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COMBINATORIAL AND GROUP-THEORETIC
COMPACTIFICATIONS OF BUILDINGS

by Pierre-Emmanuel CAPRACE & Jean LÉCUREUX (*)

Abstract. — Let X be a building of arbitrary type. A compactification
Csph(X) of the set Ressph(X) of spherical residues of X is introduced. We prove
that it coincides with the horofunction compactification of Ressph(X) endowed with
a natural combinatorial distance which we call the root-distance. Points of Csph(X)
admit amenable stabilisers in Aut(X) and conversely, any amenable subgroup vir-
tually fixes a point in Csph(X). In addition, it is shown that, provided Aut(X)
is transitive enough, this compactification also coincides with the group-theoretic
compactification constructed using the Chabauty topology on closed subgroups of
Aut(X). This generalises to arbitrary buildings results established by Y. Guivarc’h
and B. Rémy [20] in the Bruhat–Tits case.
Résumé. — Soit X un immeuble de type arbitraire. Nous introduisons une

compactification de l’ensemble des résidus sphériques Ressph(X) de X. Nous dé-
montrons que celle-ci coïncide avec la compactification de Busemann de Ressph(X),
lorsqu’on munit celui-ci d’une distance combinatoire naturelle apellée la distance
radicielle. Les stabilisateurs de points du bord sont moyennables ; réciproque-
ment, tout groupe moyennable d’automorphismes de X fixe un point du com-
pactifié. De plus, nous démontrons que, sous certaines conditions de transitivité
de Aut(X), cette compactification coïncide avec la compactification par la topolo-
gie de Chabauty sur les sous-groupes de Aut(X). Ceci généralise aux immeubles
arbitraires des résultats de Y. Guivarc’h et B. Rémy sur le cas d’immeubles de
Bruhat-Tits.

The best known and probably most intuitively obvious compactification
of a non-compact Riemannian symmetric spaceM is the visual compact-
ification M = M ∪ ∂∞M , whose points at infinity consist in equivalence
classes of geodesic rays at finite Hausdorff distance of one another. Follow-
ing Gromov [3], this compactification may be identified with the horofunc-
tion compactification Choro(M), whose points at infinity are Busemann
functions. This canonical identification holds in fact for any CAT(0) metric
space, see [8, Theorem II.8.13].

Keywords: Compactification, building, Chabauty topology, amenable group.
Math. classification: 20E42, 20G25, 22E20, 22F50, 51E24.
(*) The first author is an F.N.R.S. Research Associate.



620 Pierre-Emmanuel CAPRACE & Jean LÉCUREUX

Another way to approach the visual compactification of M is the follow-
ing. Using the visual map which associates to every pair of points p, q ∈M
the direction at p of the geodesic segment [p, q], it is possible to associate
to every point of M a unique element of the unit tangent ball bundle over
M . The total space of this bundle being compact, one obtains a compacti-
fication by passing to the closure of the image ofM ; this coincides with the
visual compactification M . Here again, the construction has a natural ana-
logue which makes sense in any locally compact CAT(0) space X provided
that the space of directions ΣpX at every point p ∈ X is compact. This
condition is automatically satisfied if X is geodesically complete (i.e. every
geodesic segment may be extended to a bi-infinite geodesic line, which need
not be unique) or if X has the structure of a CAT(0) cell complex. In the
latter case, each space of direction ΣpX is endowed with the structure of
a finite cell complex.
This suggests to modify the above construction of the visual compactifi-

cation as follows. Assume X is a locally finite CAT(0) cell complex. Then
the space of direction ΣpX has a cellular structure; one denotes by St(p) the
corresponding set of cells. Associating to each point its support, one obtains
a canonical map ΣpX → St(p). Pre-composing with the afore-mentioned
visual map, one obtains a map X →

∏
p∈X

St(p). The closure of this map

is called the combinatorial compactification of X. It should be noted
that the above map is not injective in general: two points with the same
support are identified.

The main purpose of this paper is to pursue this line of thoughts in the
special case of buildings of arbitrary type. Similar developments in the case
of CAT(0) cube complexes are carried out in the Appendix.
In the case of buildings, the relevant simplices are the so-called residues

of spherical type, also called spherical residues for short. The above
combinatorial compactification thus yields a compactification of the set
Ressph(X) of all spherical residues, and the above ‘visual map’ Ressph(X)→∏
σ∈Ressph(X)

St(σ) may be canonically defined in terms of the combinatorial

projection. The closure of its image is the combinatorial compactification
and will be denoted by Csph(X).
The set Ressph(X) may moreover be endowed in the canonical way with

the structure of a discrete metric space. For example, a graph structure
on Ressph(X) is obtained by declaring two residues adjacent if one is con-
tained in the other. We shall introduce a sligthly different distance, called
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COMPACTIFICATIONS OF BUILDINGS 621

the root-distance, which has the advantage that its restriction to the
chamber-set Ch(X) coincides with the gallery distance (see Section 1).
As any proper metric space, the discrete metric space Ressph(X) admits
a horofunction compactification This turns out to coincide with the
combinatorial compactification (see Theorem 3.1).
It is important to remark that the combinatorial compactification does

not coincide with the visual one. Although there are elementary ways to
establish the latter fact, strong evidence is provided by the following result
(see Theorem 6.1).

