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LIMIT CURRENTS AND VALUE DISTRIBUTION OF
HOLOMORPHIC MAPS

by Daniel BURNS & Nessim SIBONY (*)

In memory of our friend Pit-Mann Wong

Abstract. — We construct d-closed and ddc-closed positive currents associ-
ated to a holomorphic map φ via cluster points of normalized weighted truncated
image currents. They are constructed using analogues of the Ahlfors length-area
inequality in higher dimensions. Such classes of currents are also referred to as
Ahlfors currents. We give some applications to equidistribution problems in value
distribution theory.
Résumé. — Nous introduisons des courants positifs d-fermés ou ddc-fermés as-

sociés à une application holomorphe φ entre deux variétés complexes. Les courants
sont de bidegré (p, p) selon les indicateurs de croissance de φ. Ce sont les analogues
des courants d’Ahfors associés aux applications de C dans une variété Y . Nous
donnons quelques applications à la théorie de distribution de valeurs.

1. Introduction

Let X be a complex manifold of dimension k, and (Y, ω) a compact
kähler manifold of dim m > k. We consider a non-degenerate holomorphic
map φ : X → Y . We are interested in the distribution of pre-images of
subvarieties of Y under φ. When k = m = 1, the theory is very well-
developed, see, for example, [13]. In higher dimensions many questions
remain open, but cf., Griffiths [10], Shabat [17].
We first construct some positive d-closed or ddc-closed currents associ-

ated to φ. When X = C, Ahlfors’s length-area estimate implies that for
appropriate subsequences rn → +∞ the currents φ∗[Drn ]/crn cluster at

Keywords:Ahlfors currents, Brody’s theorem, value distribution theory, equidistribution.
Math. classification: 32A22, 32H25, 32H30.
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146 Daniel BURNS & Nessim SIBONY

positive closed currents of bidimension (1,1). Here Dr is the disk of radius
r, [Dr] is the current of integration over this disk, and cr is a normaliz-
ing factor to guarantee mass 1. Such currents are useful in dynamics [5],
[18] and in value distribution theory [15], for example. The present paper
centers around extensions of Ahlfors’ idea to higher dimensions, especially
when X is parabolic, or a bounded domain.

Let τ be a plurisubharmonic (p.s.h.) exhaustion function on X,

τ : X → [0, R), R > 0,

where R could be finite. Recall that a manifold X is parabolic if it admits
a p.s.h. exhaustion function τ with R = +∞, and such that (ddcτ)k van-
ishes outside a compact set. An example is X = Ck, τ = log ‖z‖ outside
a compact set. Riemann surfaces are parabolic if and only if they do not
admit non-constant, bounded, subharmonic functions.
We consider positive currents Sr = Sj,r of bidimension (j, j) on Y defined

by

(1.1) < Sr, ϕ >=
∫
X

ur (ddcτ)k−j ∧ φ∗(ϕ)

where ϕ is a test form of bidegree (j, j), and where we may take ur =
(1 − τ

r )+, a plurisuperharmonic function on Br := {z ∈ X | τ(z) < r} for
all r. The constant cr =

∫
X
ur(ddcτ)k−jφ∗(ωj) is a normalizing constant to

have Sr/cr of mass 1. When X is parabolic of dimension k, for example, we
show that for j = 1, the currents Sr/cr have at least one positive d-closed
current among their cluster points.

Definition 1.1. — Define the unaveraged characteristic function

(1.2) tj(r) =
∫
Br

(ddcτ)k−j ∧ φ∗(ωj).

The averaged characteristic function, or simply characteristic function,
Tj(r) is defined as

(1.3) Tj(r) =
∫ r

0

1
s
tj(s)ds.

These characteristic functions are modeled on those of Nevannlina and
later, in higher dimensions, of Chern, for example [4].

Define the d-mass ratio Ij(r) of degree j as follows:

(1.4) Ij(r) =
(∫ r

0 tj−1(s) ds
)
· tj(r)

(
∫ r

0 tj(s)ds)2 .

See (2.8) and (2.11) for the origin and derivation of (1.4).
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LIMIT CURRENTS 147

We show, for arbitrary p.s.h. exhaustion τ , that if limr`→+∞ Ij(r`) = 0,
then all cluster points of the currents Sr`/cr` of bidimension (j, j) are pos-
itive closed currents, cf. Theorem 2.2.
The question of the existence of closed currents for images of Ck has

been explored recently by de Thélin [21], where limit currents similar to
those described above are called Ahlfors currents. The difference between
[21] and here is that we weight the integral in the definition of Sr with the
factor ur, which is smoother than the characteristic function of Br used
in [21]. The condition guaranteeing the existence of closed limit currents
seems more tractable than that of [21] since it involves only the relative
growth of tj and tj−1, and not their derivatives, although cf. Theorem 2
of [21] on this point, and compare it to Theorem 7.2 below. Note that
Theorem 7.2 produces ddc-closed currents. Only the maximal dimensional
case j = k, i.e., Sr of bidimension (k, k) is examined in [21], and only the
case of d-closed limits. It turns out that for questions of value distribution,
it can often be just as useful to find cluster points which are ddc-closed, a
situation to which we turn next.
Assume τ = log σ, and redefine Br = {σ < r}, and the current Sr = Sj,r

of bidimension (j, j) in the ddc-case as

(1.5) Sr(ψ) =
∫
Br

log+ r

σ
(ddcτ)k−j ∧ φ∗(ψ)

for ψ of bidegree (j, j), with normalizing constant cr = Sr(ωj).
Define the ddc-mass ratio Jj(r) of degree j by

(1.6) Jj(r) = tj−1(r)
Tj(r)

,

where the denominator is the classical characteristic function (1.3). Our
main result is Theorem 3.2, which gives the following result.

Main Theorem 3.2. — If Jj(r`)→ 0, then all cluster points of Sr`/cr`
are ddc-closed. Moreover, 〈ddcSr`/cr` , ψ〉 → 0 when ψ is a bounded form.

In particular, we find conditions which ensure that there is a ddc-closed
current associated with a holomorphic map φ : Bk(1)→ Y , with Bk(1) the
unit ball in Ck. A consequence of these conditions is the following Brody
type result.

Theorem 4.2. — Let φn : Bk(1) → Y be a sequence of holomorphic
maps. Then either the graphs of the φn form a normal family of analytic
sets, or there is a j, 1 6 j 6 k, and sequences r` → R−, n` →∞ such that
Sj,r`/cj,r` = Sφn` ,j,r`/cn`,j,r` converges to a ddc-closed current.

TOME 62 (2012), FASCICULE 1



148 Daniel BURNS & Nessim SIBONY

These results lead to several consequences in value distribution theory,
and we record just one here, describing the value distribution of points.

Theorem 5.2. — Let φ : Ck → Pk be a non-degenerate holomorphic
map. Assume that

(1.7) lim inf
r→+∞

tk−1(r)
Tk(r) = 0.

Then there exists a “small” exceptional set E such that for a /∈ E , then

(1.8) lim sup
r→+∞

N(a, r)
Tk(r) = +1.

In particular, the (2k-2+δ)-dimensional Hausdorff measure of E is 0, for
any δ > 0.

Here N(a, r) is the classical logarithmic average of the number of preim-
ages of a in the τ -ball of radius r (c.f. (5.16)), and Tk(r) =

∫ r
0 tk(s) dss , the

appropriate characteristic function for this dimension. The smallness of E
is measured by a capacity, for which E is of capacity 0. In fact, we get for
every codimension j an exceptional set Ej of “zero j-capacity” such that
outside of Ej one has defect zero, in the sense of a dimension-appropriate
case of a result similar to (1.8), provided that the appropriate Jj(r) has
lim inf Jj(r) = 0. It seems that in previous work (see Shabat [17], Griffiths-
King [9]), the claim is that “most” points are covered without a quantitative
measure of the size of the defect locus. For analytic sets there are earlier
results in this direction for the average growth of a hyperplane section, see
Gruman [12], Molzon-Shiffman-Sibony [16].
Theorem 5.2 and other results in section 5 are sharper than stated here,

since we give estimates for the rates of convergence. For these the second
half of Theorem 3.2 is crucial, and gives a formulation of the proximity
term in the First Main Theorem of value distribution in our context, and
an estimation in terms of mass ratios.

