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THE COFINAL PROPERTY OF THE REFLEXIVE
INDECOMPOSABLE BANACH SPACES

by Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

Abstract. — It is shown that every separable reflexive Banach space is a
quotient of a reflexive hereditarily indecomposable space, which yields that every
separable reflexive Banach is isomorphic to a subspace of a reflexive indecompos-
able space. Furthermore, every separable reflexive Banach space is a quotient of a
reflexive complementably `p-saturated space with 1 < p < ∞ and of a c0 saturated
space.
Résumé. — On démontre que tout espace de Banach séparable réflexif est quo-

tient d’un espace réflexif héréditairement indécomposable, ce qui implique que tout
espace de Banach séparable réflexif est isomorphe à un sous-espace d’un espace ré-
flexif indécomposable. De plus, tout espace de Banach séparable réflexif est quotient
d’un espace réflexif complémentablement `p-saturé, où 1 < p < +∞, et d’un espace
c0-saturé.

1. Introduction

An infinite dimensional Banach space X is said to be indecomposable if
it is not the topological direct sum of two infinite dimensional subspaces. In
the 70s J. Lindenstrauss [17] had asked if every infinite dimensional space
is decomposable. Note that it was already known that the aforementioned
problem has a positive answer for the members of a variety of classes of
Banach spaces. For example, Banach spaces with an unconditional basis,
nonseparable reflexive spaces [16] (or more generally nonseparable WCG
spaces [2]), separable Banach spaces containing c0 [22] are all decomposable
spaces.
On the other hand since 1991 it is known that Lindenstrauss’ problem

has an emphatically negative answer. Indeed W.T. Gowers and B. Maurey’s

Keywords: Banach space theory, `p saturated, indecomposable spaces, hereditarily in-
decomposable spaces, interpolation methods, saturated norms.
Math. classification: 46B03,46B06,46B70.



2 Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

discovery of Hereditarily Indecomposable (HI) spaces ([13]) has provided
examples of Banach spaces with no decomposable infinite dimensional sub-
space. Since the seminal work of Gowers and Maurey the classes of HI
and Indecomposable spaces have been extensively studied leading to some
remarkable results. In particular, new techniques have been developed con-
cerning the existence of HI spaces having as a quotient a desired Banach
space. These techniques follow two distinct directions.
The first one, which appeared in [4], is closely related to the DFJP inter-

polation method ([10]) and makes heavy use of the geometric aspect of thin
sets, which can be traced back to A. Grothendieck’s work ([14]) and was
explicitly defined in R. Neidinger’s PhD thesis ([20]). This method yielded
that every reflexive space with an unconditional basis has a subspace which
is a quotient of a reflexive HI space. In particular, separable Hilbert spaces
and more generally any `p for 1 < p < ∞ are quotients of reflexive HI
spaces. Using duality arguments, one may also conclude that reflexive `p
spaces can be embedded into a reflexive indecomposable.
The second method is based on saturated and HI extensions of a ground

norming set and led to the most general result concerning quotients of
HI spaces. Namely, as is shown in [9], every separable Banach space not
containing `1 is a quotient of a separable HI space. Comparing the afore-
mentioned techniques, one should point out that the second leads to more
general results but by its own nature the dual of the resulting HI space
is decomposable. Thus, for a given separable reflexive space X the corre-
sponding HI space Y which has X as a quotient is never reflexive. On the
contrary, whenever the first method is applicable it leads to HI spaces with
structure similar to the starting one (i.e., starting with a reflexive space
the obtained HI space remains reflexive).
The aim of the present work is to prove the following:

Theorem 1.1. — Let X be a separable reflexive space then,
(1) X is a quotient of a reflexive HI space.
(2) X is isomorphic to a subspace of a reflexive indecomposable space.

Since the dual of a reflexive HI is indecomposable (2) is a direct con-
sequence of (1). The proof of the theorem is based on a combination of
the aforementioned methods and uses certain auxiliary spaces which are
constructed either by interpolation or extension. More precisely, starting
with a reflexive space X with a Schauder basis first we define a space X0
with a Schauder tree basis (et)t∈T , a weakly compact symmetric subset W
of X0 and a map Φ : X0 → X such that Φ(W ) is 1

8 dense in the unit ball
of X, which implies that X is a quotient of X0. The definition of X0 shares
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REFLEXIVE INDECOMPOSABLE BANACH SPACES 3

common features with the corresponding one in [4], however it requires cer-
tain modifications as in the present case the basis of X is not necessarily
unconditional. It is worth mentioning that if we were able to show that W
is a thin or (an)n-thin set (cf. [4]) of X0 then applying a HI interpolation
on the pair (X0,W ) we would arrive to the reflexive HI space X which has
X as a quotient. This remains unclear and we proceed as follows.

In the second step using DFJP `2 interpolation on the pair (X0,W ) we
obtain a reflexive space X1 with a Schauder tree basis (ẽt)t∈TK , where TK
is a complete subtree of T and a bounded closed convex set W̃ such that
W̃ = J−1

1 (W ). Here, J1 : X1 → X0 is the usual operator mapping the
diagonal space to the original one. Note that the composition operator
Φ ◦ J1 maps W̃ onto a 1

8 dense subset of BX and thus X is a quotient of
X1. As in the case of X0 it remains unclear whether the set W̃ is a thin
subset of X1. Since X1 is a separable reflexive space there exists a countable
ordinal ξ such that every weakly null sequence in X1 does not admit a `1

ξ

spreading model (cf. [5]).
The next step is the most critical. Here, using a ξ-saturated extension

method ([9]) we pass to a new space denoted as Xξ and Iξ : Xξ → X1
a bounded linear injection such that the set Wξ = I−1

ξ (W̃ ) is a weakly
compact and also thin set. Let us note that the structure of Xξ resembles the
generalized Tsirelson space Tξ (cf. [9]). In that sense Xξ has a much richer
local `1 structure than X1. Thus the thinness is established in a space with
a strong presence of local `1 structure which a-priori seems contradictory
or at least peculiar. The final step is the expected one. Namely, we apply a
HI interpolation on the pair (Xξ,Wξ) to obtain a diagonal reflexive space X
and a bounded convex set W̃ξ such that the natural operator Jξ : X→ Xξ
satisfies Jξ(W̃ξ) = Wξ. As the set Wξ is thin the space X is HI and is the
desired one. Indeed the operator Q = Φ ◦ J1 ◦ Iξ ◦ Jξ maps the set W̃ξ to a
1
8 dense subset of X which yields that Q : X→ X is a quotient map.
The paper is organized as follows. Section 2 concerns preliminaries. Sec-

tion 3 is devoted to the definition of the space X0 which as was mentioned
has a Schauder tree basis (et)T equipped with a partial form of uncondi-
tionality defined as “segment-complete unconditional” tree basis. (Def. 3.1).
The main result of this section is that whenX is reflexive although the space
X0 is not necessarily reflexive the set W is weakly compact. In section 4
we prove the following:

Theorem 1.2. — Let (X, ‖ · ‖) be a reflexive space with a segment
complete unconditional tree basis (et)t∈T and K be a bounded subset of X
such that for x ∈ K, suppx is a segment of T . Let also ξ < ω1 such that

TOME 62 (2012), FASCICULE 1



4 Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

X does not admit a `1
ξ spreading model. Then, there exists a norm ‖ · ‖ξ

on c00(T ) such that setting Xξ to be the completion of (c00(T ), ‖ · ‖ξ)the
following hold:

(1) For every x ∈ c00(T ) ‖x‖ 6 ‖x‖ξ.
(2) For every x ∈ K, ‖x‖ = ‖x‖ξ.
(3) Denoting byWξ the set co(K∪−K) in Xξ we obtain that it is weakly

compact and thin.

This theorem provides a tool for constructing thin sets in spaces with a
Schauder tree basis. The norm of the space Xξ is defined via a norming set
Gξ which contains as ground set a norming subset of the dual of the space
X and which is Sξ saturated for finite sequences of functionals with pairwise
incomparable, segment complete supports. In section 5 we show that the
diagonal space in the DFJP `2 interpolation applied on the pair (X0,W )
has a segment complete unconditional tree basis. In section 7 combining
the results of sections 3, 4 and 5 we prove the following:

Theorem 1.3. — Let Y be a separable reflexive space. Then for ev-
ery p ∈ (1,∞) there exists a reflexive space Xp such that every subspace
contains an isomorphic copy of `p, complemented in the whole space and
Xp has Y as a quotient. Additionally, Y is a quotient of a separable c0
saturated space.

It is worth mentioning that the first result in this direction was done by
D.H. Leung in [15] proving that every separable Hilbert space is a quotient
of a c0 saturated space and it was followed by the results in [4] mentioned
earlier. More recently, following different techniques, I. Gasparis in [11]
and [12] has shown that certain members of the class of separable reflexive
spaces are quotients of c0 saturated spaces. Let us also point out that
Theorem 1.3 provides examples of reflexive Banach spaces with divergent
structure between the spaces and their duals. For example, there exist
spaces Xp as above such that their dual contains HI subspaces.
In Section 7 we present a variant of the HI interpolation method appear-

ing in [4] which is traced to [3]. The necessity for modifying the initial HI
interpolation method is the requirement that the diagonal space admits a
Schauder basis. Similarly to [4] applying the new HI interpolation to a pair
(X,W ) with W being convex, symmetric, weakly compact and thin subset
ofX we obtain that the diagonal is reflexive HI and this proves Theorem 1.1
in the case where X has a Schauder basis. The general case of a separable
reflexive space mentioned in Theorem 1.1 follows by the classical result of

ANNALES DE L’INSTITUT FOURIER



REFLEXIVE INDECOMPOSABLE BANACH SPACES 5

M. Zippin that every separable reflexive space embeds into a reflexive space
with a Schauder basis ([23]).
The research included in the present paper was carried out in 2006. In

April 2007 Richard Haydon visited us in Athens and with his collaboration
we were able to prove that there exists an indecomposable space X con-
taining `1. After the solution of the "scalar plus compact" problem ([6]) the
aforementioned result was adapted to the L∞ frame as follows:

Theorem 1.4. — There exists a L∞ space X with the scalar plus com-
pact property containing `1.

As it is also mentioned in [6] the ultimate problem concerning the cofinal
properties of Indecomposable Banach spaces is the following:

Problem. — Does every separable Banach space not containing c0 em-
bed into a separable indecomposable space?

Wemade an effort to make the present paper as self contained as possible.
Thus, except for a few technical or well known results all the other proofs
are included.

2. Preliminaries

Let us recall some standard notation and definitions for trees.

Notation 2.1.
1. Let Λ be a countable set. By [Λ]<ω and [Λ] we denote its finite and

infinite sequences respectively. We consider [Λ]<ω to be equipped
with the partial ordering of the initial segment denoted by v.

2. By a tree on Λ we mean a subset T of [Λ]<ω which is backwards
closed under v.

3. Let T be a tree on Λ. A segment of T is a subset of T of the form
{t ∈ T : t1 v t v t2} with t1, t2 ∈ T. We will usually denote
segments of this form by [t1, t2] or more generally by s. For t1 ∈ T
we denote by t̂1 the set {t ∈ T : t v t1}. For a segment s ⊂ T, ŝ has
a similar meaning, namely ŝ = {t ∈ T : ∃ t′ ∈ s such that t v t′}.
For t ∈ T we set |t| the cardinality of the set {t′ ∈ T : t′ v t} to
be the height of t. For every n ∈ N the nth-level of T is the set
{t ∈ T : |t| = n}.

4. We identify the branches of a tree T with the elements of the set
{(ai)∞i=1 : (ai)ki=1 ∈ T, ∀ k ∈ N} and we denote this set by [T]. For
every b ∈ [T] with b = (ai)∞i=1 we set b|n = (a1, ..., an).

TOME 62 (2012), FASCICULE 1



6 Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

5. Two nodes t1, t2 ∈ T are called comparable if either t1 v t2 or t2 v
t1. More generally, if A1, A2 ⊆ T then A1, A2 are called comparable
if there exist t1 ∈ A1 and t2 ∈ A2 which are comparable. Otherwise
A1, A2 are called incomparable. We will write A1 ⊥ A2 to denote
the fact that A1, A2 are incomparable.

6. For t ∈ T by Ot we denote the set Ot = {b ∈ [T] : ∃n ∈ N such that
b|n = t}. The sets {Ot : t ∈ T} form the usual basis of the topology
of [T].

7. For every t ∈ T and b ∈ [T] we will write t ∈ b if ∃ n ∈ N such that
b|n = t. For every segment s of T and b ∈ T we will write s ⊆ b if
∀t ∈ s it holds t ∈ b.

In the following sections all trees are considered countable, finitely split-
ting and with nonempty bodies. For the next definition we assume that
Λ is a totally ordered set which later is going to be a subset of the real
numbers with the natural order.
Definition 2.2. — For every such tree T we fix a bijection hT : T 7→ N

such that the following hold:
i. hT(t1) < hT(t2), whenever |t1| < |t2|.
ii. If t1, t2 ∈ T and |t1| = |t2| i.e., t1 = (a1, ..., an) and t2 = (b1, ..., bn)

then hT(t1) < hT(t2), whenever an < bn.
When the tree T is understood we will refer to hT simply as h. We

denote by c00(T) the linear space of all functions f : T 7→ R such that
supp(f) = {t ∈ T : f(t) 6= 0} is a finite set. We also denote by (et)t∈T the
standard Hamel basis of c00(T) consisting of the characteristic functions of
all singletons {t} ⊆ T.
Definition 2.3. — Let (Ai)∞i=1 be a sequence of finite subsets of T. We

will say that (Ai)∞i=1 is
i. a block sequence if max{h(t) : t ∈ Ai}< min{h(t) : t ∈ Ai+1} and

we will write A1 < A2 < ... < An < ...

ii. a level-block sequence if max{|t| : t ∈ Ai}< min{|(t| : t ∈ Ai+1}
and we will write A1 ≺l A2 ≺l ... ≺l An ≺l ....

iii. For a sequence (fi)∞i=1 of elements of c00(T) we will say that (fi)∞i=1
is block (level-block) if (supp fi)∞i=1 is a block (level-block, respec-
tively) sequence of subsets of T.

