗ωA∨/S → ΩS/S0 contains the submodule JKS of ωA/S⊗ωA∨/S
generated by the set of elements{

λ∗(y)⊗ x− λ∗(x)⊗ y|x, y ∈ ωA∨/S
}
∪{

(i(b)∗x)⊗ y − x⊗ ((i(b)̌)∗y)|x ∈ ωA/S, y ∈ ωA∨/S , b ∈ OK
}
,(3.34)

Furthermore, if S →M is étale, then the map KS : ωA/S⊗ωA∨/S/JKS →
ΩS/S0 is an isomorphism.

Since λ is a prime-to-p polarization, the morphism λ∗ : ωA∨/S → ωA/S
is an isomorphism.
Therefore, we obtain the following Corollary of Lemma 3.4.

Corollary 3.5. — SupposeS→M is étale. Then, the Kodaira-Spencer
morphism KS induces an isomorphism, which by abuse of notation we also
denote KS:

KS : Sym2(ωA/S)/JKS
∼→ ΩS/S0 .(3.35)

(Here, we associate JKS with its image in Sym2(ωA/S).)

Remark 3.6. — We shall mainly be applying Corollary 3.5 in the case
where S =M and the mapM→M is the identity (so the abelian scheme
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associated to S → M is the universal abelian scheme Auniv). Since the
identity map is étale, we can indeed apply Corollary 3.5 in this situation.
In the case where S is an arbitrary scheme over S0 and S → M is

not étale, IKS can be strictly larger than JKS . For example, consider the
case where M = Hn over S0 = C, S = C, and A is the abelian variety
corresponding to a morphism S := Spec(C)→ Hn/C. In this case, ΩS/S0 =
0, but Sym2(ωA/S)/JKS 6= 0.

As a direct consequence of Corollary 3.5, we have isomorphisms (which
are crucial in our construction of the differential operators)

ΩM/S0
∼→ Sym2(ω)/JKS(3.36)
∼→ ω+ ⊗ ω−(3.37)

Depending on the situation, we will work sometimes with isomorphism
(3.36) and sometimes with (3.37).

4. Algebraic and analytic q-expansions

In this section, we briefly discuss algebraic q-expansions, which will be
important in later proofs.

4.1. Fourier expansions

This section closely follows Section 5 of [34].
For c ∈ C and X ∈ Cnn, let e(c) = exp(2πic), en(X) = e(tr (X)), and

S = Sn = {σ ∈ Kn
n |σ∗ = σ} . Let Γ ⊂ GU(ηn) be a congruence subgroup.

Then there exists a Z-latticeM in S such that
(

1 σ

0 1

)
is in Γ for each σ

inM . Let L′ = {h ∈ S|tr(hM) ⊂ Z} . Let f be a holomorphic automorphic
form with respect to Γ that takes values in a vector-space X. Then because
f(z + σ) = f(z) for each σ ∈ M , f has a Fourier expansion, i.e. there
exist elements c(h) ∈ X such that f(z) =

∑
h∈L′ c(h)en(hz). We write the

Fourier expansion of f as f(z) =
∑
h∈S c(h)en(hz). If n > 1, then c(h) 6= 0

only if h is nonnegative definite.
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4.2. The algebraic theory of q-expansions and the Mumford
object

This section should be viewed as a user’s guide to algebraic q-expansions
in the PEL moduli problem. The situation for the Sp(n) moduli problem
is similar.
The algebraic theory of q-expansions relies upon the existence of what

we shall call “Mumford objects” or “Mumford abelian varieties.” Mumford
ojects are the higher dimensional generalization of Tate elliptic curves.
Like Tate curves, Mumford abelian varieties arise naturally from a certain
semiabelian scheme over toroidal compactifications of the moduli scheme
M = Sh(2V ) over (OK)(p). For each cusp ofM, there is a corresponding
Mumford object, which lies over the compactification of Sh(2V ) at that
cusp. The details of the construction of toroidal compactifications of PEL
Shimura varieties is given in [20]. For Hilbert modular forms, the corre-
sponding toroidal compactifications were constructed in [27]. For symplec-
tic modular forms, this is discussed is [5]. For details on the discussion in
[5], see [20]. Tate curves are often used explicitly in computations and de-
scribed in detail in coordinates over C. The current literature on Mumford
objects and algebraic q-expansions does not provide a similarly explicit de-
scription. A q-expansion principle analogous to the q-expansion principle
for Tate curves is provided in [20], however.

4.2.1. The Mumford object

Let V = W ⊕W ′, where W,W ′ = Kn. Note that J =
(

0 −1n
1n 0

)
induces a pairing Ψ on V . The pairing Ψ induces an isomorphism W ′ ∼→
Hom(W,K). Define a pairing Ψ′ : V × V → Q by (x, y) 7→ Ψ′(x, y) =
tr
(
δ−1
K Ψ (x, y)

)
for each x, y ∈ V . Let L be the lattice inside V defined

by L = OnK ⊕ OnK. Then the restriction Ψ′ : L × L → Z of Ψ′ is a perfect
pairing. Write W and W ′ to denote W ∩ L and W ′ ∩ L, respectively.
Let U be an open compact subgroup of GU(n, n)(Af ) = G(Af ). Then

ShG(U) = G(Q)+\Hn×G(Af )/U ⊇ Γ\Hn, with Γ = G+(Q)∩U. Let P be
the stabilizer ofW ′ in GU(n, n), where GU(n, n) acts onW ′ (viewed as row

vectors) on the right. Then each matrix in P is of the form
(
A B

0 C

)
.

Let N be the unipotent radical of P , and let H = N ∩ Γ. Then H is
an upper-triangular, unipotent subgroup of GU(n, n)(K). It is a simple
computation to show that N is contained in the group of matrices of the
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form
(

1n B

0 1n

)
with B a Hermitian matrix with entries in K. Thus, we

can choose the latticeM used to construct Fourier expansions in Subsection

4.1 so that H =
(

1n M

0 1n

)
. Note that H maps W to W ′.

Let H∨ be the dual lattice of H. That is, each element of H∨ may be
viewed as a Z-linear map H → Z given by h 7→ tr (gh) ⊆ Z. for some
(non-unique) matrix g. A simple computation shows that we may associate
H∨ with the lattice L′ in Kn

n , where L′ is defined in terms of M as above.
The data L = W ⊕W ′ above is called the (zero-dimensional) “cusp at

infinity.” The zero-dimensional cusps are in one-to-one correspondence with
the elements of P (Q)\G(Af )/K. There is not a canonical way to associate
a lattice to each g in P (Q)\G(Af )/K, but a systematic way is the following.
Write

G(Af ) =
∐
i

G(Q)giK

g = γgik.

Define the lattice at the cusp corresponding to g to be Lg = (L⊗ Ẑ)gi ∩V ,
Wg = Wγ∩L,W ′g = W ′γ∩L. ThenH is defined accordingly, corresponding
to our new choice of cusp. Note that the symmetric space is

∐
Γi Hn. Each

gi tells us which Γi and γ says which Borel. In the following discussion of
Mumford objects and q-expansions, one can consider any of the cusps g,
even though we write our discuss in terms of the notation for the cusp at
infinity; the reader wishing to work with a different cusp g should simply
replace L with Lg, W with Wg, etc. As explained in [20], for a toroidal
compactification ofM, the completion along the boundary stratum for the
zero-dimensional cusp [g] lies over SpfR, where R is the ring

(OK)(p) [[q,H∨>0]]Γg

=

 ∑
h∈H∨

>0

ahq
h | h > 0, ah ∈ (OK)(p) , and a(γhγ∗) for all (γ, γ∗) ∈ Γg

.
There is a semiabelian scheme over the toroidal compactification of M.
By passing to (OK)(p) ((q,H∨>0)), we obtain an abelian variety GH over
M/Spec((OK)(p) ((q,H∨>0))), which gives the Mumford object at the cusp
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H, a semi-abelian scheme lying over

(OK)(p) ((q,H∨>0)) =
{ ∑
h∈H∨

ahq
h | ah ∈ (OK)(p) and ah = 0 if h� 0

}

and denoted MumL(q).
We now briefly discuss the analytic situation over C to provide some

context and motivation for our upcoming (algebraic) description of Mum-
ford objects. Recall that for an elliptic curve E, the analytic construction
E = C/Z + τZ exp−−→ C×/q(Z), where q is the map

q : Z→ C×

n 7→ e2πin,

gives a map from an elliptic curve to the complex points of the Tate curve.
We now do the analogue of this in our situation.
Setting X = Z+Z∗

2 and Y = −i(Z−Z∗)
2 , we have Z = X+iY , with Y > 0.

Now we expressHn in terms ofH:Hn = H⊗R+(H ⊗ R)>0 i ⊂ H⊗C. (For
a set S of Hermitian matrices, we write S>0 to denote the set of positive
definite matrices in S.) Let τ ∈ Hn ⊂ H ⊗ C. Then we may express the
abelian variety Aτ as W ′ ⊗ C/Lτ , where Lτ is the Z-lattice generated by
W ′ ⊗ 1 and τ(W ) ⊂ W ′ ⊗ C. So we have a commutative diagram of Lie
groups (where the map q is defined implicitly through the exp map, and
q(H∨) = exp(τ(W )))

W ′ ⊗ C/Lτ

��

exp
//W ′ ⊗ C×/q(H∨) = W ′ ⊗ Gm(C)/qτ (H∨)

��
Hn ⊂ H ⊗ C exp

// H ⊗ C× = Spec
(

(OK)(p) ((q, H∨>0))⊗OKC
)an

The quotient W ′ ⊗ Gm(C)/q(H∨) above is the set of complex points of
an abelian variety.
We now describe the Mumford object more explicitly, analogous to the

description of Tatea,b(q) in [16].

Remark 4.1. — For the reader trying to understand [16] in the context
of our description of the general situation, we provide the following dictio-
nary between Katz’s notation and the notation we will use for the general
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situation.
a↔W ′

b↔W

a−1b−1 ↔ H

ab↔ H∨.

We define a Z-linear morphism
q : W →W ′ ⊗Gm(4.1)

fromW to the torusW ′⊗Gm lying over OK((q,H∨)) to be the composition
of morphisms

W
w 7→evalw−−−−−−→ HomZ(H,W ′) ∼→ H∨ ⊗W →W ′ ⊗Gm.

(By evalw, we mean the map h 7→ h(w) in HomZ(H,W ′).)
The “Mumford abelian variety at the cusp H” is the algebraification of

the rigid analytic quotient
q(W )\ ((W ′)∨ ⊗Gm) .(4.2)

We denote the Mumford abelian variety by MumL(q) or MumH(q). The
construction of the Mumford abelian variety is discussed in [24] and in [20].
The Mumford abelian variety MumL(q) has a canonical PEL structure.

