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PERTURBATIONS OF THE METRIC IN
SEIBERG-WITTEN EQUATIONS

by Luca SCALA

Abstract. — Let M a compact connected oriented 4-manifold. We study the
space Ξ of Spinc-structures of fixed fundamental class, as an infinite dimensional
principal bundle on the manifold of riemannian metrics on M . In order to study
perturbations of the metric in Seiberg-Witten equations, we study the transver-
sality of universal equations, parametrized with all Spinc-structures Ξ. We prove
that, on a complex Kähler surface, for an hermitian metric h sufficiently close to
the original Kähler metric, the moduli space of Seiberg-Witten monopoles relative
to the metric h is smooth of the expected dimension.
Résumé. — Soit M une variété riemannienne compacte connexe orientée de di-

mension 4. On étudie l’espace Ξ des structures Spinc de classe fondamentale fixée,
comme fibré principal de dimension infinie sur la variété des métriques rieman-
niennes de M . Afin d’étudier les perturbations de la métrique dans les équations
de Seiberg-Witten, on étudie la transversalité des équations universelles, paramé-
trées par l’espace Ξ de toutes les structures Spinc. On montre que, sur une surface
de Kähler, pour une métrique hermitienne h suffisamment proche à la métrique de
Kähler de départ, l’espace de modules de monopôles de Seiberg-Witten relatif à la
métrique h est lisse de la dimension attendue.

1. Introduction

Let (M, g) a compact connected oriented riemannian 4-manifold. Chosen
on (M, g) a Spinc-structure ξ of spinor bundle W = W+ ⊕W− and of de-
terminant line bundle L ' detW±, consider the Seiberg-Witten equations:

Dξ
Aψ = 0(SWξa)

ρξ(F+
A ) = [ψ∗ ⊗ ψ]0,(SWξb)

Keywords: Seiberg-Witten theory, perturbations of the metric, Kähler surfaces,
transversality.
Math. classification: 57R57, 58G03, 58D27, 14J80.
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in the unknowns (A,ψ) ∈ AU(1)(L)× Γ(W+), where AU(1)(L) denotes the
affine space of U(1)-connections on L. The aim of this article is the study of
the behaviour of Seiberg-Witten equations (see [21], [17], [18], [14]) under
perturbations of the metric g.
In Donaldson’s theory of SU(2)-istantons, deeply related to Seiberg-

Witten theory, the behaviour of ASD equations F+
A = 0 when changing the

metric is well understood, and metric perturbations are the main tool to
obtain transversality results: the celebrated Freed-Uhlenbeck theorem ([4],
[7]) states that, for a generic metric, the functional defining ASD equations
is transversal to the zero section at irreducible connections: consequently,
for a generic metric, the moduli space of irreducible istantons is smooth of
the expected dimension.
On the other hand, an analogue result in Seiberg-Witten theory is un-

known; more generally, no much is known on the dependence on the metric
of Seiberg-Witten equations, one of the reasons being probably the fact
that the transversality for equations (SWξ) on an irreducible monopole
can be very easily obtained by perturbing the second equation adding
a generic selfdual imaginary 2-form η. The dependence of the metric in
Seiberg-Witten equations has been studied by Maier in [13], but always
for a generic connection A and no transversality issue is addressed. The
problem of transversality with perturbation just of the metric appears in
the work of Eichhorn and Friedrich (see [5], reported also in [8] and cited in
[1] and more recently in [16]): the authors claim to give a positive answer,
but their proof is not correct: we will discuss the reason in remark 5.12.
The purpose of this article is to establish an analogue of Freed-Uhlenbeck
theorem in Seiberg-Witten theory, giving a correct proof of the fact that,
for generic metric, the Seiberg-Witten functional is transversal to the zero
section and hence that the moduli space is smooth of the expected dimen-
sion (at least on irreducible monopoles). We succeed in proving this for
Kähler surfaces; in all generality our aim is not completely achieved, but
reduced to the vanishing of solutions of a specific system of PDEs.
In order to write Seiberg-Witten equations on the oriented riemann-

ian 4-manifold (M, g), we have to fix a Spinc-structure, that is, an equi-
variant lifting ξ : QSpinc(4) - PSO(g) of the SO(4)-principal bundle of
equioriented orthonormal frames for the metric g to a Spinc(4)-principal
bundle QSpinc(4). Since the Spinc-structure is a metric concept, that is, it
actually determines the metric, when changing the metric on M we are
forced to change Spinc-structure; however, for different metrics the SO(4)-
bundles of equioriented orthonormal frames are isomorphic and can be
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PERTURBATIONS OF THE METRIC IN SEIBERG-WITTEN EQUATIONS 1261

lifted to the same principal bundle QSpinc(4) (of course by means of dif-
ferent morphisms ξ): consequently, we can fix the bundle QSpinc(4) once
for all. Therefore it turns out that the right setting to study perturbations
of the metric in Seiberg-Witten equations is considering universal equa-
tions, parametrized by all Spinc-structures Ξ of fundamental class c and
Spinc-bundle QSpinc(4); we will then characterize only in a second step the
variations of Spinc-structures coming from a variation just of the metric.
The space Ξ can be given the structure of a (trivial infinite dimensional)
principal bundle over the space of riemannian metrics Met(M), of struc-
tural group Aut(QSpinc(4)×Spinc(4) SO(4)); on the principal bundle Ξ there
can now be defined a natural connection, the horizontal distribution being
characterized by consisting precisely of variations of Spinc-structures com-
ing from variations just of the metric. The connection thus defined turns
out to have nontrivial curvature: it is therefore impossible to find (even lo-
cally) a parallel section Met(M) - Ξ, by means of which parametrizing
correctly Seiberg-Witten equations with just the metric. This is however
not a difficult issue, since the universal Seiberg-Witten moduli space M
admits a Aut(QSpinc(4))-equivariant fibration M - Ξ over the space
of Spinc-structures Ξ; hence the transversality of equations (SWξ) at the
point ξ does not depend on the Spinc-structure ξ, but only of the met-
ric gξ compatible with ξ: consequently the problem of transversality of
Seiberg-Witten equations for generic metrics is equivalent to the problem
of transversality of these equations for generic Spinc-structures.

This formalism (appeared first in [15]) allows us to reduce the problem
— after completing Fréchet spaces to Sobolev ones in a standard way —
to the proof of the surjectivity of the differential D(A,ψ,ξ)FMet(M) of the
functional

FMet(M)(A,ψ, ξ) = (Dξ
Aψ , ρξ(F

+,gξ
A )− [ψ∗ ⊗ ψ]0),

defining universal Seiberg-Witten equations, at the solution (A,ψ, ξ) ∈
AU(1)(L)× Γ(W+)× Ξ. To compute this operator, we need to compute the
variation of the Dirac operator, performed first by Bourguignon and Gaudu-
chon [3]. We present here a simple alternative proof: our approach has the
advantage of fixing once for all the bundle QSpinc(4) and consequently the
bundle of spinorsW , and is particularly adapted to the transversality prob-
lem: indeed in this way all Dirac operators act on the same space of global
sections, without any need of delicate identifications or transmutations op-
erators.
The surjectivity of the differential D(A,ψ,ξ)FMet(M) is equivalent to the

injectivity of the formal adjoint (D(A,ψ,ξ)FMet(M))∗: consequently nontrivial
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solutions of the kernel equations (D(A,ψ,ξ)FMet(M))∗u = 0 represent the
obstruction to the transversality of the functional FMet(M). In the general
case the equations are intricate and we still do not have the answer.
When (M, g, J) is a complex Kähler surface with complex structure J

and with canonical line bundleKM , the Seiberg-Witten equations admit an
interpretation in terms of holomorphic couples (∂̄A, α), where ∂̄A is a holo-
morphic (0, 1)-semiconnection on a line bundleN such thatK∗M⊗N⊗2 ' L,
and α is a holomorphic section of (N, ∂̄A). This facts allow a drastic simpli-
fication of the Seiberg-Witten equations and consequently of the problem
of transversality for generic metrics. After interpreting all the preceding ob-
jects in the context of complex geometry, and thanks to the splitting of the
symmetric endomorphisms with respect to the metric into hermitian and
anti-hermitian ones, the kernel equations (D(A,ψ,ξ)FMet(M))∗u = 0 become
much simpler. Indicating withMHJ (M) (withMKJ (M)) the moduli space
of hermitian (kählerian) monopoles — that is, monopoles [A,ψ, ξ] such that
gξ is an hermitian (kählerian) metric on M — we proved that the mod-
uli spaceMHJ (M) is smooth at irreducible kählerian monopolesM∗KJ (M).
In other words, we get that Seiberg-Witten equations are transversal for
a generic hermitian metric sufficiently close to the Kähler metric g. We
precisely proved:

Theorem. — Let (M, g, J) a Kähler surface. Let N a hermitian line
bundle on M such that 2 deg(N) − deg(KM ) 6= 0. Consider the Spinc-
structure ξ given by the canonical Spinc-structure on M twisted by the
hermitian line bundle N . For a generic metric h in a small open neigh-
bourhood of g ∈ Met(M) and for all Spinc-structure ξ′, compatible with h,
the Seiberg-Witten moduli spaceMSW

ξ′ is smooth. Actually, the statement
holds for a generic hermitian metric h in a small open neighbourhood of g.

2. Spinc-structures and metrics

The aim of this section is to recall the basics on Spinc-structures from a
point of view adapted to the study of metric perturbations, and to describe
the set of all Spinc-structures of fixed type and fundamental class as a
principal fibration over the space of metrics on the manifold. See also [15,
section 2].

ANNALES DE L’INSTITUT FOURIER
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2.1. Spinc-structures

Let n ∈ N, n > 1. Recall the fundamental central extensions of groups:

0 - Z2 - Spinc(n) ν:=(µ,λ)−−−−−→ SO(n)× S1 - 1.(2.1a)

1 - S1 - Spinc(n) µ- SO(n) - 1(2.1b)

Let now M be a compact connected oriented manifold of dimension n and
let PGL+(n) the principal GL+(n)-bundle of oriented frames of the tangent
bundle TM .

Definition 2.1. — A Spinc-structure on M (of type QSpinc(n)) is the
data of a Spinc(n)-principal bundle QSpinc(n) overM and of a µ-equivariant
morphism ξ : QSpinc(n) - PGL+(n). The line bundle L := QSpinc(n)×λC
is called the determinant line bundle and its first Chern class c := c1(L) is
called the fundamental class of the Spinc-structure ξ. Two Spinc-structures
ξ : QSpinc(n) - PGL+(n) and ξ′ : Q′Spinc(n)

- PGL+(n) are isomorphic
if there exist a Spinc(n)-equivariant morphism f : QSpinc(n) - Q′Spinc(n)
such that ξ′ ◦ f = ξ.

It is well known that a Spinc-structure of fundamental class c exists if
and only if c ≡ w2(M) mod 2.

Remark 2.2. — Given a Spinc(n)-principal bundle QSpinc(n), we can
form the SO(n)-principal bundle QSO(n) := QSpinc(n) ×µ SO(n) and the
U(1)-principal bundleQU(1) := QSpinc(n)×λU(1). Every µ-equivariant mor-
phism ξ : QSpinc(n) - PGL+(n) factors through the composition of the
S1-fibration η : QSpinc(n) - QSO(n), followed by the SO(n)-equivariant
embedding γξ : QSO(n) ⊂ - PGL+(n). It is thus clear that, once fixed a
Spinc(n)-bundle QSpinc(n), the data of a Spinc-structure of principal bun-
dle QSpinc(n) is equivalent to the data of a SO(n)-equivariant embedding
QSO(n) ⊂ - PGL+(n).

Remark 2.3. — It is a fundamental fact that a Spinc-structure ξ is a
metric concept. Indeed the embedding γξ, induced by a Spinc-structure ξ,
provides a SO(n)-reduction of the principal bundle PGL+(n), correspond-
ing to the choice of a riemannian metric gξ on TM . We will denote with
PSO(gξ) the image of γξ, that is, the principal SO(n)-subbundle of PGL+(n)
consisting of gξ-orthonormal oriented frames and with αξ the lifting αξ :
QSpinc(n) - PSO(gξ). We will say that the metric gξ is compatible with
the Spinc-structure ξ.

TOME 61 (2011), FASCICULE 3
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2.2. Spinc-structures of fixed type and fundamental class

Let now c ∈ H2(M,Z) such that c ≡ w2(M) mod 2. The long non-
abelian cohomology sequences associated to the central extensions (2.1)
read, for the H1-level, identifying H1(M,S1) with H2(M,Z):

H0(M,SO(n))×H0(M,S1) - H1(M,Z2)
b- H1(M,Spinc(n)) - H1(M,SO(n))×H2(M,Z) - H2(M,Z2)

H0(M,SO(n))
?