For the sake of simplicity of notation if A is a subset of T we will write
minA for min{h(t) : t ∈ A} and if A is finite maxA for max{h(t) : t ∈ A}.
We will also write minlA for = min{|t| : t ∈ A} and maxlA for max{t :
t ∈ A} .

ANNALES DE L’INSTITUT FOURIER
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Definition 2.4. — Let A, I be subsets of T.
i. We will call A segment complete if for every t1, t2 in A, with t1 v t2

[t1, t2] ⊆ A.
ii. I will be called an interval of T if h(I) ={h(t) : t ∈ T} is an interval

of N.

We note that every interval I of T is segment complete.

Definition 2.5. — For every f ∈ c00(T) we define ran f to be the
minimal interval I of T such that supp f ⊆ I. Similarly, we set ranl f to be
the minimal interval Il of T of the form I l ={t ∈ T : m 6 |t| 6 M} such
that supp f ⊆ I l.

Remark 2.6. — It is clear that a sequence (fi)∞i=1 in c00(T) is
i. block if ran fi < ran fi+1 ∀i ∈ N
ii. level-block if ranl fi < ranl fi+1 ∀i ∈ N.

3. Tree representation of the ball of a Banach space

Let X be an arbitrary Banach space with a bimonotone, normalized
Schauder basis (xi)i∈N and (x∗i )i∈N the biorthogonal functionals of (xi)i∈N
in X∗. In this section we define a tree T and, for a given X, a norm on
c00(T ) that will help us “spread” along the branches of T a set K which is
isometric (via a map Φ to be defined later) to a 1

8 -net in the unit ball of X.
We will denote by X0 the completion of c00(T ) with respect to this norm.
This technique gives X as a quotient of X0. In addition we show that if
X is reflexive then the set K is weakly compact in X0. We start with the
following general definition.

3.1. The space X0

Definition 3.1. — Let T be a tree and a norm ‖ · ‖ defined on c00(T )
such that the sequence (et)t∈T is a Schauder basis, with the order induced
by the function h, for the completion of c00(T ) denoted by XT . Then

1. The norm ‖·‖ and the basis (et)t∈T will be called SC-unconditional
if for every A ⊆ T segment complete and x =

∑
t∈T λtet ∈ XT we

have: ∥∥∥∑
t∈A

λtet

∥∥∥ 6 ∥∥∥∑
t∈T

λtet

∥∥∥.

TOME 62 (2012), FASCICULE 1



8 Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

2. Let ψ : T → [−1, 1] be a function assigning to each node of T a
scalar ψ(t) ∈ [−1, 1]. Let also C > 0. We consider for each t ∈ T
the vector yt =

∑
t′vt ψ(t′)et′ and set K1

ψ = {yt ∈ XT : ‖yt‖ 6 C},

K2
ψ = {yt|I : ‖yt‖ 6 C and I is an interval of T} and Kψ = K2

ψ

‖·‖
.

For the rest of this section we assume that X is a fixed Banach space with
a Schauder basis (xi)i and (x∗i )i the biorthogonal functionals inX∗. We pass
on to define a SC-unconditional norm on c00(T ) where T is an appropriately
defined tree such that the completion of this space with respect to this norm
has a quotient isomorphic to X. We start with the definition of T .

Definition 3.2. — Let (Fn)∞n=1 be the following sequence in ([−1, 1]∩
Q)<ω

Fn =
{
± i

8n : 1 6 i 6 8n
}
∀n ∈ N.

We set
T = {(a1, a2, ..., ak) : ai ∈ Fi, i 6 k, k ∈ N}.

It can be readily seen that T is a countable, finitely splitting tree such
that every t ∈ T with |t| = n, has 2 · 8n+1 immediate successors.

The norming set G0(X) of X0 is defined as follows:

Definition 3.3. — Let G1
0(X) be the following subset of c00(T )

G1
0(X) =

{ n∑
i=1

ai
∑
|t|=i

e∗t : ‖
n∑
i=1

aix
∗
i ‖X∗ 6 1

}
.

Set

G0(X) = {f |A : f ∈ G1
0(X) and A is a segment complete subset of T }

where f |A denotes the restriction of f on A.

We consider the norm on c00(T ) induced by the set G0(X). Namely,

∀x ∈ c00(T ) we set ‖x‖ = sup{f(x) : f ∈ G0(X)}.

The space X0 is the completion of c00(T ) under the norm defined above. It
can be readily verified that the sequence (et)t∈T (enumerated through h)
becomes a bimonotone, normalized Schauder basis of X0. We also have the
following easy observation:

Remark 3.4. — For every A ⊆ T segment complete the natural pro-
jection PA : X0 7→ X0 defined by PA(

∑
t∈T λtet) =

∑
t∈A λtet has norm

one.

ANNALES DE L’INSTITUT FOURIER
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We will need the following Lemma that gives a description of the point-
wise closure of the norming set G0(X).

Lemma 3.5. — Let

G =
{
f |A : f =

∞∑
i=1

ai
∑
|t|=i

e∗t ,
∥∥∥ ∞∑
i=1

aix
∗
i

∥∥∥
X∗
6 1

and A is a segment complete subset of T
}

where all limits are taken with respect to the w∗-topology. Then G0(X)
p

=
G.

Proof. — It is easy to see that G ⊆ G0(X)
p
. Let f ∈ G0(X)

p
. Then there

exists a sequence (fn)n in G0(X) such that fn
p→ f . Each fn is of the form

fn = XAn · (
∑kn
i=1 a

n
i

∑
|t|=i e

∗
t ), where An are finite segment complete sub-

sets of T , XAn is the characteristic function of An and ‖
∑kn
i=1 a

n
i x
∗
i ‖ 6 1.

Let gn =
∑kn
i=1 a

n
i x
∗
i . Then there exists a M ∈ [N] such that the se-

quence (gn)n∈M converges w∗ to a g ∈ BX∗ . Let i ∈ N. Denote by ai
the limit limn∈M ani and set A = lim infn∈M An which can be readily seen
to be a segment complete subset of T . Considering the functional f̂ =
XA
∑∞
i=1 ai

∑
|t|=i e

∗
t , we claim that the sequence (fn)n∈M converges w∗ to

f̂ . Indeed, let t ∈ T with |t| = i. If t ∈ A, then limn∈M fn(et) = ai = f̂(et).
Assuming that t /∈ A then limn∈M fn(et) = f̂(et) = 0. Hence, f̂ = f ∈ G
and the proof is complete. �

We pass on to define the map ψ : T → N that will give us the corre-
sponding set Kψ

3.2. The set K

The set K and the map Φ are defined as follows:

Definition 3.6. — Let ψ : T :→ N be the following assignment. For
every t = (a1, a2, ..., an) ∈ T we set ψ(t) = at = an and yt =

∑
t′vt at′et′ .

We set K = Kψ as in Definition 3.1 with constant C = 1 + 1
7 .

Definition 3.7. — We consider a map Φ : X0 7→ X defined as
Φ(
∑
t∈T λtet) =

∑∞
i=1(

∑
|t|=i λt)xi.

Remark 3.8. — We can see that Φ is a bounded linear operator with
‖Φ‖ 6 1. In addition, for b ∈ [T ] if we denote by Xb the subspace Xb =
< et : t ∈ b >‖·‖ then we have that Φ restricted to Xb is an isometry.

TOME 62 (2012), FASCICULE 1



10 Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

We also have the following

Proposition 3.9. — The set Φ(K) is a 1
8 -net in the unit ball BX of X.

Moreover, the map Φ is onto.

Proof. — Let x =
∑
n bnxn ∈ BX . Since the basis of X is bimonotone

we have that |bn| 6 1, for all n ∈ N. For each n ∈ N we can choose an
in the set Fn = {± i

8n : 1 6 i 6 8n} such that |bn − an| 6 1
8n . If we

set σ = (an)∞n=1 ∈ [T ] then yσ =
∑
n aneσ|n ∈ K and ‖Φ(yσ) − x‖X 6 1

8 .
Indeed, if we letXσ = < et : t ∈ σ >, then by Remark 3.8 Φ : Xσ 7→ X is an
isometry. Thus if we denote the restriction of Φ on Xσ by Φσ we have that
Φ−1
σ (
∑
n bnxn) =

∑
n bneσ|n and ‖

∑
n bneσ|n‖X0 = ‖Φ(

∑
n bneσ|n)‖X =

‖
∑
n bnxn‖X 6 1. Thus,∥∥∥∑

n

aneσ|n

∥∥∥
X0
6
∥∥∥∑ bneσ|n

∥∥∥
X0

+
∑
n

|an − bn| 6 1 + 1
8 .

This gives us that yσ is an element of K. Finally,∥∥∥∑
n

bneσ|n −
∑
n

aneσ|n

∥∥∥
X0

=
∥∥∥Φ
(∑

n

bneσ|n

)
− Φ

(∑
n

aneσ|n

)∥∥∥
X

= ‖Φ(yσ)− x‖X 6
1
8 .

�

The following Lemma shows the behavior of incomparably supported
sequences of vectors in K if we assume that X has a shrinking basis.

Lemma 3.10. — Suppose (xi)i is a shrinking basis for X, then for every
sequence (yn)n in K such that (supp yn)n are finite and mutually incom-
parable subsets of T we have that yn

w→ 0.

Proof. — Let (yn)n be as above. In order to prove that (yn)n is weakly
null it is enough to show that f(yn) → 0,∀f ∈ G0

p. Choose f ∈ G0
p. By

Lemma 3.5 there exist a g =
∑∞
i=1 bix

∗
i ∈ BX∗ and a segment complete

A ⊂ T so that f = XA
∑∞
i=1 bi

∑
|t|=i e

∗
t . Let sAn = supp yn ∩ A, zn =

yn|A =
∑
t∈sAn

atet and observe the following,

f(yn) =
∞∑
i=1

bi
∑
|t|=i

e∗t (zn) = g(Φ(zn)).

Hence, it is enough to show that g(Φ(zn))→ 0. As Φ(zn) =
∑
t∈sAn

atx|t|

it can be seen that for i ∈ N, x∗i (Φ(zn)) = at, if sAn ∩ Li 6= ∅ and zero
otherwise. Since T is finitely branching and sAn ⊥ sAm for all n 6= m ∈ N, we
deduce that for a fixed i ∈ N the set {n ∈ N : sAn ∩ Li 6= ∅} is finite. Thus,
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REFLEXIVE INDECOMPOSABLE BANACH SPACES 11

x∗i (Φ(zn)) → 0. Finally, as (xi)i is shrinking we obtain that g(Φ(zn)) → 0
and this completes the proof. �

Proposition 3.11. — For every reflexive Banach space X with a bi-
monotone normalized Schauder basis (xi)i the set K is weakly compact.

Proof. — Let (wn)n be a sequence in K. Up to an arbitrarily small
perturbation we may assume that suppwn is finite for all n ∈ N. We
set sn = suppwn and we observe that each sn is a finite segment of
T . So, wn =

∑
t∈sn atet. We may also assume (by passing to a subse-

quence if needed) that for each t ∈ T , e∗t (wn) → w(t) ∈ R. We set
S ={t ∈ T : w(t) 6= 0}. We know that S is a segment of T (finite or infi-
nite). Thus, we may assume that each yn has a decomposition yn = un+yn
where

i. (suppun)n is an increasing (with respect to ⊆) sequence of segments
of S

ii. (supp yn)n is a sequence of incomparable segments of T .
We set ws =

∑
t∈S atet if S 6= ∅ and 0 otherwise. We claim that wn

w→ ws.
Lemma 3.10 yields that (yn)n is weakly null. To finish the proof we shall
show that un

‖·‖→ ws. Indeed, for every n ∈ N we have that suppun v S

and since wn ∈ K we have that un ∈ K for all n ∈ N. Thus, as the basis of
X is boundedly complete, un

p→ ws and ‖Φ(un)‖X = ‖un‖X0 we have that
ws ∈ K and un

‖·‖→ ws. �

Remark 3.12. — The connection between the set K and BX when X is
an arbitrary Banach space with a basis is not completely clear to us. For
example, if one considers X to be c0 with the summing basis then it turns
out that K contains a sequence equivalent to the standard `1 basis. Indeed,
we notice that the norming set in this case becomes G0

p = {±XA : A ⊆
T segment complete} where by XA we denote the characteristic function
of A. We can construct a sequence (wn)n in K which has no weakly Cauchy
subsequence. To see this choose a sequence (tn)n ⊂ T with the following
properties,

i. Each tn is of the form tn = (a1, ..., akn) and akn = atn = 1
2 ;

ii. tn ⊥ tm for all n 6= m ∈ N.
For each n ∈ N set t′n = tn a −1

2 = (a1, ..., akn ,
−1
2 ) and wn = atnetn +

at′net′n . To see that (wn)n satisfies the desired property, choose a sub-
sequence (wmi)i∈N. Let t(i) = tmi when i = 2k and t(i) = t′mi when
i = 2k−1. It is clear that (t(i))i are mutually incomparable. Therefore, the
set A = ∪∞i=1{t(i)} is segment complete. So the functional f = XA ∈ G0

p
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estimates |f(wmi)−f(wmi+1)| = 1 for all i. By Rosenthal’s `1 theorem [21]
we obtain that (wn)n is equivalent to the `1 basis.