The canonical endomorphism
ιcan : OK → End(OK)(p)((q,H∨>0))(MumL(q))

is defined by
α : L→ L

l 7→ α · l

for each element α of OK. The dual abelian variety is
MumL(q)∨ = MumW ′∨⊕W∨(q),

i.e. the algebraification of the rigid analytic quotient q(W ′∨)\ (W∨ ⊗Gm) .
The canonical isomorphism W ′

∼→W∨ induced by the pairing Ψ induces a
canonical polarization λcan : q(W )\ (W ′ ⊗Gm)→ q(W ′∨)\ (W∨ ⊗Gm) of
MumL(q). The natural exact sequence

0→W ′ ⊗
∏
l

lim←−
n

µln →
∏
l

Tl(A)→W ⊗ Ẑ→ 0

induces a canonical level K structure αcan : V ⊗ Af
∼→
∏
l Tl(A) ⊗ Q

modulo the action of K. At times, we shall write MumL(q) to mean the
tuple (MumL(q), λcan, ιcan, αcan).
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Observe that there is a canonical isomorphism ωL : Lie(MumL(q)) ∼→
Lie(W ′ ⊗Gm) = W ′ ⊗ (OK)(p) ((q,H∨>0)). Dualizing the morphism ωL, we
obtain a canonical isomorphism

ωcan : W ′∨ ⊗ (OK)(p) ((q,H∨>0)) ∼→ ω,(4.3)

which gives a canonical element of E . There is a similar isomorphism on
MumL(q)∨:

W∨ ⊗ (OK)(p) ((q,H∨>0)) = Lie(Gm ⊗W∨) ∼→ Lie(MumL(q)∨)(4.4)

We now revisit the Kodaira-Spencer morphism in the context of
MumL(q). Recall that for an abelian variety A the Kodaira-Spencer iso-
morphism identifies derivations of OM with pairings of ωA and Lie(A∨),
i.e. with elements of Lie(A) ⊗ Lie(A∨). We provide a concise reminder of
the Kodaira-Spencer isomorphism for an abelian variety A, reviewing pre-
cisely the details that we will need in our discussion of the situation for
MumL(q). Recall the exact sequence 0 → ω → H1

DR → Lie(A∨) → 0 and
the Gauss-Manin connection (from which the Kodaira-Spencer morphism
is constructed) ∇ : H1

DR → H1
DR ⊗Ω. Each D ∈ TM/OK = Der (OM,OM)

defines a morphism ∇(D) : H1
DR → H1

DR, which induces a morphism
KS(D) : ω → Lie(A∨) defined to be the composition of maps

ω ↪→ H1
DR

∇(D)−−−→ H1
DR � Lie(A∨).

The map D 7→ KS(D) defines the Kodaira-Spencer morphism TM/OK →
HomOM (ω,Lie(A∨)) ∼= Lie(A)⊗ Lie(A∨). Dualizing gives

Ω← Lie(A)⊗ Lie(A∨).

On MumL(q), the Kodaira-Spencer map is

KS : Der
(

(OK)(p) ((q,H∨>0)), (OK)(p) ((q,H∨>0))
)

→ Lie (MumW⊕W ′(q))⊗ Lie (MumW ′∨⊕W∨(q))
∼= W ′ ⊗W∨ ⊗ (OK)(p) ((q,H∨>0))

Given γ ∈H⊗ZOK, defineD(γ)∈Der
(
(OK)(p)((q,H∨>0)), (OK)(p)((q,H∨>0))

)
by

D(γ)
( ∑
α∈H∨

aαq
α

)
=
∑
α∈H∨

tr (αγ)aαqα.

Note that there is a natural Z-linear morphism φH : H →W∨⊗ZW
′. Then

KS(D(γ)) = φH(γ)⊗ 1 in W ′ ⊗W∨ ⊗ (OK)(p) ((q,H∨>0)).
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For w ∈W ′∨, let ω(w) denote the image in ω of w⊗1 under the morphism
(4.3). For each v ∈ W∨, let l(v) denote the image of v ⊗ 1 under the
morphism (4.4). Then for each γ ∈ H, ∇ (D(γ)) (ω(w)) ≡ l(w · γ) mod ω.

The notation ω and l has been chosen to be similar to similar maps in
[16]. We further denote by ω±(w) the projection of ω(w) onto ω±. We then
have that the Kodaira-Spencer isomorphism is the map ω+(ei)⊗ω−(ej) 7→
(D(eij))∨, with ei, ej , eij standard basis vectors in W and H ⊗Z OK =
(OK)nn, respectively.
Note that by extending scalars, we may consider MumL(q) over R ⊗

(OK)(p) ((q,H∨>0)) for each OK-algebra R, and we can extend the above
maps to the case of MumL(q) over R⊗ (OK)(p) ((q,H∨>0)).

4.2.2. Algebraic q-expansions

We now discuss the key features for our situation. For a general, in-depth
discussion of Fourier-Jacobi expansions, the reader is referred to [20].

Definition 4.2. — Let f be an automorphic form of weight (ρ, V ) over
R. We define the q-expansion of f at the cusp H to be

f ((MumL(q), αcan, ιcan, λcan)⊗R,ωcan ⊗R) .

As noted at the beginning of the section, the q-expansions of f lie
inside V ⊗R R ⊗ (OK)(p) [[q,H∨>0]]. Furthermore, when working over C,
the analytically defined Fourier coefficients of the function fan on Hn
(where we associate the function f of abelian varieties with the function
fan : Hn → C as in Sections 2.3 through 2.5) at the cusp L are the same
as the algebraically defined q-expansion coefficents at the cusp L. That is,
if f ((MumL(q), αcan, ιcan, λcan)⊗ C, ωcan ⊗ C) =

∑
h∈H∨ c(h)qh, then the

h-Fourier cofficient of fan for each h ∈ H∨ is also c(h).
In Proposition 7.1.2.15 of [20], Lan proves the Fourier-Jacobi Principle

for automorphic forms on PEL Shimura varieties. The q-expansion principle
for modular forms is a special case of this.

Theorem 4.3 (q-expansion Principle, special case of Proposition 7.1.2.15
of [20]). — Let f be an automorphic form on U(n, n) over an OK-algebra
R of weight ρ with values in an R-module R ⊗OK X for some OK-module
X.

(1) If f(MumL(q)) = 0 at one cusp on each connected component of
M, then f = 0.
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(2) Let R0 ↪→ R be an OK-subalgebra of R. If f(MumL(q)) ∈
(OK)(p) ((q,H∨>0))⊗OK R⊗X actually lies in

(OK)(p) ((q,H∨>0))⊗OK R0 ⊗X ↪→ (OK)(p) ((q,H∨>0))⊗OK R⊗X

for one cusp in each component ofM, then there is a unique auto-
morphic form of weight ρ on U(n, n) defined over R0 which becomes
f after the extension of scalars R0 ↪→ R.

5. p-adic automorphic forms and the Igusa tower

In this section, we review p-adic automorphic forms, following the view-
points of [9], [10] and [8]. We also introduce the results for U(n, n) analogous
to ones in sections 1.9 through 1.12 of [16].
Let R be an OK-algebra that is separated for the p-adic topology, i.e.

satisfying R ↪→ lim←−mR/p
mR. Let R0 be the p-adic completion of R. Let

K = Kp ×Kp ⊂ G(Af ) be a compact open subgroup with Kp ⊆ G(Qp) a
hyperspecial maximal compact and Kp ⊆ G(Apf ).

Let v be the prime of K over p determined by the embedding inclp. Let
W = (OK)v, and let Wm = W/pmW for all nonnegative integers m. Fix a
toroidal compactification KS of KS(G,X) over W .
The theory of p-adic automorphic forms is independent of the choice of

toroidal compactification. Let H̃ be a lift of a power of the Hasse invariant
H to KS. For m a positive integer, let Mm =K S ×W Wm, and let Sm =
Mm

[
1
H̃

]
be the nonvanishing locus of H̃, i.e. the ordinary locus. Let S0 =

M
[

1
H̃

]
, and let S∞ be the formal completion lim←−m Sm of S0 along S1.

Note that Sm is independent of the choice of H̃ as long as p is nilpotent in
Wm for all positive m.
Form > 0, let Pm,r be the rank g p-adic étale sheaf Pm,r = Auniv[pr]ét =

Auniv[pr]/Auniv[pr]0 over Sm. We define Tm,r to be the finite étale Sm-
scheme

Tm,r = IsomSm(Pm,r, (OK/prOK)n)

πm,r

��
Sm
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representing the functor

(π : X → Sm) 7→
{
isomorphisms Ψ : Pm,r

∼→ (OK/prOK)n over X
}
.

Details about this scheme are given in [9] and [10]; of particular interest to
us will be the fact that πm,r is an affinemorphism. Define Tm,∞ = lim←−r Tm,r
and T∞,∞ = lim←−m Tm,∞. Note that the formal scheme T∞,∞ is an étale
cover of S∞. Note that Tm,r classifies quintuples

A =
(
A, λ, ι, αp, X[pr]ét ∼→ (OK/prOK)n

)
,

where (A, λ, ι, αp) is the abelian variety with prime-to-p structure corre-
sponding to a point of KS(G,X). Note that (OK/prOK)n ∼= (Z/prZ)g .
Therefore, the prime-to-p polarization λ and the isomorphism X[pr]ét ∼→
(OK/prOK)n induce isomorphisms A[pr]0 ∼→ A∨[pr]0 ∼→ µgpr , which induces
an inclusion αp : µgpr ↪→ A.

Let ωm,r be the pullback of Pm,r to Tm,r, i.e. ωm,r =
(
π∗m,rPm,r

)
⊗OTm,r .

For r > m, there’s a universal isomorphism (i.e. the universal object over
Tm,r) Ψuniv : π∗m,rPm,r

∼→ (OK/prOK)n , which induces an isomorphism
ωcan = Ψuniv ⊗ Id : ωm,r

∼→ (OK/prOK)n ⊗Zp OTm,r . For r > m, the sheaf
ωm,r is just the pullback of the sheaf of differentials ω to Tm,r. Indeed, the
pullback of ω to Tm,r is canonically identified with Lie(A∨univ) ⊗Wm; the
isomorphism with ωm,r now follows from the canonical isomorphisms

Lie(A∨univ)⊗Wm
∼→ Lie(A∨univ[pr]0)⊗Wm

∼→ Lie(µpr )n ⊗Wr

∼→ (OK/prOK)n ⊗OTm,r .