Here is an outline of the paper. In section 2 we estimate 〈dSr, ψ〉 /cr,
and arrive at the d-mass ratios of degree j as a useful bound. The rest of
the section is devoted to estimating these mass ratios in concrete cases.
The situation is especially clear when the domain X of φ is parabolic, and
when X is furthermore of dimension one, our results are complete.

Section 3 is very analogous to section 2, but for ddc-closed cluster cur-
rents. Of particular interest is the precise estimate in Theorem 3.2,

| 〈ddcSj,r, ψ〉 /cr| 6 C‖ψ‖∞
tj−1(r)
Tj(r)

,
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valid for all bounded test forms ψ of bidegree (j, j), which is central in
much of what follows, especially in section 5. The section closes with a the-
orem on the positivity of intersection of the cluster currents constructed in
bidimension (1, 1) with analytic hypersurfaces which meet the image of φ
non-trivially. This generalizes a result of McQuillan’s for X = C or a finite
branched cover of C. Section 4 studies the effect of scaling on the estimates
we use on ddcSr. In particular, because we can estimate ddcSj,r for all in-
termediate j, and not just j = k, we arrive at a “multichotomy”: either
one of the j, 1 6 j 6 k gives rise to a positive, ddc-closed limit current
of Sj,r/cj,r or we get an estimate on the volume of the graph of φ. This
follows from the inductive structure of the various ddc-mass ratios, and
their relation to the mixed volumes calculation of the volumes of graphs
in X × Y . The Brody-type result described above follows. Section 5 deals
with the value distribution applications, and includes one corollary about
the behavior of leaves of singular holomorphic foliations of Pm. Section 6
examines the size of the set of limit currents constructed here using results
in complex dynamics. The result is a kind of higher dimensional equidistri-
bution according as a limit current is unique. The final section 7 relates the
mass ratio conditions which this article is based on to a couple of examples
of classical order of growth conditions, such as finite order, on maps φ.

2. First limits: d-closed currents

LetX be a complex manifold of dimension k, and (Y, ω) a compact kähler
manifold of dimension m > k. We assume X,Y conected. Let φ : X → Y

be a non-degenerate holomorphic map, i.e., the rank of dφ(x0) = k at some
x0 ∈ X. Let τ : X → [0, R), 0 < R 6 +∞ be a smooth plurisubharmonic
exhaustion function. Set Br = {x | τ(x) 6 r}, which is compact for r < R.
For convenience, we will usually assume that

(2.1) τ > r0 > 0.

Let ur be a family of continuous positive plurisuperharmonic functions
on Br, r ∈ [0, R). We consider the family of positive currents of bidimension
(j, j) on Y defined by

(2.2) Sr(ψ) = Sj,r(ψ) =
∫
Br

ur(ddcτ)k−j ∧ φ∗(ψ),

where ψ is a smooth test form of bidegree (j, j) on Y , and set cr = cj,r =
Sj,r(ωj). We will study the cluster points of the family of normalized posi-
tive currents Sr(·)/cr of mass 1. Different choices of ur will prove useful in

TOME 62 (2012), FASCICULE 1



150 Daniel BURNS & Nessim SIBONY

what follows. In this section we consider cases where the proper choice of
ur, and suitable conditions on φ, τ, ω, lead to d-closed currents as cluster
points of the normalized Sr’s.
In particular, we will work mainly in this section with

ur := (1− τ

r
)+ = χ(vr),

where vr = 1 − τ
r , and χ = max(t, 0). We want to find conditions which

guarantee that dSr`/cr` → 0, for suitable sequences r` → R. For this it
is enough to estimate dSr on test forms of the type ψ = θ ∧ βj−1, with θ
a (1,0)-form and β an arbitrary kähler form. This is because we can first
assume ψ has components only in bidegrees (j, j − 1) and (j − 1, j), and is
real, and because secondly any such ψ can can be written as a finite sum
(with an a priori bounded number of terms),

(2.3) ψ =
N∑
ν=1

θν ∧ βj−1
ν +

N∑
ν=1

θν ∧ βj−1
ν ,

where θν , βν are as claimed. We note that this can be done in such a way
that

i

2θν ∧ θν 6 C ‖ψ‖
2
∞ ω, and

0 6 βν 6 ω, ν = 1, . . . , N.
(2.4)

By the Schwarz inequality, we get

|〈dSr, ψ〉| =
∣∣∣∣∫
X

χ′(vr) dvr ∧ (ddcτ)k−j ∧ φ∗(θ) ∧ φ∗(βj−1)
∣∣∣∣

6

(∫
Br

χ′(vr) dvr ∧ dcvr ∧ (ddcτ)k−j ∧ φ∗(βj−1)
) 1

2

×
(∫

Br

χ′(vr) i φ∗(θ) ∧ φ∗(θ̄) ∧ (ddcτ)k−j ∧ φ∗(βj−1)
) 1

2

.

(2.5)

It follows that

|〈dSr, ψ〉| 6 C ‖ψ‖∞
(∫

Br

dvr ∧ dcvr ∧ (ddcτ)k−j ∧ φ∗(ωj−1)
) 1

2

×
(∫

Br

(ddcτ)k−j ∧ φ∗(ωj)
) 1

2

.

(2.6)
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Hence, one has

(2.7)
∣∣∣∣ 〈dSr, ψ〉cr

∣∣∣∣2 6 C ‖ψ‖2∞
×

(
∫
Br
dvr ∧ dcvr ∧ (ddcτ)k−j ∧ φ∗(ωj−1))(

∫
Br

(ddcτ)k−j ∧ φ∗(ωj))
(
∫
Br
ur (ddcτ)k−j ∧ φ∗(ωj))2 .

Remark 2.1. — With small technical modifications, we can allow X to
be a singular analytic space.
We formalize this condition. First set Ij(r) equal to (the essential part

of) the right hand side of (2.7), that is,

(2.8) Ij(r) =
(
∫
Br
dvr ∧ dcvr ∧ (ddcτ)k−j ∧ φ∗(ωj−1))(

∫
Br

(ddcτ)k−j ∧ φ∗(ωj))
(
∫
Br
ur (ddcτ)k−j ∧ φ∗(ωj))2 .

We have proved the following basic theorem.

Theorem 2.2. — If there exists a sequence r` →∞ such that Ij(r`)→
0, then any limit current of Sr`/cr` is a closed and positive current of mass
1. Moreover, limr`→∞

1
cr`
〈dSr` , ψ〉 = 0, for any bounded test form ψ of

degree 2j − 1.

We are thus led to study the ratios I(r) = Ij(r) of (2.8). Let us intro-
duce characteristic functions appropriate to all dimensions as in (1.2) and
(1.3) above. Similar notions have been used in the holomorphic dynamics
literature under the name of dynamical degrees: when f is a meromorphic
self-map of a compact Kähler manifold Y of dimension k, then the j-th
dynamical degree λj is defined as

(2.9) λj := lim
n→∞

(
∫
Y

ωk−j ∧ (fn)∗(ωj))1/n,

see, for example, [5] for references.

Definition 2.3. — For 0 6 j 6 k, set tj(r) =
∫
Br

(ddcτ)k−j ∧ φ∗(ωj).