4. Thin subsets of Banach spaces

Let T be a tree and ‖·‖XT be a SC-unconditional norm defined on c00(T ).
Denote by XT the completion of c00(T ) with respect to ‖ · ‖XT . Fix also
a function ψ : T → [−1, 1] and Kψ (referred to as K for simplicity) as in
Definition 3.1.
In this section we present a general method for extending the norm of

XT to a new norm defined on c00(T ) such that the completion of this space
contains K as a thin subset. Namely, the entire section is devoted to the
proof of the following theorem:

Theorem 4.1. — Suppose that XT is reflexive and K is a weakly com-
pact subset of XT . Then there exists a space Xξ such that the following
hold:

1. The identity operator I : Xξ → XT is continuous.
2. K ⊂ I(Xξ) and the closed convex hull of (I−1(K) ∪ I−1(−K)) is a

weakly compact and thin subset of Xξ.

The notion of thinness was introduced in [19] and was extensively used in
[4] where several methods for proving that a set satisfies this property were
developed. We give the corresponding definition in subsection 4.3 where we
also prove the aforementioned Theorem. Before doing so though we need
some preparatory work which is done in the following subsection.

4.1. Tsirelson type spaces and norms

We start with some preliminary results concerning families of finite sub-
sets of N and Tsirelson type norms. Most of these results are well known
and have been extensively used in the relevant literature (see [5] and the
references therein), with the exception of Lemmas 4.6, 4.9, 4.11 and Re-
mark 4.7 which can be found in [18] and were brought to our attention
by the authors. We include this subsection in order to make the text as
self-contained as possible. We start by recalling the following notions con-
cerning families of finite subsets of N.

Definition 4.2. — LetM be a family of finite subsets of N.M is called
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i. Compact if the set of characteristic functions {XA : A ∈ M} is a
compact subset of {0, 1}N.

ii. Hereditary if for every A ∈M and B ⊆ A we have B ∈M.
iii. Spreading if for every A = {t1 < t2 < ... < tr} ∈ M and B = {t′1 <

t′2 < ... < t′r} with ti 6 t′i ∀i = 1, ..., r we have B ∈M.

Definition 4.3. — LetM⊆ [N]<ω.
i. A finite sequence (E1, ..., En) of successive and finite subsets of N is

calledM-admissible if there exists F ∈ M with F = {m1 < m2 <

... < mn} such that m1 6 E1 < m2 6 E3 < ... < mn 6 En.
ii. A finite sequence (f1, ..., fn) of vectors in c00(N) is calledM-admis-

sible if (supp fi)ni=1 isM-admissible.

Definition 4.4. — Let F ,G be two families of finite subsets of N we
define:

i. The block sum F ⊕ G = {M ∪N : M < N,M ∈ G, N ∈ F}.
ii. The convolution F ⊗ G = {∪ni=1Fi : F1 < ... < Fn, Fi ∈ F , i =

1, ..., n and {minFi}ni=1 ∈ G}.

Definition 4.5. — The Schreier hierarchy was first defined in [1]. It
is a set of families (Sξ)ξ<ω1 of finite subsets of N which can be defined
recursively as follows:

S1 = {F ⊂ N : #F 6 minF} ∪ {∅}

Let ξ < ω1 and suppose that Sξ have been defined for all ζ < ξ Then
i. If ξ = ζ + 1 we set Sξ = Sζ ⊗ S1.
ii. If ξ is a limit ordinal then we fix a strictly increasing sequence of

non-limit ordinals (ξn)n with sup ξn = ξ and set Sξ =
⋃∞
n=1{F ∈

Sξn : F > n}.

It can be verified by transfinite induction that each Sξ for ξ < ω1 is
compact hereditary and spreading. We will need the following two results
found in [18] concerning the families (Sξ)ξ<ω1 which can be proved by
transfinite induction.

Lemma 4.6. — For every ordinal ξ < ω1 and M ∈ [N] we have
i. [M ]63 ⊗ Sξ ⊆ Sξ ⊗ [M ]62.
ii. If minM > 3, then [M ]63 ⊗ (Sξ ⊕ [M ]61) ⊆ Sξ ⊗ [M ]63.

Remark 4.7. — By Lemma 4.6 we have that ∀M ∈ [N] and ξ < ω1

[M ]68 ⊗ (Sξ ⊗ [M ]62) ⊆ ([M ]63 ⊗ ([M ]63 ⊗ Sξ))⊗ [M ]62

⊆ (Sξ ⊗ [M ]64)⊗ [M ]62 ⊆ Sξ ⊗ [M ]68.
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14 Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

The Spaces T (θ,F). Let 0 < θ < 1 and F be a compact hereditary
family of finite subsets of N.

Definition 4.8. — Let Gθ,F be the minimal subset of c00(N) such that
i. ±en ∈Gθ,F ∀n ∈ N;
ii. Gθ,F is closed under the (θ,F)-operation. That is if (fi)di=1 is an
F-admissible family in c00(N) then θ

∑d
i=1 fi ∈ Gθ,F .

The space T (θ,F) is the completion of c00(N) under the following norm

∀x ∈ c00(N) we set ‖x‖(θ,F) = sup{f(x) : f ∈ Gθ,F}.

Detailed expositions of the T (θ,F) type spaces can be found in [8]. In
the sequel we shall denote Tξ = T ( 1

2 ,Sξ), T
1
ξ = T ( 1

2 ,Sξ ⊗ [N]62) and
T 2
ξ = T ( 1

2 ,Sξ ⊕ [N]61). The following two Lemmas are results in [18] but
for the sake of completion we include their proofs here.

Lemma 4.9. — Let ξ < ω1. Then for every finite sequence (bi)ki=1 of
scalars we have

I. ‖
∑k
i=1 biei‖T 1

ξ
6 8‖

∑k
i=1 biei‖Tξ

II. ‖
∑k
i=1 biei‖T 2

ξ
6 3‖

∑k
i=1 biei‖Tξ

where by (ei)i∈N we denote the standard Hamel basis of c00(N) .

Proof. — I. By Remark 4.7 we have that [N]68⊗(Sξ⊗[N]62) ⊆ Sξ⊗[N]68.
Let GT 1

ξ
be the norming set of T 1

ξ and let f ∈ GT 1
ξ
. We will define g1 <

... < gl with l 6 8 and gi ∈ GTξ , i = 1, ..., l such that f =
∑l
i=1 gi. We use

induction on the complexity of f . Let f = ±en for some n ∈ N,then there
is nothing to prove. Let f = 1

2
∑d
i=1 such that

i. f1 < ... < fd.
ii. (fi)di=1 is an Sξ ⊗ [N]62 admissible sequence.
iii. For every fi there exists a sequence gi1 < ... < gili such that gij ∈ GTξ

for j = 1, ..., li and fi =
∑li
j=1 g

i
j .

Now since {min fi}di=1 ∈ Sξ ⊗ [N]62 by Remark 4.7 that
⋃d
i=1{min gij : j 6

li} ∈ Sξ ⊗ [N]68. Thus there exist B1, ..., Bk with k 6 8 such that
1. Bm ∈ Sξ for all m = 1, ..., k and
2. B1 < ... < Bk

such that
⋃d
i=1{min gij :j6 li}=

⋃k
m=1Bm. By setting g(m) = 1

2 (
∑

min gi
j
=∈Bm

gji ) we get
a. f =

∑k
m=1 g

(m) and
b. g(m) ∈ GTξ
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as desired.
II. By Lemma 4.6 we have [N]63 ⊗ (Sξ ⊕ [N]61) ⊆ Sξ ⊗ [N]63. Using the

same arguments as in the proof of I. we conclude that for every f ∈ GT 2
ξ

there exist g1 < g2 < g3 with gi ∈ GTξ for i = 1, 2, 3 such that f =∑3
i=1 gi. �

Definition 4.10. — Let M ∈ [N] with M = {m1 < m2 < ...}.
i. For every m ∈M we set m+ to be the immediate successor of m in
M , that is m+

i = mi+1 for all i ∈ N.
ii. If A ∈ [M ]6ω then we set A+ = {m+ : m ∈ A}.

Lemma 4.11. — Let ξ < ω1 and M ∈ [N] with M = {m1 < m2 < ...}.
Then for every finite sequence (bi)ki=1 of scalars we have ‖

∑k
i=1 biemi‖ 6

‖
∑k
i=1 biem+

i
‖ 6 3‖

∑k
i=1 biemi‖ where all norms are considered in the

space Tξ.

Proof. — Let A ∈ [M ]6ω. Suppose that A+ = {m+ : m ∈ A} ∈ Sξ. Since
Sξ is a spreading family it follows that A \ minA ∈ Sξ. Thus, A ∈ Sξ ⊕
[M ]61. So, if we consider f ∈ GTξ with the property supp f ⊆ {m+

i : i =
1, ..., k} there is an f ′ ∈ GT 2

ξ
such that f(

∑k
i=1 biem+

i
) 6 f ′(

∑k
i=1 biemi)

and this gives
i. ‖

∑k
i=1 biem+

i
‖Tξ 6 ‖

∑k
i=1 biemi‖T 2

ξ
.

On the other hand since Sξ is spreading it is easily verified that
ii. ‖

∑k
i=1 biemi‖Tξ 6 ‖

∑k
i=1 biem+

i
‖Tξ

combining i. and ii. we have∥∥∥ k∑
i=1

biemi

∥∥∥
Tξ
6
∥∥∥ k∑
i=1

biem+
i

∥∥∥
Tξ
6
∥∥∥ k∑
i=1

biemi

∥∥∥
T 2
ξ

and by Lemma 4.9 we get the desired. �

4.2. The norming set Gξ

In this subsection starting with XT , as in the introductory paragraph of
the section, assuming that XT does not contain an isomorphic copy of `1 we
define Xξ and prove that it satisfies the first two properties of Y mentioned
in Theorem 4.1. Namely, we show that the identity map I : Xξ → XT is
continuous and that the set I−1(K) is a weakly compact subset of Xξ. We
start with some well known results concerning `1-spreading models.
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Definition 4.12. — A bounded sequence (xn)n in a Banach space Y
is an `1

ξ-spreading model, for ξ < ω1, if there exists a constant C > 0 such
that ∥∥∥∑

i∈F
aixi

∥∥∥ > C∑
i∈F
|ai|

for every F ∈ Sξ and all choices of scalars (ai)i∈F .

The following is a well known result and for its proof we refer the inter-
ested reader to [7].

Lemma 4.13. — If a separable Banach space Y contains `1
ξ-spreading

model, for every ξ < ω1, then Y contains an isomorphic copy of `1.

As we have supposed, the space XT does not contain `1 therefore it
follows that there is ξ < ω1 such that XT contains no `1

ξ-spreading model.
We fix this countable ordinal ξ < ω1 and we use the following norming set
for XT :

G1 =
{∑
t∈F

bte
∗
t :
∥∥∥∑
t∈F

bte
∗
t

∥∥∥
X∗
T

61 and F ⊆T finite and segment complete
}
.

We also consider a bijection h : T → N as in Definition 2.2 and make use
of the following piece of notation:

Notation 4.14. — For every sequence (fi)di=1 in c00(T ) such that
i. (fi)di=1 is block
ii.
{

min{h(t) : t ∈ supp fi}
}d
i=1 ∈ Sξ

iii. {supp fi}di=1 are incomparable subsets of T .
We will call (fi)di=1 a (T, ξ)-admissible sequence.

The definition of the norming set is the following

Definition 4.15. — Let Gξ be the minimal subset of c00(T) such that
1. G1 ⊆ Gξ

2. Gξ is closed under the ( 1
2 ,Sξ)-operation on (T, ξ)-admissible se-

quences. That is, for every (T, ξ)-admissible sequence f1, ..., fd in
Gξ we have that 1

2
∑d
i=1 fi is an element of Gξ.

We define a norm on c00(T ) as follows:

For every x ∈ c00(T ) we let ‖x‖Xξ = sup{f(x) : f ∈ Gξ}

and set
Xξ = < et : t ∈ T >

‖.‖Xξ .
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Remark 4.16. — It can be readily verified that (et)t∈T (enumerated via
h) becomes a bimonotone Schauder basis for Xξ. In addition as G1 ⊂ Gξ

it is evident that the identity operator I : Xξ → XT is continuous.

We also have the following,

Lemma 4.17. — The set Gξ is closed under restrictions of its elements
on segment complete subsets of T and thus for every segment complete
A ⊆ T the natural projection PA : Xξ 7→ Xξ defined by PA(

∑
t∈T λtet) =∑

t∈A λtet has norm 1.

Proof. — Let f ∈ Gξ and A ⊂ T segment complete. We will show that
f |A ∈ Gξ by using induction on the complexity of f . Suppose that f ∈ G1.
By our assumptions we have f |A ∈ G1 ⊂ Gξ. Now let f = 1

2
∑d
i=1 fi ∈ Gξ

and assume that fi|A ∈ Gξ for all i = 1, ..., d. Then f |A = 1
2
∑d
i=1 fi|A and

the following properties of (fi|A)di=1 can be readily verified
i. {fi|A}di=1 is a block sequence.
ii. {supp fi|A}di=1 are pairwise incomparable subsets of T .
iii. {min{h(t) : t ∈ supp fi|A}}di=1 ∈ Sξ, since Sξ is hereditary and

spreading.
Thus f |A ∈ Gξ. �

Definition 4.18. — Let f ∈ Gξ. By a tree analysis of f we mean a
finite family (fa)a∈A indexed by a finite tree A with a unique root 0 ∈ A
such that

1. f0 = f and fa ∈ Gξ for every a ∈ A
2. An a ∈ A is maximal if and only if fa ∈ G1
3. For every a ∈ A not maximal we denote by Sa the set of immediate

successors of a in A and define an ordering denoted by < on Sa
with b1 < b2 if and only if fb1 < fb2 for all b1, b2 ∈ Sa. Then we
have that (fb)b∈Sa ordered by < is a (T, ξ)-admissible sequence and
fa = 1

2
∑
b∈Sa fb

It is straightforward that by the minimality of Gξ that every f ∈ Gξ

admits a tree analysis.