Note that ωcan induces isomorphisms ω+
can and ω−can of ω− and ω+ with

OKnv ⊗ OTm,r ∼= OnTm,r and OKnv̄ ⊗ OTm,r ∼= OnTm,r , respectively. So for
the p-adic situation (in contrast to the situation over C), ωcan provides a
canonical element of the sheaf E introduced earlier.
A p-adic automorphic form of weight ρ− ⊗ ρ+ is defined to be a global

section of
(
OnT∞,∞

)ρ−
⊗
(
OnT∞,∞

)ρ+
, where the action ofOK on each copy of(

OnT∞,∞
)
is induced by the action on ωρ−− ⊗ω

ρ+
+ (identifying the two sheaves

via ωcan). When we want to eliminate ambiguity about the identification,
we shall write

(
O−T∞,∞

)n
or
(
O+
T∞,∞

)n
to mean ωcan (ω∓), respectively.

We write V (ρ,R0) to denote the space of p-adic automorphic forms of
weight ρ over R0.
Above, we have used notation similar to that for the Igusa tower in

[9], [10], and [8]. To emphasize the analogy with [16], we shall some-
times use the notation ω(p-adic)± = ω±T∞,∞ , OM(p-adic) = OT∞,∞ , and
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M(p-adic) = T∞,∞.We shall denote the space of p-adic automorphic forms
of weight ρ = ρ−⊗ρ+ over a p-adically complete and separated OK-algebra
R0 by Mp-adic.

5.1. q-expansions of p-adic automorphic forms

In this section, we discuss q-expansions of p-adic automorphic forms and
the q-expansion principle for p-adic automorphic forms. This is also covered
in [8], which cites [9].
By extending scalars from (OK)(p) ((q,H∨>0)) to the p-adic completion

R0⊗̂OK (OK)(p) ((q,H∨>0)) of R0 ⊗OK (OK)(p) ((q,H∨>0)), we obtain the
Mumford object (MumL(q), λcan, αcan, ιcan) over the p-adic ring
R0⊗̂OK (OK)(p) ((q,H∨>0)). (Note that by construction, the isomorphism
ωcan from the previous section, viewed over MumL(q) is the same as the
isomorphism ωcan in (4.3).

So we obtain a q-expansion homomorphism FJ from the space of
p-adic automorphic forms with values in an R0-module X to
R0⊗̂OK (OK)(p) ((q,H∨>0))⊗R0 X:

f 7→ f

((
MumL(q), λcan, αcan = αpcan × (αcan)p , ιcan

)
R0⊗̂OK (OK)(p)((q,H∨>0))

, ωcan

)

Definition 5.1. — When R0 has no p-torsion, we define the space of
p-adic automorphic forms defined over R0 ⊗Q to be V (ρ,R0)⊗OKv Kv.

The q-expansion homomorphism extends to a q-expansion homomor-
phism

FJ ′ : V (ρ,R0)⊗OKv Kv → R0⊗̂OK (OK)(p) ((q,H∨>0))⊗Kv ⊗R0 X.

We now state the q-expansion principle for p-adic automorphic forms. This
is the analogue of Theorem 1.9.9 of [16] and Corollary 1.9.17 of [16].

Theorem 5.2 (Theorem 2.3.3 of [8], which cites [9]). — The q-expansion
homomorphisms have the following properties.

(1) The q-expansion homomorphisms FJ and FJ ′ are injective, and
when R0 has no p-torsion, the cokernel of FJ and FJ ′ has no p-
torsion.

(2) FJ ′−1(R0 ⊗X) = V (ρ,R0).
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5.1.1. Map from automorphic forms over a p-adic ring R0 to p-adic
automorphic forms over R0

Theorem 5.3 (((2.2.7) in [8]), analogue of Theorem 1.10.15 of [16]). —
The homomorphism f 7→ f̃ from the space of weight ρ level α automorphic
forms to the space of weight ρ level αp p-adic automorphic forms defined
by f̃(X,λ, ι, α) = f(X,λ, ι, α, ωcan) preserves q-expansions.

5.2. Frobenius and the unit root splitting

In this section, we give a splitting
H1
DR = ω ⊕ U(5.1)

over T∞,∞ analogous to the C∞-splitting H1
DR = ω⊕ ω̄. The splitting (5.1)

will be indispensable for the construction of the p-adic differential opera-
tors. Most of the material in the section is essentially covered in section
1.11 of [16], with trivial generalizations. However, we have provided details
not given in [16].
Let X be an abelian variety of PEL type over an OK-algebra R in which

p is nilpotent, and suppose that each of the geometric fibers of X/R is
ordinary. So there is an inclusion αp : µgp ↪→ X. Let X̂ denote the formal
group of X, and let Hcan be the canonical subgroup of X, i.e. the kernel
of multiplication of by p in X̂. Then Hcan = αp

(
µgp
)
. Let X ′ = X/Hcan,

and let π : X → X ′ be the projection map. When p = 0 in R, X ′ = X(p),
where X(p) denotes the scheme over R obtained from X by extension of
scalars Fabs : R→ R, and π is the relative Frobenius morphism:

X

π

��4
44

44
44

44
44

44
4

Fabs

&&NNNNNNNNNNNNNNNNNNNNNNNNNN

��)
))

))
))

))
))

))
))

))
))

))
))

))
))

)

X(p) //

��

X

��

�

R
Fabs

// R
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Given a morphism αp : µgp∞ ↪→ X, we define α′p : µgp∞ ↪→ X ′ to be the
morphism that makes the following diagram commute

0 // µgp //

∼=

��

µgp∞
p //

� _

αp

��

µgp∞ //

α′p

��

0

0 // Hcan
// X // X ′ // 0

Note that a prime-to-p level structure αp induces a prime-to-p level struc-
ture αp′ on X ′. We let

ιp′ : OK(p) ↪→ End(A′)⊗ Z(p)

be the embedding induced by ιp : OK(p) ↪→ End(A)⊗Z(p). As Katz explains
in Lemma 1.11.6 of [16], if (X,λ) is in T∞,r, then there is a unique polariza-
tion λ′ that reduces mod p to the polarization λ(p) on X(p). We shall now
also use π to denote the morphism (X,λ, ι, αp, αp) 7→ (X ′, λ′, ι′, αp′, α′p)
induced by π.
Note that, by construction, π is compatible with change in baseR/pmR→

R/pm−1R induced by projection. So the morphisms π induce a morphism

Auniv/W → A′univ/W(5.2)

(where W = SpecR) over the p-adic ring R. Since this is not explicitly
mentioned in [16] and could be somewhat confusing to the reader, we note
that the map π in (5.2) is defined over R, not over T∞,∞, though Auniv and
A′univ lie over T∞,∞. So there is a unique isomorphism F : T∞,∞ → T∞,∞
such that A′univ is the fiber product

A′univ
//

��

Auniv

��
T∞,∞

F // T∞,∞

We now describe the action of F on q-expansions, which we will use in
the proof of Lemma 5.9.

Lemma 5.4. — For any q-expansion homomorphism f 7→ f(q), the ac-
tion of F on f satisfies (Ff)(q) = f(qp), and so, if f(q) =

∑
h∈H∨

(
c(h)qh

)
,

then (Ff)(q) =
∑
h∈H∨

(
c(h)qph

)
.
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Lemma 5.5. — The abelian variety MumL(q)′ and the morphism π :
MumL(q)→ MumL(q)′ a priori defined over (OK)v(q, L) are in fact defined
over OK(q, L).

Proof. — Since MumL(q)′ is obtained from MumL(q) by extension of
scalars q 7→ qp, which is defined over OK(q, L), MumL(q) = MumL(qp)
is defined over OK(q, L). It follows from the definition of π that π is the
map making the following diagram commute (where the vertical maps are
projection onto the quotient):

W ′ ⊗Gm
×p //

��

W ′ ⊗Gm

��
W ′ ⊗Gm

π // W ′ ⊗Gm/p · q(H∨) = W ′ ⊗Gm/q(p ·H∨)

�

Remark 5.6. — Since π and MumL(q)′ are defined over OK, we can
extend scalars and consider the map π over C. In this case, observe that π
corresponds to the map on lattices

pz(L)→ ppz(L),
l 7→ pl

i.e. the map

C/pz(L)→ C/ppz(L)
x 7→ px.

The morphism F corresponds to the morphism

Hn → Hn
z 7→ pz.

Define Fr to be the morphism Fr = π∗ : F ∗(H1
DR) → H1

DR. Note that
Fr defines a (F -linear) morphism ofH1

DR. The higher dimensional analogue
of Lemma (A2.1) in [14] is the following.

Lemma 5.7. — π∗ (F ∗ω) = pω.

As in [16], we have the following powerful proposition, which is essential
in the construction of the p-adic differential operators.

Proposition 5.8. — There is a unique splitting

H1
DR = ω ⊕ U(5.3)
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over OM such that π∗F ∗ is an isomorphism on U when tensored with Q
and such that ∇(U) ⊆ U ⊗ Ω

The splitting (5.3) is called the unit root splitting and U the unit root
submodule of H1

DR, as in [16] and [12]. [16] notes simply that the version of
Proposition 5.8 in [16] (Theorem 1.11.27) is explained in [12]. If T∞,∞ were
affine (which it is not), then all but the uniqueness statement would follow
immediately from [16]. Although T∞,∞ is not affine, one may prove that
the statement extends to T∞,∞ by proving on an affine cover and glueing.
Details are provided in [2].

5.3. Unit root splitting for the Mumford abelian variety

We now discuss the unit root splitting over MumL(q), which plays a key
role in the proof of Theorem 9.2.

Lemma 5.9. — (Analogue of [16] Key Lemma (1.12.7)) Upon extension
of scalars to (OK)v ⊗OK (OK)(p) ((q,H∨>0)), the elements ∇(D(γ))(ω(w))
lie in U ⊆ H1

DR for each γ ∈ H and w ∈ (W ′)∨.

Proof. — By Lemma 5.5, F , MumL(q)′, and π : MumL(q)→ MumL(q)′
are defined over OK(q, L). By Lemmas 5.7 and 5.8, π∗ has the form(
pA 0
0 D′

)
with respect to fixed bases for ω and U for some g × g ma-

trixes A and D with entries in OM and D invertible. So it suffices to show
that

π∗ (F ∗ (∇ (D(γ)) (ω(w)))) = ∇ (D(γ)) (ω(w))(5.4)
for all γ ∈ H and w ∈ (W ′)∨. So it is sufficient to extend scalars to C and
check (5.4) over C.