- H2(M,Z)

e
?

a- H1(M,Spinc(n))

=
?

- H1(M,SO(n))
?

- H2(M,S1)
?

(2.2)

Setting t := Tors2H
2(M,Z) = Im e and c := ker a, we have immediately

that c ⊆ t and hence the exact sequence:
0 - c - t a- H1(M,Spinc(n)) - H1(M,SO(n))×H2(M,Z) - H2(M,Z2).

Remark 2.4. — Since SO(n) is a maximal compact subgroup ofGL+(n),
H1(M,SO(n)) ' H1(M,GL+(n)) [12, appendix B]; hence we can replace
part of the first long exact sequence in (2.2) with
H1(M,Z2) - H1(M,Spinc(n)) - H1(M,GL+(n))×H2(M,Z) - H2(M,Z2).

Fix now a Spinc(n)-bundle QSpinc(n) such that its isomorphism class
[QSpinc(n)] ∈ H1(M,Spinc(n)) lifts the couple ([PGL+(n)], c) ∈ H1(M,

GL+(n))×H2(M,Z). For any metric g on M the element [QSpinc(n)] lifts
the couple ([PSO(g)], c) ∈ H1(M,SO(n))×H2(M,Z), where PSO(g) is the
principal bundle of oriented frames in TM , orthonormal for the metric g.

We denote with Ξ the space of all µ-equivariant morphisms: ξ : QSpinc(n)
- PGL+(n) or, equivalently, by remark 2.2, all SO(n)-equivariant maps:

γ : QSO(n) ⊂ - PGL+(n):

Ξ := Morµ(QSpinc(n), PGL+(n)) ' MorSO(n)(QSO(n), PGL+(n)).

The space Ξ parametrizes all the Spinc structures on M of fixed type
QSpinc(n) and fundamental class c. Since every Spinc-structure determines
a metric, the space Ξ is fibered over the space of riemannian metrics:

(2.3) Ξ - Met(M).

Two Spinc-structures compatible with the same metric differ by the action
of Aut(QSO(n)), hence Ξ has the structure of Aut(QSO(n))-principal bundle;
however, two Spinc-structures compatible with the same metric need not
to be isomorphic: indeed, they are isomorphic if and only if they differ by
the action of Aut(QSpinc(n)). The long exact sequence:

1 - C∞(M,S1) - Aut(QSpinc(n)) η̂-Aut(QSO(n)) - H1(M,S1)

ANNALES DE L’INSTITUT FOURIER
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induced by the central extension (2.1b), implies that the group Γ := Im η̂

acts in a free and transitive way on each isomorphism class of Spinc-
structures inside the fibers of (2.3); moreover, the group coker η̂ ' c para-
metrizes the set of isomorphism classes of Spinc-structures of fixed type
QSpinc(n) and fundamental class c over a fixed metric. The quotient Ξ/Γ is
isomorphic to:

Ξ/Γ ' Ξ/Aut(QSpinc(n)) ' Met(M)×π0(Ξ/Aut(QSpinc(n)) ' Met(M)×c,

because Met(M) is contractible. If M is simply connected, all Spinc-struc-
tures compatible with the same metric are isomorphic.

Remark 2.5. — If n = dimM = 4, the map b : H1(M,Z2) - H1(M,

Spinc(4)) is trivial; consequently c ' t = Tors2H
2(M,Z). This fact can be

seen via the equivalence between Spinc-structures on an oriented euclidian
vector bundle (E, g) of rank 4 on the 4-manifold M (that is, the data of a
Spinc(4)-principal bundle QSpinc(4) on M together with a µ-equivariant
map QSpinc(4) - PGL+(4)(E) from QSpinc(4) to the principal bundle
PGL+(4)(E) of oriented linear frames on E) and quadruples (W+,W−, i, ρ),
where W± are rank 2 hermitian vector bundles on M , i is a prescribed
unitary isomorphism i : detW+ ' detW− and ρ : E - Hom(W+,W−)
is a morphism such that ρ(x)∗ρ(x) = −g(x, x) idW+ (see [20]). Given such a
quadruple, the principal bundle QSpinc(4) is built as the bundle of quadru-
ples (σ+

1 , σ
+
2 , σ

−
1 , σ

−
2 ), where σ±1 , σ

±
2 is a unitary frame ofW±, respectively,

such that i(σ+
1 ∧ σ

+
2 ) = σ−1 ∧ σ

−
2 . Hence the principal bundle QSpinc(4) just

depends on (W+,W−, i) (but not on ρ). The fact that the morphism b is
zero follows from the following facts.

(1) The Spinc-structures on the oriented euclidian bundle E on the
manifold M form a H2(M,Z)-torsor; an element N in the topo-
logical Picard group Pictop(M) ' H2(M,Z) acts on the quadru-
ple (W+,W−, i, ρ) by tensorising W± with N ; hence det(W± ⊗
N) ' detW± ⊗ N2; moreover i and ρ are changed into i ⊗ idN2 ,
ρ⊗ idN , respectively. Consequently the Spinc-structures on E hav-
ing fundamental class c = c1(detW+) are parametrized by t =
Tors2H

2(M,Z).
(2) Given a quadruple (W+,W−, i, ρ), the associated principal Spinc(4)

bundle QSpinc(4) does not depend on i, but just onW+,W−. Indeed
the map det : Aut(W+) - C∞(M,S1) is always surjective if
n = 4, by obstruction theory.

(3) If N ∈ Tors2H
2(M,Z), the Chern classes of W±⊗N equal those of

W±, respectively. Since in dimension 4 an hermitian vector bundle

TOME 61 (2011), FASCICULE 3
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is classified topologically by its rank and its Chern classes, we can
conclude.

Remark 2.6. — As a consequence of the previous remark, for any fixed
fundamental class c ∈ H2(M,Z), there is a unique isomorphism class
[QSpinc(4)] lifting the couple ([PGL+(4)], c) ∈ H1(M,GL+(4)) × H2(M,Z)
in remark 2.4. In this case the space Ξ parametrizes all the Spinc struc-
tures on M of fixed fundamental class c. The connected components of the
quotient Ξ/Γ are parametrized by t.

Remark 2.7. — The spaces Met(M) and Ξ can be viewed as spaces
of global (smooth) sections of fiber bundles. Indeed, considered the fiber
bundles over M :

Met(M) :=
∐
x∈M

Met(TxM)(2.4)

Morµ(QSpinc(n), PGL+(n)) :=
∐
x∈M

Morµ(QSpinc(n),x, PGL+(n),x)(2.5)

then Met(M) = Γ(M,Met(M)) and Ξ = Γ(M,Morµ(QSpinc(n), PGL+(n))).
Moreover, for each x ∈M , the projection

(2.6) Morµ(QSpinc(n),x, PGL+(n),x) - Met(TxM)

is a trivial finite dimensional principal bundle of structural group SO(n),
noncanonically isomorphic to the SO(n)-principal bundle PGL+(n),x -

Met(TxM). The fiberwise projection (2.6) induces the global projection
of fiber bundles Morµ(QSpinc(n), PGL+(n)) - Met(M) and the infinite
dimensional principal bundle Ξ - Met(M).

Remark 2.8. — The spaces Met(M), of riemannian metrics over M ,
and Ξ, of Spinc-structures on M of type QSpinc(n), are infinite dimen-
sional Fréchet manifolds, because spaces of global sections of fiber bun-
dles over M , as explained in [6] and, more recently, in [11]. The projection
Ξ - Met(M) gives Ξ the structure of an infinite dimensional Fréchet
principal bundle with regular Fréchet-Lie group Aut(QSO(n)) as structure
group (see [11], Chapter VIII, § 38-39).

Remark 2.9. — The manifold Met(M) of riemannian metrics onM , can
be equipped with a natural riemannian metric making it a ∞-dimensional
Fréchet riemannian manifold (see [7], [9]).

ANNALES DE L’INSTITUT FOURIER



PERTURBATIONS OF THE METRIC IN SEIBERG-WITTEN EQUATIONS 1267

2.3. Changes of metric: the natural connection on Ξ

The group Aut(PGL+(n)) acts freely and transitively (on the right) on
the space Ξ, hence the choice of an element ξ ∈ Ξ defines an isomorphism:
Aut(PGL+(n)) ' Ξ, defined by ϕ 7→ ϕ−1 ◦ ξ and such that gϕ−1◦ξ = ϕ∗gξ.
The choice of ξ ∈ Ξ determines the polar decomposition:

Aut(PGL+(n)) ' Aut(PSO(gξ))× Sym+(PSO(gξ)),

where we denoted with Sym+(PSO(gξ)) the space of functions f : PSO(gξ)
- Sym+(n) such that f(pg) = g−1f(p)g = tgf(p)g for all g ∈ SO(n)

and where Sym+(n) is the space of positive symmetric automorphisms of Rn
with respect to the standard scalar product. It is clear that Sym+(PSO(gξ))
∼= Sym+(TM, gξ), the space of symmetric automorphisms of TM with re-
spect to the metric gξ.
Consider the section

Met(M) ' Sym+(PSO(gξ))
σξ - Ξ

ϕ∗gξ � ϕ - ϕ−1 ◦ ξ
(2.7)

Taking the tangent space of the image of this section in ξ, Hξ := Tξ(im σξ),
defines in a natural way a Aut(QSO(n))-equivariant horizontal distribution
in TΞ and hence a connection on Ξ, which we will call the natural connec-
tion on Ξ. It is then natural, when changing the metric g ∈ Met(M) along
a path gt, to change the Spinc-structure lifting the path to Ξ in a parallel
way for the natural connection on Ξ just defined.

Remark 2.10. — Since Ξ - Met(M) is an infinite dimensional prin-
cipal bundle with regular Lie group as structural group, the parallel trans-
port exists and it is unique for any connection on Ξ. Moreover the curvature
of a connection can be interpreted, as usual, as the obstruction of the in-
tegrability of the horizontal distribution. See [11, Chapter VIII, §39], for
details.

Parallel transport on Ξ for the natural connection. Let ξ0 a given
Spinc-structure in Ξ and gt = ϕ∗t gξ0 a path of metrics in Met(M), such
that ϕt ∈ Sym+(TM, gξ0) and ϕ0 = id. To determine the equation of
the parallel transport of ξ0 along the path gt for the natural connection,
consider a path of Spinc-structures ξt in Ξ starting from ξ0, and subject to
the condition gξt = gt. Writing that the path ξt is parallel means that ξ̇t =
d/dλ|λ=t (θ−1

λ ◦ ξt), θλ ∈ Sym+(TM, gt), θ∗λgt = gλ; indicating with θ̇(t) =
dθλ/dλ

∣∣
λ=t, we have ξ̇t = −θ̇(t) ◦ ξt. Since 2gtθ̇(t) = ġt and consequently

TOME 61 (2011), FASCICULE 3



1268 Luca SCALA

θ̇(t) = 1/2 g−1
t ġt, the parallel transport equation reads:

ξ̇t = −1
2
(
g−1
t ġt

)
◦ ξt.

Curvature. The following proposition gives the curvature of the natural
connection on the principal bundle Ξ - M . Similar computations have
been made pointwise by Bourguignon and Gauduchon [3] to compute the
curvature of the O(n)-principal bundle L(V ) - Met(V ) of linear frames
of a real n-dimensional vector space V over its cone of metrics Met(V ).
The natural connection on Ξ induces pointwise connections on the SO(n)-
principal bundles Morµ(QSpinc(n),x, PGL+(n),x)'PGL+(n),x -Met(TxM).
With exactly the same proof as in [3, Lemma 3], we find that the curvature
of this connection is given by: Ωgx(hx, kx) = −1/4 [g−1

x hx, g
−1
x kx] for gx ∈

Met(TxM), hx, kx ∈ S2T ∗xM . General facts on vector fields of spaces of
sections of fiber bundles (see [6, Appendix]) imply that the curvature Ω
of the bundle Ξ - Met(M) is pointwise the curvature of the bundle
PGL+(n),x - Met(TxM): (Ωg(h, k))x = Ωgx(hx, kx). Therefore we get:

Proposition 2.11. — The curvature of the natural connection of the
principal bundle Ξ - Met(M) is given by:

Ωgξ(h, k) = −1
4 [g−1

ξ h, g−1
ξ k],

in ad(Ξ)gξ ' so(TM, gξ), for h, k ∈ S2T ∗M ' Tgξ Met(M).