Remark 4.19. — We note that the definition of the norming set Gξ

uses a Tsirelson type extension technique but only on functionals with
incomparable supports. Therefore, if we consider any branch b ∈ [T ] and
a vector x ∈ Xξ such that suppx ⊂ b then we can observe that for every
f ∈ Gξ with a tree analysis (fa)a∈A there exists at most one maximal a ∈ A
such that supp fa ∩ suppx 6= ∅. Hence, for every such vector it follows that
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‖x‖XT = ‖x‖Xξ . This fact allows us to identify the sets K ⊂ XT and
I−1(K) ⊂ Xξ. We will use this for what follows.

Definition 4.20. — Let (yn)n∈N be a block sequence in Xξ and f ∈ Gξ.
1. We set Mf = {n ∈ N : supp f ∩ ran yn 6= ∅} and if (fa)a∈A is a tree

analysis of f we define a correspondence λf : Mf 7→ A with λf (n)
to be the vA-maximal element of A such that supp fλf (n)∩ran yn =
supp f ∩ ran yn.

2. For all a ∈ A we define Da =
⋃
b∈Sa{n ∈ N : b = λf (n)}, equiva-

lently, Da = {n ∈ N : ∅ 6= supp fa ∩ ran yn = supp f ∩ ran yn} and
Ea = Da \

⋃
b∈Sa Db, or equivalently, Ea = {n ∈ N : a = λf (n)}.

3. For a ∈ A not vA-maximal we set bL(n) = min{b ∈ Sa : supp fb ∩
ran yn 6= ∅} and bR(n) = max{b ∈ Sa : supp fb ∩ ran yn 6= ∅} where
the maximum and minimum are taken with respect to the ordering
on Sa defined above.

4. For a block sequence (yn)n in Xξ we set pn = min supp yn and
qn = max supp yn, for all n ∈ N.

We start with an easy but crucial observation that will be used exten-
sively in what follows.

Remark 4.21. — Let (yn)n be a seminormalized level block sequence
such that supp yn ⊥ supp ym for all n 6= m ∈ N. Then (yn)n is a `1

ξ

spreading model.

Proof. — Let r > 0 be such that ‖yn‖ > r for all n ∈ N. Choose a
sequence of functionals (fn)n in Gξ such that for each n ∈ N the following
hold:

i. ran fn ⊂ ran yn;
ii. fn(yn) > r

2 .
Let F ∈ Sξ and (bi)i∈F ∈ c00(N). It is easy to see that the functional
f = 1

2
∑
i∈F sgn(bi)fi belongs to Gξ. In addition,∥∥∥∑

i∈F
biyi

∥∥∥ > f(∑
i∈F

biyi

)
>
r

2
∑
i∈F
|bi|,

which proves that (yn)n is a `1
ξ spreading model. �

The next proposition is the basic tool for proving that K is weakly com-
pact in Xξ. It is also used in the next section where we show that the closed
convex hull of K is thin in Xξ.

ANNALES DE L’INSTITUT FOURIER



REFLEXIVE INDECOMPOSABLE BANACH SPACES 19

Proposition 4.22. — Let (yn)n be a bounded level-block sequence in
Xξ such that

lim
n→∞

‖yn‖XT = 0.

Then there exists subsequence of (yn)n which satisfies an upper Tξ-estimate,
that is, there exist a constant C > 0 andM ∈ [N] such that for every choice
of scalars (λi)ki=1 ∈ c00(N) we have∥∥∥ k∑

i=1
λiymi

∥∥∥
Xξ
6 C

∥∥∥ k∑
i=1

λiepmi

∥∥∥
Tξ

where M = {m1 < m2 < ...}.

In order to prove Proposition 4.22 we need the following Lemma.

Lemma 4.23. — Let (yn)n be a bounded level-block sequence in Xξ with
‖yn‖Xξ 6 r ∀n ∈ N. Suppose also that

∑
n∈N ‖yn‖XT < 2r. Then for every

f ∈ Gξ there exists a g ∈ B(T 1
ξ

)∗ such that for every k ∈ N and every choice
of scalars (λi)ki=1 ∈ c00(N) we have that |f(

∑k
i=1 λiyi)| 6 2rg(

∑k
i=1 λieqi).

Proof. — Let f ∈ Gξ, (fa)a∈A a tree analysis of f and (λi)di=1 ∈ c00(N).
For each a ∈ A with Da 6= ∅ we will recursively define ga such that the
following hold

i. ga ∈ B(T 1
ξ

)∗ ;
ii. supp ga ⊆ {qn : n ∈ Da};
iii. |fa(

∑
i∈Da λiyi)| 6 2rga(

∑
i∈Da λieqi).

Let a ∈ A be a maximal element of A such that Da 6= ∅. Let also n0 ∈ N
such that λn0 = maxi∈Da |λi|. We set ga = sgnλn0e

∗
qn0

. Clearly ga ∈ B(T 1
ξ

)∗

and ∣∣∣fa( ∑
i∈Da

λiyi

)∣∣∣ 6 max
i∈Da

|λi| ·
∑
i∈Da

|fa(yi)| 6 2rga
( ∑
i∈Da

λieqi

)
.

Let now a ∈ A not maximal. Suppose also that for every b ∈ Sa the
functionals (gb)b∈Sa have been defined satisfying conditions i. ii and iii
above. Let {b1 < ... < bl} be the enumeration of Sa as it was given in
Definition 4.20. Pick bi ∈ Sa and suppose that Dbi 6= ∅. Then,

min supp fbi 6 supp gbi < min supp fbi+1 .

The left inequality holds because if we pick k ∈ Dbi then max supp yk >
min supp fbi and supp gbi ⊆ {qn : n ∈ Dbi}. On the other hand assume
that there exists k ∈ Dbi such that qk > min supp fbi+1 then ran yk ∩
supp fbi+1 6= ∅. This contradicts the definition of Dbi and proves the right
hand inequality. Similarly, we can see that for every n ∈ Ea such that
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bR(n) 6= bl we have min supp fbR(n) 6 qn < min supp fbR(n)+1. For every i
with 1 6 i 6 l we set,

Mi = supp gbi ∪ {qn : n ∈ Ea and bi = bR(n)}.

We can readily observe the following,
i. For every b ∈ Sa it holds |{qn : n ∈ Ea and b = bR(n)}| 6 1.
ii. For i < l we get {qn : n ∈ Ea and bi = bR(n)} < supp gbi , while for

i = l we have the converse.
iii.

⋃
b∈SaMb =

(⋃
b∈Sa supp gb

)
∪ {qn : n ∈ Ea} ⊆ {qn : n ∈ Da}.

iv. min supp fbi 6Mbi < min supp fbi+1 for all i = 1, ..., l − 1.
Combining these four facts we conclude that the functionals (eqn)n∈Ea and
(gbi)16i6l together form a [N]62 ⊗ Sξ-admissible family. Consequently the
functional ga = 1

2 (
∑
n∈Ea e

∗
qn +

∑
b∈Sa gb) is an element of BT 1∗

ξ
. Finally,∣∣∣fa( ∑

i∈Da

λiyi

)∣∣∣ 6 ∣∣∣fa( ∑
i∈Ea

λiyi

)∣∣∣+
∣∣∣fa( ∑

i∈Da\Ea

λiyi

)∣∣∣
6 r ·

∑
i∈Ea

|λi|+
∣∣∣12 ∑

b∈Sa

fb

( ∑
i∈Db

λiyi

)∣∣∣
6 r

∑
i∈Ea

|λi|+ r
∑
b∈Sa

gb

( ∑
i∈Db

λieqi

)
= 2rga

( ∑
i∈Da

λieqi

)
�

We are now ready to prove Proposition 4.22.
Proof of Proposition 4.22. — Since (yn)n is a bounded block sequence

in Xξ such that
lim
n→∞

‖yn‖XT = 0

we may choose M ∈ [N] and a subsequence (yn)n∈M such that
i.
∑
n∈M ‖yn‖XT < 2r

ii. (yn)n∈M is level-block.
For simplicity we denote the subsequence by (yn)n again. Lemma 4.23
yields, ∥∥∥ k∑

i=1
λiyi

∥∥∥
Xξ
6 2r

∥∥∥ k∑
i=1

λieqi

∥∥∥
T 1
ξ

.

By Lemma 4.9 we have,∥∥∥ k∑
i=1

λiyi

∥∥∥
Xξ
6 2r

∥∥∥ k∑
i=1

λieqi

∥∥∥
T 1
ξ

6 16r
∥∥∥ k∑
i=1

λieqi

∥∥∥
Tξ
.
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Finally, applying Lemma 4.11 we obtain,∥∥∥ k∑
i=1

λiyi

∥∥∥
Xξ
6 16r

∥∥∥ k∑
i=1

λieqi

∥∥∥
Tξ
6 48r

∥∥∥ k∑
i=1

λiepi

∥∥∥
Tξ
,

for all choices of k ∈ N and (λi)ki=1 ∈ c00(N) completing the proof. �

Notation 4.24. — We set W 0
ξ = co(K ∪ −K) and Wξ = W 0

ξ

‖.‖Xξ .

Proposition 4.25. — The set K is weakly compact in Xξ

Proof. — Let (yn)n be a sequence in K. Clearly we may assume that
each yn is finitely supported. First we prove the following

Claim. — If (yn)n consists of incomparably supported vectors then it
is weakly null.

�

Proof of Claim. — Let r > 0 be such that ‖yn‖ > r > 0 and suppose
towards a contradiction that there exist an ε > 0 and a functional x∗ ∈
(Xξ)∗ with ‖x∗‖ = 1 such that x∗(yn) > ε for all n. Now, since supp yn
are incomparable segments of T we may also assume (by passing to a
subsequence) that (yn)n is a level block sequence. Remark 4.21 yields that
(yn)n is a `1

ξ spreading model. As XT does not contain any `1
ξ-spreading

model, there exists a sequence (zn)n of block convex combinations of (yn)n
such that ‖zn‖XT → 0. By Proposition 4.22, there exists a subsequence of
(zn)n (denoted by (zn)n again) which satisfies an upper-Tξ estimate. As the
space Tξ is reflexive this implies that (zn)n is weakly null. Hence, there are
further convex combinations of (zn)n that converges norm to zero. This is
clearly a contradiction since we have assumed that x∗(yn) > ε for all n ∈ N
and it completes the proof of the claim.
Now if (yn)n is arbitrary we can assume, by passing to a subsequence if

necessary, that e∗t (yn) n→ yt for all t ∈ T . Observe that S = {t ∈ T : yt 6= 0}
is a segment (finite or infinite) of T . Thus, we may assume that each yn
has a decomposition as yn = un + vn where

i. (un)n is a ⊆-increasing sequence of segments of S
ii. (vn)n is a sequence of incomparable segments of T .

The previous claim yields that (vn)n is weakly null. To finish the proof set
y =

∑
t∈S ytet and observe that (un)n has a subsequence which converges

to y in the norm topology of Xξ. Indeed, by the weak compactness of K in
XT there exists a subsequence (which we denote by (un)n again) such that

TOME 62 (2012), FASCICULE 1



22 Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

un
(XT ,w)→ y′ ∈ K. As e∗t (un) → e∗t (y) we deduce that y = y′. It is easy to

see that the definition of the set K implies, in fact, that un
‖·‖XT→ y. Since,

suppun ⊂ S for all n ∈ N we deduce by Remark 4.19 that un
‖·‖Xξ→ y which

completes the proof. �

4.3. The set K is thin in Xξ

In this subsection use Lemma 4.29, Proposition 4.29 and Proposition 4.22
in order to show that the closed convex hull Wξ of K is thin in Xξ.
Lemma 4.29 and Proposition 4.29 use techniques developed in [4], adapted
to this setting, which are crucial for the proof. We note that for the sake of
simplicity of notation hereby all norms are considered in Xξ unless stated
otherwise. We start with the definition of a thin subset of a Banach space.

Definition 4.26. — Let A,Γ be two subsets of a Banach space Y
i. Let ε > 0. We say that Γ ε-absorbs A if there exists λ > 0 such that
A ⊆ λΓ + εBY .

ii. We say that Γ almost absorbs A if Γ ε-absorbs A for every ε > 0.
iii. We say that A is thin in Y if A does not almost absorb the ball of

any infinite dimensional closed subspace of Y .

Definition 4.27. — Let A be a segment complete subset of T and
ε > 0.

1. For each x ∈ Xξ we denote by PAx the natural projection of x onto
A and for s segment of T denote by xs = Psxt =

∑
t∈s ψ(t)et.

2. We set AK = {t ∈ A : xt ∈ K} and Aε = {t ∈ AK : ‖PAxt‖ > ε}.
Let also A′ = A \Aε.

3. We set seg(A) = {s segment : t ∈ AK for all t ∈ s}. Clearly, for all
s ∈ seg(A) it follows that s ⊆ A.

We observe the following:

Lemma 4.28. — For every A segment complete and ε > 0 the set Aε is
also segment complete.

Proof. — Let t1, t2 ∈ Aε with t1 v t2. Then we have that ‖xt2‖ 6 1 thus
for every t ∈ [t1, t2] we obtain ‖xt‖ 6 ‖xt2‖ 6 C and at the same time
‖PAxt‖ > ‖PAxt1‖ > ε. These facts imply t ∈ Aε. �

Lemma 4.29. — Let ε > 0 and E a subset of T of the form E = {t ∈
T : m 6 |t| 6M}. Then there exists a decomposition of E into two disjoint
subsets E′, E′′ such that
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i. ‖PE′w‖ < ε for every w ∈W 0
ξ and

ii. For t ∈ T with |t| >M we have ‖PE′′xt‖ > ε.