TOME 62 (2012), FASCICULE 1



152 Daniel BURNS & Nessim SIBONY

We express the components of the Ij(t)’s in terms of these tj ’s. We write
out the case of j = k only; the others are similar. First∫

Br

dvr ∧ dcvr ∧ φ∗(ωk−1)

= 1
r2

(∫
∂Br

τ dcτ ∧ φ∗(ωk−1)−
∫
Br

τ ddcτ ∧ φ∗(ωk−1)
)

= 1
r2

(
r

∫
Br

ddcτ ∧ φ∗(ωk−1)−
∫
Br

τ ddcτ ∧ φ∗(ωk−1)
)

= 1
r2

∫
Br

(r − τ) ddcτ ∧ φ∗(ωk−1)

= 1
r

∫
Br

(1− τ

r
) ddcτ ∧ φ∗(ωk−1)

= 1
r

∫
Br

(
∫ 1− τr

0
ds) ddcτ ∧ φ∗(ωk−1)

= 1
r

∫ 1

0
ds

∫
Br(1−s)

ddcτ ∧ φ∗(ωk−1)

= 1
r2

∫ r

0
ds

∫
Bs

ddcτ ∧ φ∗(ωk−1)

= 1
r2

∫ r

0
tk−1(s) ds

(2.10)

Similarly, ∫
Br

ur φ
∗(ωk) = 1

r

∫ r

0
ds

∫
Bs

φ∗(ωk) = 1
r

∫ r

0
tk(s) ds.

Thus we can re-express I(r) as

(2.11) I(r) =
(
∫ r

0 tk−1(s) ds) tk(r)
(
∫ r

0 tk(s) ds)2 .

With (2.11) in hand, we can express relatively natural conditions on the
growth or decay of ratios of volumes, similar in spirit to the original Ahlfors
conditions, which guarantee that I(r`)→ 0 along some suitable sequences
r` →∞. For convenience, set cr` = c` below.

Theorem 2.4. — Let φ,X, Y, τ be as above.
1. Assume R =∞, and that

(2.12) lim tj−1(r)∫ r
0 tj(s) ds

= 0.
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Then there is a sequence r` → ∞ such that Sr`/c` converges to a
positive closed current. Moreover, 〈dSr`/c`, ψ〉 →0, for any bounded
test form ψ.

2. Assume R = ∞, and let α = α(s) be a continuous function such
that

∫∞
0

ds
α(s) <∞. Assume further that

(2.13) lim inf
α(
∫ r

0 tj(s) ds) ·
∫ r

0 tj−1(s)ds
(
∫ r

0 tj(s) ds)2 = 0.

Then there is a sequence r` → ∞ such that Sr`/c` converges to a
positive closed current. Moreover, 〈dSr`/c`, ψ〉 →0, for any bounded
test form ψ.

3. Assume R <∞, and that

(2.14)
∫ R

r0

dr∫ r
r0
tj−1(s) ds

=∞.

Then there is a sequence r` → ∞ such that Sr`/c` converges to a
positive closed current. Moreover, 〈dSr`/c`, ψ〉 →0, for any bounded
test form ψ.

Proof. — We write out the case j = k; the others proceed similarly.
For notational simplicity, set A(r) =

∫ r
0 tk(s) ds. We see that I(r) > c is

equivalent to(1)

(2.15) c 6
A′(r)
A2(r)

∫ r

0
tk−1(s) ds.

We show that (2.15) contradicts, in turn, each of the three hypotheses in
the statement of Theorem 2.4. The final comments about convergence for
bounded test forms follow directly from (2.7) and (2.11).

1. We integrate (2.15) from 1 to r and get

(2.16)
c(r − 1) 6

[
− 1
A(t)

∫ t
0 tk−1(s) ds

]r
1

+
∫ r

1
tk−1(s)
A(s) ds

6
∫ r

1
tk−1(s)
A(s) ds+O(1),

on suitable sequences of r → R. If lim tk−1(r)
A(r) = 0, we get a contra-

diction for some r >> 0.

(1)One might have to assume r > some r1 to guarantee A(r) 6= 0 in the arguments
below. We will assume, WLOG, that r1 = 0.
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2. Recall that since A is increasing, then A′(r) 6 α(A(r)) outside a
set E of finite length. If E = {r |A′(r) > α(A(r))}, one has

measure(E) 6
∫
E

A′

α(A) dr 6
∫ ∞

0

1
α(u) du <∞.

From (2.15) we get that on the complement of E

c 6
α(A)
A2

∫ r

0
tk−1(s) ds,

which is a contradiction.
3. If c 6 A′

A2

∫ r
0 tk−1(s) ds, with r > R0, then∫ r

r0

c ds∫ r
0 tk−1 ds

6
∫ r

r0

A′

A2 ds =
[
− 1
A

]r
r0

6
1

A(r0) <∞,

which leads again to a contradiction and proves 3.
�

We examine next another case where we can analyze the condition I(r`)
→ 0 by manipulation of ratios of volume growth. We start from the simple
observation that (2.15) is equivalent to

(2.17) 1
c

A′

A1+δ >
A1−δ∫ r

0 tk−1(s) ds
, for any δwith 0 < δ 6 1.

Integrating (2.17) on [r0, r], one gets

(2.18) 1
c

[
−A

−δ

δ

]r
r0

= 1
c δ

[
A−δ(r0)−A−δ(r)

]
>
∫ r

r0

A1−δ(t)∫ t
0 tk−1(s) ds

dt.

We conclude that

(2.19) 1
c
A−δ(r0) > δ

∫ r

r0

A1−δ(t)∫ t
0 tk−1(s) ds

dt, for any δ > 0.

In particular, if

(2.20) sup
0<δ61,r<R

∫ r

r0

δ
A1−δ(t)∫ t

0 tk−1(s) ds
dt =

sup
0<δ61,r<R

∫ r

r0

δ
(
∫ t

0 tk(s) ds)1−δ∫ t
0 tk−1(s) ds

dt = +∞,

then inequality (2.19) fails for some δ > 0, r ∈ (0, R). Since c > 0 was
arbitrary, we obtain the following corollary of Theorem 2.2.

Corollary 2.5. — If (2.20) holds, then there are closed, positive cur-
rents S among the cluster points of Sr/cr.
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LIMIT CURRENTS 155

Focusing next on the case δ = 1 in (2.19), if∫ R

r0

1∫ t
0 tk−1(s) ds

dt = +∞,

then we can apply corollary 2.5. If furthermore k = 1, this last becomes

(2.21)
∫ R

r0

1∫ t
0 t0(s) ds

dt = +∞,

a condition which is interesting since it is independent of φ. Note that this
condition can also be used for j = 1 and arbitrary k to construct closed
limit currents of bidimension (1, 1). Therefore, as a special case, we have
the following corollary.

Corollary 2.6. — If dimX = k,R =∞ and τ is a parabolic exhaus-
tion of X, then φ admits closed positive limit currents of bidimension (1, 1)
as limit points of S1,r/c1,r, for any Y, φ and ω.

Proof. — If τ is a parabolic exhaustion, i.e., (ddcτ)k = 0, for τ >
some r0, then

t0(r) =
∫ r

0
(ddcτ)k

=
∫
{r0<τ<r}

(ddcτ)k +
∫
Br0

(ddcτ)k

= C

for r > r0 >> 0. In particular,
∫ r

0
dt∫ t

0
t0(s) ds

diverges logarithmically, veri-

fying condition (2.21). �

Examining the proof of corollary 2.6 shows the conclusions to hold when-
ever (2.21) is verified, and the corollary lets one interperet (2.21) as a weak
form of parabolicity for the pair X, τ , since it is independent of φ, Y, ω.
Along the same lines, suppose that the denominator

∫ r
0 tk−1(s) ds of the

integrand of (2.20) is bounded, but that A(r) is unbounded (as in the par-
abolic case), then for δ ∈ (0, 1), (2.19) gives

(2.22) 1
c
A−δ(r0) > δ

∫ r

r0

A1−δ(t)∫ t
0 tk−1(s) ds

dt > c′
∫ r

r0

A1−δ(t) dt,

a contradiction, if
∫ r
r0
A1−δ dt is unbounded.

The same considerations apply to a bounded situation as follows. Let
φn : 4→ Y be a sequence of maps from the unit disk to Y .
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Proposition 2.7. — Let φn be a sequence of maps from 4 to Y . Fix
r0 < 1. Assume that

An,δ :=
∫ r

r0

(∫
Ds

φ∗n(ω)
)1−δ

ds, 0 < r, δ < 1,

is unbounded, and uniformly bounded below. Then there is a positive, d-
closed current of bidimension (1,1) among the cluster currents of S1,r,n/

c1,n,r.