Remark 2.12. — Proposition 2.11 implies that the horizontal distribu-
tion Hξ on TξΞ is never integrable. Consequently there are no parallel
(smooth) sections σ : Met(M) - Ξ (even locally).

2.4. Parametrized Dirac operators

Letm = [n/2]. Consider an irreducible Cl(Rn) representation ρ0 : Cl(Rn)
- End(W0) whereW0 is an hermitian vector space of complex dimension

2m. The bundle of spinors is defined by W := QSpinc(n)×ρ0 W0. The choice
of an element ξ ∈ Ξ induces a map QSpinc(n) ×µ Cl(Rn) - QSpinc(n)×ρ0

End(W0), which is, thanks to the identifications Cl(TM) ' QSpinc(n) ×µ
Cl(Rn), QSpinc(n) ×ρ0 End(W0) ' End(W ), the Clifford multiplication on
the bundle of Clifford algebras Cl(TM):

ρξ : Cl(TM) - End(W ).
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Identifying of TM and T ∗M via gξ we get as well a Clifford multiplication
on Cl(T ∗M), which we keep on denoting ρξ. We have the following diagram:

QU(1) �
β

QSpinc(n)

QSO(n)

η

?

γξ
- PSO(gξ)

⊂ -

α
ξ

-

PGL+(n)

ξ

-

Let ωgξ ∈ A1(PSO(gξ), so(n)) be the Levi-Civita connection on PSO(gξ): it
induces a SO(n)-equivariant connection form on PGL+(n) which we keep on
denoting ωgξ . Let A ∈ A1(QU(1), u(1)) a U(1)-connection form on QU(1).
The Spinc-connection ΩA,ξ on QSpinc(n) is defined as:

(2.8) ΩA,ξ := dν−1(α∗ξωgξ + β∗A)

seen in A1(QSpinc(n), spin
c(n)), where dν is the isomorphism: spinc ' so(n)

⊕ u(1). The Spinc-connection form ΩA,ξ defines a connection ∇W,ξA on the
associated vector bundle of spinors W in the following standard way. If p
is the projection p : QSpinc(n) - M , the vector bundle p∗W trivializes
as p∗W ' QSpinc(n) ×W0. The connection ∇W,ξA is then characterized by:

(2.9) p∗∇W,ξA = d+ ΩA,ξ,

where ΩA,ξ is seen inA1(QSpinc(n),End(W0)) and d is the trivial connection.
The Dirac operator Dξ

A is then the composition:

Dξ
A : Γ(W )

∇W,ξ
A−−−→ Γ(T ∗M ⊗W ) ρξ−→ Γ(W ).

Hence we have a family of first order differential operators

(2.10) D : Ξ - Diff1(W ),

given by D(ξ) = Dξ
A and parametrized by Spinc-structures ξ ∈ Ξ, all acting

on the same vector bundle of spinors W .

2.5. Parametrized Seiberg-Witten equations

Let now be n = 4. The irreducible Cl(R4)-module W0 splits as the di-
rect sum W+

0 ⊕W
−
0 of irreducible Spinc(4)-representations: consequently,

the bundle of spinors W splits as well in the direct sum of positive and
negative spinors: W = W+ ⊕ W−. The determinants of W+ and W−
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are canonically identified with the determinant line bundle L; we indi-
cate with i the identification detW+ ' detW−. The Clifford multipli-
cation ρξ induces isomorphisms Λ±T ∗M ' su(W±), denoted again by
ρξ. Let C := AU(1)(L) × Γ(W+) be the space of unparametrized config-
urations and D := Γ(W−) × isu(W+); we denote moreover with C∗ :=
AU(1)(L) × (Γ(W+) \ {0}) the irreducible configurations. In order to con-
sider general parameter spaces, let T be a Fréchet splitting(1) submani-
fold(2) of the manifold Met(M) of riemannian metrics on M . Let ΞT be
the restriction of the principal bundle Ξ to the submanifold T . The nat-
ural connection on Ξ induces a natural connection on ΞT - T . The
parametrized Seiberg-Witten equations for unknowns (A,ψ, ξ) ∈ C × ΞT
are:

Dξ
Aψ = 0(2.11a)

ρξ(F
+,gξ
A )− [ψ∗ ⊗ ψ]0 = 0(2.11b)

We denote with FT : C × ΞT - D the functional defining the equations
and with ST the space of solutions. The group Aut(QSpinc(4)) acts onW via
isometries, respecting the decomposition in positive and negative spinors
and the identification i between the determinants detW+ and detW−; if
we denote with U(W+)×0 U(W−) the bundle of groups of pairs (f+, f−) ∈
U(W+) × U(W−) with the same determinant, we have Aut(QSpinc(4)) '
C∞(M,U(W+)×0U(W−)). Consequently Aut(QSpinc(4)) acts (on the right)
on C × ΞT and D, respectively, setting;

(A,ψ, ξ) · f := (β(f)∗A, f−1ψ, f∗ξ)

(χ, η) · f := (f−1χ, f−1ηf)

where β(f) denotes the image of f by the morphism Aut(QSpinc(4)) -

Aut(QU(1)) induced by the projection β. The restriction of this action to the
group G := C∞(M,S1) ⊂ Aut(QSpinc(4)) coincides with the classical action
of the Seiberg-Witten gauge group on C. The functional FT is equivariant
for the Aut(QSpinc(4))-action:

(2.12) FT ((A,ψ, ξ) · f) = FT (A,ψ, ξ) · f.

As a consequence the group Aut(QSpinc(4)) preserves the solutions ST of the
equations (2.11). Moreover the actions of G and of Aut(QSpinc(4)) commute,

(1) in the sense of [11, Definition 27.11]
(2)We will always consider submanifolds T given by a space of C∞-sections of a fiber
subbundle of the fiber bundle Met(M) - M considered in remark 2.7.
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so that we can form a parametrized Seiberg-Witten moduli space MT :=
ST /G, fibered over ΞT :

(2.13) πT :MT
- ΞT ,

equipped with a Γ-action, making the preceding fibration equivariant. The
fiber Mξ = π−1

T (ξ) of the fibration (2.13) over ξ is exactly the standard
Seiberg-Witten moduli space for the Spinc-structure ξ ∈ ΞT .

3. Variation of the Dirac operator

This section is devoted to the computation of the variation of the Dirac
operator with respect to the metric, by means of the formalism introduced
in section 2: what we will say in this section holds for any n > 1. Given
a particular Spinc-structure ξ0 ∈ Ξ, we compute the differential Dξ0 D

∣∣
Hξ0

in the point ξ0 of the family D of differential operators (2.10) restricted to
the horizontal direction Hξ0 for the natural connection on Ξ; this amounts
to compute the differential at the identity of the family of differential op-
erators:

D ◦ σξ : Sym+(TM, gξ) - Diff1(W )
ϕ - Dϕ−1◦ξ

A

Let us compute Did(D ◦ σξ)(s) for s ∈ sym(TM, gξ) ' Tid Sym+(TM, gξ).
Consider the path in Sym+(TM, gξ) given by ϕt = id +ts for small t. Let
gt be the metric gt := ϕ∗t gξ. Let k = dgt/dt|t=0 = 2gs. Set φt = ϕ−1

t , seen
in Aut(PGL+(n)). Since by definition of the Clifford multiplication on the
cotangent bundle T ∗M , we have ρφt◦ξ = ρξ ◦ φ∗t , the searched differential
is:

Did(D ◦ σξ)(s) = d

dt

∣∣∣∣
t=0

Dφt◦ξ
A

=
(
d

dt

∣∣∣∣
t=0

ρξ ◦ φ∗t
)
◦ ∇W,ξA + ρξ ◦

d

dt

∣∣∣∣
t=0
∇W,φt◦ξA

= −ρξ ◦ s∗ ◦ ∇W,ξA + ρξ ◦ ∇̇WA (s),

where φ∗t and s∗ (the transposed of φt and s, respectively) act on the
first factor of T ∗M ⊗W . We compute now the variation of the spinorial
connection ∇̇WA (s).
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3.1. Variation of the spinorial connection

The following lemma contains the wanted result about the variation of
the spinorial connection. Let ∇gξ be the Levi-Civita connection on TM for
the metric gξ.

Lemma 3.1. — The differential of the map: Ξ - A(W ) sending ζ
to ∇W,ζA in the point ξ along the horizontal direction corresponding to the
variation of the metric gξ in the direction s ∈ sym(TM, gξ), is given by:

∇̇WA (s) = 1
2ρξ(∇̇(s)−∇gξs) ∈ A1(M, su(W ))

where ∇̇(s) denotes the variation of the Levi-Civita connection in the
point gξ along the direction s and where we see the form ∇̇(s) − ∇gξs
in A1(M, so(TM, gξ)).

Proof. — We first compute the variation of the spinorial connection form
ΩA,ξ on QSpinc(n). Let ωgt the Levi-Civita connection form on PSO(gt), seen
as a connection form in A1(PGL+(n), gl(n)). The spinorial connection form
is defined as:

ΩA,φt◦ξ = ρ0dν
−1((φt ◦ ξ)∗ωgt + β∗A).

Differentiating this relation in t = 0 we obtain:

Ω̇A,ξ = ρ0dν
−1 d

dt

∣∣∣∣
t=0

(φt ◦ ξ)∗ωgt = ρ0dν
−1ξ∗

d

dt

∣∣∣∣
t=0

(φ∗tωgt).

It is straightforward to remark that the form φ∗tωgt is defined on PSO(gξ)

and is there pseudotensorial (3) of type (ad, so(n)); hence its derivative
d(φ∗tωgt)/dt|t=0 is tensorial of type ((ad, so(n)). Consequently, if q is the
projection q : PSO(gξ)

- M , there exists a form ˙ωM ∈ A1(M, so(TM, gξ))
such that

d

dt
(φ∗tωgt)

∣∣∣∣
t=0

= q∗(ω̇M ) ∈ A1(PSO(gξ), so(n)).

Therefore:

Ω̇A,ξ = ρ0dν
−1ξ∗q∗(ω̇M ) = ρ0dν

−1p∗(ω̇M ) = 1
2p
∗(ρξ(ω̇M )).

(3) If P - M is a principal bundle over M of structural group G and ρ :
G - GL(V ) is a representation of G, then a V -valued k-form σ ∈ Ak(P, V ) is
pseudotensorial of type (ρ, V ) if, for all g ∈ G, R∗gσ = ρ(g−1)σ, where Rg is the right
translation by g on the bundle P ; the form σ is tensorial if it is pseudotensorial and
horizontal, that is, σ(t1, . . . , tk) = 0 if one of the vector fields ti ∈ TP is vertical. One
has that a V -valued k-form σ ∈ Ak(P, V ) on P is tensorial of type (ρ, V ) if and only if
σ is the pull back on P of a P ×ρ V -valued k-form on M . See [10].

ANNALES DE L’INSTITUT FOURIER



PERTURBATIONS OF THE METRIC IN SEIBERG-WITTEN EQUATIONS 1273

where we recall that p denotes the projection QSpinc(n) - M , and where
ρξ acts on ω̇M via the isomorphism so(TM, gξ) ' Cl2(T ∗M); the factor
1/2 comes from the fact that ν is a 2 : 1 covering. Differentiating the
relation (2.9) characterizing ∇W,φt◦ξA , we get p∗(∇̇WA ) = (1/2) p∗(ρξ(ω̇M )),
yielding:

∇̇WA (s) = 1
2ρξ(ω̇M ).

It remains now to determine the form ω̇M ; but this comes from the fact that
φ∗tωt is the connection form on PSO(gξ) inducing the connection φ−1

t ∇gtφt
on TM : consequently its derivative p∗(ω̇M ) induces the form ω̇M = d(φ−1

t

∇gtφt)/dt|t=0, that is the form ω̇M = ∇̇(s) − ∇gξs ∈ A1(M, so(TM, gξ)),
because the connection φ−1

t ∇gtφt is compatible with the metric gξ for all t.
�

3.2. Variation of the Levi-Civita connection

In order to explicitly compute the variation ∇̇WA (s) we only need the
computation of the variation of the Levi-Civita connection ∇̇(s) in the point
gξ along the symmetric tensor s. This is well known (see [2, Th. 1.174]):

Proposition 3.2. — The variation of the Levi-Civita connection ∇gξ
on the tangent bundle TM along the direction s ∈ sym(TM, gξ) is the form
∇̇(s) ∈ A1(M,End(TM)) given by:

(3.1) gξ(∇̇(s)XY, Z) = gξ((∇
gξ
X s)Y,Z)−gξ((∇

gξ
Z s)Y,X)+gξ((∇

gξ
Y s)Z,X).