Proof. — Set E′′ = Eε as in Definition 4.27 and E′ = E \ E′′. Notice
that ii. above is clear. Observe also that for every w ∈ W 0

ξ , PEw can be
written as PEw =

∑
s∈L λsxs where L ⊆ seg(E) and

∑
s∈L |λs| 6 1. It is

clear that for every s ∈ L the set s′ = s ∩ E′ is either empty or a segment
of E such that ‖xs′‖ < ε. Therefore ‖P ′Ew‖ = ‖

∑
s∈L λsxs′‖ < ε. �

The following Proposition is the key ingredient for proving that the set
Wξ is a thin subset of Xξ. It is an adaptation of the techniques developed
in [4] and for the sake of completeness we include its proof here.

Proposition 4.30. — Let (wn)n be a level-block sequence inW 0
ξ , ε > 0

and (En)n a level-block sequence of subsets of T where each one is of the
form En = {t ∈ T : mn 6 |t| 6 Mn} such that ranwn ⊆ En. Then there
exist a L ∈ [N] and a sequence (Fn)n∈L with the following properties:

i. Fn ⊆ En for n ∈ L.
ii. (Fn)n∈L are pairwise incomparable and segment complete subsets

of T .
iii. ‖PEnwn − PFnwn‖ < ε.

Proof. — We apply Lemma 4.29 to find a decomposition of En into two
disjoint subsets E′n, E′′n such that

i. ‖PE′nwn‖Xξ <
ε
2 .

ii. If s is a segment with s = [t1, t2] and |t1| 6 mn, |t2| > Mn as well
as s ∩ E′′n 6= ∅ we have ‖PE′′nxs‖ >

ε
2 .

Now for every n ∈ N Enwn =
∑
s∈Ln λsxs, where Ln ⊆ seg(En) and∑

s∈Ln |λs| 6 1. This representation defines a positive measure on seg(En)
with µn(A) =

∑
s∈A∩Ln |λs| for A ⊆ seg(En). Now let us consider a prob-

ability measure ν on the compact metrizable space of the branches [T ] of
the tree T such that for every segment s and every Os basic clopen neigh-
borhood of [T ] that contains s of the form Os = {b ∈ [T ] : s v b} we have
that ν(Os) > 0. With the help of ν we define a measure µ on [T ] as follows.
For every clopen B ⊆ [T ] we set

µ(B) = lim
n→U

∑
s∈Ln

|λs|
ν(Os ∩B)
ν(Os)

where the limit is taken with respect to a non-trivial ultrafilter U on N.
Using a diagonal argument we may assume that this is an ordinary limit.
Now for every n < k in N we define

i. Bn = {b ∈ [T ] : b ∩ E′′n 6= ∅}.
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ii. Akn = {s ⊆ seg(Ek) : ŝ ∩ E′′n 6= ∅}.
By our definition of µ we have that

µ(Bn) = lim
k
µk(Akn).

�

Claim. — For every M ∈ [N] and δ > 0 the set Iδ = {n ∈M : µ(Bn) <
δ} is an infinite subset of M .

Proof of claim. — Suppose not. Then there exists an M ∈ [N] such that
for every n ∈ M it holds µ(Bn) > δ and therefore there exists a branch
b ∈ [T ] such that b ∈ Bn,∀n ∈ M . This implies b ∩ E′′n 6= ∅ for all n ∈ M .
Thus the sequence (xb|n)n∈N converges norm to xb =

∑
n∈N ψ(b|n)eb|n and

‖PE′′nxb‖ >
ε
2 for all n ∈M which is a contradiction and proves the claim.

Now we define the following sets. First we set I0 = N and inductively for
k > 0

Ĩk+1 = {n ∈ Ik : µ(Bn) < ε

C · 2k+2 }, nk+1 = min Ĩk+1

Ik+1 = {l ∈ Ĩk+1 : µnk+1(Alnk+1
) < ε

C · 2k+2 }

Fnk+1 = {t ∈ E′′nk+1
: t̂ ∩ (∪ki=1E

′′
ni)=∅}={t ∈ E′′nk+1

: t ⊥ E′′i for i 6 nk}.

Where by st we denote the unique initial segment that contains t. By
the previous claim the sets Ĩk+1, Ik+1 are infinite and since nk+1 ∈ Ik
we have that µnk+1(Ank+1

nk ) < ε
2k+1 . The set I∞ = {n1, n2, ...} is infinite

and we observe that {Fn}n∈I∞ are incomparable by definition and are also
segment complete. Recall also that for every x ∈ K it holds ‖x‖ 6 C.
Now let k ∈ N then it remains to show that ‖P(Enk\Fnk )wnk‖ < ε. For
k > 1 we set r = nk+1. We consider the set Ar = Arn1

∪ ... ∪ Arnk . Then
µr(Ar) 6

∑k+2
i=2

ε
C·2k+2 < ε

4C . Let s /∈ Ar then ∀t ∈ s and i = 1, ..., k we
have st ∩ E′′ni = ∅ and thus s ⊆ Fr and if s ∈ Ar then s ∩ Fr = ∅. So

‖P(E′′r \Fr)wr‖ 6
∑

s∈Lr∩Ar

|λs| · ‖P(E′′r \Fr)xs‖ 6 µr(Ar) <
ε

2 .

Thus

‖P(Er\Fr)wr‖ 6 ‖PE′rwr‖+ ‖P(E′′r \Fr)wr‖ <
ε

2 + ε

2 = ε.

�

Proposition 4.31. — Let (zn)n be a normalized level-block sequence
in Xξ such that the unit ball BZ of the subspace Z = < zn : n ∈ N >

‖.‖ is
almost absorbed by Wξ. Then every normalized block sequence in Z has a
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subsequence which is a `1
ξ spreading model. Moreover, the identity operator

I : Z 7→ XT is strictly singular.

Proof. — Let (yn)n be a normalized level-block sequence in Z. By our
hypothesis there exists a λ > 0 such that BZ ⊆ λWξ+ 1

8BXξ . Thus for every
k ∈ N there exists wk ∈W 0

ξ such that ‖yk−λwk‖ < 1
8 . By Proposition 4.30

there exists a M ∈ [N] and a sequence (Ek)k∈M of subsets of T such that
the following hold:

i. ‖wk − PEkwk‖ < 1
8λ .

ii. (Ek)k are pairwise incomparable and segment complete subsets of
T , for all k ∈M .

For the sake of simplicity of notation we assume that M = N. Now if we
set w′k = PEkwk and w′′k = λw′k, we have that ‖yk−w′′k‖ < 1

8 + 1
8 = 1

4 . Thus
‖w′′k‖Xξ > 3

4 . Remark 4.21 yields that (w′′k)k is a `1
ξ spreading model. It is

easy to see that this property is transferred to (yn)n as well. In addition, as
XT does not contain `1

ξ spreading models, it is immediate that I : Z 7→ XT

is strictly singular. �

An immediate consequence of the preceding Proposition is the following.

Corollary 4.32. — Let (zn)n be a normalized level-block sequence in
Xξ such that the unit ball BZ of the subspace Z = < zn : n ∈ N >

‖.‖ is
almost absorbed by Wξ. Then every normalized block sequence in Z has a
further block subsequence which satisfies an upper (T, ξ) estimate.

Proof. — Proposition 4.31 yields that for every normalized block se-
quence (yn)n in Z there exists a further normalized block subsequence
(xn)n of (yn)n such that ‖xn‖XT → 0. A direct application of Proposi-
tion 4.22 yields the result. �

We are now ready to prove the main result of this section.

Theorem 4.33. — The set Wξ is thin in Xξ.

Proof. — Suppose not. Then there exists a normalized block sequence
(yn)n in Xξ such that BY is almost absorbed byWξ, where by Y we denote
Y = < yn : n ∈ N >

‖.‖. By Corollary 4.32 we can find a normalized block
sequence (zn)n in Y such that∥∥∥ k∑

i=1
bizn

∥∥∥ 6 48
∥∥∥ k∑
i=1

biepn

∥∥∥
Tξ

for every choice of scalars (bi)ki=1 and k ∈ N. Since by our hypothesis the
unit ball of Z = < zn : n ∈ N >

‖.‖ is almost absorbed by Wξ we can apply
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the same arguments as in Proposition 4.31 to obtain a sequence (z∗mi)i
satisfying the following

i. supp z∗mi ⊆ ran zmi for all i ∈ N.
ii. (supp z∗mi)n are pairwise incomparable, segment complete subsets

of T .
iii. z∗mi(zmi) >

1
4 for all i ∈ N.

iv. z∗mi ∈ Gξ for all i ∈ N.
For the sake of simplicity we enumerate (zmi)i as (zn)n. Define an oper-

ator P : Xξ 7→ < zn : n ∈ N >
‖.‖ by P (x) =

∑∞
n=1 z

∗
n(x)zn. We will show

first that P is bounded.
To see this, let x ∈ BXξ . It is enough to prove that ‖

∑
n z
∗
n(x)epn‖Tξ 6 1.

Indeed, Let f be a functional in the norming set of Tξ and (fa)a∈A a tree
analysis of f . We can assume without loss of generality that supp f ⊆ {pn :
n ∈ N}. Let a ∈ A be a vA-maximal node. Then fa = ±epk for a k ∈ N.
Thus |fa(

∑
n z
∗
n(x)epn)| = |z∗k(x)| 6 1. We move on to recursively define

for each a ∈ A a functional ga ∈ Gξ such that fa(
∑
n z
∗
n(x)epn) = ga(x).

If a is maximal and fa = ±e∗pk we set ga = z∗k or ga = −z∗k respectively.
We observe that if {±e∗pi1 < ... < ±e∗pil } is an Sξ-admissible sequence of
functional in B∗Tξ then {±z∗pi1 < ... < ±z∗pil } is an (T, ξ)-admissible family
of functionals as well. Now suppose that a ∈ A is not maximal such that
for every β ∈ Sa we have defined a functional gβ ∈ Gξ such that (gβ)β∈Sa
are successive and their supports are pairwise incomparable subsets of T
and each gβ satisfies fβ(

∑
n z
∗
n(x)epn) = gβ(x) for all β ∈ Sa. Then the

functional ga = 1
2
∑
β∈Sa gβ is an element of Gξ and

fa

(∑
n

z∗n(x)epn
)

= 1
2
∑
β∈Sa

fβ

(∑
n

z∗n(x)epn
)

= 1
2
∑

gβ(x) = ga(x).

Thus, by following the structure of the tree A we arrive at a functional
g ∈ Gξ with g(x) = f(

∑
n z
∗
n(x)epn) and this gives us∥∥∥∑

n

z∗n(x)epn
∥∥∥
Tξ
6 ‖x‖ 6 1.

Therefore, ‖P‖ 6 C.
Suppose now, that ∀ε > 0, ∃λ > 0 such that

BY ⊆ λWξ + εBXξ .

Then it is clear that BZ ⊆ λWξ+εBXξ where Z = < zn : n ∈ N >
‖.‖. Since

|z∗n(zn)| > 1
4 we obtain that

1
4BZ ⊆ P (BZ)
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and by setting ε = 1
8‖P‖ we have

P (BZ) ⊆ λP (Wξ) + 1
8BZ .

Thus BZ ⊆ 8λP (Wξ)
‖.‖

. Since the operator P is defined by the sequence
(z∗n)n and (supp z∗n)n are pairwise incomparable we have that P (Wξ) ⊆
‖P‖co[(±zn) : n ∈ N] and finally

BZ ⊆ 8λ‖P‖co[(±zn) : n ∈ N].

Now since, as is well known, the basis of Tξ is weakly null we can select
a convex combination x =

∑n
i=1 kiepi such that ‖x‖Tξ < C

16λ‖P‖ and we
obtain ‖

∑n
i=1 kizi‖Xξ <

1
16λ‖P‖ . We observe that if z =

∑n
i=1 kizi then

(16λ‖P‖)z ∈ BZ ⊆ 8λ‖P‖co[(±zn) : n ∈ N]. We conclude that Wξ does
not almost absorb BY . This is a contradiction which yields the proof of the
Theorem. �

5. Classical Interpolation Spaces

We fix T, XT with a SC-unconditional basis (et)t∈T and K as in the
previous section. We also set W = co‖·‖XT (K∪−K). In this section we use
the classical Davies-Figiel-Johnson-Pelczynski iterpolation method [10] for
the pair (XT,W ) to produce a new space X1 in which the structure of the
set K is preserved and study the properties of this new space. We begin by
recalling the (DFJP)-interpolation method:

Definition 5.1. — Let T, XT and W be as above. We set Wn =
2nW + 1

2nBXT and define a sequence of equivalent norms (‖ · ‖n)n on XT,
each induced by the Minkowski gauge of the respective Wn. We consider
(
∑∞
n=1⊕(XT, ‖ · ‖n))2 to be the `2-Schauder sum of the spaces (XT, ‖ ·

‖n)n. Finally, we set X1 to be the diagonal space of this `2-Schauder
sum. That is, the (closed) subspace consisting of all elements of the form
x̃ = (x, x, ...x, ...), for x ∈ XT. We also denote by J1 the 1 − 1 bounded
linear operator J1 : X1 → XT defined as J1(x̃) = x and by K̃ = {x̃ : x ∈ K}.

Remark 5.2. — In [10] it was proved that if the setW is weakly compact
then the space X1 is reflexive. In addition, by its construction the space
X1 consists of all elements x̃ = (x, x, ..., x, ...) such that

∑∞
n=1 ‖x‖2

n < ∞
and ‖x̃‖X1 = (

∑∞
n=1 ‖x‖2

n) 1
2 . Therefore, we can observe that for w ∈W we

have ‖w‖n 6 1
2n and thus ‖w̃‖X1 6 1. It follows that K̃ is a closed subset

of X1 and J1(K̃) = K.
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We pass now to show that the space X1 has a SC-unconditional basis.
We start with the following Lemma.

Lemma 5.3. — Let TK = {t ∈ T : yt =
∑
t′vt ψ(t′)et′ ∈ K}. Then TK

is a backwards closed subtreee of T and for every t ∈ TK we have that
ẽt = (et, et, ...) ∈ X1.