The situation forX of dimension k = 1 and R =∞ divides very neatly by
corollary 2.6 into two cases, according as

∫
X
φ∗ω < +∞ or

∫
X
φ∗ω = +∞.

Corollary 2.8. — In corollary 2.6, if
∫
X
φ∗ω is finite, then the currents

Sr/cr converge weakly to the current S(ϕ) :=
∫
X
φ∗(ϕ)/

∫
X
φ∗ω.

Proof. — Write Sr(ω) as∫
Br

χ(vr)φ∗ω =
∫
X

φ∗ω −
∫
X

(χ(vr)− 1)φ∗ω

where limr→+∞
∫
X

(χ(vr) − 1)φ∗ω = 0, by dominated convergence. The
same observation applied to Sr(ϕ) gives the corollary. �

Notice, however, that
∫
X
φ∗ω unbounded does not imply the existence

of a positive closed cluster current if X is not parabolic. For example, a
generic (singular) holomorphic foliation F of P2 does not have a directed
positive closed current even though all leaves of F have infinite area. See [8]
for details.
Recall that a Riemann surface is parabolic if there is no non-constant

bounded subharmonic function on it, equivalently, if it does not admit a
Green’s function. ([1], p. 204). Thus, in the case of the generic foliation F
of P2, for example, the non-existence of directed positive closed currents
implies by Corollary 2.6 that all leaves must admit non-trivial bounded
subharmonic functions and must admit Green’s functions.

Remark 2.9. — In the situation of corollary 2.8 when X is an open Rie-
mann surface with a parabolic exhaustion function in the sense of Stoll [20],
that is, when the exhaustion log τ is harmonic and has no critical points
outside a compact set, then X can be compactified to X̄ by adding a finite
number of points at infinity, and if the area of φ(X) is finite, the mapping φ
can be extended across these finitely many points. It suffices to observe that
the graph of φ has finite area, and hence Bishop’s extension theorem [2] says
that its closure is an analytic set. In this case the current S of corollary 2.8
is given by integrating over the image φ(X̄), counting multiplicities.
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Corollary 2.10. — In corollary 2.6, if
∫
X
φ∗ω =∞, then the support

of S is contained in the intersection ∩r>r0φ(X \Br).

Proof. — Fix any r1 > r0, and write, for r > r1,

Sr(ψ) =
∫
Br

χ(vr)φ∗ψ

=
∫
Br1

χ(vt)φ∗ψ +
∫
Br\Br1

χ(vt)φ∗ψ

= O(1) +
∫
Br\Br1

χ(vr)φ∗ψ

(2.23)

If
∫
X
φ∗(ω) = ∞, this last shows that any cluster point of Sr(·)/Sr(ω) is

supported in φ(X \Br1). Since r1 was arbitrary, the result follows. �

Remark 2.11. — We can localize these arguments in dimension 1 as
follows. Let

∆∗ρ = {z ∈ C | 0 < |z| < ρ}.

Replace X above by the punctured disk ∆∗ = ∆∗1 and take vt = 1
t log 1

‖z‖2 ,
which is a parabolic exhaustion. Applying the arguments above directly
to a holomorphic map φ : ∆∗ → Y , we arrive at the dichotomy: for ρ ∈
(0, 1), either

∫
∆∗ρ
φ∗ω < +∞, and φ has a meromorphic extension across

0 ∈ ∆, or
∫

∆∗ρ
φ∗ω = +∞ and there is a closed, positive current S on Y

with support contained in ∩ρ∈(0,1)φ(∆∗ρ). If dimY = 1, this implies, in
particular, the classical Casorati-Weierstrass theorem, but is sharper, since
the identification of the limit current in the equidimensional case with 1

c [Y ]
gives a result on the equidistribution of values.

To be more precise about the last remark, make a definition.

Definition 2.12. — A point p ∈ Y is a φ-density point if for every
δ > 0 there is a constant κδ > 0 such that

(2.24) lim inf
r→R−

∫
Br
φ∗(χBδ(p)ωk)∫
Br
φ∗(ωk)

> κδ.

A point p ∈ Y is a φ-density point if and only if it is in the support of
a cluster current of the family Sr/cr. The case j = k = m of Theorem 2.2
then has the conclusion that every p ∈ Y is a φ-limit point, which adds
some quantitative refinement to the mere density of φ(X).

It is natural in the present context to consider the closed set of all the
positive closed currents which arise by the construction above.
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Definition 2.13. — Let Cj(φ) denote the space of all positive closed
currents of bidimension (j, j) on Y which are cluster points of currents of
the form Sj,r/cj,r associated to φ.

In Section 6 below we consider one case where Cj is shown to consist of
one element using results from complex dynamics.

Remark 2.14. — In principle, of course, functional manipulations of
(2.15) other than (2.17) and following can be made which might lead to
interesting conditions on φ for producing closed positive currents among
the limit points of Sr/cr. Other simple forms of ur as at the top of this
section, or in remark 2.11 above, are useful for producing other kinds of
limit currents. In section 3 below we consider mainly the case of ddc-closed
limit currents, but also one case of d-closed currents, in Theorem 3.3.

3. Limit currents which are ddc-closed

In this section we take weighting functions much as in section 2 above, but
which lead to ddc-closed currents of bidimension (j, j), 1 6 j 6 k = dimX.
In many cases these can be as useful as the closed currents of section 2
above, and in the equidimensional case j = k = m = dim Y , they are
equivalent.
Assume now that log σ is a plurisubharmonic exhaustion of X, set

vr = log r
σ
, ur = χ(vr) = log+ r

σ
,

where χ = max(t, 0). As in (1.5) we set

(3.1) Sr(ψ) =
∫
Br

ur(ddc log σ)k−j ∧ φ∗(ψ),

where ψ is a test (j, j)-form on Y and Br := {σ < r}, and define the
ddc-mass ration Jj(r) by

(3.2) Jj(r) :=
∫
Br

(ddc log σ)k−j+1 ∧ φ∗(ωj−1)∫
Br
ur(ddc log σ)k−j ∧ φ∗(ωj)

.

Definition 3.1. — We say that φ, σ, ω satisfy condition ddc-MR if

(3.3) lim inf Jj(r) = 0.

As in (1.2), call the numerator in (3.2) tj−1(r) and the denominator
Tj(r). Thus

Tj(r) = cj,r =
∫
Br

log+ r

σ
(ddc log σ)k−j ∧ φ∗(ωk) =

∫ r

0

1
s
tj(s) ds,
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as in (1.3), and so things simplify to:

(3.4) Jj(r) = tj−1(r)
Tj(r)

.

Theorem 3.2. — Suppose φ, σ, ω, r satisfy condition ddc-MR, and Y

is a compact kähler manifold. Then any cluster point S∞ of Sr/cr is a
positive ddc-closed current supported on φ(X). Furthermore,

(3.5) 1
cr
| 〈ddcSr, ψ〉 | 6 C‖ψ‖∞

tj−1(r)
Tj(r)

,

for any bounded test form ψ of bidegree (j − 1, j − 1), where the constant
C > 0 is independent of r, ψ, φ.

Proof. — We would like to get estimates on 1
cr
〈ddcSr, ψ〉. To do so, we

will first smooth out the function χ. For r > 0, let vr = log r
σ , and for each

δ > 0, let uδ,r = χδ(vr), where χδ is a convex, increasing function which
is ≡ 0, on (−∞, 0), and χ′′δ (s) = 1

δχ[0,δ], where χ[0,δ] is the characteristic
function of [0, δ], with δ small. We write the proof out only in the case
j = k, the others being completely similar. We set ck,r = cr, and suppress
the index δ on χδ for the moment.

1
cr
〈ddcSr, ψ〉 = 1

cr

∫
X

ddc(χ(vr)) ∧ φ∗(ψ)

= 1
cr

∫
X

(χ′(vr)ddcvr + χ′′(vr)dvr ∧ dcvr) ∧ φ∗(ψ)

= 1
cr

∫
X

−χ′(vr)ddc log σ ∧ φ∗(ψ)

+ 1
cr

∫
X

χ′′(vr)d log σ ∧ dc log σ ∧ φ∗(ψ)

= I1 + I2.