We now express formula (3.1) in terms of a local orthonormal frame
ei ∈ TM , i = 1, . . . , n for the metric gξ. Let ei its dual frame. Let τkij and
ckij the components of the tensors ∇̇s and ∇gξs, respectively, with respect
to the frame ei:

τkij = gξ(∇̇(s)eiej , ek) ckij = gξ(∇
gξ
ei s(ej), ek).

The tensor ckij is symmetric in j,k because the Levi-Civita connection ∇gξ
preserves the bundle of symmetric endomorphisms sym(TM, gξ) for the
metric gξ. In the frame ei, formula (3.1) reads:

τkij = ckij − cikj + cijk.

The tensor τkij is symmetric in i, j. The components of the tensor ω̇M =
∇̇(s)−∇gξs are:

ω̇kij = cijk − cikj .
The tensor ω̇kij is skew-symmetric in j and k, and hence belongs to A1(M, so

(TM, gξ)), as expected.
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3.3. Variation of the Dirac operator

We can now continue the computation began in the introduction of this
section. Let us compute ρξ◦∇̇WA φ for a spinor φ ∈ Γ(W ). In the chosen local
orthonormal frame ei, we denote with Ekj the endomorphism ej⊗ek−ek⊗ej
in so(TM, gξ). We know that:

ω̇M =
∑
ijk

ω̇kije
i ⊗ ej ⊗ ek = 1

2
∑
ijk

ω̇kije
i ⊗ Ejk,

therefore:

∇̇WA φ = ρξ( ˙ωM )
2 φ = 1

4
∑
ijk

ω̇kije
i ⊗ ρξ(ejek)φ.

Consequently the term ρξ ◦ ∇̇WA φ is:

ρξ ◦ ∇̇WA φ = 1
4
∑
ijk

ω̇kijρξ(eiejek)φ.

Recalling now that ω̇kij = τkij − ckij , that τkij is symmetric in i, j and that ckij
is symmetric in j, k:

ρξ ◦ ∇̇WA φ = − 1
4
∑
ij

τ jiiρξ(e
j)φ+ 1

4
∑
ij

cijiρξ(ej)φ.

Recalling the definition of τkij and that of ckij , we have that
∑
ij τ

j
iie

j =
2 div s− d tr s and

∑
ij c

i
jie

j = d tr s. Hence we get:

ρξ ◦ ∇̇WA φ = −1
2ρξ(div s− d tr s)φ.

We proved the theorem:

Theorem 3.3. — The variation of the family D of Dirac operators:
Ξ 3 ξ - Dξ

A ∈ Diff1(W ) in the point ξ along the horizontal di-
rection corresponding to the variation of the metric gξ in the direction
s ∈ sym(TM, gξ) is the first order differential operator given by:

(3.2) d

dt
Dξt
A

∣∣∣∣
t=0

= −ρξ ◦ s∗ ◦ ∇W,ξA − 1
2ρξ(div s− d tr s).

The result agrees with the one obtained by Bourguignon and Gauduchon
(see [3, Th. 21]).
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4. Variation of the Seiberg-Witten equations

The aim of this section is to compute the full differential of the universal
Seiberg-Witten functional FMet(M) : AU(1)(L)×Γ(W+)×Ξ - Γ(W−)×
isu(W+) on a solution (A,ψ, ξ). We will denote with F1 and F2 the compo-
nents of FMet(M) with values in Γ(W−) and isu(W+), respectively. We will
use the splitting TΞ ' V ⊕H defined by the natural connection on Ξ. The
most interesting part of this computation is the one dealing with the vari-
ation of FMet(M) along the horizontal direction, that is, the perturbation
of the metric; the difficult point was the variation of the Dirac operator,
treated in the previous section.
We study here the variation of the equation (2.11b) with respect to the

metric. Since the Clifford multiplication on Λ2T ∗M transforms as ρϕ−1◦ξ =
ρξ ◦ (Λ2ϕ∗)−1, we have to differentiate the map:

F2(A,ψ, σξ(−)) : Sym+(TM, gξ) - isu(W+)
ϕ - (ρξ ◦ (Λ2ϕ∗)−1)(F+,ϕ∗gξ

A )− [ψ∗ ⊗ ψ]0

at the identity. The map ϕ is an orientation-preserving isometry between
(TM,ϕ∗gξ) and (TM, gξ), hence the Hodge star for the metric ϕ∗gξ can be
expressed as: ∗ϕ∗gξ = Λ2ϕ∗ ◦ ∗gξ ◦ (Λ2ϕ∗)−1. Consequently:

F
+,ϕ∗gξ
A =

(Λ2ϕ∗ ◦ ∗gξ ◦ (Λ2ϕ∗)−1 + 1
2

)
FA

= Λ2ϕ∗
(∗gξ + 1

2

)
(Λ2ϕ∗)−1FA.

Therefore, denoting P+,gξ the projection onto self-dual 2-forms for the
metric gξ, we get:

(ρξ ◦ (Λ2ϕ∗)−1)(F+,ϕ∗gξ
A ) = ρξ(P+,gξ ◦ (Λ2ϕ∗)−1FA).

Given a path of metrics in the direction s ∈ sym(TM, gξ), gt = ϕ∗t gξ,
ϕt = 1 + ts, and differentiating in t = 0 we get:

∂F2

∂ϕ
(A,ψ, id)(s) = −ρξ(P+,gξ i(s∗)FA),

where i(s∗) is the derivation of degree 0 on Λ∗T ∗M that coincides with
s∗ on T ∗M . In order to better understand the term P+,gξ i(s∗)FA consider
the splitting of symmetric endomorphisms:

sym(TM, gξ) ' sym0(TM, gξ)⊕ C∞(M,R) · idTM
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in traceless ones and scalar ones. It is now well known that the bundle
sym(TM, gξ) embeds in End(Λ2T ∗M) via the morphism s - i(s∗). Ac-
cording to the decomposition Λ2T ∗M ' Λ2

+T
∗M⊕Λ2

−T
∗M and indicating

with s0 the traceless part of s, we can express i(s∗) as:

i(s∗) =
(

tr s P+,gξ i(s∗0)
∣∣
Λ2
−T
∗M

P−,gξ i(s∗0)
∣∣
Λ2

+T
∗M

tr s

)
.

Hence there remain induced isomorphisms

(4.1) δ± : sym0(TM, gξ) - Hom(Λ2
±T
∗M,Λ2

∓T
∗M)

and an isomorphism between scalar endomorphisms of T ∗M and homoth-
eties of Λ2T ∗M . Therefore P+,gξ i(s∗)FA = (tr s)F+

A + δ−(s0)F−A and
∂F2

∂ϕ
(A,ψ, id)(s) = −(tr s)ρξ(F+

A )− ρξ(δ−(s0)F−A ).

The differential of the functional FMet(M) with respect to the connection
and the spinors components is well known (see [14]): we have, for variations
τ ∈ iA1(M), φ ∈ Γ(W+):

∂FMet(M)

∂(A,ψ) (A,ψ, ξ)(τ, φ) =
( 1

2ρξ(τ)ψ +Dξ
Aφ

d+τ − [φ∗ ⊗ ψ + ψ∗ ⊗ φ]0

)
.

To compute the full differential of FMet(M) it remains to compute its varia-
tion along vertical direction of Ξ, that is, along the fibers. Since the group
Aut(QSpinc(4)) acts on the configuration space C × Ξ preserving the solu-
tions and since its action on Ξ is transitive on the connected component of
the fibers, no contribution to the transversality can be obtained in this way,
because the component of the differential we get is a linear combination of
the other components.

5. The question of transversality

In this section we set up the transversality problem. Our final project
is to prove that the universal Seiberg-Witten moduli space MMet(M) is
smooth, at least at its irreducible points. This can be achieved with stan-
dard methods via the implicit function theorem applied to adequate Banach
manifolds, once we know that the defining equations of MMet(M) inside
(C × Ξ)/G are transversal at irreducible monopoles. In order to proceed in
such a way we need, as usual, to complete our till now Fréchet manifolds
to Banach ones.
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5.1. Sobolev completions

Let C2
p = Γ(W+)2

p ×AU(1)(L)2
p and D2

p−1 = isu(W+)2
p−1 × Γ(W−)2

p−1 be
the completions of C and D in Sobolev norms || ||2,p and || ||2,p−1, re-
spectively, so that they become a Hilbert affine space and a Hilbert vector
space, respectively. Consider also the Banach completions Cl and Dl of C
and D, respectively, in norm Cl, l ∈ N. The space of metrics Met(M) can
be completed to a Banach manifold considering the space of Cr-metrics
Metr(M). We suppose that the Fréchet submanifold T ⊆ Met(M) we are
considering admits a completion(4) to a Banach splitting submanifold T r
of Metr(M). Complete now Ξ with µ-equivariant morphisms of class Cr:
Ξr := Morrµ(QSpinc(4), PGL+(4)); the space Ξr becomes then a Banach prin-
cipal bundle with structural group Autr(QSO(4)) (the Cr-gauge group of
QSO(4)) over the space of Cr-metrics Metr(M); the natural connection
defined in subsection 2.3 extends to this setting. Now take ΞrT to be the
Autr(QSO(4))-Banach principal bundle on T r given by the restriction of
Ξr to T r. We will always suppose r >> p >> 0. We will complete as well
the gauge group G to G2

p+1, in Sobolev norm || ||2,p+1 in order to have a
Banach-Lie group acting continuously on C2

p andD2
p−1. Denote with C2,∗

p the
irreducible unparametrized configurations, that is, couples (A,ψ) in C2

p such
that ψ 6= 0: such couples have trivial G2

p+1-stabilizer; denote moreover with
B2
p the quotient B2

p := C2
p/G2

p+1 and with B2,∗
p := C2,∗

p /G2
p+1; the latter is a

Hilbert manifold. Let now (CT )2,r
p := C2

p×ΞrT be the space of parametrized
configurations, completed in Sobolev and Cr norm, and (C∗T )2,r

p = C2,∗
p ×ΞrT

the irreducible ones. The quotient (B∗T )2,r
p := (C∗T )2,r

p /G2
p+1 is isomorphic

to B2,∗
p × ΞrT and hence a Banach manifold. The functional FT extends to

a G2
p+1-equivariant map:

(FT )2,r
p : (CT )2,r

p
- D2

p−1.

We indicate with (MT )2,r
p := Z((FT )2,r

p )/Gp+1 the parametrized Seiberg-
Witten moduli space and with (M∗T )2,r

p = (MT )2,r
p ∩ (B∗T )2,r

p the parame-
trized moduli space of irreducible monopoles.

Remark 5.1. — Let (A,ψ, ξ) ∈ Z((FT )2,r
p ) be a solution to the parame-

trized Seiberg-Witten equations. Then (A,ψ, ξ) is G2
p+1-equivalent to a so-

lution (A′, ψ′, ξ), with (A′, ψ′) ∈ Cr−3 = AU(1)(L)r−3×Γ(W+)r−3 (of class

(4)This is always the case if T is a space of global sections of a fiber subbundle of
Met(M)
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Cr−3)(5) . Consequently, if ξ has C∞-regularity, up to the G2
p+1-action, we

can always suppose that (A,ψ) have C∞-regularity.

Consider now the trivial Banach vector bundle ET : (C∗T )2,r
p × D2

p−1
over the irreducible parametrized configurations (C∗T )2,r

p : it is naturally
equipped with a Autr(QSpinc(4))-action. Denote with Γr the image Γr :=
Im(Autr(QSpinc(4)) - Autr(QSO(4))). The restriction of the functional
(FT )2,r

p to (C∗T )2,r
p descends to the G2

p+1-quotients to give a Γr-equivariant
section ΨT of the Γr-equivariant quotient bundle ET := ET /G2

p+1:

ΨT : (B∗T )2,r
p

- ET .

The section ΨT is a Fredholm map between Banach manifolds; its zero set
Z(ΨT ) is exactly the parametrized moduli space (M∗T )2,r

p of irreducible
monopoles.