In our proof, we shall work with L = O2n
K , i.e. the cusp at ∞, and we

note that the proof at other cusps is similar. (We choose L = O2n
K because

working in the context of our explicit examples over C - which all used this
lattice - provides the most insight.)
Over C, H1

DR = HomZ (pz(L),C) , and ω(w) is a C-linear combination
of the elements dui. So we are now reduced to proving an assertion about
maps of lattices. By Remark 5.6, (π∗l) γ = l(pγ) for each l ∈ F ∗H1

DR and
γ ∈ Lz. By (3.15) and (3.16), ∇(D(γ))(dui) lies in the subspace of H1

DR

generated by elements of the form
βj + αβ′j(5.5)
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or
βj + ᾱβ′j(5.6)

1 6 j 6 n (in the notation of (3.15) and (3.16)). Therefore, it suffices to
show that π∗ ◦F ∗ fixes each element of the form (5.5) and each element of
the form (5.6).
By Remark 5.6 and the definition of βj , we see that F ∗ (βj) : ppz(L)→ C

is the Z-linear map defined by
p · zj 7→ 1
pzi 7→ 0, i 6= j

ei, e
′
i, pz

′
i 7→ 0, for all i.

Similarly, F ∗ (βj) : ppz (L)→ C is the Z-linear map defined by
p · z′j 7→ 1
p · z′i 7→ 0, i 6= j

ei, ei, p · zi 7→ 0, for all i.

So π∗F ∗
(
βj + cβ′j

)
(l) = F ∗

(
βj + cβ′j

)
(pl) =

(
βj + cβ′j

)
(l) for each l ∈

pz(L) and each c ∈ OK, in particular for c = α, ᾱ. Therefore,
π∗F ∗∇ (D(γ)) (dui) = ∇ (D(γ)) (dui) , for 1 6 i 6 2n.

�

6. C∞-differential operators from the perspective of
Shimura

We now review C∞-differential operators (acting on automorphic forms
on unitary groups) from the perspective of [34]. Examples of the mate-
rial discussed here can be found in [2]. In later sections, we reformulate
Shimura’s differential operators algebreo-geometrically, and then we con-
struct and discuss a p-adic analogue of the C∞-differential operators. In
Proposition 8.5, we show that the C∞-differential operators we construct
algebreo-geometrically in Section 8 are the same as Shimura’s differential
operators that we discuss in this section.
As in [34], for each z ∈ Hn, let Ξ(z) = (i(z̄− tz), i(z∗− z)). Let T = Cnn.

Let {εν} be an R-rational basis of T over C. For u ∈ T , let uν be defined
by u =

∑
ν uνεν . Similarly, for z ∈ Hn, define zν ∈ C by z =

∑
ν zνεν .

Let (ρ, V ) = (ρ− ⊗ ρ+, V− ⊗ V+) be a finite-dimensional representation
of GLn(C) × GLn(C). Let e be a positive integer. For finite-dimensional
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vector spaces X and Y , define Se(Y,X) to be the vector space of degree e
homogeneous polynomial maps of Y into X, i.e. the space of maps h from
Y to X such that h(a · y) = aeh(y)

for each a ∈ C and y ∈ Y . We let Se(Y ) denote Se(Y,C). From here
on, we identify Se(Y,X) with Se(Y ) ⊗ X via h(u) ⊗ x 7→ h(u)x, for each
function h in Se(Y ) = Se(Y,C) and x in X. Let Mle(Y,X) denote the
vector space of all C-multilinear maps

Y × · · · × Y︸ ︷︷ ︸
e times

→ X.

An element of Mle(Y,X) is called symmetric if g
(
yπ(1), . . . , yπ(e)

)
=

g(y1, . . . , ye) for each permutation π of {1, . . . , e}. As explained in Lemma
12.4 of [34], for each h in Se(Y,X), there is a unique symmetric element
h∗ of Mlp(Y,X) such that h(y) = h∗(y, . . . , y) for all y in Y . We shall
associate Se(Y,X) with a subspace of Mle(Y,X) in this way. We define
a representation (τe,Mle(T,C)) of GLn(C) × GLn(C) as follows: Given
(a, b) ∈ GLn(C) × GLn(C) and h ∈ Mle(T,C), [τe(a, b)h](u1, . . . , ue) =
h(tau1b, . . . ,

t aueb). Thus, we obtain a representation ρe ⊗ τ of GLn(C)×
GLn(C) on Mle(T,C)⊗X = Mle(T,X) via

[ρ⊗ τe(g)](h(u)⊗ x) = τe(g)h⊗ ρ(g)x

for each g ∈ GLn(C)×GLn(C), h ∈Mle(T,C), and x ∈ X. We also write
ρ⊗ τe to denote the restriction of this representation to Se(T,X).

For f ∈ C∞(Hn, V ), define operators

C,D : C∞(Hn, V )→ C∞(Hn, S1(T, V ))(6.1)

by

(Df)(u) =
∑
ν

uν
∂f

∂zν
,

(Cf)(u) = (τ1(Ξ)Df)(u) = (Df)(tξuη),

respectively. For e > 1, we write Def and Cef to denote D(De−1f)
and C(Ce−1f), respectively. The functions Def and Cef have symmet-
ric elements of Mle(T, V ) as their values, which allows us–as explained
in Section 12.1 of [34]– to view them as elements of C∞ (Hn, Se(T, V )) .
Therefore, the operators Ce and De can be viewed as maps C∞(Hn, V )→
C∞(Hn, Se(T, V )).
In general, the operators Ce and De do not map automorphic forms to

automorphic forms. They are, however useful for constructing a map from
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the space of automorphic forms of weight ρ to the space of automorphic
forms of weight ρ⊗ τ . Define

(Dρf)(u) = ρ(Ξ)−1D[ρ(Ξ)f ](u)
= (ρ⊗ τ) (Ξ)−1C[ρ(Ξ)f ]

and, more generally,

(De
ρf) = (ρ⊗ τe)(Ξ)−1Ce[ρ(Ξ)f ].

The operator De
ρ satisfies the following properties ([34]):

De+1
ρ = Dρ⊗τD

e
ρ = De

ρ⊗τDρ

De
ρ(f‖ρα) = (De

ρf)‖ρ⊗τeα,(6.2)

for α in G. So De
ρ maps automorphic forms of weight ρ to automorphic

forms of weight ρ⊗ τe.
Let Z be a GLn(C)×GLn(C)-stable quotient of Se(T ), and let φZ denote

the projection of Se(T ) ⊗X onto Z ⊗X. Then the operator DZ
ρ = φZD

e
ρ

is a map from the space of automorphic forms of weight ρ to the space of
automorphic forms of weight ρ⊗ τZ , where τZ denotes the restriction of τ
to Z.

7. Some purely algebraic differential operators

We introduce some key ingredients for the construction of both the C∞-
and the p-adic-differential operators.

7.1. Some algebraic differential operators

Let S be an OK-scheme. We assume throughout this section that S →M
is an étale morphism.
Recall that by (3.3) and (3.4),

∇(H±(A/S)) ⊆ H±(A/S)⊗ ΩS/T .(7.1)

So the Gauss-Manin connection induces a connection (through the product
rule (3.19) and the fact that (7.1) holds)

∇ : T •(H±(A/S))→ T •(H±(A/S))⊗ ΩS/T .
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Let ρ = ρ+⊗ρ− be a quotient of ρ⊗d1
st ⊗ρ

⊗d2
st for some d1 and d2. Applying

the product rule (3.19) again, we get a connection

∇ : H1
DR(A/S)ρ ⊗ T •(H+(A/S)⊗H−(A/S))

→ H1
DR(A/S)ρ ⊗ T •(H+(A/S)⊗H−(A/S))⊗ ΩS/T .

We define a differential operator

Dρ
A/S : VA/S := H1

DR(A/S)ρ ⊗ T •(H+(A/S)⊗H−(A/S))

→ H1
DR(A/S)ρ ⊗ T •+1(H+(A/S)⊗H−(A/S))

to be the composition of maps:
(7.2)
VA/S := H1

DR(A/S)ρ ⊗ T •(H+(A/S)⊗H−(A/S)) ∇ //

Dρ
A/S

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

VA/S ⊗ ΩS/T

id⊗KS

��
VA/S ⊗ ω+(A/S)⊗ ω−(A/S)

ι

��
VA/S ⊗H+(A/S))⊗H−(A/S)

=

��
H1
DR(A/S)ρ ⊗ T •+1(H+(A/S)⊗H−(A/S))

Remark 7.1. — Observe that we can similarly construct an algebraic
differential operator

D̃ρ
A/S : H1

DR(A/S)ρ ⊗ Sym•(H+(A/S)⊗H−(A/S))

→ H1
DR(A/S)ρ ⊗ Sym•+1(H+(A/S)⊗H−(A/S))

(essentially by replacing T • with Sym• in the definition of Dρ
A/S).

In the case where A = Auniv and S = MR0/R0, we define Dρ :=
Dρ
Auniv/MR0

. We denote by D the morphism D : T •(H1
DR(A/S)) →

T •+2(H1
DR(A/S)) whose restriction to T r(H1

DR(A/S)) is D⊗r.
We write (Dρ

A/S)d (resp. (D̃ρ
A/S)d) to denote Dρ

A/S (resp. D̃ρ
A/S) com-

posed with itself d times.
Now we give a formula for the action ofD in terms of the basis of invariant

one-forms αi, βi, α′i, β′i in H1
DR(C∞) over C. So that we can consider all
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representations of interest simultaneously, we consider the representation ρ
as a subrepresentation of the tensor algebra. So we may view Dρ in terms
of the restriction to H1

DR(C∞) of the morphism D, which is a morphism

T •(H1
DR(C∞)) 7→ T •+2(H1

DR(C∞))

that is homogeneous of degree two in the sense that D maps T r(H1
DR(C∞))

to T r+2(H1
DR(C∞)). The sheaf T (H1

DR(C∞)) is the sheaf R of graded
non-commutative OM(C∞)-algebras generated by the horizontal sections
αi, βi, α

′
i, β
′
i (defined in Subsection 3.1.1) with no relations other than those

in the commutative ring OM(C∞). Lemma 7.2 gives the action of D on R
explicitly.