Theorem I. — Let X be a locally finite building. Then every
amenable subgroup of Aut(X) has a finite index subgroup which fixes some
point in Csph(X).
Conversely, the full stabiliser of every point of Csph(X) is a closed

amenable subgroup.

In the special case of Bruhat–Tits buildings, a similar statement was
established in [20, Theorem 33] using another compactification called the
group-theoretic compactification. The construction of the latter goes back
to an idea of Y. Guivarc’h in the case of symmetric spaces can be outlined
as follows. A symmetric space M embeds in the space of closed subgroups
of Isom(M) by attaching to each point its isotropy group. Since the space
of closed subgroups endowed with Chabauty topology is compact, one ob-
tains a compactification by passing to the closure. This yields the group-
theoretic compactification Cgp(M). This turns out to be equivariantly
isomorphic to the maximal Satake and Furstenberg compactifications (see
[19], [5]). In the case of buildings, since points with the same support have
identical stabilisers, this approach cannot offer better than a compactifica-
tion of the set Ressph(X), which generalizes the approach of [20] in which
only the set of vertices is compactified. The advantage of our construction
is that it is simpler and furthermore does not make any reference to the
automorphism group of the building.

Theorem II. — Assume that Aut(X) acts strongly transitively. The
group-theoretic compactification Cgp(X) is Aut(X)-equivariantly homeo-
morphic to the maximal combinatorial compactification Csph(X). More pre-
cisely, a sequence (Rn) of spherical residues converges to some ξ ∈ Csph(X)
if and only if the sequence of their stabilisers (GRn) converges to the locally
finite radical of Gξ in the Chabauty topology.

Recall that the locally finite radical of a locally compact group G is
the unique subgroup RadLF(G) which is (topologically) locally finite

TOME 61 (2011), FASCICULE 2



622 Pierre-Emmanuel CAPRACE & Jean LÉCUREUX

(i.e. all of whose finitely generated subgroups are relatively compact), nor-
mal and maximal for these properties. It was shown in [12] that a closed
subgroup H of Aut(X) is amenable if and only if H/RadLF(H) is virtually
Abelian.
It is shown in [20] that the group-theoretic compactifications may be

canonically identified with the polyhedral compactification constructed
by E. Landvogt in [25]. Theorem II can be viewed as an extension of this
fact to the case of arbitrary buildings.

A central tool introduced in this work to study the combinatorial com-
pactification is the notion of combinatorial sectors, which extend to the
general case the classical notion of sectors in Bruhat–Tits theory. Given a
point ξ ∈ Csph(X), we associate to every x ∈ Ressph(X) as sector Q(x, ξ)
based at x and pointing to ξ (see Section 2.6). Every sector is contained in
an apartment; the key property is that the collection of all sectors pointing
to ξ ∈ Csph(X) is filtering; in other words any two sectors pointing to ξ
contain a common subsector (see Proposition 2.30).
We emphasize that all of our considerations are valid for arbitrary build-

ings and are of elementary nature; in particular, no use is made of the
theory of algebraic groups. Moreover, as it will appear in the core of the
paper, most of the results remain valid for buildings which are not neces-
sarily locally finite (in that case, one uses the term bordification instead of
compactification).

Another motiviation is that the tools introduced here will be used in a
subsequent paper to prove the amenability of the action of the automor-
phism group of a building on the combinatorial boundary of the building
(See [2] for a definition of amenable actions). This fact is useful in the
study of C∗-algebras associated to such group and in bounded cohomol-
ogy. It could also have applications to rigidity results.

The paper is organised as follows. In a first section we introduce and
study the properties of a combinatorial distance on Ressph(X) which we
call the root-distance. The next section is devoted to the combinatorial
compactification. Combinatorial sectors are introduced and used to prove
that every point of Csph(X) can be attained as the limit of some sequence
of residues all contained in a common apartment. The third section is de-
voted to the horofunction compactification and proves that in the case of
Ressph(X) the combinatorial and horofunction compactifications coincide.
Chabauty topology is studied in the next section, whose main goal is to
prove Theorem II. The next section studies the relationship between the
visual boundary and the combinatorial compactification. The main results
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COMPACTIFICATIONS OF BUILDINGS 623

are a hierarchical decomposition of the combinatorial compactification
(Theorem 5.5) and a description of Csph(X) as the quotient of the refined
visual boundary of X which is a refined version of the visual boundary
introduced in [12] for arbitrary CAT(0) spaces. These results are used in
the final section which proves Theorem I. Finally, the Appendix outlines
similar results in the case of finite-dimensional CAT(0) cube complexes.