5.2. Remarks on the transversality statement

A metric g ∈ Metr(M) is said c-good (for the fundamental class c ∈
H2(M,Z)) if the projection of c onto the g-harmonic self-dual classes H2

+
is non zero. We denote with Metrc-good(M) the set of such metrics: it is an
open set of Metr(M), complementary of a closed set of codimension b+(M).
Let now b+(M) > 0 and suppose that Metrc−good(M) ∩ T is a dense open
set of T . Let Ξr,∗∗T the subset of Spinc-structures in ΞrT projecting onto c-
good metrics; set Ξr,∗∗ := Ξr,∗∗Met(M). Let finally (M∗∗T )2,r

p := Z(ΨT )∩ (B2
p ×

Ξr,∗∗T ). In the following we will always denote with Metc-good(M), Ξ∗∗, Ξ∗∗T ,
M∗T ,M∗∗T the corresponding spaces of objects of class C∞. The projection
πT : (M∗∗T )2,r

p
- Ξr,∗∗T is now a surjective Fredholm map with compact

(5)This can be proved with a slight modification (with Cr regularity) of the proof given
in [20, Proposition 6.19]. The proof is based on two statements. The first that (A,ψ), as
a solution of unparametrized Seiberg-Witten equations with fixed Spinc-structure ξ, is
G2
p+1-equivalent to (A′′, ψ′′) with A′′ in A0-gauge, for a fixed C∞-connection A0, that is
d∗(A′′−A0) = 0. This proof [20, Proposition 6.10] is still valid with a Cr-metric. Then,
that the Seiberg-Witten equations (for fixed ξ), restricted to solutions in A0-gauge,
become the following nonlinear elliptic equations in τ = A′′ −A0 and ψ:

DA0ψ = −
1
2
ρξ(τ)ψ(5.1) (

d+

d∗

)
τ =

(
[ψ∗ ⊗ ψ]0 − F+

A0
0

)
(5.2)

By a bootstrapping argument based on Sobolev multiplication and elliptic regularity
(see [2, Appendix K, Theorem 40]) (the left hand term is a first order elliptic differential
operator with Cr−1-coefficients) we get that the solution (A′′, ψ) is in C2

r and hence in
Cr−3 = AU(1)(L)r−3 × Γ(W+)r−3.
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fibers, since no reducible monopole is allowed over a c-good metric. Denote
with (Mξ)2,r

p its fiber over ξ ∈ Ξr,∗∗T . A satisfying result would be the
following:

Statement 5.2. — The intrinsic differential DxΨMet(M) is surjective
at all points x ∈ (M∗Met(M))2,r

p . Consequently, the universal moduli space
(M∗Met(M))2,r

p of irreducible Seiberg-Witten monopoles is a smooth Banach
manifold.

Remark 5.3. — We discuss here the consequences of transversality. If
statement 5.2 is true, a standard application of Sard-Smale theorem [19]
implies that for ξ in a dense open set of Ξr,∗∗, the Seiberg-Witten moduli
space (Mξ)2,r

p is smooth of the expected dimension. Consequently, this
would be true for a generic ξ of class C∞. These arguments can be adapted
in the following case, useful in the applications to kählerian monopoles. Let
S a Fréchet submanifold of Met(M), embedded in T , and let nowMS be
the parametrized Seiberg-Witten moduli space(6) over S. Suppose that the
intrinsic differential DxΨT is surjective at all points of M∗∗S ; in this case
the parametrized moduli space (MT )2,r

p and the universal moduli space
(MMet(M))2,r

p are smooth at points in M∗∗S . Fix now a Spinc-structure
ξ ∈ Ξ∗∗S (of class C∞). By compactness of (Mξ)2,r

p ' Mξ = π−1
T (ξ),

there exists an open neighbourhood Vξ of ξ in (Ξ∗∗T )2,r
p such that DyΨT is

surjective for all y ∈ π−1
T (Vξ): hence π−1

T (Vξ) is a smooth Banach manifold
and the projection π−1

T (Vξ) - Vξ is a Fredholm map with compact
fibers. We can now apply to this map a standard argument using Sard-
Smale theorem to obtain that for a generic ξ′ ∈ Vξ the fiber (Mξ′)2,r

p is
smooth of the expected dimension; hence for a generic ξ′ ∈ Vξ ∩ΞT of class
C∞ the moduli spaceMξ′ is smooth of the expected dimension. The same
can be said for an adequate neighbourhood Wξ of ξ in Ξr,∗∗.

We will now discuss the condition that the intrinsic differential DxΨT is
surjective at a point x ∈ (M∗T )2,r

p . We recall that a local slice for the action
of G2

p+1 in C2
p at the point y is a smooth splitting Hilbert submanifold Sy

of a neighbourhood of y, invariant under the stabilizer Stab(y), such that
the natural map:

Sy ×Stab(y) G2
p+1

- C2
p

is a diffeomorphism onto a neighbourhood of the orbit through y. Such a
slice exists [14, Lemma 4.5.5] and is built, in a neighbourhood of a point

(6)As explained above, here we consider the moduli space of C∞-objects, introduced in
section 2.5; by remark 5.1 it can be seen as embedded in (MMet(M))2,r

p , as being the
inverse image of smooth elements ΞS for the projection πMet(M)
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(A,ψ), as

S(A,ψ) =
{

(A′, ϕ) ∈ C2
p | (D(A,ψ)ΥA,ψ)∗(A′ −A,ϕ− ψ) = 0 ,

||A′ −A||2p < ε , ||ϕ− ψ||2p < ε
}

for a sufficiently small ε, where ΥA,ψ : G2
p+1

- C2
p is the given by group

action at (A,ψ) and where (D(A,ψ)Υ(A,ψ))∗ is the formal adjoint of the dif-
ferentialD(A,ψ)Υ(A,ψ). As a consequence T(A,ψ)S(A,ψ) ' ker(D(A,ψ)ΥA,ψ)∗.
A slice for the action of G2

p+1 on (C∗T )2,r
p at a point (A,ψ, ξ) is then given

by S(A,ψ,ξ) := S(A,ψ) × Uξ where Uξ is a small neighbourhood of ξ in ΞrT .
The slice S(A,ψ,ξ) provides a local model for (B∗T )2,r

p at an irreducible point
([A,ψ], ξ).

Proposition 5.4. — The section ΨT is transversal to the zero section
at the point x = ([A,ψ], ξ) ∈ (M∗T )2,r

p if and only if the functional (FT )2,r
p

is transversal to 0 at the point (A,ψ, ξ) ∈ (C∗T )2,r
p .

Proof. — The section ΨT can be written locally on S(A,ψ,ξ) as:

S(A,ψ) × Uξ - D2
p−1

((A′, ψ′), ξ′) - (FT )2,r
p (A′, ψ′, ξ′)

Since T(A,ψ)S(A,ψ) ' ker(D(A,ψ)ΥA,ψ)∗ = (ImD(A,ψ)ΥA,ψ)⊥, we have that
DxΨT coincides with the restriction D(A,ψ,ξ)(FT )2,r

p

∣∣
(ImD(A,ψ)ΥA,ψ)⊥⊕TξΞrT

.
Now, since ImD(A,ψ)ΥA,ψ ⊆ kerD(A,ψ,ξ)(FT )2,r

p , we can conclude. �

Remark 5.5. — Since it is Γr-equivariant, the section ΨT is transversal
to zero in a point x = ([A,ψ], ξ) if and only if it is transversal to zero in a
point xf = ([f∗A,ψf ], ξf), for f ∈ Γr. This means that the smoothness of
a standard Seiberg-Witten moduli space (Mξ)2,r

p , ξ ∈ ΞrT does not depend
on the particular Spinc-structure ξ (chosen in a fixed connected component
of ΞrT ) but only on the metric gξ compatible with ξ.

Remark 5.6. — Let b+(M) > 0. By remark 5.5 and since the torsion sub-
group t, counting connected components of Ξ/Γ, is finite, if statement 5.2
is true, then for a generic C∞ metric g ∈ Met(M), the standard Seiberg-
Witten moduli Mξ is smooth of the expected dimension for any Spinc-
structure ξ, compatible with g. This means that, even there is no satis-
factory way to parametrize Seiberg-Witten equations and moduli spaces
just with metrics Met(M), because, by remark 2.12, there are no parallel
sections Met(M) - Ξ, the transversality statement depends only on the
metric chosen and not on the particular Spinc-structure compatible with
the metric.
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5.3. The adjoint operator

In this subsection we express the obstruction to the transversality of the
section ΨT in terms of the formal adjoint of the differential of the functional
FT . Let ([A,ψ], ξ) ∈ Z(ΨT ). By remark 5.1 we can suppose that (A,ψ) are
of class Cr−3. By proposition 5.4 the obstruction to the transversality of ΨT

at the point ([A,ψ], ξ) is given by the cokernel of the first order differential
operator with Cr−3 coefficients:

D(A,ψ,ξ)(FT )2,r
p : T(A,ψ)C2

p ⊕ TξΞrT - D2
p−1.

The operator D(A,ψ,ξ)(FT )2,r
p is the partial Sobolev completion of the first

order differential operator (with Cr−3 coefficients), given by the differential
of the Seiberg-Witten functional FT , defined on parametrized configura-
tions of class Cr−3 and Cr:

D(A,ψ,ξ)FT : T(A,ψ)Cr−3 ⊕ TξΞrT - Dr−4.

We indicate with D(A,ψ)F
ξ and with P the first and second component,

respectively. The component D(A,ψ)F
ξ is the differential of the unparame-

trized Seiberg-Witten functional F ξ, relative to the Spinc-structure ξ: it is
well known [14] that it is underdetermined elliptic, in this case with Cr−3

coefficients; hence its Sobolev extension (D(A,ψ)F
ξ)2
p : T(A,ψ)C2

p
- D2

p−1
has closed image of finite codimension. Since the operator D(A,ψ,ξ)(FT )2,r

p

can be written as the sum D(A,ψ,ξ)(FT )2,r
p = (D(A,ψ)F

ξ)2
p +P , it follows(7)

that D(A,ψ,ξ)FT is underdetermined elliptic and that D(A,ψ,ξ)(FT )2,r
p has

closed image of finite codimension. By elliptic regularity, we have firstly
that

cokerD(A,ψ,ξ)(FT )2,r
p ⊆ coker(D(A,ψ)F

ξ)2
p ⊆ Dr−4;

secondly that cokerD(A,ψ,ξ)(FT )2,r
p can be identified with the L2-orthogonal

(ImD(A,ψ,ξ)(FT )2,r
p )⊥; the latter coincides with the kernel of the formal

adjoint of D(A,ψ,ξ)FT :

cokerD(A,ψ,ξ)(FT )2,r
p ' (Im(D(A,ψ,ξ)(FT )2,r

p )⊥

' ker(D(A,ψ,ξ)FT )∗
∣∣
Dr−4 .

(5.3)

(7)This follows from the following fact [20, Lemma 6.36]. Let E a Banach vector space
with a continuous scalar product < ·, · >: E×E - R and let F ⊂ E a closed subspace
of finite codimension such that its orthogonal F⊥ is a topological supplementary of F
in E. If F ′ is a subspace of E containing F , then F ′ is closed of finite codimensionand
its orthogonal (F ′)⊥ is a topological supplementary of F ′ in E.
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Remark 5.7. — For ξ ∈ Ξr consider the section σξ : Metr(M) - Ξr
passing through ξ and defining the horizontal distribution Hξ on Ξr. Sup-
pose now that gξ ∈ T r. Let σT,ξ be the restriction σT,ξ := σξ

∣∣
T r

of this
section to the submanifold T r. We denote with F̃T the composition:

F̃T := FT ◦ (idCr−3 ×σT,ξ) : Cr−3 × T r ⊂ - Cr−3 × ΞrT - Dr−4.

Since, as seen in the end of section 4, there is no contribution to the
transversality coming from variations of the equations along vertical di-
rections in TξΞT , we have that

cokerD(A,ψ,ξ)(FT )2,r
p ' ker(D(A,ψ,ξ)FT )∗

∣∣
Dr−4

' ker(D(A,ψ,gξ)F̃T )∗
∣∣
Dr−4 .

(5.4)

Remark 5.8. — Since F̃T factorizes in the composition Cr−3×T r ⊂ -

Cr−3 ×Metr(M)
F̃Met(M)−−−−−→ Dr−4, we have:

(D(A,ψ,gξ)F̃T )∗ = (idT(A,ψ)Cr−3 ⊕PTgξT r ) ◦ (D(A,ψ,gξ)F̃Met(M))∗,

where PTgξT r denotes the orthogonal projection Tgξ Metr(M) - TgξT
r.

In what follows we will denote more briefly by F̃ the functional F̃Met(M).
It is clear that if ξ is of class C∞, we can drop the superscripts, considering
spaces of objects of class C∞.

Computation of the adjoint operator

In the sequel we will always assume for simplicity’s sake that the point
(A,ψ, ξ), where the differential is computed, is such that A,ψ, ξ are of
class(8) C∞. In this subsection we will compute the formal adjoint of the
differential of F̃ at the point (A,ψ, gξ)

D(A,ψ,gξ)F̃ : iA1(M)× Γ(W+)× sym(TM, gξ) - Γ(W−)× iA2
+(M),

given by:

D(A,ψ,gξ)F̃(τ, φ, s) =
(1

2ρξ(τ)ψ+Dξ
Aφ−ρξ◦s

∗◦∇W,ξA ψ−1
2ρξ(div s−d tr s)ψ,

d+τ − [φ∗ ⊗ ψ + ψ∗ ⊗ φ]0 − (tr s)F+
A − δ−(s0)F−A

)
.