Lemma 7.2. — Viewed as a morphism on R, the action of D is defined
for all sections f of OM(C∞) and nonnegative integers κi, κ′i, λi, λ′i by

D

 ∏
16l6n

ακll α
′κ′l
l βλll β

′λ′l
l

 f

 =

∏
16l6n

ακll α
′κ′l
l βλll β

′λ′l
l

∑
16i,j6n

∂f

∂zij
· (Qj · Pi) ,(7.3)

with Pi and Qj the elements of R defined by

Pi = αi +
n∑
k=1

zikβk + ᾱα′i + ᾱ

n∑
k=1

zikβ
′
k

and

Qj = αi +
n∑
k=1

zkjβk + αα′i + α

n∑
k=1

zkjβ
′
k.

For all v and w in R,

D(v + w) = D(v) +D(w).(7.4)

Proof. — Equation (7.4) follows immediately from the definition of D.
Since αi, βi, α′i, β′i are horizontal,

∇

 ∏
16l6n

ακll α
′κ′l
l βλll β

′λ′l
l

 f

 =
∏

16l6n
ακll α

′κ′l
l βλll β

′λ′l
l

∑
16i,j6n

∂f

∂zij
· dZij .

Recall from (3.28) that the injection Ω ↪→ T 2(H1
DR) defined by the Kodaira-

Spencer isomorphism is given by dZij 7→ duj+n⊗dui. By (3.11)–(3.14), we

ANNALES DE L’INSTITUT FOURIER



p-ADIC DIFFERENTIAL OPERATORS 225

see that in R,

dui = Pi

duj+n = Qj ,

for 1 6 i, j 6 n. So now the lemma follows from the definition of D. �

Note that since ∇(H±) ⊆ H± ⊗ Ω, restriction of Dρ to (H±)ρ± gives
maps

(H±)ρ± → (H±)ρ±⊗ρst ⊗ (H∓)ρst .

So through the product rule, D induces morphisms

(H1
DR(A/S)+)ρ+ ⊗ (H1

DR(A/S)−)ρ−

−→ (H1
DR(A/S)+)ρ+⊗ρst ⊗ (H1

DR(A/S)−)ρ−⊗ρst .

7.2. Some algebraically defined maps on automorphic forms

The maps defined in this section will be used in the proofs of Theorems
8.2 and 9.1, algebraicity theorems about the differential operators defined
in Sections 8.1 and 9.1. Our construction is completely analogous to the
one in [16], and we follow [16] closely. Our construction here is a general
vector-valued construction that generalizes the scalar-valued one in [16] to
our higher-dimensional setting.

We work over an OK-algebra R0. Let R be an R0-algebra, and let x be
an R-valued point of the moduli scheme MR0 over R0, corresponding to
a morphism Spec(R) →M over R0. Let X denote the associated abelian
variety X with the associated PEL structure. Let λ be an element of EX/R.

Suppose that we are given an R-sub-module Split(X/R) in H1
DR(X/R)

such that the natural map (induced by the inclusions)

ωX/R ⊕ Split(X/R)→H1
DR(X/R)(7.5)

is an isomorphism and such that H1
DR(X/R)± ⊆ Ω±X/R⊕ Split(X/R). (For

example, when R = C and we work in the C∞-category, the Hodge de-
composition gives us a splitting in which we can take Split(X/R) to be the
sheaf of anti-holomorphic one-forms.)
As earlier, we letMρ(α)(R0) denote the space of automorphic forms over

R0 of weight

(ρ = ρ− ⊗ ρ+, V = V − ⊗ V +)
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and level α. Let e and d be positive integers. In this section, we define an
R0-linear map

∂(ρ, e, x, λ, Split(X/R), d) : Mρ⊗τe(R0)→ V − ⊗ V + ⊗ (Rn ⊗Rn)⊗e+d.

We identify each automorphic form f inMρ⊗τe(R0) with the correspond-
ing global section of (ω−⊗ω+)ρ⊗(Ω⊗eM/R0

), as in Section 2.5. The canonical
inclusion ω(X/R)± ↪→ H1

DR(X/R)± and the Kodaira-Spencer map (3.37)
induce inclusions

(7.6) (ω−X/R ⊗ ω
+
X/R)ρ ⊗ (Ω⊗eM/R0

)

↪→ (H1
DR
− ⊗H1

DR
+)ρ−⊗ρ+ ⊗ (H1

DR
+ ⊗H1

DR
−)⊗e.

Associate f with its image in (H1
DR ⊗ H1

DR)ρ ⊗ (H1
DR

+ ⊗ H1
DR
−)⊗e via

the inclusion (7.6). Then for each integer d, (Dρ)d(f) is a global section of
(H1

DR
+ ⊗H1

DR
−)ρ ⊗ (H1

DR
+ ⊗H1

DR
−)⊗e+d. Thus,

((Dρ)d(f))(x) ∈ (H1
DR
−(X/R)⊗H1

DR
+(X/R))ρ−⊗ρ+

⊗
(

(H1
DR

+(X/R)⊗H1
DR
−(X/R)

)⊗d+e
.

The choice of λ gives isomorphisms λ± : ω±X/R
∼→ Rn, which induce

isomorphisms

(ω−X/R ⊗ ω
+
X/R)ρ−⊗ρ+ ⊗ (ω−X/R ⊗ ω

+
X/R)⊗e+d

∼→ V − ⊗ V + ⊗ (Rn ⊗Rn)⊗e+d

The splitting (7.5) gives projections

H1
DR(X/R)± → ω±X/R,(7.7)

which induce projections (ω± ⊕ Split(X/R))ρ± → (ω±X/R)ρ± .
The projection (7.7) also induces a projection

(H1
DR(X/R)− ⊗H1

DR(X/R)+)⊗d+e → (ω−X/R ⊗ ω
+
X/R)τ

⊗(d+e)

and a projection (ω−X/R ⊕ Split(X/R))ρ− ⊗ (ω+
X/R ⊕ Split(X/R))ρ+ →

(ω−X/R)ρ− ⊗ (ω+
X/R)ρ+ .

We now define the R0-linear map

∂(ρ, e, x, λ, Split(X/R), d) : Mρ⊗τe(R0)→ V − ⊗ V + ⊗ (Rn ⊗Rn)⊗e+d,

as follows. We define ∂(ρ, e, x, λ, Split(X/R), d)(f) to be the image of
(Dρ+⊗ρ−)d(f) ∈ (H1

DR
+)ρ+⊗ρdst ⊗ (H1

DR
−)ρ−⊗ρdst under the composition of

morphisms given by the diagonal map in the commutative diagram (7.8):
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(7.8)
(H1

DR
+)ρ+⊗ρdst ⊗ (H1

DR
−)ρ−⊗ρdst

&&

g 7→g(x) // (ω−X/R ⊕ Split(X/R))ρ−⊗ρdst ⊗ (ω+
X/R ⊕ Split(X/R))ρ+⊗ρdst

mod Split(X/R)

��
(ω−X/R)ρ−⊗ρdst ⊗ (ω+

X/R)ρ+⊗ρdst

λ

��
V − ⊗ V + ⊗ (Rn ⊗Rn)⊗e+d

For each R-submodule Z that is a GLn(R) ⊗ GLn(R)-stable quotient
of (ω−X/R)ρ−⊗ρdst ⊗ (ω+

X/R)ρ+⊗ρdst , define φZ to be the projection of
(ω−X/R)ρ−⊗ρdst⊗(ω+

X/R)ρ+⊗ρdst onto Z. Identify Z with λ(Z). Then we define
∂(ρ, e, x, λ, Split(X/R), d)Z = φZ ◦ ∂(ρ, e, x, λ,Split(X/R), d).

8. The C∞-differential operators

8.1. Construction of the C∞ differential operators

Later, we will define p-adic differential operators through a construction
similar to the one in this section.
Let

H1
DR(C∞) = ω(C∞)⊕ Split(C∞)(8.1)

be the canonical splitting of the Hodge filtration corresponding to the
holomorphic and anti-holomorphic one-forms. Here, Split(C∞) is the sheaf
ω(C∞) of anti-holomorphic one forms. Note that for each derivation D ∈
Der(OC∞M ,OC∞M ), ∇(D)(ω(C∞)) ⊂ ω(C∞).
Since H1

DR(C∞)± ⊆ ω(C∞)± ⊕ Split(C∞), the splitting (8.1) induces
projections H1

DR(C∞)± → ω(C∞)±, which induces a projection

(8.2) H1
DR(C∞)ρ ⊗ T •(H1

DR
+(C∞)⊗H1

DR
−(C∞))

→ ω(C∞)ρ ⊗ T •(ω+(C∞)⊗ ω−(C∞))
∼→ ω(C∞)ρ ⊗ T •(Ω(C∞)).
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As usual, we associate ω± with its image in (H1
DR)± under the inclusion

coming from hypercohomology

ω ↪→ H1
DR.(8.3)

As in (7.6), the inclusion (8.3) and the Kodaira-Spencer isomorphism (3.37)
induce inclusions

(ω−)ρ− ⊗ (ω+)ρ+ ⊗ (Ω⊗eM/R0
) ↪→ (H1

DR)ρ−⊗ρ+ ⊗ (H1
DR
− ⊗H1

DR
+).(8.4)

Restricting Dρ to the image of (8.4), we get a map

(Dρ)d|(ω−)ρ−⊗(ω+)ρ+⊗(Ω⊗eM/R0
) : (ω−)ρ− ⊗ (ω+)ρ+ ⊗ (Ω⊗eM/R0

)

→ H1
DR(C∞)ρ− ⊗ ρ+ ⊗ (H1

DR
+ ⊗H1

DR
−)⊗e+d.

We define the C∞-differential operator ∂(ρ, C∞, d) to be the map

∂(ρ, C∞, d) : (ω−)ρ− ⊗ (ω+)ρ+ ⊗ (Ω(C∞)⊗•)
→ (ω−)ρ− ⊗ (ω+)ρ+ ⊗ (Ω(C∞))⊗•+d)

that is the composition of maps in the following commutative diagram:

(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (Ω(C∞)⊗•)

∂(ρ,C∞,d)

&&

(Dρ)d // H1
DR(C∞)ρ ⊗ (H1

DR
+ ⊗H1

DR
−)•+d

mod Split(C∞)

��
(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (ω+ ⊗ ω−)⊗•+d

∼=

��
(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (Ω(C∞))•+d

Remark 8.1. — For the reader who worries that defining the differ-
ential operators on (ω−)ρ− ⊗ (ω+)ρ+ (instead of EV,ρ) is too ad hoc or
non-canonical, we note that the differential operators can equivalently be
defined as morphisms from EV,ρ to EV,(ρ+⊗ρst)⊗(ρ−⊗ρst). Indeed, the com-
position of maps

EV,ρ //

(λ,v) 7→λ(v)

��

E(V−⊗Cn)⊗(V+⊗Cn),(ρ−⊗ρst)⊗(ρ+⊗ρ+)

(ω−)ρ− ⊗ (ω+)ρ+
∂(ρ,C∞,d)

// (ω−)ρ− ⊗ (ω+)ρ+ ⊗ Ω
KS

// (ω−)ρ−⊗ρst ⊗ (ω+)ρ+⊗ρst

v 7→(λ,λ−1(v))

OO
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gives an equivalent expression of our differential operator as an operator
from EV,ρ to E(V⊗(Rn)⊗(Rn)),(ρ+⊗ρst)⊗(ρ−⊗ρst).