Proof. — It is easy to check that TK is indeed a backwards closed subtree
of T. Let now s be an initial segment of T (finite or infinite) such that the
vector ys =

∑
t∈s ψ(t)et is an element of K. It follows by the definition of

K that ψ(t)et ∈ K, ∀t ∈ s. Let t0 ∈ TK, then
∑
tvt0 ψ(t)et ∈ K and we

obtain ψ(t)et ∈ K ∀t v t0. So at0et0 ∈ K and thus ẽt0 ∈ X1. �

Remark 5.4. — We note that as TK is a backwards closed subtree of T
then for every A ⊂ TK segment complete we have that A is also segment
complete when considered as a subset of T.

We fix a bijection g : TK 7→ N as in Definition 2.2 and we pass to show
that the sequence (ẽt)t∈TK enumerated through g defines a bimonotone
Schauder basis for X1.

Lemma 5.5. — Let A ⊆ T segment complete. If we denote by PA :
XT 7→ < et : t ∈ A >

‖.‖XT the natural projection induced by A we have
that ‖PA(x)‖n 6 ‖x‖n for all x ∈ XT and n ∈ N.

Proof. — As XT has a SC-unconditional basis it follows that P (BX0) ⊆
BX0 . At the same time for every w ∈ W we have ‖PA(w)‖XT 6 ‖w‖XT

and PA(w) ∈ W . Thus, PA(W ) ⊆ W . Let now n ∈ N and x ∈ XT. Let
also λ > 0 such that x ∈ λ(2nW + 1

2nBXT). All the above yield PA(x) ∈
λ(2nPa(W ) + 1

2nPA(BXT) ⊆ λ(2nW + 1
2nBXT). Thus ‖PA(x)‖n 6 ‖x‖n as

desired. �

Proposition 5.6. — The sequence (ẽt)t∈TK is a SC-unconditional
Schauder basis for X1.

Proof. — By Remark 5.4 and the previous Lemma it readily follows
that (ẽt)t∈TK is a SC-unconditional Schauder basis for the subspace E =
< (ẽt)t∈TK >. We shall show that E actually coincides with X1. We need
the following Claim:

Claim. — For every element x̃ = (
∑
t∈TK

λtet,
∑
t∈TK

λtet, ...) ∈ X1,
we have that x̃ ∈ E.

�
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Proof of claim. — Let x̃ = (
∑
t∈TK

λtet,
∑
t∈TK

λtet, ...) then ‖x̃‖X1 =
(
∑
n ‖
∑
t∈TK

λtet‖2
n) 1

2 . Let ε > 0. There exists a n0 ∈ N such that (
∑
n>n0

‖
∑
t∈TK

λtet‖2
n) 1

2 6 ε
2 . By Lemma 5.5 and the fact that the spaces

(X1, ‖ · ‖n)n are mutually isomorphic we can choose a finite interval I of
TK such that ( n0∑

i=1

∥∥∥ ∑
t∈TK

λtet −
∑
t∈I

λtet

∥∥∥2

n

) 1
2
6
ε

2 .

Thus, if we set x̃′ =
∑
t∈I λtẽt ∈ E we obtain ‖x̃− x̃′‖X1 6 ε.

This completes the proof of the claim.
Let now, x̃ ∈ X1 \ E. We know that x̃ is of the form x̃ = (

∑
t∈T λtet,∑

t∈T λtet, ...). Since x /∈ E we have that there exists t0 ∈ T \ TK such
that λt0 6= 0. Let w ∈ W and n ∈ N. We have that w is of the form
w =

∑
t∈TK

βtet. Hence,∥∥∥∑
t∈T

λtet − 2nw
∥∥∥
X0

=
∥∥∥∑
t∈T

λtet − 2n
∑
t∈TK

βtet

∥∥∥
X0
> |λt0 | > 0.

Thus, ‖
∑
t∈T λtet‖n 9 0 and consequently x̃ /∈ X1. This is a contradiction

completing the proof. �

The following result is similar originates in [19] and for the sake of com-
pleteness we outline the main arguments of its proof.

Proposition 5.7. — If W is a thin subset of XT then the operator J1
is strictly singular and every infinite dimensional closed subspace Y of X1
contains an isomorphic copy of `2 which is complemented in X1.

Proof. — In order to show that the operator J1 is strictly singular we
shall in fact prove something stronger, namely that J1(BX1) is a thin subset
of XT. This is a direct consequence of the following:
The set J1(BX1) is almost absorbed by W . To see this let ε > 0. Fix

n0 ∈ N so that 1
2n0 < ε and pick an arbitrary x̃ = (x, x, ...) ∈ BX1 . Then,∑

n∈N ‖x‖2
n 6 1 which implies that x ∈ 2nW+ 1

2nBXT for all n ∈ N. Simply
set λ = 2n0 and observe that J1(x̃) = x ∈ 2n0W + 1

2n0 BXT ⊂ λW + εBXT .
Now as J1(BX1) is almost absorbed by a thin subset it is straightforward
that this set is also thin in XT. Pick an arbitrary Y closed subspace of X1.
Since the operator J1 is strictly singular one can apply a standard sliding
hump argument to produce normalized sequences (ỹn)n in Y and (z̃n)n
horizontally block in

(∑
n∈N⊕(XT, ‖·‖n)

)
2 such that

∑∞
n=1 ‖z̃n− ỹn‖ <

1
2 .

As (z̃n)n is isometric to the standard `2 basis the space Z = < z̃n : n ∈ N >

is 1-complemented in X1, we conclude that the space generated by (ỹn)n is
isomorphic to `2 and complemented in X1. �

TOME 62 (2012), FASCICULE 1



30 Spiros A. ARGYROS & Theocharis RAIKOFTSALIS

Remark 5.8. — We note that under the obvious modifications the re-
sults presented in this section remain valid for DFJP `p interpolation.

6. Reflexive spaces as quotients of `p saturated spaces

At this point we are able to use the techniques developed in all the
previous sections in order to show that every separable reflexive Banach
space X is a quotient of a separable reflexive and `p-saturated space, for
every p > 1 and of a separable c0-saturated space. This is done by using all
of the results obtained above in conjunction with the following well known
result of Zippin ([23]).

Theorem 6.1. — Let X be a separable reflexive Banach space. Then
there exists a reflexive Banach space ZX with a Schauder basis (zi)i so that
X is isomorphic to a subspace of Z.

We pass now to show the main result of this section. We present the
arguments only in the case of p = 2 as for any p > 1 and c0 the proof
follows exactly the same lines. Namely, we have

Theorem 6.2. — LetX be a separable reflexive Banach space. Then for
every p > 1 there exists a separable reflexive complementably `p-saturated
Banach space Xp so that X is isomorphic to a quotient space of Xp. Also
there exists a separable c0-saturated space X0 so that X is a quotient of
X0.

Proof. — Granting Zippin’s theorem above we may assume that X has
a normalized and bimonotone Schauder basis (xi)i. Starting with X we
consider the space X0 associated to X as it was presented in section 3. We
also consider the set K and the map Φ : X0 → X (see Definitions 3.6 and
3.7). By Proposition 3.9 we know that Φ(K) is a 1

8 -net in the unit ball of X
and hence Φ is onto. By Proposition 3.11 the set W 0 = conv‖·‖(K∪−K) is
a weakly compact subset of X0. Therefore, the space X1 as it was defined in
the previous section is a reflexive Banach space with a basis (ẽt)t∈TK (see
Proposition 5.6). In addition, by Remark 5.2 we have J1(K̃) = K. Hence,
the operator Φ ◦ J1 : X1 → X is onto. By using the extension technique of
section4 on the space X1 we arrive at a space Xξ with the properties that
I : Xξ → X1 is continuous, K̃ ⊂ Xξ and W ξ = conv‖·‖(K̃ ∪ −K̃) is weakly
compact and thin. Finally, by applying the DFJP - interpolation to the the
space Xξ with the setW ξ we arrive at the space X2. The map J2 : X2 → Xξ
is continuous and preserves the set K̃. Therefore, there is a map Π : X2 → X

ANNALES DE L’INSTITUT FOURIER



REFLEXIVE INDECOMPOSABLE BANACH SPACES 31

onto. To complete the proof, we point out that by Propositions 5.6 and 5.7
the space X2 is separable reflexive and complementably `2-saturated. �

Remark 6.3. — The above Theorem yields examples of pairs (X,X∗)
of reflexive spaces with divergent structure. Namely, there exists spaces Xp

as above such that the dual X∗p contains HI subspaces.

7. Skew HI interpolation

In this section we present a method for applying HI interpolation to a
pair (X,W ) in order to achieve the diagonal space to have a Schauder basis.
We start with a tree T , a reflexive space XT which has a SC-unconditional
basis (et)t∈T and a weakly compact convex symmetric subsetW . We denote
by (Xn)n the sequence of (mutually isomorphic) spaces (XT , ‖ · ‖n) where
the n-th norm is defined via the Minkowski gauge of the set 2nW + 1

2nBXT
and prove the following:

Theorem 7.1. — Let (Xn)n be the above sequence. Then there exists
a norm ‖ · ‖G defined on c00(T × N) such that if we denote by XG the
completion of c00(T × N) under this norm the following hold:

1. The sequence (Xn)n is a Schauder decomposition of XG.
2. Setting Zt = < (e(t,k) : k ∈ N >

‖·‖G , the sequence (Zt)t∈T also de-
fines a Schauder decomposition of XG.

3. If for all segment complete A ⊂ T for the natural projection PA
we have that PA(W ) ⊂ W then the diagonal subspace X of XG
consisting of all elements of the form x̄ = (x, x, ...) has a Schauder
basis. Moreover, X is reflexive.

4. If the set W is thin in XT then the space X is HI.

Let (XT ,W ) be as above and assume also that for every segment com-
plete subset A of XT , PA(W ) ⊂ W . Then by Lemma 5.5 we have that for
every n ∈ N, the sequence (et)t∈T is a SC-unconditional Schauder basis for
Xn. Thus setting:

Gn =
{∑
t∈A

λte
∗
t : λt ∈ Q and

∥∥∥∑
t∈T

λte
∗
t

∥∥∥
X∗n

6 1

and A ⊆ T segment complete
}
,

we can readily verify that Gn is a norming set for the space (Xn) for all N.

Notation 7.2. — We define the following
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i. We set π : T × N 7→ T by π((t, k)) = t and j : T × N 7→ N by
j((t, k)) = k.

ii. For x ∈ coo(T ×N) we let ran x denote the minimal rectangle I × J
that contains the support of x. Where by a rectangle I×J we mean
the product of an interval I of T and an interval of N.

iii. Let A,B ⊆ T × N we write A ≺π B if π(A) < π(B) and A ≺j B
if j(A) < j(B) and A ≺(π,j) B if π(A) < π(B) and j(A) < j(B).
With A ≺lπ B we denote the property π(A) <l π(B).

iv. For x, y ∈ c00(T × N) we write x ≺π y whenever suppx ≺π supp y.
The notations x ≺j y and x ≺(π,j) y have analogous meanings.

Definition 7.3. — A sequence (xn)n in c00(T × N) is said to be j-
block (π-block or level-π-block) if xn ≺j xn+1 (xn ≺π xn+1 or xn ≺lπ xn+1
respectively). The sequence (xn)n is called diagonally block if xn ≺(π,j)
xn+1

We fix two sequences of natural numbers (ml)l∈N and (nl)l∈N which
are both recursively defined as follows. We set m1 = 2,ml+1 = m5

l and
n1 = 4, nl+1 = (5nl)sl where sl = log2 ml+1.

Definition 7.4. — We consider a subset G of c00(T × N) that is the
minimal set such that the following hold.

i.
⋃
nGn ⊆ G and G is closed in the restriction on rectangles of the

form I ×J where I, J are intervals of T and N respectively.(i.e., for
f ∈ G and I, J intervals of, we have that (I×J) ·f = χI×J ·f ∈ G).

ii. For every l ∈ N, G is closed in the
(
An2l ,

1
m2l

)
-operations on j-

block sequences. That is, if f1 ≺j f2 ≺j ... ≺j fn2l and fi ∈ G for
all i = 1, ..., n2l, then 1

m2l

∑n2l
i=1 fi ∈ G.

iii. For every l ∈ N, G is closed in the
(
An2l−1 ,

1
m2l−1

)
-operation on

(n2l−1)-special sequences.
iv. G is rationally convex.

It remains to define the (n2l−1)-special sequences, defined through a cod-
ing σ. For every l ∈ N if f ∈ G is the result of the

(
Anl , 1

ml

)
-operation,

then we let the weight w(f) of f to be ml. Notice that w(f) is not uniquely
defined.

The coding function σ. First we consider the subset of c00(T × N)
defined by

S =
{

(φ1, φ2, ..., φd) : φ1 ≺j φ2 ≺j ... ≺j φd and φi(t, k) ∈ Q for every
(t, k) ∈ T × N and every i ∈ {1, ..., d}

}
.
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We fix a pair Ω1,Ω2 of disjoint infinite subsets of N. As S is countable, we
are able to define an injection σ : S → {2l : l ∈ Ω2} such that

mσ(φ1,...,φd) > max
{ 1
|φi(e(t,k))|

: (t, k) ∈ suppφi and i = 1, ..., d
}

·max{k : (t, k) ∈ suppφd}.

A finite sequence (fi)n2l−1
i=1 is said to be a (n2l−1)-special sequence, provided

that
(a) (f1, ..., fn2l−1) ∈ S and fi ∈ G for every i = 1, ..., n2l−1,
(b) w(f1) = m2k with k ∈ Ω1, m1/2

2k > n2l−1 and w(fi+1) = mσ(f1,...,fi)
for every 1 6 i < n2l−1.

Remark 7.5. — As we mentioned above, the weight w(f) of a functional
f , when it is defined, is not in general uniquely determined. However, if
f1, ..., fn2l−1 is a (n2l−1)-special sequence, then for all i > 2 by w(fi) we
shall put mσ(f1,...,fi−1).