The computation of the formal adjoint is mostly straightforward: we will
just remark the less trivial steps and make clear some notations.

(8)This will be always the case in the applications; however what we will say holds in
all generality.
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L2-norms. We define here the L2-norms with respect to which we are go-
ing to compute the formal adjoint; we will always indicate with (·, ·) the real
inner products and with 〈·, ·〉 the hermitian ones. On the bundle T ∗M ⊗ iR
the norm is the standard one induced by the metric gξ. On T ∗M⊗m the
metric gξ induces the inner product (x1 ⊗ · · · ⊗ xm, y1 ⊗ · · · ⊗ ym) =
m!
∏m
i=0(xi, yi); the decomposition T ∗M ⊗ T ∗M ' S2T ∗M ⊕ Λ2T ∗M is

then an orthogonal direct sum. We will take on S2T ∗M and on Λ2T ∗M

the metrics induced by the metric on T ∗M ⊗ T ∗M . In this way ||ei ⊗
ej ||2 = 2, ||eiej ||2 = 1 = ||ei ∧ ej ||2, if i 6= j, otherwise ||ei ⊗ ei||2 =
||e2
i ||2 = 2. The metric induced by T ∗M ⊗T ∗M on sym(TM, gξ) is (s, t) =

2 tr(st). The morphisms δ± defined in (4.1) are isometries if we take on
Hom(Λ2

±T
∗M,Λ2

∓T
∗M) the metric (u, v) = 1/2 tr(uv∗). On Γ(W+) and on

Γ(W−) we take the real part of the hermitian metric and on Hom(W+,W−)
the real part of the hermitian scalar product 〈u, v〉 = 1/2 tr(uv∗), so that
the Clifford multiplication ρξ is an isometry. Finally the real part of the
hermitian metric on End(W ), given by 〈A,B〉 = 1/4 tr(AB∗), induces an
orthogonal direct sum u(W ) ' iR ⊕ su(W ). We put on isu(W ) the real
inner product induced by the real inner product just defined on End(W ),
so that the isomorphism ρξ : Λ2T ∗M - isu(W ) is an isometry. The
isomorphism ρξ : TM ⊗ C - Hom(W+,W−) allows us to identify ele-
ments in Hom(W+,W−) with complexified tangent vectors and to define a
complex conjugation (and hence a real and imaginary part) for elements in
Hom(W+,W−).

Computation of the adjoint operator. We express the adjoint op-
erator (D(A,ψ,gξ)F̃)∗ in terms of variables (χ, θ) ∈ Γ(W−) × iA2

+(M). In
the rest of the article we will identify symmetric 2-tensors S2T ∗M with
symmetric endomorphisms sym(TM, gξ) by means of the metric gξ.

(1) To compute the adjoint of the map jψ : A1(M,C) - Γ(W−),
given by σ - ρξ(σ)ψ, remark that, for χ ∈ Γ(W−), we have:

〈ρξ(σ)ψ, χ〉 = tr[ρξ(σ) ◦ (ψ∗ ⊗ χ)∗] = 2〈ρξ(σ), ψ∗ ⊗ χ〉Hom(W+,W−)

= 2〈σ, ψ∗ ⊗ χ〉T∗M⊗C.
(5.5)

Therefore the hermitian adjoint of jψ is the map χ - 2 ψ∗ ⊗ χ.
(2) The adjoint of the map qψ(φ) = [φ∗ ⊗ ψ + ψ∗ ⊗ φ]0 is the operator

q∗ψ : iA2
+(M) - Γ(W+) given by q∗ψ(θ) = 1/2ρξ(θ)ψ. This can

be proved firstly showing that, with the taken norms:

(5.6) 〈ρξ(θ), [ϕ∗ ⊗ ϕ]0〉 = 1
4 〈ρξ(θ)ϕ,ϕ〉 , ∀θ ∈ iA2

+(M) ,∀ϕ ∈ Γ(W+)
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and, secondly, differentiating the identity (5.6) with respect to ϕ
and identifying iA2

+(M) with isu(W+) via the isometry ρξ.
(3) Recalling that δ− is an isometry from sym0(TM, gξ) to Hom(Λ2

−
T ∗M,Λ2

+T
∗M) with the given norms, we immediately get that the

adjoint of the map s - δ−(s0)(F−A ) is given by θ - 2(F−A )∗⊗θ.
(4) To compute the adjoint of the map s - ρξ(div s)ψ = jψ ◦ div(s)

recall that the adjoint of the divergence operator div : sym(TM, gξ)
- A1(M) is given by the map: σ - − (1/2) Lσ]gξ, where

we indicate with σ] the vector field obtained from the 1-form σ by
raising the indices. The adjoint of ρξ(div(−))ψ is then: χ -

−LRe(ψ∗⊗χ)gξ.
(5) With similar arguments one can prove that the adjoint of s -

ρξ(d tr s)ψ is given by χ - d∗(Re(ψ∗ ⊗ χ))gξ.
(6) Denote with ∇WA ψ∗ the linear map TM - W ∗+ defined by:

X - 〈−,∇W,ξA,Xψ〉 and with Re(∇WA ψ∗ ⊗ χ) the 2-tensor defined
by: (X,Y ) - 〈Y,Re(∇W,ξA,Xψ

∗ ⊗ χ)〉. The adjoint of the map
sym(TM, gξ) - Γ(W−), defined by s - ρ ◦ s∗ ◦ ∇W,ξA ψ, is
the map χ - sym Re (∇WA ψ∗ ⊗ χ). This can be proved express-
ing everything in a local orthonormal frame ei and recalling the
identity (5.5).

We are ready to write down the formal adjoint of the operator D(A,ψ,gξ)F̃:

Proposition 5.9. — The formal adjoint of the operator D(A,ψ,gξ)F̃ is
the differential operator:

(D(A,ψ,gξ)F̃)∗ : Γ(W−)⊕A2
+(M, iR) - A1(M, iR)⊕Γ(W+)⊕sym(TM, gξ)

given by (D(A,ψ,gξ)F̃)∗(χ, θ)=
(
A1(χ, θ), A2(χ, θ), A3(χ, θ)

)
, where the com-

ponents Ai(χ, θ), i = 1, . . . , 3 are given by

A1(χ, θ) := d∗θ + i Im(ψ∗ ⊗ χ)

A2(χ, θ) := Dξ
Aχ−

1
2ρξ(θ)ψ

A3(χ, θ) := − sym Re(∇WA ψ∗ ⊗ χ) + 1
2LRe(ψ∗⊗χ)gξ

+1
2d
∗Re(ψ∗ ⊗ χ)gξ −

1
2(F+

A , θ)gξ − 2(F−A )∗ ⊗ θ.
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5.4. The obstruction to transversality

By (5.4) we know that ker(D(A,ψ,ξ)FMet(M))∗ = ker(D(A,ψ,gξ)F̃)∗; hence
the equations for the kernel of (D(A,ψ,ξ)FMet(M))∗ read:

d∗θ + i Im(ψ∗ ⊗ χ) = 0(5.7a)

Dξ
Aχ−

1
2ρξ(θ)ψ = 0(5.7b)

− sym Re(∇WA ψ∗ ⊗ χ) + 1
2LRe(ψ∗⊗χ)gξ + 1

2d
∗Re(ψ∗ ⊗ χ)gξ

− 1
2(F+

A , θ)gξ − 2(F−A )∗ ⊗ θ = 0
(5.7c)

where (A,ψ, ξ) satisfies FMet(M)(A,ψ, ξ) = 0, with ψ 6= 0. Equations (5.7)
can be slightly simplified.

Lemma 5.10. — If (χ, θ) is a solution of equations (5.7), then (F+
A , θ) =

0 and div(ψ∗ ⊗ χ) = 0.

Proof. — Consider the equations (5.7). Applying the operator d∗ to the
first equation we get d∗ Im(ψ∗⊗χ) = −div Im(ψ∗⊗χ) = 0; hence div(ψ∗⊗
χ) = div Re(ψ∗⊗χ). Recall the following identity(9) : if ϕ is a positive spinor,
and ζ is a negative one, then

(5.8) 2 div(ϕ∗ ⊗ ζ) = 〈DAϕ, ζ〉 − 〈ϕ,DAζ〉.

We now take the trace in the third equation, remembering that, for any
vector field X, we have trLXgξ = 2 divX. We get:

− tr sym Re(∇WA ψ∗⊗χ)+ 1
2 trLRe(ψ∗⊗χ)gξ+2d∗Re(ψ∗⊗χ)−2(F+

A , θ) = 0,

or, equivalently, since div(ψ∗ ⊗ χ) is real,

(5.9) div(ψ∗ ⊗ χ) + 2(F+
A , θ) = 0,

since trLRe(ψ∗⊗χ)gξ = 2 div Re(ψ∗ ⊗ χ), and, by a simple computation
taking a orthonormal frame, tr sym Re(∇WA ψ∗⊗χ) = 1/2 Re〈DAψ, χ〉 = 0.
Now, taking the scalar product with ψ in the second equation we get:
〈ψ,DAχ〉 − 1/2 〈ψ, ρξ(θ)ψ〉 = 0, which becomes, using (5.6) and (5.8):

(5.10) div(ψ∗ ⊗ χ) + (F+
A , θ) = 0.

Combining (5.9) and (5.10) we get the result. �

(9)One can easily prove the equality establishing it first at the symbol level; then, show-
ing pointwise the equality at the zero-th order terms taking an adapted orthonormal
frame, that is, a local orthonormal frame ei such that ∇ei(p) = 0 at the point p.
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Proposition 5.11. — The obstruction to the transversality of the uni-
versal Seiberg-Witten functional (FMet(M))2,r

p at the solution(10) (A,ψ, ξ)
of the universal Seiberg-Witten equations is given by nontrivial solutions
(θ, χ) ∈ iA2

+(M)⊕ Γ(W−) to the following equations:

d∗θ + i Im(ψ∗ ⊗ χ) = 0(5.11a)

Dξ
Aχ−

1
2ρξ(θ)ψ = 0(5.11b)

− sym Re(∇WA ψ∗ ⊗ χ) + 1
2LRe(ψ∗⊗χ)gξ − 2(F−A )∗ ⊗ θ = 0(5.11c)

(θ, F+
A ) = 0(5.11d)

div(ψ∗ ⊗ χ) = 0(5.11e)

Proof. — By (5.3) the cokernel of the differential D(A,ψ,ξ)(FMet(M))2,r
p

coincides with the kernel of the formal adjoint of the differential
D(A,ψ,ξ)FMet(M) on sections of class C∞. The equations (5.7) of the ker-
nel of (D(A,ψ,ξ)FMet(M))∗ are now equivalent, by lemma 5.10, to equa-
tions (5.11). �

Remark 5.12. — We discuss now the gaps in the proof of the transver-
sality with generic metrics by Eichhorn and Friedrich. The two authors (in
[5, Proposition 6.4] and Friedrich alone in [8, page 141]) try to prove directly
that the differential D(A,ψ,gξ)F̃ of the perturbed Seiberg-Witten functional
is surjective. A first source of unclearness is that they never give a precise
expression of the variation of the Dirac operator, which we have seen as
being a fundamental difficulty in the question; in particular no mention
is made about the term −ρξ ◦ s∗ ◦ ∇WA ψ. The authors take into account
variations of the metric which are orthogonal to the orbits of the action
the diffeomorphism group Diff(M) on Met(M): this condition is precisely
expressed by div s = 0. They now remark that the variation of the second
equation involves just the traceless part of the tensor s0: as a consequence,
they now claim that they can deal with conformal perturbations separately
from volume preserving ones. Thanks to this uncorrect argument, as we will
see, they get to the two separate conditions, reading, in our notations:〈 d

dg
(∗g)(s0)FA, θ

〉
= 0 , 〈ρ(df)ψ, χ〉 = 0

which are to be satisfied by an element (χ, θ) in the cokernel of D(A,ψ,g)F̃,
for all s0 ∈ sym0(TM, g) and for all f ∈ C∞(M,R) such that div s0 = df .