Let Z be a GLn(C)×GLn(C)-stable quotient of

(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (ΩAuniv/M(C∞))•+d,

and let φZ be the projection of

(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (ΩAuniv/M(C∞))•+d

onto Z. We define the differential operator ∂(ρ, C∞, 1)Z by φZ◦∂(ρ, C∞, d).

8.2. Algebraicity theorem for C∞-differential operators

The following algebraicity theorems (Theorems 8.2 and 8.3) are impor-
tant for our intended applications. The statement of Theorem 8.2 and the
idea of the proof are essentially the same as what is done in Section 2.4
of [16]; the new parts are our generalizations from Katz’s special scalar-
valued case to the arbitrary (often vector-valued) case and to the case of
projection onto subrepresentations.

Throughout this section, fix an OK-algebra R with an inclusion
ιR : R ↪→ C.
In the special case R = Q̄, the statement of Theorem 8.2 is essentially

the same as Theorem 14.9 (2) of [34]. However, the methods or the proof
of Theorem 8.2 are different from the proof in [34]; the proof we present is
similar to what is done in Section 2.4 of [16].
We associate each automorphic form f in Mρ⊗τe(R) with its image in

Mρ⊗τe(C) via the extension of scalars induced by ιR. We also associate
each automorphic form in Mρ⊗τe(C) with the corresponding holomorphic
section of (ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ Ω(C∞)⊗e onM(C∞).

Let x = X be an R-valued point ofMR, and let λ be an element of EX/R.
Suppose that over R there is a splitting Split(X/R)⊕ωX/R

∼→ H1
DR(X/R).

Then we have an inclusion

Split(X/R) ↪→ H1(Xan
C ,C)(8.5)
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coming from the composition of maps

Split(X/R) � � ext. of scalars via ιR //

++

Split(X/R)⊗ C � �(8.5)⊗Id// H1
DR(X/R)⊗ C

∼=

��
H1(Xan

C ,C)

We say that the the pair (x,Split(X/R)) satisfies the condition (†)if the
following holds:
The image of Split(X/R) under the inclusion (8.5) is the antiholomorphic

subspace
H0,1 ⊂ H1(Xan

C,C),
i.e. Split(X/R)⊗ C = Split(C∞)(xC).(†)

Note that this condition is essentially the same as condition (2.4.2) in
[16].

For our intended applications, the only points that will interest us are
certain ordinary CM points. We shall see later that for each such ordinary
CM point, there is indeed a splitting satisfying condition (†).

Note that in general, we only know that the values of ∂(ρ, C∞, d)(f) at
points (x, λ) lie in a C-vector space. (This is because even if f ∈ Mρ(R),
we only know that ∂(ρ, C∞, d)(f) is a C∞-function and nothing about
where its values at arbitrary points lie.) We see in theorem 8.2, however,
that we can say much more about the values of ∂(ρ, C∞, d)(f) at points
satisfying (†).

Theorem 8.2. — Suppose that (x,Split(X/R)) is an R-valued point of
MR that satisfies condition (†). Let f be an automorphic form inMρ⊗τe(R)
with values in an R-module V . Then

(∂(ρ, C∞, d)f)(x, λ)C = ιR(∂(ρ, e, x, λ, Split(X/R), d)f).(8.6)

Therefore, (∂(ρ, C∞, d)f)(x, λ)C ∈ V ⊗R (Rn ⊗Rn)⊗d .

The proof we provide is similar to Katz’s proof of Theorem 2.4.5 in [16].
Proof. — As it was defined in Section 7.2, ιR(∂(ρ,e,x,λ,Split(X/R),d)f)

lies in V ⊗R (Rn ⊗Rn)⊗d . So to prove the theorem, it suffices to prove that
Equation (8.6) holds.
By the extension of scalars from R to C given by ιR, we associate the

automorphic form f with its image fC in Mρ⊗τe(C), the R-valued point
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x with R-basis λ with x with basis λC, and Split(X/R) with its image in
Split(X/R)⊗ C. Then, we see that ιR(∂(ρ, e, xC, λC,Split(X/R)C, d)fC) =
ιR(∂(ρ, e, x, λ,Split(X/R), d)f) is V ⊗R (Rn ⊗Rn)⊗d-valued. So it suffices
to show that Equation (8.6) holds in the case R = C, which we will now do.
Associate f with its image in (H1

DR)ρ ⊗ (H+ ⊗ H−)⊗e. Then
(∂(ρ, e, x, λ,Split(X/R), d)f)(x) is obtained by applying (Dρ)d to f and
composing with the maps along the right side of the commutative di-
agram (8.7). (Commutativity in (8.7) follows from the hypothesis that
(x,Split(X/R)) satisfies condition (†).) Similarly, (∂(ρ, C∞, d)f)(x) is ob-
tained by applying (Dρ)d to f and composing with the maps along the
left side of the commutative diagram (8.7). So (8.6) holds for all x with a
splitting satisfying (†).

(8.7)
(H1

DR)ρ ⊗ (H1
DR

+ ⊗H1
DR
−)⊗e+d

take fiber at x

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

mod Split(C∞)

��
(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (ω+(C∞)⊗ ω−(C∞))⊗e+d

take fiber at x
**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV (H1

DR(X/R))ρ ⊗ ((H1
DR

+ ⊗H1
DR
−)(X/R))⊗e+d

mod Split(X/R)

��
((ω+ ⊗ ω−)(X/R))ρ ⊗ ((ω− ⊗ ω+)(X/R))⊗e+d

∼= from choice of λ

��
(V ⊗R C)⊗C (Cn ⊗ Cn)⊗d

�

We also obtain the following generalization of Theorem 8.2:

Theorem 8.3. — Suppose that (x, Split(X/R)) is an R-valued point of
MR that satisfies condition (†).
Let f be an automorphic form inMρ⊗τe(R). Let Z be a GLn(R)×GLn(R)-
stable R-quotient of ωρR⊗ (ΩAuniv/MR

)•+d, and let φZ be the projection of
ω(C∞)ρ ⊗ (ΩAuniv/M(C∞))•+d onto Z ⊗R C. Let Zx be the fiber of Z at
x. Then

(∂(ρ, C∞, d)Zf)((X,λ, ι, α), λ)C = ιR(∂(ρ, e, x, λ, Split(X/R), d)ZXf).

Therefore, (∂(ρ, C∞, d)Zf)(x, λ)C actually takes values in the R-module
λ(Z).
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The proof is similar to the proof of Theorem 8.2, except that we also com-
pose with the projection onto Z. Note that like in Remark 8.1, restriction
to Z yields a canonical map EV,ρ → EZ .

8.3. Some properties of the C∞-differential operators

In this section, we give some fundamental properties of theC∞-differential
operators ∂(ρ, C∞, d).
We denote by (∂(ρ, C∞, 1))d the composition of ∂(ρ, C∞, d) with itself d

times.

Theorem 8.4. — The differential operators satisfy the following prop-
erties.

(1) For each positive integer d,

∂(ρ, C∞, d) = (∂(ρ, C∞, 1))d(8.8)

(2) Associating the space of automorphic forms of weight ρ ⊗ τf with
(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗Ω(C∞)⊗f via the natural isomorphism in-
duced by the Kodiara-Spencer isomorphism, we have that
∂(ρ, C∞, d) is the same as ∂(ρ ⊗ τf , C∞, d), i.e. for all positive
integers f 6 e,

(8.9) ∂(ρ, C∞, d)|(ω−)ρ−⊗(ω+)ρ+ (C∞)⊗ΩAuniv/M(C∞)⊗e

= ∂(ρ⊗ τf , C∞, d)|(ω−)ρ−⊗(ω+)ρ+ (C∞)⊗ΩAuniv/M(C∞)⊗e

(3) For all positive integers d > 2,

∂(ρ⊗ τd−1, C∞, 1) ◦ · · · ◦ ∂(ρ⊗ τ, C∞, 1) ◦ ∂(ρ, C∞, 1) = ∂(ρ, C∞, d)
(8.10)

Proof. — Recall that Split(C∞) is horizontal with respect to ∇, i.e.
∇(Split(C∞)) ⊆ Split(C∞) ⊗ ΩAuniv/M(C∞). So from the definition of
Dρ, we see that Dρ(Split(C∞)) ⊆ Split(C∞), and hence, for all positive
integers d, (Dρ)d(Split(C∞)) ⊆ Split(C∞). So

(Dρ)d ◦ (“ mod Split(C∞)”) = (Dρ ◦ (“ mod Split(C∞)”))d,
where (Dρ◦(“ mod Split(C∞)”))d denotes Dρ◦(“ mod Split(C∞)”) com-
posed with itself d times. Therefore, it follows directly from the definition
of ∂(ρ, C∞, d) that ∂(ρ, C∞, d) = (∂(ρ, C∞, 1))d. So (8.8) holds.

Equation (8.9) follows directly from the definition of τ , our earlier explicit
description of the Kodaira-Spencer isomorphism, and the definition of the
map ∂(ρ, C∞, d) for any representation ρ.
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Now, ∂(ρ, C∞, 1) has image in ω(C∞)ρ ⊗
∑∞
e=1 Ω⊗e(C∞). So (8.10) is a

corollary of (8.8) and (8.9). �

8.4. Comparison with Shimura’s C∞-differential operators

Proposition 8.5. — Let Dρ be Shimura’s differential operator dis-
cussed in the introduction (cf. section 12.1 of [34]). Let f : Hn → V =
V− ⊗ V+ be a C∞-function. Let λ ∈ E . Then

∂(ρ, C∞, 1) (λ(f)) = λ(Dρf).(8.11)

(In Equation (8.11), λ refers to the induced map from V± to ωρ±± .)
Proof. — Define v±λ± = λ−1(du±λ±) for each tuple λ±. Writing f in terms

of the basis vλ± for V ±, we have

f =
∑
λ−,λ+

fλ−,λ+λ(v−λ− ⊗ v
+
λ+

),(8.12)

for some C∞ complex valued functions fλ−,λ+ . The sum in Equation (8.12)
is, as usual, over all tuples λ± so that vλ± is in V ±. Note that

∂(ρ, C∞, 1)(λ(f(z)))

(8.13)

= ∂(ρ, C∞, 1)

 ∑
λ−,λ+

fλ−,λ+λ(v−λ− ⊗ v
+
λ+

)


= ∂(ρ, C∞, 1)

 ∑
λ−,λ+

fλ−,λ+(du− − dū−)λ− ⊗ (du+ − dū+)λ+

 .(8.14)

We get from (8.13) to (8.14) by recalling that ∂(ρ, C∞, 1)(ω̄) = 0, since ω̄
is holomorphically horizontal with respect to ∇.