Having defined the set G, we define
i. ‖x‖G = sup{f(x) : f ∈ G}, for all x ∈ c00(T × N).
ii. XG = < c00(T × N), ‖ · ‖G >.

Remark 7.6. — The following are easily established.
(1) For every n ∈ N, the space < (xt,n)t∈T >

‖·‖G is isometric to Xn.
(2) For every I, J intervals (finite or infinite) of T and N respectively,

the projection

PI×J : XG → XI×J = < (xt,k)t∈I,k∈J >
‖·‖G

has norm one. Consequently we have,
(a) The sequence (Xn)n defines a Schauder decomposition of XG.
(b) Setting Zt = < (xt,k)k∈N >

‖·‖G , the sequence (Zt)t also defines a
Schauder decomposition of XG.

(3) Every j-block sequence and every π-block sequence is a bi-monotone
Schauder basic sequence. Hence every diagonally block sequence is also a
bi-monotone basic sequence.

Next we shall present the basic ingredients for the proof that certain
block sequences in XG generate HI spaces.

Definition 7.7. — Let x ∈ c00(T × N) and C > 1. We say that x is a
C− `1

k average if there exists a j-block sequence x1 ≺j x2 ≺j ... ≺j xk such
that x = x1+...+xk

k , ‖xi‖G 6 C for i = 1, ..., k and ‖x‖G = 1.
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Definition 7.8 (RIS). — A j-block sequence (xq)q in XG is said to be a
(C, ε) rapidly increasing sequence, if ‖xq‖G 6 C, and there exists a strictly
increasing sequence (lq)q of natural numbers such that

i. 1
mlq+1

| suppxq| < ε.
ii. For every q = 1, 2, ... and every f ∈ G with w(f) = mi, i < lq we

have that |f(xq)| 6 C
mi

.

Notation. — We denote by DAu the minimal subset of c00(N) satisfying
the following properties

i. ±en ∈ Au, for all n ∈ N.
ii. For every block sequence f1 < f2 < ... < f5nl in Au we have that

1
ml

∑5nl
i=1 fi ∈ Au.

iii. Au is closed under restrictions of its elements on intervals.
We also denote by Au the completion of c00(N) under the norm induced
by the norming set DAu.

We state here a Lemma concerning the behavior of certain averages of
the basis of Au. For the proof we refer to Lemma II.9 in [8].

Lemma 7.9. — Let l0 ∈ N and h ∈ DAu. Then for every k1 < ... < knl0
we have that

i. |h( 1
nl0

∑nl0
j=1 ekj )| 6 2

mi·ml0
, if w(h) = mi < ml0 .

ii. |h( 1
nl0

∑nl0
j=1 ekj )| 6 1

mi
, if w(h) = mi > ml0 .

If we additionally assume that the functional h admits a tree analysis
(ha)a∈A such that w(ha) 6= ml0 for all a ∈ A, then we have that

i. |h( 1
nl0

∑nl0
j=1 ekj )| 6 2

mi·m2
l0
, if w(h) = mi < ml0 .

ii. |h( 1
nl0

∑nl0
j=1 ekj )| 6 1

mi
, if w(h) = mi > ml0 .

Proposition 7.10 (The basic inequality). — Let (xq)q be a j-block
(C, ε) RIS and let also (λq)q be a sequence of scalars. Then for every f ∈ G

we can find g1 such that either g1 = h1 or g1 = e∗k + h1 with k /∈ supph1
where h1 ∈ DAu, w(f) = w(h1) ,g2 ∈ c00(T) with ‖g2‖∞ 6 ε and g1, g2
having nonnegative coordinates such that,∣∣∣f(∑λqxq

)∣∣∣ 6 C(g1 + g2)
(∑

|λq|eq
)
.

If we additionally assume that there exists a l0 ∈ N such that for every
φ ∈ G with w(φ) = ml0 and every interval E of the natural numbers,∣∣∣φ(∑

q∈E
λqxq

)∣∣∣ 6 C(max
k∈E
|λq|+ ε

∑
|λq|
)
,

ANNALES DE L’INSTITUT FOURIER



REFLEXIVE INDECOMPOSABLE BANACH SPACES 35

then we can choose h1 to have a tree analysis (ha)a∈A such that w(ha) 6=
ml0 , for all a ∈ A.

We refer the reader to Lemma II.14 of [8] for a proof of the above propo-
sition. A direct consequence of the basic inequality and Lemma 7.9 is the
following.

Lemma 7.11. — Let (xq)
nl0
q=1 be a j-block (C, ε) RIS with ε 6 2

m2
l0
. Then

1. For every f ∈ G with w(f) = mi we have,
i. |h( 1

nl0

∑nl0
j=1 xj)| 6 3C

mi·ml0
, if w(h) = mi < ml0 .

ii. |h( 1
nl0

∑nl0
j=1)| 6 C

nl0
+ C

mi
+ Cε, if w(h) = mi > ml0 .

In particular, ‖ 1
nl0

∑nl0
j=1 xj‖ 6 2C

ml0
.

2. If (bq)
nl0
q=1 are scalars with |bq| 6 1 for all q such that for every φ ∈ G

with w(φ) = ml0 and every interval E of the natural numbers we
have that,∣∣∣φ(∑

q∈E
λqxq

)∣∣∣ 6 C(max
k∈E
|λq|+ ε

∑
|λq|
)
.

Then, ‖ 1
nl0

∑nl0
j=1 bjxj‖ 6 4C

m2
l0
.

Definition 7.12. — Let x ∈ c00(T × N) and C > 1. We say that x is
a C − `1

k average if there exists a j-block sequence x1 ≺j x2 ≺j ... ≺j xk
such that x = x1+...+xk

k , ‖xi‖G 6 C for i = 1, ..., k and ‖x‖G = 1.

Lemma 7.13. — Let x be a C− `1
nq average. Then for every f ∈ G with

w(f) = mk < mq we have that |f(x)| 6 1
mk
C(1 + 2nl−1

nl
) 6 3C

2
1
mk

.

Proof. — Let x= 1
nq

∑nq
i=1 xi be a C−`1

nl
average. Let also f= 1

mk

∑nk
i=1fi

with (fi)nki=1 a j-block sequence of functionals and nk < nq. If we set Ei =
j(ran fi) and for l = 1, ..., nk let Il (Jl resp.) be the set of all i such that
j(suppxi) is contained (resp. intersects) El. Clearly

∑nk
l=1 |Il| 6 nq, while

for each l we have ‖Elx‖ 6 1
nq

∑
i∈Jl ‖Elxi‖ 6

1
nq
C(|Il| + 2). Therefore∑nk

l=1 ‖Elx‖ 6 C 1
nq

(
∑nk
l=1 |Il| + 2nk) 6 C(1 + 2nk

nq
) and the conclusion

follows. �

Lemma 7.14. — Let (xq)q be a j-block sequence in XG such that each
xq is a C − `1

kq
average, where C > 1 and kq increasing to infinity and

ε > 0. Then there exists a subsequence of (xq)q which is a ( 3C
2 , ε) RIS.

Proof. — For each q we set lq = max{l : nl 6 nq}. There exists a
subsequence of (xq)q (we denote this subsequence by (xq)q again) such that
(lq)q is a strictly increasing sequence andmlq+1 >

1
ε | suppxq| for all q. From
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Lemma 7.13 we also get that for each f ∈ G with w(f) = mk, k < lq we
have that |f(xq)| 6 3C

2
1
mk

. Therefore this subsequence is a ( 3C
2 , ε) RIS. �

Lemma 7.15. — Let (xq)q be a j-block sequence with each xq a C− `1
kq

average, where C > 1 and kq increasing to infinity. Then for every l ∈ N
there exists q1 < q2 < ... < qn2l such that,∥∥∥xq1 + xq2 + ...+ xqn2l

n2l

∥∥∥ 6 3C
m2l

.

This is a direct consequence of the basic inequality (Proposition 7.10).
The following holds.

Lemma 7.16. — For every j-block sequence (yn)n and every k ∈ N,
there exists a 2− `1

k average in < (yn)n >.

For the proof we refer to [8], Lemma II.22. Combining Lemma 7.16 and
7.14 we arrive at the following.

Lemma 7.17. — For every j-block sequence (yn)n in XG and for every
ε > 0 there exists a (3, ε) RIS in < (yn)n >.

Definition 7.18 (exact pair). — A pair (x, φ) with x ∈ c00(T × N)
and φ ∈ G is said to be a (C, l) exact pair if the following conditions are
satisfied.

(1) 1 6 ‖x‖G 6 C and for every f ∈ G with w(f) = mq and q 6= l we
have that |f(x)| 6 3C

mq
if q < l while |f(x)| 6 C

m2
l

if q > l.
(2) φ is the result of the

(
Anl , 1

ml

)
-operation and so w(φ) = ml.

(3) φ(x) = 1 and ran x = ranφ (we recall that for c00(T ×N), the range
of x is the minimal rectangle generated by intervals that contains
suppx).

The following proposition is a direct consequence of Lemmas 7.16 and
7.15.

Proposition 7.19. — If (xq)q is a j-block sequence, then for every
l ∈ N there exists an (6, 2l) exact pair (x, φ) with x ∈< (xq)q > and φ ∈ G.

Proof. — From Lemma 7.17 we have that there exists (yq)n2l
q=1 a (3, ε)

RIS in < (xq)q > with ε 6 1
m3

2l
. Choose for each q = 1, ..., n2l a y∗q ∈ G

with y∗q (yq) = 1 and ran y∗q ⊆ ran yq. Then the functionals (y∗q )q form a
j-block sequence and the functional y∗ = 1

m2l

∑
q y
∗
q is an element of G and

if we set y = m2l
n2l

∑n2l
q=1 yq by Proposition 7.10 we get that (y, y∗) is the

desired pair. �
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Proposition 7.20 (The tree like property of special sequences). — Let
(φi)n2l−1

i=1 , (ψi)n2l−1
i=1 be two distinct special sequences in G. Then

i. For 1 6 i < j 6 n2l−1 we have that w(φi) 6= w(ψj).
ii. There exists k such that φi = ψi for all i < k and w(φi) 6= w(ψi)

for i > k.

The proof can be readily deduced from the definition of special sequences.
For what follows we restrict ourselves to a specific form of j-block sequences.
Namely,

Definition 7.21. — We say that a j-block sequence (xn)n is special
j-block if either (xn)n is diagonally block or there exists some t ∈ T such
that suppxn ⊆ {t} × N for every n ∈ N.

Definition 7.22 (dependent sequences). — A double sequence
(xk, φk)n2l−1

k=1 where (xk)n2l−1
k=1 is a special j-block sequence and φk ∈ G

for every k = 1, ..., n2l−1, is said to be a (C, 2l − 1) dependent sequence if
there exists a sequence (2lk)n2l−1

k=1 of even integers such that the following
conditions are fulfilled.

(i) (φk)n2l−1
k=1 is a (n2l−1)-special sequence with w(φk) = m2lk for all

k = 1, ..., n2l−1.
(ii) Each (xk, φk) is a (C, 2lk) exact pair.

Remark 7.23. — It is clear that the existence of dependent sequences
in certain subspaces of XG is the main tool for proving the HI property
of these subspaces. In the sequel we shall present the precise statement.
Here we want to comment the use of the special j-block sequences in the
definition of dependent sequences. A key ingredient for showing the second
inequality in the following Proposition is the tree-like property satisfied
by the (n2l−1)-special sequences (Proposition 7.20). Nevertheless, when we
deal with norms on c00(N) then the tree-like property is also satisfied by
all restrictions of the special sequences on intervals of N (see [8], Proposi-
tion 3.3). However this is not valid when we deal with c00(T × N) and we
consider restrictions on rectangles generated by intervals of T and N. No-
tice that this problem disappears if we consider special j-block sequences
and this is the reason why we introduced this concept.

Proposition 7.24. — Let (xk, x∗k)n2l−1
k=1 be a (C, 2l − 1) dependent se-

quence. Then

(7.1)
∥∥∥ 1
n2l−1

n2l−1∑
k=1

xk

∥∥∥ > 1
m2l−1
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(7.2)
∥∥∥ 1
n2l−1

n2l−1∑
k=1

(−1)kxk
∥∥∥ 6 8C

m2
2l−1

.

Proof. — (1) It can be readily seen that the special functional f =
1

m2l−1

∑n2l−1
k=1 x∗k belongs to G thus f(xk) > 1

m2l−1
.

(2) First of all it is easy to check that the sequence (xk)n2l−1
k=1 is a

(2C, 1
n2

2l−1
) RIS. The inequality follows from Proposition 7.10 after showing

that for every f ∈ G with w(f) = m2l−1 and every interval E we have that,

∣∣∣f(∑
k∈E

(−1)k+1xk

)∣∣∣ 6 2C
(

1 + 2
m2

2l−1
|E|
)
.

To see this choose f ∈ G with w(f) = m2l−1 and observe that such an
f must have the following form: f = 1

m2l−1
(Fx∗t−1 + x∗t + ... + fr+1 +

...+ fd), for some special sequence (x∗1, x∗2, ..., x∗r , fr+1, ..., fn2l−1) of length
n2l−1 with x∗r+1 6= fr+1, w(x∗r+1) = w(fr+1) and F an interval of the form
[m,max suppx∗t−1]. This representation is a direct consequence of the the
tree-like property discussed thoroughly above. We estimate the quantity
f(xk) for each k as follows.

1. If k < t− 1 then f(xk) = 0.
2. If k = t−1 we get |f(xt−1| = 1

m2l−1
|Fx∗t−1(xt−1)| 6 1

m2l−1
‖xt−1‖ 6

C
m2l−1

.
3. If k > r+ 1 Proposition 7.20 yields that w(fi) 6= m2lk , for all i > r.