(10)Here we consider A, ψ, ξ of class C∞.
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The result would follow from them (remark that they correspond(11) , taking
formal adjoints, to two separate equations: (F−A )∗⊗θ = 0; d∗Re(ψ∗⊗χ) =
0). This argument is not correct for the following two reasons. Firstly, the
term −ρ ◦ s∗ ◦∇WA ψ depends on the full tensor s and not just on his trace;
secondly the variation of the second equation does not involve just volume
preserving perturbations, since conformal perturbations come to play a role
in the identification iΛ2

+T
∗M ' isu(W+) via ρξ.

6. Transversality over Kähler monopoles

6.1. Kähler monopoles

We now consider the transversality problem on Kähler surfaces. Let
(M,J) be a compact connected 4-manifold with an integrable complex
structure J . We will indicate with HJ(M) the space of hermitian metrics
with respect to the complex structure J ; it is a splitting Fréchet subman-
ifold of the manifold of riemannian metrics Met(M). If g ∈ HJ(M), we
indicate with ωg := g(J(−),−) the (1, 1)-form associated to g. Suppose
now that (M,J) is of Kähler type. Let KJ(M) be the set of Kähler metrics
for the complex structure J , that is, KJ(M) := {g ∈ HJ(M) | dωg = 0}.
A Kähler surface is by definition a 4-manifold with a U(2)-reduction of
the structural group of the tangent bundle PU(2) ⊂ - PGL(4) admitting a
torsion free U(2)-connection. The natural morphism i : U(2) ⊂ - SO(4)×
U(1) lifts to a morphism j : U(2) ⊂ - Spinc(4) so that ν ◦ j = i. The
canonical Spinc-structure ξ0 on a Kähler manifold M is then given by the
µ-equivariant map

ξ0 : QSpinc(4) := PU(2) ×j Spinc(4) - PGL+(4)

induced by the morphism j. Remark that QSO(4) ' PU(2)×U(2) SO(4) and
that QU(1) ' PU(2)×detU(1). As a consequence the spinor bundle is: W :=
Λ0,∗T ∗M , with W+ ' Λ0,evenT ∗M , W− ' Λ0,1T ∗M . The fundamental line
bundle L is isomorphic to the anticanonical bundle detW+ ' K∗M and the
fundamental class c is c1(M). The Clifford multiplication of the structure
ξ0 is given by

ρξ0 : T ∗M - End(Λ0,evenT ∗M,Λ0,1T ∗M)
x -

√
2[x0,1 ∧ (·)− x0,1y(·)] .

(11)without taking into account the condition div s0 = df
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Any other Spinc-structure ξN is obtained, up to isomorphism, from the
canonical one by twisting the spinor bundle by a line bundle N in the
topological Picard group Pictop(M) of M ; the resulting bundle of spinors
is W = Λ0,∗T ∗M ⊗ N , the determinant line bundle is twisted by N⊗2,
L = K∗M ⊗ N⊗2, and the fundamental class changes as c = c1(M) +
2c1(N). The Clifford multiplication for ξN is ρξ0 ⊗ idN . In the notations
of section 2.5, let ΞHJ (M) be the hermitian Spinc-structures of class c and
fixed type, that is, the Spinc-structures of class c in Ξ projecting onto J-
hermitian metrics, and let ΞKJ (M) be the kählerian ones (those projecting
onto Kähler metrics). We will call the parametrized Seiberg-Witten moduli
spaceMHJ (M) andMKJ (M) the moduli spaces of hermitian and kählerian
monopoles, respectively.
To express Seiberg-Witten equations on a Kähler surface (M, g, J) for the

Spinc-structure ξN , we fix the Chern connection AKM on KM and make
the change of variables AU(1)(N) ' AU(1)(L) given by A - A∗KM ⊗A

⊗2.
The Dirac operator for this Spinc-structure and for A ∈ AU(1)(N) is DA =√

2(∂̄A + ∂̄∗A). The Seiberg-Witten equations on a compact Kähler surface
for a spinor (α, β) ∈ A0,0(N) ⊕ A0,2(N) and for a U(1)-connection A on
N read:

∂̄Aα+ ∂̄∗Aβ = 0

F 0,2
A = ᾱβ

2

2F 1,1
A − FKM = i

|α|2 − |β|2

4 ωg

where we split the second equation according the splitting of self dual 2-
forms in Λ2

+T
∗M ⊗ C ' Λ2,0T ∗M ⊕ Λ0,2T ∗M ⊕ Cωg. It is well known

that if deg(L) < 0 then (A,α, β) is a solution of the Seiberg-Witten equa-
tions if and only if ∂̄A is a holomorphic structure for N , α is a non zero
holomorphic section of (N, ∂̄A) and β = 0. Analogously, if deg(L) > 0, we
have a solution whenever α = 0, ∂̄A∗⊗AKM is a holomorphic structure of
N∗⊗KM and ]β is a non zero holomorphic section of (N∗⊗KM , ∂̄A∗⊗AKM ),
where ] denotes here the complex Hodge star operator; the involution
 : (A,α, β) - (A∗⊗AKM , ]β, ]α) exchanges solutions of Seiberg-Witten
equations for the Spinc structure ξN and solutions for the Spinc-structure
ξN∗⊗KM . Moreover (A,α, β) is a reducible solution if and only if deg(L) = 0
and A is self-dual. As a consequence KJ(M) ∩ Metc−good(M) = {g ∈
KJ(M) | [ωg] ∪ c 6= 0}. Therefore:

M∗KJ (M) =MKJ (M) ∩M∗Met(M) =MKJ (M) ∩M∗∗Met(M) =M∗∗KJ (M).
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In this section we will prove the following theorem:

Theorem 6.1. — The parametrized moduli space of hermitian Seiberg-
Witten monopoles (MHJ (M))2,r

p , and hence the universal moduli space
(MMet(M))2,r

p , is smooth at irreducible kählerian monopolesM∗KJ (M).

By remarks 5.3, 5.5, 5.6, we can paraphrase this theorem as:

Theorem 6.2. — Let (M, g, J) a Kähler surface. Let N a hermitian
line bundle on M such that 2 deg(N)− deg(KM ) 6= 0. Consider the Spinc-
structure ξN , obtained by twisting the canonical one with the hermitian
line bundle N . For a generic hermitian metric h ∈ HJ(M) in a small
open neighbourhood of g and for any Spinc-structure ξ′ of fundamental
class c(ξN ) = c1(M) + 2c1(N), compatible with h, the Seiberg-Witten
moduli space MSW

ξ′ is smooth of the expected dimension. The statement
holds as well for a generic riemannian metric h ∈ Met(M) in a small open
neighbourhood of g.

In the next subsection we make use of the complex structure J to split
the symmetric endomorphisms sym(TM, g) of TM with respect to a J-
hermitian metric g in hermitian and anti-hermitian ones. In subsection 6.3
we write down equations (5.11) in the Kähler context and in subsection 6.4
we will finally prove theorem 6.1.

6.2. A decomposition for symmetric 2-tensors

The endomorphisms End(TM) of the tangent bundle decompose, thanks
to the complex structure J , in J-linear and J-antilinear ones:
End(TM) ' End(TM, J)⊕End(TM, J). Consider now a metric g, hermit-
ian with respect to J . The previous decomposition of End(TM) induces a
decomposition of the symmetric endomorphism sym(TM, g) of TM , with
respect to g, in hermitian and anti-hermitian ones:

(6.1) sym(TM, g) ' u(TM, J)⊕ sp(TM, J),

where u(TM, J) = sym(TM, g) ∩ End(TM, J) and(12) sp(TM, J) = sym
(TM, g)∩End(TM, J). Analogously, symmetric 2-tensors in S2T ∗M can be
decomposed in the direct sum S2T ∗M ' S1,1T ∗M⊕S2

AHT
∗M of hermitian

(12)The notation sp(TM, J), suggested by the referee, is motivated by the fact that
sp(TM, J) coincides with the tangent space at the identity of the space of positive sym-
metric automorphisms of the tangent bundle (with respect to the metric g) preserving
the symplectic form ωg .
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2-tensors S1,1T ∗M = {s ∈ S2T ∗M | s(JX, JY ) = s(X,Y ) ∀ X,Y ∈
TM} and antihermitian ones: S2

AHT
∗M = {s ∈ S2T ∗M | s(JX, JY ) =

−s(X,Y ) ∀X,Y ∈ TM}. The decompositions for sym(TM, g) and S2T ∗M

identify one to the other once we identify tangent and cotangent bundle by
means of the metric g.

Consider now the complexified tangent bundle TM ⊗ C. The complex
symmetric 2-tensors S2(T ∗M ⊗ C) split, according to the decomposition
TM ⊗ C = T 1,0M ⊕ T 0,1M as

S2(T ∗M ⊗ C) = S2,0T ∗M ⊕ S0,2T ∗M ⊕ S1,1
C T ∗M

where we indicate S2(Λ1,0T ∗M) with S2,0T ∗M , S2(Λ0,1T ∗M) with
S0,2T ∗M and with S1,1

C T ∗M the subbundle of Λ1,0T ∗M ⊗ Λ0,1T ∗M ⊕
Λ0,1T ∗M ⊗ Λ1,0T ∗M invariant by the transposition of factors τ in the
tensor product; in these notations the hermitian 2-tensors S1,1T ∗M intro-
duced above coincide with the subspace of real tensors in S1,1

C T ∗M , that
is, tensors invariant by conjugation. Let now s ∈ S2T ∗M , extended by
C-linearity to the element sC ∈ S2(T ∗M ⊗ C); according to the above de-
composition, sC can be written as sC = s2,0+s0,2+s1,1, with s2,0 = s0,2 and
s1,1 = s1,1. It is clear that s ∈ S1,1T ∗M if and only if s0,2 = 0; in this case
s1,1 defines an hermitian form on T 1,0M ; hence S1,1T ∗M ' Herm(T 1,0M).
On the other hand, s ∈ S2

AHT
∗M if and only if s1,1 = 0; in this case s2,0

and s0,2 define quadratic forms on T 1,0M and T 0,1M , respectively, one
conjugated of the other. Hence S2

AHT
∗M ' S2,0T ∗M ' S0,2T ∗M .

Using the complexified metric gC to identify T ∗M ⊗ C with TM ⊗ C,
the previous considerations can be stated for C-linear extensions of sym-
metric endomorphisms f ∈ sym(TM, g) to fC ∈ End(TM ⊗ C). An en-
domorphism f ∈ End(TM) extends by C-linearity to an endomorphism
fC ∈ End(TM ⊗C) such that fC(z̄) = fC(z) for all z ∈ TM ⊗C. According
to the decomposition TM ⊗ C ' T 1,0M ⊕ T 0,1M this extension can be
written as:

(6.2) f =
(
a b̄

b ā

)
The endomorphism f is then J-linear if and only if b = 0, J-antilinear if
and only if a = 0. Moreover, f is symmetric with respect to g if and only if
(Z,W ) - g(a(Z), W̄ ) is an hermitian form on T 1,0M and (Z,W ) -

g(b(Z),W ) is a complex quadratic form on T 1,0M . Hence we can identify
u(TM, J) ' Herm(T 1,0M); sp(TM, J) ' S2,0T ∗M . Analogously, using
ā and b̄ we get identifications u(TM, J) ' Herm(T 0,1M); sp(TM, J) '
S0,2T ∗M .
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Remark 6.3. — The space of hermitian 2-tensors S1,1T ∗M is isomorphic
to the space of real (1,1)-forms Λ1,1

R T ∗M via the isomorphism s -s(·,J(·)).
In local coordinates, if a ∈ S1,1T ∗M ' Herm(T 1,0M) is given by a =∑
i,j aij̄dzi ⊗ dz̄j , with aij̄ an hermitian matrix, the associated real (1, 1)-

form is given by −2i
∑
ij aij̄dzi ∧ dz̄j .

Remark 6.4. — Let u ∈ Λ1,0T ∗M⊗Λ0,1T ∗M . Let σ(u) the (1, 1)-form in
Λ1,1T ∗M obtained by the projection of u on Λ2(T ∗M⊗C). Denote moreover
with herm u the hermitian part of the sesquilinear form on T 1,0M defined
by u: herm u = 1/2(u + τ(u)). Then sym Reu ∈ u(TM, J) and coincides
with 1/2 herm u = 1/4 (u + τ(u)) as hermitian form on T 1,0M . By the
previous remark, the associated real (1, 1)-form to sym Reu is −i/2(σ(u)−
σ(u)). Let now v ∈ Λ0,1T ∗M ⊗Λ0,1T ∗M . Then sym Re v ∈ sp(TM, J) and
coincides with 1/2 sym v ∈ S0,2T ∗M , in the identification sp(TM, J) '
S0,2T ∗M .