Applying Equations (3.17) and (3.18) to Equation (8.14), we see that

∂(ρ, C∞, 1)(λ(f(z)))

= ∂(ρ, C∞, 1)

ρ(Ξ(z))

 ∑
λ−,λ+

fλ−,λ+(β + ᾱβ)λ− ⊗ (β + αβ)λ+

 .

Now recall that the sections βi + ᾱβi and βi +αβi are horizontal for the
Gauss-Manin connection. So their image under ∂(ρ, C∞, 1) is zero.
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Therefore

∂(ρ, C∞, 1)(λ(f(z)))

= D

ρ(Ξ(z))

 ∑
λ−,λ+

fλ−,λ+(β + ᾱβ)λ− ⊗ (β + αβ)λ+

mod Split(C∞),

where D is the map (6.1). Applying (3.17) and (3.18) again, we obtain
∂(ρ, C∞, 1)(λ(f(z)))

= ρ−1(Ξ(z))D

ρ (Ξ(z))

 ∑
λ−,λ+

fλ−,λ+(du−dū−)λ− ⊗ (du+ − dū+)λ+

mod Split(C∞)

= ρ−1(Ξ(z))D

 ρ (Ξ(z))

 ∑
λ−,λ+

fλ−,λ+(du−)λ− ⊗ (du+)λ+


= ρ−1(Ξ(z))D (ρ (Ξ(z))λ(f)) .

�

Let Z be a GLn(C)×GLn(C)-stable quotient of
ω(C∞)ρ ⊗ (ΩAuniv/M(C∞))•+d,

and let Z = H0(Hn, Z). Let φZ denote projection onto Z. Recall that
Shimura defines a differential operator DZρ (see e.g. [34]) by DZρ = φZD

d.

So as a corollary of Proposition 8.5, we obtain the following
Corollary 8.6. — DZρ = ∂(ρ, C∞, 1)Z .

9. The p-adic differential operators

In this section, we construct p-adic differential operators that act on p-
adic automorphic forms, and we discuss basic properties of these operators.
We follow the arguments from [16] closely. Rather than the notation from
[16], however, we use the notation from [8] and [9], since this is what we
will use in our applications.
Throughout this section, let R be an OK-algebra that is separated for

the p-adic topology, and let R0 be the p-adic completion of R.

9.1. Analogue of the differential operators ∂(ρ, C∞, d)

We define p-adic differential operators

∂(ρ, p-adic, d) : (ω−)ρ− ⊗ (ω+)ρ+(p-adic)
→ (ω−)ρ− ⊗ (ω+)ρ+(p-adic)⊗ Ω(p-adic)
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in the same way as the C∞-differential operators ∂(ρ, C∞, d), except that
we replace Split(C∞) and Ω(C∞) with Split(p-adic) and Ω(p-adic), re-
spectively. Replacing all occurrences of C∞ with p-adic in the proof of
Theorem 8.4, we see that all the properties of the C∞-operators given in
Theorem 8.4 also hold for the p-adic operators. One can construct operators
∂(ρ, p-adic, d)Z similarly to how one constructs the operators ∂(ρ, C∞, 1)Z .
The operators ∂(ρ, p-adic, d)Z have properties similar to those of
∂(ρ, C∞, 1)Z .

9.2. p-adic arithmeticity result

In this section, following [16], we give a p-adic analogue of the algebraicity
theorem 8.2.
Let x = X be an R-valued point of MR with an element λ of Ex/R.

Suppose there is a splitting over R

Split(X/R)⊕ ωX/R
∼→ H1

DR(X/R).

Then, similarly to the C∞ case, we have an inclusion

Split(X/R) ↪→ H1
DR(p-adic)(X/R0)(9.1)

We introduce a p-adic analogue of the condition (†). We say that the the
pair (x, Split(X/R)) satisfies the condition (‡)if the following holds: The
image of Split(X/R) under the inclusion (9.1) is the unit root subspace

U(X/R0) ⊂ H1
DR(p-adic)(X/R0),

i.e. Split(X/R)⊗R0 = U(X/R0).(‡)

Let f be an automorphic form of weight ρ over R, and associate it with
a corresponding element of ωρR. Then by the extension of scalars R ↪→ R0,
we can view f as a section f(p-adic) of ω(p-adic)ρ.
We now give a p-adic analogue of the algebraicity theorem 8.2.

Theorem 9.1. — Suppose that (x, Split(X/R)) is an R-valued point of
MR that satisfies condition (‡), and let λ be an element of Ex/R. Let f be
an automorphic form in Mρ⊗τe(R) with values in the R-module V . Then
(∂(ρ, p-adic, d)f(p-adic))(x, λ)R0 = ιR(∂(ρ, e, x, λ, Split(X/R), d)f). There-
fore, (∂(ρ, p-adic, d)f(p-adic))(x, λ)R0 lies in theR-module V⊗(Rn⊗Rn)⊗d.

The proof of Theorem 9.1 is similar to the proof of Theorem 8.2; simply
replace “C∞” with “p-adic.” We obtain a similar arithmeticity result for
the operators ∂(ρ, p-adic, d)Z . We note that the only points that matter
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in our intended applications are certain ordinary CM points. We shall see
soon that for each such ordinary CM point there is a splitting that satisfies
condition (‡).

9.3. Differential operators on p-adic automorphic forms

In this section, we construct a morphism θ that acts on the space of
p-adic automorphic forms. The operator θ is a vector-valued analogue of
Ramanujan’s operator q ddq .

Recall that p-adic automorphic forms are actually certain sections of
modules of the formOnT∞,∞⊗RV with (ρ, V ) a representation ofGLn×GLn.
Thus, all p-adic automorphic forms appear as certain sections of the tensor
product of total tensor algebras T (OnT∞,∞)⊗T (OnT∞,∞), which we associate
with the tensor product of the free algebras on n letters R = OT∞,∞ ⊗R
R〈T1, . . . , Tn〉 ⊗R R〈T1, . . . , Tn〉, via

ei ⊗ ej 7→ Ti ⊗ Tj ,(9.2)

where ei denotes the i-th standard basis element of OnT∞,∞ . This viewpoint
allows us to consider p-adic automorphic forms as subsections of the algebra
R. In the p-adic modular forms case, this algebra is simply the ring of p-adic
modular forms.
We use this viewpoint in this section, not only because it conveniently

allows us to consider modular forms of all different weights at once, but also
because this viewpoint is important for applications involving construction
of families of p-adic automorphic forms of different weights.

While not in general a derivation of R over R, the morphism θ that we
construct later in this section extends to an R-derivation of the commuta-
tive subalgebra OT∞,∞ ⊗R R[T1, . . . , Tn]⊗R[T1, . . . Tn].
Note that composition of the canonical isomorphism

ωcan : OnT∞,∞ ⊗O
n
T∞,∞

∼→ ω−(p-adic)⊗ ω+(p-adic)

with (9.2) induces an isomorphism

R
∼→ T

(
ω− (p-adic)

)
⊗ T

(
ω+ (p-adic)

)
,(9.3)

which we shall also denote by ωcan.
We are now in a position to define the map θ and state some of its

fundamental properties.

Theorem 9.2. — There exists a morphism θ of R such that the follow-
ing hold:
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(1) The following diagram commutes:

R
θ //

∼=ωcan

��

R

∼=ωcan

��
T (ω(p-adic)−)⊗ T (ω(p-adic)+)

∂(ρ,p-adic,1) // T (ω(p-adic)−)⊗ T (ω(p-adic)+)

(2) The morphism θ is “homogeneous of degree 1⊗ 1”, i.e. if x1 and x2
are homogeneous elements of OT∞,∞⊗RR〈T1, . . . , Tn〉 of degrees d1
and d2, then θ(x1⊗x2) is homogeneous of degree (d1 +1)⊗(d2 +1).

(3) On the commutative subalgebra

OT∞,∞ [T1, . . . , Tn]⊗OT∞,∞ OT∞,∞ [T1, . . . , Tn]

of R, θ is a derivation.
(4) If f(q) =

∑
h=(hij)∈H∨>0

(
c(h)qh

)
at the cusp at infinity (L,H), with

c(h) ∈ R〈T1, . . . , Tn〉 ⊗R〈T1, . . . , Tn〉, then

(θ(f))(q) =
∑

h=(hij)∈H∨>0

(
d(h)qh

)
,(9.4)

where d(h) =
∑
i,j hijc(h) · (Tj ⊗ Ti).

Proof. — Define the morphism θ by θ = ω−1
can ◦ ∂(ρ, p-adic, 1) ◦ ωcan.

Recall that for any positive integers d and e, ∂(ρ, p-adic, 1) maps each
element of T d(ω(p-adic)−)⊗ T e(ω(p-adic)+) to an element of

T d+1(ω(p-adic)−)⊗ T e+1(ω(p-adic)+).

So θ maps homogenous elements of degree d ⊗ e in R to homogeneous
elements of degree (d + 1) ⊗ (e + 1) in R. It follows from the definition
of ∂(ρ, p-adic, 1) that θ is a R-derivation of the commutative subalgebra
OT∞,∞ ⊗R R[T1, . . . , Tn]⊗R R[T1, . . . Tn] of R.
Now, we will examine the action of θ over the Mumford object MumL(q).

By Lemma 5.9, the elements∇(D(γ))(ω(w)) lie in U ⊆ H1
DR for each γ ∈ H

and w ∈ W . Since ∇(D(γ)) is an R-derivation and U an R-module, we in
fact have that

∇ (D (γ))
(
ω± (w)

)
∈ U(9.5)

for each w ∈W .
Note that ∂(ρ, p-adic, 1) (ω± (ei1)⊗ · · · ⊗ ω± (eir )) = 0 for each positive

integer r and 1 6 i1, . . . , ir 6 n. Note that

∂(ρ, p-adic, 1)
(
f · ω± (ei1)⊗ · · · ⊗ ω± (eir )

)
= ω± (ei1)⊗· · ·⊗ω± (eir ) ·Df,
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for each section f of OT∞,∞ . If the value of f at MumL(q) is f(q) =
f(MumL(q)) =

∑
h=(hij)∈H∨>0

a(h)qh, then for the standard basis elements
ekl ∈ H,

(D (ekl)) (f (q)) =
∑

h=(hij)∈H∨>0

a(h) · tr (eklh)qh =
∑

h=(hij)∈H∨>0

a(h)hlkqh.