(3.6)

Looking first at I1, we remark that there is a constant C > 0, independent
of ψ, φ such that

|φ∗(ψ)| 6 C‖ψ‖∞ φ∗(ωk−1).

Since 0 6 χ′ 6 1, we get

(3.7) |I1| 6 C‖ψ‖∞
1
cr

∫
Br

ddc log σ ∧ φ∗(ωk−1) = C‖ψ‖∞
tk−1(r)
Tk(r) .
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Passing to I2, we see

Tk(r) I2 = 1
δ
|
∫
{re−δ<σ<r}

d log σ ∧ dc log σ ∧ φ∗(ψ)|

6
C‖ψ‖∞

δ

∫
{re−δ<σ<r}

d log σ ∧ dc log σ ∧ φ∗(ωk−1)

= C‖ψ‖∞
δ

∫
{re−δ<σ<r}

[d(log σ dc log σ)

− log σ ddc log σ] ∧ φ∗(ωk−1)

= C‖ψ‖∞
δ

[log(r) tk−1(r)− log(re−δ) tk−1(re−δ)]

− C‖ψ‖∞
δ

∫
{re−δ<σ<r}

log σ ddc log σ ∧ φ∗(ωk−1)

(3.8)

We next examine the right hand term in the last line more closely:

(3.9)
∫
{re−δ<σ<r}

log σ ddc log σ ∧ φ∗(ωk−1) =

log(rα)[tk−1(r)− tk−1(re−δ)],

for some e−δ < α < 1, by the mean value theorem. Hence, resuming from
(3.8) we get

Tk(r) I2 6 C
‖ψ‖∞
δ

[log(r) tk−1(r)− log(re−δ) tk−1(re−δ)]

− C ‖ψ‖∞
δ

[log(rα)(tk−1(r)− tk−1(re−δ))]

6 C
‖ψ‖∞
δ

[log( 1
α

) tk−1(r) + log(αeδ) tk−1(re−δ)]

6 C‖ψ‖∞ 2 tk−1(r).

(3.10)

We conclude

(3.11) I2 6 C‖ψ‖∞
tk−1(r)
Tk(r) .

Together, (3.7) and (3.11) show

(3.12) 1
cr
| 〈ddcSr, ψ〉 | 6 C ′‖ψ‖∞

tk−1(r)
Tk(r) .

Applying this inequality gives the proof of the theorem. �

Before going on to analyze the ddc-mass ratios Jj(r), let us remark that
one can also construct some d-closed cluster currents using the weight ur =
log+ r

σ .
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Theorem 3.3. — Suppose

(3.13) lim inf
r→R−

log r tj−1(r)tj(r)
(Tj(r))2 = 0.

Then there exist positive d-closed cluster currents of mass 1 for Sj,r/cj,r.
Note that we use ur = log+ r

σ for the definition of the Sj,r.

Proof. — We will just write out the case j = k. It suffices to estimate
〈dSr, ψ〉 with ψ = θ ∧ βk−1, as in (2.3), where θ is a (1, 0)-form and β an
arbitrary Kähler form, with bounds as in (2.4). Then we have to estimate〈
∂̄Sr, θ ∧ βk−1〉. As in the proof of (2.7), we get

(3.14) 1
cr
|
〈
∂̄Sr, θ ∧ βk−1〉 | 6 1

cr

(∫
Br

d log σ ∧ dc log σ ∧ φ∗(βk−1)
) 1

2

×
(∫

Br

φ∗(βk−1) ∧ θ ∧ θ̄)
) 1

2

.

The second term on the right is bounded by C‖ψ‖∞tk(r) 1
2 . Squaring, we

get

1
c2r
|
〈
dSr, θ ∧ βk−1〉 |2 6 C2 ‖ψ‖2∞

c2r
tk(r)

∫
Br

d log σ ∧ dc log σ ∧ φ∗(βk−1)

= C2 ‖ψ‖2∞
c2r

tk(r)
∫
Br

(d(log σ dc log σ)− log σ ddc log σ) ∧ φ∗(βk−1)

We have assumed for convenience that log σ > 0, so this last becomes
1
c2r
|
〈
dSr, θ ∧ βk−1〉 |2
6 C2 ‖ψ‖2∞

c2r
tk(r)

∫
∂Br

log σ dc log σ ∧ φ∗(βk−1)

= C2 ‖ψ‖2∞
c2r

tk(r) log r
∫
Br

ddc log σ ∧ φ∗(βk−1)

= C2‖ψ‖2∞ log r tk−1(r) tk(r)
T 2
k (r) .

(3.15)

Hence, we finally obtain

(3.16) 1
cr
| 〈dSr, ψ〉 | 6 C‖ψ‖∞

(
log r tk−1(r) tk(r)

T 2
k (r)

) 1
2

,

which proves Theorem 3.3 �
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Observe that when the exhaustion is bounded the term log r on the right
of (3.16) disappears.
To analyze J(t) in a fashion similar to that of I(t) in equations (2.17) to

(2.20), we start, for 0 6 j 6 k, from

(3.17) Tj(r) =
∫ r

0

tj(s)
s

ds.

Then

(3.18) r T ′j(r) = tj(r).

Since the denominator of Jj(r) is just Tj(r), we can write Jj(t), using
(3.18), as follows:

(3.19) Jj(r) = tj−1(r)
Tj(r)

= tj−1

tj
· tj(r)
Tj(r)

= tj−1

tj
·
rT ′j(r)
Tj(r)

.

If there is no subsequence r` → ∞ such that Jj(r`) → 0, then there is a
c > 0 such that Jj(r) > c for all r. We have therefore

(3.20)
T ′j
Tj
> c

tj
r tj−1

,

which we integrate over the interval [r0, r] to obtain

(3.21) [log Tj(s)]rr0
> c

∫ r

r0

tj(s)
s tj−1(s) ds.

We get that Jj(r`)→ 0 for some subsequence r` → R if

(3.22) lim sup
r<R

1
log Tj(r)

·
∫ r

r0

tj(s)
s tj−1(s) ds = +∞,

provided, in the case that R < ∞, that log Tj(r) > 0 for some r ∈ [0, R].
Then, arguing as in the proof of corollary 2.5, we conclude the following
corollary of Theorem 3.2. Note that the condition (3.22) can be interpreted
as saying that the relative growth of tj

tj−1
is large enough.

Corollary 3.4. — If (3.22) holds, then ω, φ, σ satisfy ddc-MR.

If R = +∞, we can draw some simple conclusions. If k = dimX = 1,
then

(3.23) J1(r) =
∫
Br
ddc log σ
T1(r) .

If R = +∞, then T1(r) & log r as r → ∞. If, in addition, σ is a parabolic
exhaustion of X, so that σ is harmonic outside a compact subset of X, then
by (3.23) we get that any limit point S∞ of Sr/cr is a ddc-closed positive
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current. If dimY = 1 also, then this must be a positive constant times the
current [Y ] of integration on Y .
As an illustration in a case where R < +∞, consider X = B1 ⊂ C, and

σ = |z|. In this case, the condition that lim infr→R J(r) = 0 is equivalent
to

(3.24)
∫
B1

(1− |z|)|φ′(z)|2 dλ(z) = +∞,

which can also be written as
∫ 1

0 t1(s)ds = +∞. This condition was consid-
ered in [8] in connection with the study of laminations. For domain Bk, k
arbitrary, one would need the condition

lim
r→1−

∫
Bkr

(1− ‖z‖)φ∗(ωk)∫
Bkr

(ddc log ‖z‖) ∧ φ∗(ωk−1)
= +∞.

Remark 3.5. — These last results may be localized. For example, if
φn : Bk → Y is a sequence of holomorphic maps such that

(3.25) R(φn) :=

∫
Bk1

(1− ‖z‖)φ∗n(ωk)∫
Bk1

(ddc log ‖z‖) ∧ φ∗n(ωk−1)
→ +∞,

as n → +∞, then the corresponding currents have among their cluster-
points a ddc-closed positive current of bidemension (k, k) and mass 1.