We need now to take into account the decomposition (6.1) in the isometry
δ− : sym0(TM, g) - Hom(Λ2

−T
∗M,Λ2

+T
∗M). We identify Λ2

−T
∗M with

Λ1,1
ω⊥g ,R

, that is, with the real (1, 1)-forms orthogonal to the Kahler form
ωg, and Λ2

+T
∗M with Λ0,2T ∗M ⊕ Rωg. If f ∈ sym(TM, g), let a(f) ∈

End(T 1,0M) and b(f) ∈ Hom(T 1,0M,T 0,1M) be the components of the
extension of f to TM ⊗ C seen in (6.2). Set u0(TM, J) = u(TM, J) ∩
sym0(TM, g). With this notations we have:

Lemma 6.5. — For all f ∈ u0(TM, J) then δ−(f)Λ1,1
ω⊥g ,R

⊆ Rωg. There-
fore the isometry δ− : sym0(TM, g) - Hom(Λ2

−T
∗M,Λ2

+T
∗M) splits,

according to the decomposition (6.1), as :

u0(TM, J)⊕ sp(TM, J) - Hom(Λ1,1
ω⊥g ,R

,Λ0,2T ∗M)⊕Hom(Λ1,1
ω⊥g ,R

,Rωg)
(s, t) - ( δ−(b̄(t)) , δ−(s) ).

Proof. — Let (s, t) ∈ u0(TM, J) ⊕ sp(TM, J). The derivation i(s∗) in-
duced by an element s∈u0(TM, J) preserves the spaces Λ1,1T ∗M , Λ2,0T ∗M

and Λ0,2T ∗M , because s is J-linear. Therefore, for such s, δ−(s)Λ1,1
ω⊥g ,R

⊆
Λ1,1T ∗M , but by definition δ−(s)Λ2

−T
∗M⊆Λ2

+T
∗M ; as a result δ−(s)Λ1,1

ω⊥g ,R
⊆ Rωg. Any t ∈ sp(TM, J) is J-antilinear, hence its extension to TM ⊗ C
exchanges T 1,0M and T 0,1M ; consequently i(t∗)Λ1,1T ∗M ⊆ Λ0,2T ∗M ⊕
Λ2,0T ∗M . We can write t∗= b(t)∗+b̄(t)∗, with b(t)∗ : Λ0,1T ∗M -Λ1,0T ∗M ,
and b̄(t)∗ : Λ1,0T ∗M - Λ0,1T ∗M . Therefore i(b(t)∗)Λ1,1T ∗M⊆ Λ2,0T ∗M

and i(b̄(t)∗)Λ1,1T ∗M ⊆ Λ0,2T ∗M . Therefore in the splitting

Hom(Λ2
−T
∗M,Λ2

+T
∗M) ' Hom(Λ1,1

ω⊥g ,R
,Λ0,2T ∗M)⊕Hom(Λ1,1

ω⊥g ,R
,Rωg)
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the element (s, t) acts as δ−(b̄(t))⊕ δ−(s). �

6.3. The obstruction to the transversality on a Kähler monopole

As discussed in subsection 5.1, in order to prove theorem 6.1 we need
to prove that the intrinsic differential DxΨHJ (M) of the section ΨHJ (M) :
(B∗HJ (M))2,r

p
- EHJ (M) is surjective at an irreducible kählerian mono-

pole x = ([A,ψ], ξ). We can suppose that ξ = ξN for a certain N ∈
Pictop(M); moreover, because of the involution , it is not at all restric-
tive to take x a kählerian monopole with negative degree. By subsection
5.3 and in particular remarks 5.7, 5.8, the obstruction to the surjectivity
of DxΨHJ (M) is given by the kernel of the operator

(6.3)
(
D(A,ψ,gξ)F̃HJ (M)

)∗ ' ( idT(A,ψ)C ⊕PTgξHJ (M)
)
◦
(
D(A,ψ,gξ)F̃

)∗
where PTgξHJ (M) is the orthogonal projection Tgξ Met(M) - TgξHJ(M)
onto the tangent space of hermitian metrics. Since, given the Kähler met-
ric gξ, we can parametrize hermitian metrics with symmetric positive her-
mitian automorphisms U+(TM, J) = Sym+(TM, gξ) ∩ End(TM, J) with
respect to the metric gξ, the tangent space to hermitian metrics is given
by:

TgξHJ(M) ' TidU
+(TM, J) ' u(TM, J).

The form of the operator (6.3) implies that, to find the obstruction we want,
we have to consider equations (5.11), with equation (5.11c) projected onto
the component in u(TM, J), according to the decomposition (6.1).
We are now going to write down the kernel equations (5.11) on the Kähler

monopole of negative degree x = ([A,ψ], ξN ), where ψ = (α, 0) ∈ A0,0(N)⊕
A0,2(N). For brevity’s sake in the sequel we will indicate the Kähler metric
gξN just with g. In what follows we will make the following identifications:

a) we will identify imaginary 1-forms in iA1(M) with (0, 1)-forms in
A0,1(M) via the isomorphism A0,1(M) ' iA1(M) sending σ -

σ − σ̄;
b) the imaginary selfdual 2-forms iA2

+(M) will be identified with forms
in A0(M, iR)ωg ⊕A0,2(M), since we can always write θ ∈ iA2

+(M)
as θ = λωg + µ − µ̄ for λ ∈ A0(M, iR), µ ∈ A0,2(M). We can
therefore express the isomorphism iA2

+(M) ' isu(W+) as (cf, [14]):

λωg + µ - 2
(

λ µy(−)
µ ∧ (−) −λ

)
,
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where the matrix is written according to the decomposition W+ '
Λ0,0T ∗M ⊗N ⊕ Λ0,2T ∗M ⊗N .

Remark 6.6. — Remark that the 1-form ϕ∗⊗ζ, where ϕ ∈ A0,0(N) and
ζ ∈ A0,1(N), is given by 1/

√
2 ϕ̄ζ ∈ A0,1(M).

We postpone the study of equation (5.11c) to the next paragraph. In the
above identifications equations (5.11a), (5.11b), (5.11d), (5.11e) take place
in the spaces A0,1(M), A0,0(N), A0,2(N), A0(M, iR), A0(M), respectively,
and become easily

∂̄∗µ+ ∂∗(λωg) + 1
2
√

2
ᾱχ = 0(6.4a)

√
2∂̄∗Aχ− λα = 0(6.4b)
√

2∂̄Aχ− µα = 0(6.4c)

λ|α|2 = 0(6.4d)

∂̄∗(ᾱχ) = 0(6.4e)

Since α is a nonzero holomorphic section of (N, ∂̄A), we get from the fourth
equation that λ = 0 on the dense open setM \Z(α) and hence everywhere.
The last equation is, consequently, dependent from the first. Hence the
equations are equivalent to:

2
√

2∂̄∗µ+ ᾱχ = 0(6.5a)

∂̄∗Aχ = 0(6.5b)
√

2∂̄Aχ− µα = 0(6.5c)
λ = 0.(6.5d)

Contribution of the metric: hermitian perturbations

We have now to write equation (5.11c) on the Kähler monopole ([A,(α,0)],
ξN ), according to the identifications made. We will use the decomposition
(6.1) and the identifications u(TM, J) ' Herm(T 0,1M) and sp(TM, J) '
S0,2T ∗M provided by subsection 6.2. Moreover we will identify TM ⊗ C
with T ∗M ⊗C by means of the complexified metric gC (the C-linear exten-
sion of g to to T ∗M ⊗ C); it identifies T 1,0M with Λ0,1T ∗M and T 0,1M

with Λ1,0T ∗M .
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The term sym Re(∇WA ψ∗⊗χ). The linear map ∇WA ψ∗ ∈W ∗+⊗ (T ∗M ⊗
C) becomes the form ∂Aα ∈ N∗⊗Λ0,1T ∗M . The complex 2-tensor ∇WA ψ∗⊗
χ can be identified, by remark 6.6, with the tensor 1/

√
2∂Aαχ ∈ Λ0,1T ∗M⊗

Λ0,1T ∗M . By remark 6.4 we can identify:

sym Re(∇WA ψ∗ ⊗ χ) = 1
2
√

2
sym(∂Aαχ) ∈ S0,2T ∗M ' sp(TM, J).

The term LRe(ψ∗⊗χ)g. Recall that, for a real vector field X, LXg =
2 sym∇gX[, where X[ denotes the 1-form obtained by X lowering the
indices. As a consequence:

LRe(ψ∗⊗χ)g = 2 sym∇g Re(ψ∗ ⊗ χ) = 2 sym Re∇g(ψ∗ ⊗ χ).

By remark 6.6, the 2-tensor ∇g(ψ∗ ⊗ χ) is ∇g(ψ∗ ⊗ χ) = 1/
√

2∇g(ᾱχ) =
1/
√

2 [D(ᾱχ) + D̄(ᾱχ)], where we denoted with D and D̄ the components
(1, 0) and (0, 1) of ∇g, respectively. The term D̄(ᾱχ) is in Λ0,1T ∗M ⊗
Λ0,1T ∗M ; the term D(ᾱχ) is in Λ1,0T ∗M⊗Λ0,1T ∗M . Hence, by remark 6.4

LRe(ψ∗⊗χ)g = 2 sym Re∇g(ψ∗ ⊗ χ) = 1√
2

[hermD(ᾱχ) + sym D̄(ᾱχ)],

according to the decomposition S2T ∗M ' Herm(T 1,0M) ⊕ S0,2T ∗M '
u(TM, J)⊕ sp(TM, J).

The term (F−A )∗⊗ θ. Writing θ = λωg + µ, the term (F−A )∗⊗ θ decom-
poses into the sum of (F−A )∗⊗λωg and (F−A )∗⊗µ. The map θ - 2(F−A )∗⊗
θ was built as the adjoint of the map s - δ−(s0)F−A . As a consequence of
lemma 6.5, (F−A )∗⊗λωg is in u0(TM, J) ' S1,1,

0 T ∗M (the traceless tensors
in S1,1T ∗M), while (F−A )∗ ⊗ µ is in sp(TM, J) ' S0,2T ∗M .

Contribution of hermitian perturbations. Equation (5.11c) splits
in the two following equations, according to the decomposition (6.1):

hermD(ᾱχ)− 4
√

2(F−A )∗ ⊗ λωg = 0(6.6a)

− sym(∂Aαχ) + symD(ᾱχ)− 4
√

2(F−A )∗ ⊗ µ = 0.(6.6b)

Identifying elements in u(TM, J) with real (1, 1)-forms, as seen in remarks
6.3, 6.4, the first equation becomes

−i(∂(ᾱχ)− ∂̄(αχ̄))− 4
√

2(F−A )∗ ⊗ λωg = 0.

It represents the contribution to transversality coming from hermitian per-
turbations of the Kähler metric g.
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6.4. Proof of theorem 6.1

We have to prove the surjectivity of the differential D(A,ψ,g)F̃HJ (M) on
a Kählerian monopole ([A,ψ], ξ) = ([A, (α, 0)], ξN ). The obstruction to
the transversality is given by a nontrivial solution to the equations for
ker(D(A,ψ,g)F̃HJ (M))∗

2
√

2∂̄∗µ+ ᾱχ = 0(6.7a)

∂̄∗Aχ = 0(6.7b)
√

2∂̄Aχ− µα = 0(6.7c)
λ = 0(6.7d)

∂(ᾱχ)− ∂̄(αχ̄) = 0(6.7e)

taking place, in the identifications we made, in A0,1(M), A0(N), A0,2(N),
A0(M, iR), A1,1(M), respectively. Denote with ∆∂ = ∂∂∗+ ∂∗∂ and ∆∂̄ =
∂̄∂̄∗+∂̄∗∂̄ the laplacians for the operators ∂ and ∂̄, respectively. The system
of partial differential equations (6.7) does not have any nontrivial solution:
in order to see this, we apply the operator ∂∗ to the last equation, obtaining:

∆∂(ᾱχ)− ∂∗∂̄(αχ̄) = 0.

Using the Kähler identity ∂∗∂̄+∂̄∂∗ = 0, we get that ∂∗∂̄(αχ̄) = ∂̄∂∗(αχ̄) =
0, since we already know that ∂̄∗(ᾱχ) = 0. We are left with ∆∂(ᾱχ) =
0, that is, ᾱχ is ∆∂-harmonic. Hence it is ∆∂̄-harmonic and ∂̄(ᾱχ) = 0.
Applying now the ∂̄ operator in the first equation we get ∆∂̄(µ) = 0, which
implies ∂̄∗µ = 0. Hence ᾱχ = 0 and χ = 0. From the third equation we get
µ = 0. Therefore there are no nonzero solution to the kernel equations on
a Kählerian monopole.
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