So over the Mumford object, we have

∇ (D (ekl))
(
f(q) ·

(
ω± (ei1)⊗ · · · ⊗ ω± (eir )

))
= D (ekl) (f(q)) ·

(
ω± (ei1)⊗ · · · ⊗ ω± (eir )

)
·KS(D(ekl) mod Split(p-adic)

=
∑

h=(hij)∈H∨>0

a(h)hlkqh · ω+(ek)⊗ ω−(el) mod Split(p-adic).

Therefore, ∇f(q) =
∑
h=(hij)∈H∨>0

∑
16l,k,6n a(h)hlkqh · ω±(ek) ⊗ ω±(el)

mod Split(p-adic), so

∂(ρ, p-adic, 1)f(q) =
∑

h=(hij)∈H∨>0

∑
16l,k,6n

a(h)hlkqh · ω±(ek)⊗ ω±(el).

Thus, θ acts on q-expansions of automorphic forms as in Equation (9.4). �

Remark 9.3. — The operators θ are a vector-valued generalization of
Ramanujan’s operator θ = q ddq and Katz’s analogous operator for Hilbert
modular forms in [16].

Definition 9.4. — For each subrepresentation Z, define

θZ : (OT∞,∞)ρ → (OT∞,∞)Z by θZ := φZ ◦ θd|(OT∞,∞ )ρ .

From the definition of θ, we see that θZ = ω−1
can ◦ ∂(ρ, p-adic, d)Z ◦ ωcan.

We note that, in practice, the above discussion of θ can often be simpli-
fied according to the properties of the particular representation with which
one works. For example, in our intended applications, we will only be in-
terested in representations of the form ρ− ⊗ ρ+ with ρ± = detk± ⊗Syml± .
In this case, we will be able to restrict our discussion to the commutative
subalgebra OT∞,∞ ⊗R R[T1, . . . , Tn]⊗R R[T1, . . . , Tn] of R, on which θ will
be a derivation.
Now we compare the values of θ to the values of ∂(ρ, p-adic, d).

Lemma 9.5. — Let A be an R-valued point ofM(p-adic) that satisfies
condition (‡), and let ω+ and ω− be elements of E+

A/R and E−A/R respec-
tively. Let c = (cij) ∈ (GLn ×GLn)(R0) satisfy

ω± = c± · ω±can(A).(9.6)
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Let f be an automorphic form of weight (ρ, V ) over R, and let f̃ =
ω−1
can(f) ∈ ω. Then

∂(ρ, p-adic, d)(f̃)(A,ω) = ((ρ⊗ τd)(c−1))(θdf)(A).

Proof. — We have ∂(ρ, p-adic, d)(f̃) = ωcan ◦ θd(f). So by (9.6),

∂(ρ, p-adic, d)(f̃)(A,ω) = (ρ⊗ τd)(c−1)∂(ρ, p-adic, d)(f̃)(A,ωcan(A))
= ((ρ⊗ τd)(c−1))(θdf)(A) �

The same method also gives a similar result when we restrict to subrep-
resentations Z of ρ⊗ τd:

Corollary 9.6. — With hypotheses as in Lemma 9.5,

∂(ρ, p-adic, d)Z(f)(A,ω) = ((ρ⊗ τd)|Z(c−1))(θZ f̃)(A).

As a corollary of Theorem 9.1 and Lemma 9.5, we obtain the following
theorem.

Theorem 9.7. — Let A be an R-valued point of the moduli scheme
M(p-adic), and let f be an automorphic form over R of weight (ρ, V ), and
let Z be a subrepresentation of ρ⊗ τd. Then

((ρ⊗ τd)|Z(c−1))(θZ f̃)(A) = ιR(∂(ρ, e, A, ω, Split(A/R), d)f).

Therefore, ((ρ⊗ τd)|Z(c−1))(θZ f̃)(A) lies in the R-submodule Z = R⊗RZ
of R0 ⊗R Z.

10. Splitting of H1
DR for CM abelian varieties

We now discuss conditions under which an abelian variety A/R has a
splitting H1

DR(A/R) = ω ⊕M over R that simultaneously satisfies both
condition (†)and (‡).
Let E ×E′ be a product of CM algebras E and E′, with E = L1× · · · ×

LmE and E′ = L′1×· · ·×L′mE′ products of CM fields Li, L′i such that each
field Li, L′i is a totally real extension of the CM field K fixed in Section 1.3.
Let S = SE×SE′ be a CM type for E×E′, where SE = SL1×· · ·×SLmE

and S′E = SL′1
× · · · ×SL′m

E′
are CM types for E and E′.

Definition 10.1. — We shall say the CM type S is compatible with
Σ if the following two conditions are both met:

(1) For each σ in SE , σ|K is in Σ.
(2) For each σ in SE′ , σ|K is in Σ̄.
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Suppose (E × E′,S) is a CM type compatible with (K,Σ). So E =
L1 × · · · × LmE and E′ = L′1 × · · · × L′mE′ , with each Li and each L′i a
totally real extension of K, i.e. Li (resp. L′i) is of the form Fi ⊗K (resp.
F ′i ⊗K) for some totally real fields Fi. We use the following notation:

OE = OL1 × · · · × OLmE
OE′ = OL′1 × · · · × OLmE′

OE×E′ = OE ×OE′
O = OF1 × · · · × OFmE ×OF ′1 × · · · × OFmE′ .

Let R be a Z(p)-subalgebra of Q̄ containing each OLi and each OL′
i
. For

each CM type (Li,SLi), there is a natural ring isomorphism

OLi ⊗R
∼→ OFi ⊗R×OFi ⊗R

a⊗ r 7→ φSi(a⊗ r)× φSi(ā⊗ r),
where

φSi : OLi ⊗R→ OFi ⊗R ∼= RSi

a⊗ r 7→
∏
σ∈Si

σ(a)r.

is the projection A similar isomorphism holds for each (L′i,SL′
i
). So there

is a corresponding ring homomorphism

OE×E′ ⊗R→ O⊗R×O ×R
a⊗ r 7→ (φS(a)r, φS(ā)),

and for anyOE×E′⊗R-moduleM , there is a correspondingO⊗R-decompo-
sition M ∼= M(S)⊕M(S), with

M(S) = {m ∈M |a ·m = φS(a)m for all a ∈ OE×E′} ,

M(S̄) = {m ∈M |a ·m = φS(ā)m for all a ∈ OE×E′} .
If M is an invertible OE×E′ ⊗R-module, then so are M(S) and M(S̄) as
O ⊗R-modules.

Proposition 10.2. — [Analogue of Key Lemma 5.1.27 in [16]] Let
(S, E ×E′) be a CM type compatible with (Σ,K), and let R be as above.
If A is an ordinary CM abelian variety of PEL type over R with complex
multiplication by (OE×E′ ,S), then ωA/R = H1

DR(S), and the splitting
H1
DR(A/R) = H1

DR(S)⊕H1
DR(S̄) simultaneously satisfies both (†)and (‡).

Proof. — Let H = H1
DR(A/R). Since (A,S) is a CM abelian variety over

R, H = H(S) ⊕H(S̄) is an invertible OE×E′ ⊗ R-module. So H(S) and
H(S̄) are invertible O ⊗ R-modules. The action of OE×E′ on Lie(A∨/R)
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is through a 7→ φS̄. So in the exact sequence 0 → ω → H(S) ⊕H(S̄) →
Lie(A∨/R)→ 0, H(S) maps to 0 in Lie(A/R). So H(S) is contained in ω.
Since A is ordinary, ω is an invertible O ⊗ R-module. So H(S) = ω. The
rest of the proof now follows exactly as in [16] Key Lemma 5.1.27. �

Let U(1)n denote the subgroup
U(1)× · · · × U(1)︸ ︷︷ ︸

n times
of U(n). Consider the natural embedding

Sh (U(1)n × U(1)n) ↪→ Sh(U(n)× U(n)) ↪→ Sh(U(n, n)).
The points of Sh (U(1)n × U(1)n) parametrize abelian varieties isogenous
to a CM abelian variety of the form

A× · · · ×A︸ ︷︷ ︸
2n copies of A

(where each copy of A is one-dimensional) with CM type
(K,Σ)× · · · × (K,Σ)︸ ︷︷ ︸

n times
×
(
K, Σ̄

)
× · · · ×

(
K, Σ̄

)︸ ︷︷ ︸
n times

.

An abelian variety parametrized by a point of Sh(U(n) × U(n)) is isoge-
nous to an abelian variety parametrized by Sh (U(1)n × U(1)n). So points
of Sh(U(n)× U(n)) parametrize CM abelian varieties compatible with Σ.
Since each of the abelian varieties in Sh(U(n)×U(n)) is of CM type com-
patible with Σ, we obtain:

Corollary 10.3. — Each abelian variety parametrized by Sh(U(n)×
U(n)) has a splitting simultaneously satisfying (†) and (‡).

Corollary 10.3 is crucial to our applications involving the pullback
method to construct L-functions, which only requires evaluating automor-
phic forms at points of U(n)× U(n).

Remark 10.4. — Note that the proof of Proposition 10.2 shows that
there are also other abelian varieties which have a splitting simultaneously
satisfying both conditions (†) and (‡). For example, suppose A is a CM
abelian variety with CM by a CM field L = F ⊗K in which p splits com-
pletely in F , where degF = 2n = dimA. Let S = {σ1, . . . , σ2n} be a CM
type for L such that σi|K∈ Σ for 1 6 i 6 n and σi|K∈ Σ̄ for n+1 6 i 6 2n.
Then the proof of Proposition 10.2 shows that H1

DR(S)⊕H1
DR(S̄) gives

a splitting of H1
DR satisfying conditions (†)and (‡) simultaneously. Thus,

there are also abelian varieties (over R) in Sh(U(2V )) not in
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Sh(U(n)× U(n)) that have a splitting (over R) simultaneously satisfying
(†) and (‡). For all our intended applications (i.e. construction of certain
p-adic L-functions using the doubling method), however, only abelian va-
rieties of the type in Proposition 10.2 will be relevant.
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