It is interesting to compare the criteria obtained here and in Theorem
3.2. Let φ : 4 → Y be a holomorphic map. By Theorem 3.2 we obtain a
ddc-closed current if

J(r) =
∫
|ζ|<r

(r − |ζ|)+|φ′(ζ)|2dλ(ζ)→ +∞,

while we get a d-closed current if∫
|ζ|<r |φ

′(ζ)|2dλ(ζ)
J(r)2 → 0.

The techniques developed in this section may be applied to study the
intersection of the ddc-closed and positive currents constructed in this sec-
tion with hypersurfaces in Y . Let Z ⊂ Y be a hypersurface such that φ(X)
is not contained in Z. Let [Z] denote the current of integration over the
hypersurface, and {Z} the cohomology class of Z, of bidegree (1, 1). {T}
denotes the cohomology class of bidegree (m− 1,m− 1) determined by the
ddc-closed limit current T as above, of bidimension (1, 1). We use here that
Y is compact and kähler. The ddc-lemma on such varieties then gives the
class {T} by duality.

Theorem 3.6. — Notation as above, we have
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1. if X is parabolic, then

(3.26) 〈{T}, {Z}〉 > 0.

2. if (ddc log σ)k = 0 outside a compact set in X, and σ : X → [0, R)
is an exhaustion with R possibly finite, and if

(3.27) lim
r→R

t0(r)
T1(r) = 0,

then 〈{T}, {Z}〉 > 0.

Proof. — We have the equation of currents

(3.28) [Z]− α = ddcU,

where α is a smooth (1, 1)-form representing the class {Z}, and where U
can be assumed 6 0 on Y , and U ◦ φ is not identically −∞. The pairing
in the theorem is given by 〈{T}, {Z}〉 := 〈T, α〉 = lim`→∞ 〈Sr` , α〉 /cr` .
We now use the smoothings χδ from the proof of Theorem 3.2, and set
uδ,r` = χδ(log r`

σ ). Note that uδ,r` → ur` when δ → 0, and we set

〈Sδ,r` , α〉 =
∫
Br`

uδ,r`(ddc log σ)k−1 ∧ φ∗α.

Thus,

lim
δ→0+

〈Sδ,r` , α〉 = 〈Sr` , α〉 .

This said, we proceed to analyze 〈Sδ,r` , α〉:

〈Sδ,r` , α〉 = 〈Sδ,r` , α+ ddcU〉 − 〈Sδ,r` , ddcU〉
> −〈Sδ,r` , ddcU〉 .

(3.29)

We have used here the obvious positivity inequality for the finite intersec-
tions

(3.30) 〈Sδ,r` , α+ ddcU〉 =
∫
Br`∩φ−1(Z)

uδ,r` (ddc log σ)k−1 > 0,

where φ−1(Z) is counted with multiplicities. Now we use the fact that uδ,r`
is compactly supported on X, and we integrate ddc by parts to get, as in
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the proof of Theorem 3.2:

−〈Sδ,r` , ddcU〉 = −〈ddcSδ,r` , U〉

=
∫
Br`

χ′δ(ddc log σ)k U ◦ φ

− 1
δ

∫
{re−δ<σ<r}

d log σ ∧ dc log σ ∧ (ddc log σ)k−1 U ◦ φ

= Iδ,r`1 + Iδ,r`2 .

(3.31)

Now, Iδ,r`2 > 0, because U 6 0, for any δ, r`. As for Iδ,r`1 , suppose first
that X is parabolic. Then (ddc log σ)k is compactly supported on X, and
we get, since U ◦ φ is quasi-psh and hence locally integrable,

〈Sr` , α〉 >
∫
Br`

(ddc log σ)kU ◦ φ > −C,

where C is a positive constant, and then

lim
r`→∞

〈Sr` , α〉 /cr` > lim
r`→∞

−C
cr`

= 0,

since cr` →∞, for X parabolic.
In the second case in the theorem, one still has

∫
X

(ddc log σ)k U ◦ φ
bounded and cr` = T1(r`)→∞.

�

Remark 3.7. —
1. When X = C or a finite branched cover of C, the previous result is

due to McQuillan [15]. It seems new even for the case X parabolic
of dimension 1.

2. The result holds if we replace {Z} by the class of a closed and
positive current R of bidimension (n − 1, n − 1), provided we can
write

R = α+ ddcU,

as above, where α is smooth, and U ◦ φ is not identically −∞.
3. If instead of a fixed map φ, we suppose we have a sequence of

maps φn : 4 → Y from the unit disk to Y . Assume that there are
sequences n`, r` such that n` →∞, and r` → 1−, and such that

lim
`→∞

t0(φn` , r`)
T1(φn` , r`)

= 0,

and that U ◦ φn` does not converge to −∞ uniformly. Then once
again, any ddc-closed cluster point T of Sr`(φn`)/cr`(φn`) will verify
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〈T, α〉 > 0. This is because we still have
∫
X

(ddc log σ)k U ◦ φn`
bounded.

4. If the hypersurface Z is an ample divisor on Y , then we get

〈{T}, {Z}〉 = 〈T, α〉 > 0,

because we can take α to be a kähler form on Y , and then 〈T, α〉
is just the mass of T with respect to the kähler metric underly-
ing α. Similarly, if {Z} is represented by a form α which is only
non-negative, then 〈{T}, {Z}〉 > 0, with equality if and only if the
support of T is contained in the zero locus of α. It would be interest-
ing to know if there were other examples of geometric conclusions
one could draw from the condition 〈T, α〉 = 0.

4. Effect of scaling on the limits

In this section we want to change scales slightly when we compare the
various volume measures we have discussed up to now. We will apply
them to sequences of holomorphic maps φn with X and τ fixed, using ddc-
closed limits in all intermediate dimensions. To this end, set Sj,n,r(ψ) =∫
Br

log+ r
σ (ddc log σ)k−j ∧ φ∗n(ψ), where ψ is a test form on Y of bidegree

(j, j), and set cj,n,r = Sj,n,r(ωj). Finally, set

tj(φn, r) =
∫
Br

(ddc log σ)k−j ∧ φ∗n(ωj),

Tj(φn, r) =
∫ r

0
tj(φn, s)

ds

s
,

and
Jj(φn, r) = tj−1(φn, r)

Tj(φn, r)
.

Consider the condition that for some constant c > 1, we have that

(4.1) lim inf
n→∞,r→R−

tj−1(φn, r)
tj(φn, r/c)

= 0.

Note that this is similar to the condition in the hypotheses of corollary 7.2
below, except that here we are assuming that even a fixed fraction of the tj
will dominate tj−1, and considering a sequence of maps.

Theorem 4.1. — If condition (4.1) is verified, then there is a ddc-closed
positive cluster current of mass 1 for the family {Sj,n,r/cj,n,r}.
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Proof. — We estimate Jj(φn, r) directly.

Jj(φn, r) =
∫
Br

(ddc log σ)k−j+1 ∧ φ∗n(ωj−1)∫
Br

log+ r
σ (ddc log σ)k−j ∧ φ∗n(ωk)

6

∫
Br

(ddc log σ)k−j+1 ∧ φ∗n(ωj−1)∫
Br/c

log+ r
σ (ddc log σ)k−j ∧ φ∗n(ωj)

6

∫
Br

(ddc log σ)k−j+1 ∧ φ∗n(ωj−1)
log c

∫
Br/c

(ddc log σ)k−j φ∗n(ωj)

= 1
log c ·

tj−1(φn, r)
tj(φn, r/c)

.

(4.2)

By (4.1) and the proof of Theorem 3.2, we get subsequences such that the
Sj,n,r/cj,n,r converge to a ddc-closed, positive current. �

Theorem 4.2. — Let φn : Bk(1) → Y be a sequence of holomorphic
maps. Then either for some j, 1 6 j 6 k there is a positive, ddc-closed
current T which is a cluster point of Sj,n,r/cj,n,r, or a subsequence of any
sequence of graphs of the φn is convergent in the Hausdorff metric over any
compact set in Bk(1).