Using the fact that (xk, x∗k) is an exact pair and taking into account
that n2

2l−1 < m2l1 6 m2lk we proceed in the following manner:

|f(xk)| = 1
m2l−1

|(fr + ...+ fd)(xk)|

6
1

m2l−1

( ∑
w(fi)<m2lk

|fi(xk)|+
∑

w(fi)>m2lk

|fi(xk)|

+
∑

2r+262i6d
|f2i(x2k−1)|

)
6

1
m2l−1

( ∑
2l−1<j<2lk

3C
mj

+ n2l−1
C

m2
2lk

)
6

C

m2
2l−1

.

4. For k = r+1 the same argument as in the previous case yields that
|f(xr+1)| 6 C

m2l−1
+ 1

m2
2l−1

< C+1
m2l−1

.
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Let E be an interval. From the above estimates we obtain,∣∣∣f(∑
k∈E

(−1)k+1xk

)∣∣∣ 6 ∣∣∣f(xt−1)
∣∣∣+
∣∣∣ ∑
k∈E∩[t,r]

1
m2l−1

(−1)k+1
∣∣∣

+ |f(xr+1)|+
∣∣∣ ∑
k∈E∩[r+2,n2l−1]

f(xk)
∣∣∣

6
C

m2l−1
+ 1
m2l−1

+ C + 1
m2l−1

+ C

m2
2l−1
|E|

< 2C
(

1 + 2
m2

2l−1
|E|
)
,

completing the proof. �

The following is an easy consequence of the previous results.

Proposition 7.25. — Let (xn)n, (yn)n be two diagonally block se-
quences. Then for every n ∈ N there exists a (6, 2l−1) dependent sequence
(zk, φk)n2l−1

k=1 such that z2k−1 ∈< (xn)n > and z2k ∈< (yn)n >. Similar
results hold if (xn)n and (yn)n are j-block sequences in the space Zt for
some t ∈ T .

We need the following.

Proposition 7.26. — Let Y be a subspace of XG. Then one of the
following hold.

(a) There exists n ∈ N such that jn : Y → Xn is not strictly singular.
(b) There exists t ∈ T such that πt : Y → Zt is not strictly singular.
(c) For every r > 0, there exists a normalized sequence (yn)n in Y and

a diagonally block sequence (wn)n such that
∑
n∈N ‖yn −wn‖ < r.

Proof. — Assume that neither (a) nor (b) hold. Then for every n ∈
N, there exists a subspace Y ′ of Y such that the map j{1,...,n} : Y ′ →∑n
i=1⊕Xn is also strictly singular. The same also holds for the projections

π{t1,...,tm}. Hence for every ε > 0 and every (t,m) ∈ T × N there exists
a subspace Y ′ of Y such that

∥∥j{1,...,n}|Y ′∥∥ < ε and
∥∥π{t1,...,tm}|Y ′∥∥ < ε.

Using this and a standard sliding hump argument, we can verify that the
third alternative is satisfied. �

Propositions 7.25 and 7.26 yield the next result.

Corollary 7.27. — The following are satisfied.
(a) For every t ∈ T the space Zt is HI.
(b) For each diagonally block sequence (yn)n the space Y = < (yn)n >

is HI.
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(c) If Y is a subspace of XG such that jn : Y → Xn and πt : Y → Zt
are strictly singular for (t, k) ∈ T × N, then Y is HI.

Proof. — Parts (a) and (b) are direct consequences of Proposition 7.25.
To see (c), let Y be a subspace of XG such that jn : Y → Xn and πt :
Y → Zt are strictly singular for every (t, k) ∈ T × N. Let Y1 and Y2 be
subspaces of Y and ε > 0. By Proposition 7.26, there exist normalized
block sequences (y1

n)n, (y2
n)n and a diagonally block sequence (wn)n such

that the following are satisfied.
(1) For every n ∈ N, y1

n ∈ Y1 and y2
n ∈ Y2.

(2)
∑
n∈N ‖w2n−1 − y1

n‖ < ε and
∑
n∈N ‖w2n − y2

n‖ < ε.
The spaceW = < (wn)n > is HI by part (b). As ε can be chosen arbitrarily
small, this shows that d(SY1 , SY2) = 0. As Y1 and Y2 are arbitrary subspaces
of Y we get that Y is HI. �

Proposition 7.28. — We have that X∗G = <
⋃
n∈NX

∗
n >

‖·‖
.

Proof. — Assume not. Then there exist x∗∗ ∈ X∗∗G and x∗ ∈ BX∗
G

such
that ‖x∗∗‖ = 1, x∗∗(x∗) > 1/2 and

⋃
nX

∗
n ⊆ kerx∗∗. Choose a net (xi)i∈I

in BXG with xi
w∗→ x∗∗. Clearly we may assume that

(7.3) x∗(xi) >
1
2 for every i ∈ I.

Observe that j{1,...,n}(xi)
w→ 0. Hence applying Mazur’s Theorem and a

sliding hump argument, we may select two sequences (yn)n and (zn)n such
that the following are satisfied.

(i) For every n ∈ N, yn ∈ conv{xi : i ∈ I}.
(ii) (zn)n is a j-block sequence.
(iii)

∑
n ‖yn − zn‖ <

1
8 .

Notice that for every n1 < n2 < ... < nk we have

(7.4)
∥∥∥zn1 + zn2 + ...+ znk

k

∥∥∥ > 1
4 .

Indeed, by (i) and (7.3) above we have that x∗(yn) > 1/2 for every n ∈ N.
Hence by (iii) we get that x∗(zn) > 1/4 for every n ∈ N, which clearly
implies (7.4). Hence we may select a j-block sequence (wk)k with wk =
1
k

∑
n∈Fk zk where F1 < F2 < ... < Fk < ... and each Fk is a finite inter-

val of N. As the sequence (wk)k is a j-block sequence of 4 − `1
k averages,

Lemma 7.15 yields that for every l ∈ N there exists k1 < k2 < ... < kn2l

with

(7.5)
∥∥∥ 1
n2l

n2l∑
i=1

wki

∥∥∥ 6 12
m2l

.
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Let vl = 1
n2l

∑n2l
i=1 wki . Then vl is a convex combination of zk’s. Let v′l be

the corresponding convex combination of yn’s. Then by (i) and (7.3) we
have ‖v′l‖ > 1/2. By (iii), we get that ‖vl − v′l‖ < 1/8. On the other hand,
as ml → ∞ as l → ∞, by (7.5) we see that ‖vl‖ → 0 and this leads to a
contradiction. The proof is completed. �

Definition 7.29. — The HI interpolation space X is the (closed) sub-
space of XG which contains all elements of XG of the form (x, x, ...).

Remark 7.30. — This definition is an adaptation of the corresponding
definition in [4], which in turn follows the scheme of the classical Davis-
Fiegel-Johnson-Pelczynski interpolation method [10].

Proposition 7.31. — For every t ∈ T we set ēt = (et, et, ...) ∈ X. Then
(ēt)t becomes a bi-monotone Schauder basis of X.

Proof. — First we notice that for every n ∈ N we have that ‖atet‖n 6 1
2n ,

for all t ∈ T Hence ēt ∈ X for every t ∈ T . Now let x̄ = (x, x, ...) ∈ X with
x =

∑
t btet. We consider the projection πt : X → Zt. We shall show that

πt(x̄) = btēt. Indeed observe that {et,k : k ∈ N} is a Schauder basis for
Zt (not normalized) and e∗t,k

(
πt(x̄)

)
= e∗t,k(x̄) = bt for every k ∈ N. Hence

πt(x̄) =
∑
k∈N btet,k = btēt. This easily yields that for every finite interval

I of T we have πI
(
X
)

=< {ēt : t ∈ I} > and so πI(x̄) =
∑
t∈I btēt.

The above argument and the fact that ‖πI‖ = 1 yield that (ēt)t is a
bi-monotone Schauder basis for the space Y = < (ē)t >. It remains to
show that Y coincides with X. Indeed, let (In)n be the intervals of N such
that In = g−1({1, ...n}) where g is defined after Remark 5.4. Let also
x̄ = (x, x, ...) with x =

∑
t btet. We claim that the partial sums

∑
t∈In btēt

weakly converge to x̄, which immediately implies the desired result. First
we observe that

∑
t∈In btēt = πIn(x̄) and so

∥∥∑
t∈In btēt

∥∥ 6 ‖x̄‖. Further-
more, for every x∗ ∈

⋃
n∈NBXn we have that x∗

(∑
t∈In btēt

)
→ x∗(x̄).

Proposition 7.28 yields that <
⋃
n∈NBX∗n > is norm dense in X∗G and this

proves the claim and the entire proof is completed. �

Notation 7.32. — In the sequel we shall denote by JXT : X → XT the
1-1, bounded linear map defined by JXT (x̄) = x, where x̄ = (x, x, ...).

Proposition 7.33. — Let X be the HI interpolation space. Then the
following hold:

(a) If Y is a closed subspace of X such that JXT : Y → XT is strictly
singular, then Y is a HI space.

(b) If Y,Z are closed subspaces of X such that JXT |Y and JXT |Z are
strictly singular, then d(SY , SZ) = 0.
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Proof. — (a) We observe, following the notation of the previous section,
that for every t ∈ T the map πt : X→ Zt has dimension 1,since as shown in
the proof of Proposition 7.31 πt

(
X
)

=< ēt > and so πt is strictly singular.
Notice also that for every x̄ ∈ X and every n ∈ N we have that jn(x̄) =
JXT (x̄). As every Xn is isomorphic to XT , we get that jn|Y is also strictly
singular. Corollary 7.27(c) yields the result.
(b) We notice that, as in part (a), for every t ∈ T the maps πt|Y and

πt|Z are strictly singular. Moreover, by our assumptions, for every n ∈ N
the maps jn|Y and jn|Z are also strictly singular. Let ε > 0 arbitrary.
Arguing as in Corollary 7.27(c) we are able to construct two normalized
sequences (yn)n and (zn)n and a diagonally block sequence (wn)n such that
the following are satisfied.

(i) For every n ∈ N, yn ∈ Y and zn ∈ Z.
(ii)

∑
n ‖w2n−1 − yn‖ < ε and

∑
n ‖w2n − zn‖ < ε.

The space W = < (wn)n > is HI by Corollary 7.27(c). Hence, if we set
W1 = < (w2n−1)n > and W2 = < (w2n)n > we see that d(SW1 , SW2) =
0. As ε can be chosen arbitrarily small, by (ii) above, we conclude that
d(SY , SZ) = 0, as desired. �

Proposition 7.34. — The space X is reflexive.

Proof. — We recall the following well-known facts. First if T : X → Y

is a Tauberian operator, then W ⊆ X is relatively weakly compact if and
only if T (W ) is (see [19]). Moreover, by a classical result of A. Grothendieck
[14], we have that a set K ⊆ X is relatively weakly compact if for every
ε > 0 there exists a weakly compact set Kε ⊆ X such that K ⊆ Kε+ εBX .
As we have assumed the set W is weakly compact in XT . It is easy to see
that W almost absorbs JXT (BX), i.e., for every ε > 0 there exists λ > 0
such that JXT (BX) ⊆ λW + εBXT . Hence, by Grothendieck’s criterion,
JXT (BX) is a relatively weakly compact subset of XT . It is a well known
fact that JXT is a Tauberian operator (c.f [4]). Hence BX is also a relatively
weakly compact subset of X and the proof is completed. �

The last step in this section is to prove that if W is a thin subset of XT

then the space X is HI. Let us recall the notion of thin operators.

Definition 7.35. — Let X,Y be Banach spaces and T : X → Y be
a bounded linear operator. T is called a thin operator if T (BX) is a thin
subset of Y .

Remark 7.36. — It can be readily seen that if T is a thin operator, then
it is also strictly singular.(cf. [4]).
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Proposition 7.33 immediately yields that if W is a thin subset of XT

then the space X is HI. Combining this with Propositions 7.34, 7.31 and
Remark 7.6 we obtain the proof of Theorem 7.1 stated in the beginning of
this section.

8. The final results

Theorem 8.1. — Every separable reflexive Banach space X is a quo-
tient of a reflexive HI Banach space X(X) with a bimonotone Schauder
basis.

Proof. — Let X be a separable reflexive Banach space. By Zippin’s The-
orem (Theorem 6.1) we obtain that X∗ can be isomorphically embedded
into a reflexive Banach space with a bimonotone Schauder basis (xn)n. We
denote this space ZX . Starting now with Z∗X , which also has a bimonotone
Schauder basis, we pass to the space X0. The map Φ defined in Defini-
tion 3.7 yields that Φ(K) is 1

8 -dense in the ball of Z∗X . By passing to the
space X1 we have by Remark 5.2 that J1(K̃) = K and thus the operator
Φ1 = Φ◦J1 maps K̃ onto a 1

8 -dense set in the ball of Z∗X . We construct the
space Xξ starting with X1 and K̃. By Theorem 4.1 the identity operator
Iξ : Xξ 7→ X1 is continuous and maps K̃ onto itself. Finally, the natural
injection (denoted as JXT in the general case) Jξ : X→ Xξ preserves K̃ as
does J1. Thus, by taking the composition Q = Φ1 ◦ I ◦ Jξ we can see that
it is an onto map from X to Z∗X . Thus Z∗X is a quotient of X. As the set
Wξ is thin in Xξ (by Theorem 4.1) Theorem 7.1 yields that X is the desired
reflexive HI space for Z∗X . As X∗ is isomorphically embedded in ZX we
have that X is a quotient of Z∗X and consequently of X and this completes
the proof. �

Applying a standard duality argument we obtain the following cofinal
property of Indecomposable reflexive Banach spaces within the class of
separable reflexive Banach spaces.

Theorem 8.2. — Every separable reflexive Banach space can be em-
bedded into an Indecomposable reflexive Banach space with a Schauder
basis.
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