Proof. — Suppose that, for 1 6 j 6 k, there are no such cluster currents.
Then for any j and for n >> 0, and arbitrary r < 1, by Theorem 4.1 and
(4.1), we have for each such j and any constant c > 1, but close to 1,

(4.3)
∫
Br

(ddcτ)k−j+1 ∧ φ∗n(ωj−1) > cj
∫
Br/c

(ddcτ)k−j ∧ φ∗n(ωj),

for j = 1, . . . , k, where the constant cj depends on the c chosen. Telescoping
gives, for every r < 1 < c and each j = 1, . . . , k, independently of j and
n >> 0, a constant C = C(c, r) > 0 such that

(4.4)
∫
B
r/ck

(ddcτ)k−j ∧ φ∗n(ωj) 6 C,

from which it follows that the volume of the graphs of φn over any fixed
Br/ck have a volume bound in Br/ck × Y , independent of n. By Bishop’s
theorem, subsequences of the graphs then converge in the Hausdorff topol-
ogy over any compact set K ⊂⊂ Bk(1). By adjusting c, this convergence
occurs over each compact set in Bk(1). �
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5. Applications to value distribution

In this section we would like to apply some of the results above to classical
value distribution. Some of the concepts above have clearly been motivated
by this, and we start by recalling some of the classical definitions and results
to make this explicit. We have

tj(s) =
∫
Bs

(ddcτ)k−j ∧ φ∗(ωj),

and
Tj(r) =

∫ r

0
tj(s)

ds

s
,

as in definition 1.1 above. Tj(r) is the characteristic function of order j.
The classical case is when ω is the Chern form of an ample line bundle on
a projective manifold Y . Recall the averaged counting function

(5.1) Nφ(D, r) =
∫ r

0

ds

s

∫
Bs∩φ−1(D)

(ddcτ)k−1 :=
∫ r

0

ds

s
nφ(D, s).

The First Main Theorem of value distribution for a hypersurface D says
that

(5.2) Nφ(D, r) +mφ(D, r) = T1(r) +O(1),

where the proximity function is given by

(5.3) mφ(D, r) =
∫
∂Br

log ‖ζ‖
|ζ ◦ φ|

dcτ ∧ (ddcτ)k−1 > 0.

Here ζ is a section of L = L(D) on Y such that ζ−1(0) = D, |ζ| is a point-
wise norm for sections of L on Y , and ‖ζ‖ is a corresponding global norm
on the space of global sections of the line bundle L, say by integrating the
point-wise norm |ζ|. By (5.3), the FMT says

Nφ(D, r) 6 T1(r) +O(1).

For simplicity and explicitness, let us first consider more closely the case
of hyperplanes D in Pm = P(Cm+1). So we let a ∈ P̌m = P(Čm+1), the
dual projective space, and recall the Poincaré-Lelong formula of currents

(5.4) ddc log ‖z‖‖a‖
| 〈z, a〉 |

= ω − [Da],

where ω is the Fubini-Study form, the first Chern form of L = L(Da).
Now suppose we can choose a probability measure ν on P̌m such that

(5.5) Uν(z) :=
∫

log ‖z‖‖a‖
| 〈z, a〉 |

dν(a) 6 C < +∞.
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Such measures can be supported on very small sets, for example, any set
of positive Lebesgue measure on a real analytic arc in P̌m not contained in
a hyperplane, or supported on any non-pluripolar set, cf. [16].
Given such a measure ν, we can state a precise theorem in this context.

(The definition of positive capacity is reviewed below, in (5.15).)

Theorem 5.1. — Let φ be a holomorphic map φ : X → Pm. Let E be a
set of hyperplanes Da ⊂ Pm of positive capacity with respect to the kernel
K(z, a) = log ‖z‖ ‖a‖|〈z,a〉| . Then

(5.6) |1−
∫
P̌m

N(Da, r)
T1(r) dν(a)| 6 C‖Uν ||∞

t0(r)
T1(r) .

Proof. — Consider the bounded function Uν of equation 5.5. We get〈
ddc

Sr
T1(r) , Uν

〉
=
〈

Sr
T1(r) , dd

cUν

〉
= 1
T1(r)

〈
Sr, ω −

∫
P̌m

[Da] dν(a)
〉

= 1− 1
T1(r)

∫
P̌m
〈Sr, [Da]〉 dν(a)

= 1− 1
T1(r)

∫
P̌m
{
∫
Br∩φ−1(Da)

log+ r

|z|
(ddcτ)k−1}dν(a)

= 1− 1
T1(r)

∫ r

0

ds

s

∫
P̌m
{
∫
Bs∩φ−1(Da)

(ddcτ)k−1} dν(a)

= 1− 1
T1(r)

∫ r

0

ds

s

∫
P̌m

n(Da, s) dν(a).

(5.7)

Since Uν is bounded, by Theorem 3.2 we get

(5.8) |
〈
ddc

Sr
T1(r) , Uν

〉
| 6 C‖Uν‖∞

t0(r)
T1(r)

and by (5.7), we get

(5.9) |1− 1
T1(r)

∫ r

0

ds

s

[∫
P̌m

n(Da, s)dν(a)
]
| 6 C‖Uν‖∞

t0(r)
T1(r) ,

which was to be proved. �

If lim infr→R t0(r)
T1(r) = 0, we get that the left hand side of (5.9) goes to 0

along a subsequence r` → R−, and hence,

(5.10) lim
`→∞

∫ r`
0

ds
s

[∫
P̌m n(Da, s) dν(a)

]
T1(r`)

= lim
j→∞

∫
P̌m N(Da, r`) dν(a)

T1(r`)
= 1.
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Thus, we have that

(5.11) lim sup
`→+∞

N(Da, r`)
T1(r`)

= 1,

for ν-almost every point a in the support of ν. Thus the exceptional set
of a for which (5.11) does not hold must be a set E of capacity 0 for the
kernels K(z, a) = log ‖z‖‖a‖|〈z,a〉| , that is, E does not carry a probability measure
µ for which Uν in (5.5) is bounded. In particular, as already noted, a non-
pluripolar set E is too large to be exceptional in this sense, cf. [16].
Now let us consider defect relations such as (5.11) for dimensions other

than k − 1, i.e., for D of dimension other than m − 1. The cases different
from D a divisor are all formally similar, and not as precise as the case of
divisors D above. The most interesting is the case of points, i.e., where we
consider a non-degenerate holomorphic map φ : X → Pm,m > k = dimX,

and we let Da ⊂ Pm be a linear subspace of dimDa = m − k, where a is
parametrized by the Grassmannian Gr := Gr(m + 1,m − k + 1). We will
consider this case in what follows.
We consider a potential Ua, i.e., a (k − 1, k − 1)-form on Pm with inte-

grable coefficients, satisfying the following analogue of the Poincaré-Lelong
formula

(5.12) ddcUa = ωk − [Da],

where we take ω to be the normalized Fubini-Study class which gives an
integral generator of H2(Pm,Z). We can choose Ua > 0, which may be
obtained as

(5.13) Ua = 〈Da(ζ),K(z, ζ)〉 ,

where the singularity of the kernel can be bounded by

| log |z − ζ|| · |z − ζ|−2k+2,

see Dinh-Sibony [5] for a detailed estimate of the kernel. We introduce a
capacity Ck on Gr as follows. For a probability measure ν on Gr, set

(5.14) Uν(z) =
∫
Gr

Ua(z) dν(a).

Define supUν(z), z ∈ Pm, as the infimum of all C > 0 such that

Uν(z) 6 Cωk−1(z),

and let
‖Uν‖∞ = sup

z∈Pm
supUν(z).

ANNALES DE L’INSTITUT FOURIER



LIMIT CURRENTS 171

Let

(5.15) C(A) = sup
ν∈M(A)

(
1

‖Uν‖∞

)
,

whereM(A) is the space of probability measures supported on A ⊂ Pm. It
turns out that C(A) > 0 if and only if there is a probability measure ν on
A such that Uν(z) 6 2C(A), for every z ∈ Pm, independently of z, see [5].
For example, if m = k, it is enough that∫

Gr

| log |z − a||
|z − a|2k−2 dν(a) 6 C,

so, if the Hausdorff dimension of A is strictly larger than 2k − 2, one can
construct such a measure, and C(A) > 0. See [3].

If we define, similar to the classical case,

(5.16) N(Da, r) =
∫ r

0

ds

s

∫
Bs

φ−1([Da]) =
∫
Br∩φ−1(Da)

ur(z),

and

(5.17) δ(Da, r) = 1− N(Da, r)
Tk(r) ,

and finally the defect

(5.18) δ(Da) = lim sup
r→R−

δ(Da, r),

then we have the following analogue of theorem 5.1.

Theorem 5.2. — Let φ : X → Pm be as above. Let ν be a probability
measure on Gr such that Uν :=

∫
Gr
Ua dν(a) has bounded coefficients,

‖Uν‖∞ < C <∞, then

(5.19)
∫
Gr

|δ(Da, r)| dν(a) 6 C ′‖Uν‖∞
tk−1(r)
Tk(r) .

In particular, δ(Da) = 0, for ν-a.e. a, if lim sup r→R−
tk−1(r)
Tk(r) = 0, and

(5.20) ν({a | δ(Da, r) > ε}) 6 C ′

ε

tk−1(r)
Tk(r) .

Proof. — We have
ddcUa = ωk − [Da].

Thus

1− N(a, r)
Tk(r) = 1

cr
[
〈
Sr, ω

k
〉
− 〈Sr, [Da]〉] = 1

cr
〈ddcSr, Ua〉 .
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We integrate this last relation with respect to ν and get

1−
∫
Gr
N(a, r) dν(a)
Tk(r) = 1

cr
〈ddcSr, Uν〉 .

Using Theorem 3.2, we get the defect estimate

(5.21)
∫
Gr

|δ(a, r)| dν(a) 6 C ‖Uν‖∞
tk−1(r)
Tk(r) ,

which proves all the claims of the theorem. �

Remark 5.3. —
1. When k = m, we get in particular that if

lim inf
r→R−

tk−1(r)
Tk(r) = 0,

then the map φ omits a set of Hausdorff measure 6 2k − 2 + ε, for
any ε > 0.

2. Instead of a fixed map, we can consider a sequence φn : X → Pm
of holomorphic, non-degenerate maps. If

lim
`→∞

tk−1(φn` , r`)
Tk(φn` , r`)

= 0,

cf. the similar comment in remark 3.7, part 3., for the notation.
Then we get an estimate

|
∫
Gr

δ(φn` , Da, r`) dν(a)| 6 C‖Uν‖∞
tk−1(r`)
Tk(r`)

→ 0.

3. The potentials Uν in (5.5) and (5.14) play the role here of the prox-
imity function in the classical theory. One might refer to them as
proximity potentials.

We close this section with a corollary on the behavior of holomorphic
foliations by Riemann surfaces.

Corollary 5.4. — Let F be a holomorphic foliation of Pm by Riemann
surfaces with finitely many singularities. Assume that all singularities are
hyperbolic, and that there are no algebraic (compact) leaves. Fix a leaf L.
There is a pluripolar set EL ⊂ P̌m such that for a /∈ EL the corresponding
hyperplane Da intersects L infinitely many times with the estimate given
by Theorem 5.2.
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Proof. — The assumptions imply that all leaves are uniformized by the
unit disk 4 [8]. It is further shown in [8] that if φ : 4→ L is the universal
covering, then ∫

4
(1− |z|)|φ′(z)|2dλ(z) = +∞,

where λ is Lebesgue measure on 4. Thus, for the map φ and exhaustion
of 4 given by |z|2, we have

lim
r→1−

t0(r)
T1(r) = 0,

and we can apply Theorem 5.2.
�

6. Equidistribution results in higher dimensions

In this section we would like to consider some equidistribution results for
maps φ : X → Y , where dimY = m > k = dimX. For example, we might
have a birational map f : Y → Y, and φ : Cm → Y parametrizes some
stable manifold associated with f , e.g., the stable manifold of a periodic
point of f , or a Pesin stable manifold (cf. [14], for example).
We give a specific example from dynamics. Let f : Cm → Cm be a

polynomial automorphism, and denote also by f its extension Pm · · · → Pm
as a birational map. Let I± be the indeterminacy sets of f, f−1, respectively,
in the hyperplane at infinity of Pm. One calls f regular if I+ ∩ I− = φ,

in which case we have an integer p such that dim I+ = m − p − 1, and
dim I− = p− 1. Let

K+ = {z ∈ Cm | {fn(z)|n ∈ N} is bounded ⊂ Cm}.

Then K+ is closed in Cm, and K̄+ ⊂ Pm = K+ ∪ I+. Furthermore, if
deg f = d+,deg f−1 = d−, then dp+ = dk−p− . Finally, define

(6.1) T+ = lim (fn)∗ω
dn+

.

Then we recall from [6], p. 77, the following theorem.

Theorem 6.1. — T p+ is the unique closed positive current of bidimen-
sion (p,p) and mass 1 supported on K̄+.

Note also the following corollary of theorem 6.1 from [6].
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Corollary 6.2. — If p = m-1, and φ : X → K̄+ ⊂ Pm, with X
a parabolic Riemann surface (k = 1), then the image of X is dense in
the boundary of K̄+. In fact, all the closed cluster currents (S1,r/c1,r) of
Corollary 2.6 coincide with Tm−1

+ .

In particular the automorphism f can have an attractive fixed point
z0 ∈ Cm. The domain of attraction U(z0) is then biholomorpic to Cm and
is contained in K+. It is called a Fatou-Bieberbach domain. Clearly it is
not dense in Cm. Moreover it follows from the previous results that any
positive closed current of bidimension (1, 1) constructed as in this paper
using images of a parabolic manifold X, by any holomorphic map φ : X →
K+ ⊂ Y = Pm in any dimension 1 6 k 6 m by taking limit points of the
currents S1,r/S1,r(ω) will be equal to a multiple of T p−. That is, for all such
φ,X, one has C1(φ) = {T p+} (cf., definition 2.13).

7. Examples: growth conditions

We give here some simple examples of the theorems above, compared to
the usual growth conditions of the theory of entire functions. Let us first
fix the terminology.

Definition 7.1. — The map φ is of exponential growth (or of finite
order) if

tk(r) . rd, some d, as r → +∞.

Here we use the unaveraged order function tk(r) for the ddc case,

tj(r) =
∫
Br

(ddc log σ)k−j ∧ φ∗(ωj)

in the case j = k, cf. (3.1) and following. For convenience let us define
Hk(φ) = {ddc-closed limit currents of Sr/cr}.

Theorem 7.2. — Suppose φ of exponential growth, and
tk(r)
tk−1(r) →∞,

as r → +∞. Then Hk(φ) is non-empty.

Proof. — Under these hypotheses, Tk(r) =
∫ r

0 tk(s)dss . rd, and hence
log Tk(r) . d log r. In this case, then, we can say

1
log Tk(r)

∫ r

r0

tk(s)
tk−1(s)

ds

s
&

1
d log r

∫ r

r0

tk(s)
tk−1(s)

ds

s
→ +∞,

as r → +∞. Taking note of corollary 3.4, this proves the theorem. �
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Another example is given by another, slower order of growth.

Theorem 7.3. — If tk(t) . (log t)p, and

(7.1) tk(r)
tk−1(r) >

c

(log t)β , β < 1, 0 < c,

then Hk(φ) is non-empty.

Proof. — Under these hypotheses, we have

log Tk(r) . (p+ 1) log log r.

Integrating (7.1) against ds
s , we get∫ r

r0

tk(s)
tk−1(s)

ds

s
> c

∫ r

r0

1
(log s)β

ds

s
∼ c

1− β (log r)(1−β)

Diving both sides by log Tk(r), we see that as r → +∞, we get

lim
r→+∞

1
log Tk(r)

∫ r

r0

tk(s)
tk−1(s)

ds

s
&

c

(1− β)(p+ 1)
(log r)1−β

log log r → +∞,

i.e., condition (3.22). By corollary 3.4, we concludeHk(φ) is non-empty. �
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