Acknowledgments. The second author is very grateful to Bertrand
Rémy for his constant support. Thanks are also due to the anonymous
referee for a number of useful comments.

1. The root-distance on spherical residues

1.1. Preliminaries

Throughout this paper we let X be an arbitrary building of finite rank
andG be its full automorphism group. We denote by Ch(X) (resp. Res1(X),
Ressph(X)) the set of chambers (resp. panels, spherical residues) of X.
Given a residue σ of X, the star of σ, denoted by St(σ), is the set of all
residues containing σ in their boundaries, see [30, §1.1]. We recall that, in
the chamber system approach to buildings, which is dual to the simplicial
approach, a residue is viewed as a set of chambers and the star is then
nothing but the set of all residues contained in σ. This has no influence on
the subsequent considerations and the reader should feel free to adopt the
point of view which he/she is most comfortable with.

1.2. The root-distance

Our first task is to introduce a combinatorial distance on the set
Ressph(X) of spherical residues. A natural way to obtain such a distance
is by considering the incidence graph of spherical residues, namely the
graph with vertex set Ressph(X) where two residues are declared to be ad-
jacent if one is contained in the other. However, the disadvantage of this
graph is that the natural embedding of Ch(X) in Ressph(X) is not isomet-
ric, when Ch(X) is endowed with the gallery distance. This causes some
technical difficulties which we shall avoid by introducing an alternative
distance on Ressph(X).
Given R1, R2 ∈ Ressph(X), let A be an apartment containing them both.

We denote by ΦA(R1, R2) the set of all half-apartments of A containing R1

TOME 61 (2011), FASCICULE 2



624 Pierre-Emmanuel CAPRACE & Jean LÉCUREUX

but not R2. This set is empty if and only if R1 is contained in R2, since every
residue coincides with the intersection of all half-apartments containing it.
Notice moreover that the cardinality of the sets ΦA(R1, R2) and ΦA(R2, R1)
is independent of the choice of A. We define the root-distance d(R1, R2)
between R1 and R2 to be half of the sum of their cardinalities. In symbols:

d(R1, R2) = 1
2 |ΦA(R1, R2)|+ 1

2 |ΦA(R2, R1)|.

Clearly the restriction of the root-distance to the chamber set coincides
with the gallery distance. However, checking that the root-distance in-
deed defines a metric on Ressph(X) requires some argument (see Propo-
sition 1.2). Before collecting this together with some other basic facts on
the root distance, we introduce some additional terminology.
A set of spherical residues R ⊂ Ressph(X) is called closed if for all

R1, R2 ∈ Ressph(X), we have

R1 ⊂ R2 ∈ R ⇒ R1 ∈ R.

It is called convex if it is closed and if for all R1, R2 ∈ R, we have
projR1(R2) ∈ R, where proj denotes the combinatorial projection (see
[30, §3.19]) or [1, Section 4.9]). We recall that by definition we have

projR1(R2) =
⋂
{projR1(C) | C ∈ Ch(X) ∩ St(R2)},

which allows one to recover the combinatorial projections amongst arbi-
trary residues from projections of chambers. Recall that the projection of
a chamber C on a spherical residue R is defined as the unique chamber in
R which is at minimal distance from C.
Since any intersection of closed (resp. convex) subsets is closed (resp.

convex) and since the whole set Ressph(X) is so, it makes sense to consider
the closure (resp. the convex hull) of a subset R ⊂ Ressph(X), which
we denote by R (resp. Conv(R)). The convex hull of two residues R1, R2
is denoted by Conv(R1, R2). Given an apartment A containing R1 ∪ R2,
the convex hull Conv(R1, R2) coincides with the intersection of all half-
apartments of A containing R1 ∪ R2. The following basic fact provides a
convenient characterisation of the combinatorial projection:

Lemma 1.1. — Given two (spherical) residues R, T , the combinatorial
projection projR(T ) coincides with the unique maximal residue containing
R and contained in Conv(R, T ).

‘Maximal’ should be understood as ‘of maximal possible dimension’, i.e.
of minimal possible rank.

ANNALES DE L’INSTITUT FOURIER



COMPACTIFICATIONS OF BUILDINGS 625

Proof. — Let A be an apartment containing Conv(R, T ) and σ1, σ2 ∈
Conv(R, T ) be two maximal residues containing R. Assume σ1 and σ2 are
distinct. Then there is a half-apartment α of A containing one but not
the other. Without loss of generality σ1 ⊂ α but σ2 6⊂ α. Since R ⊂
σ1 ∩ σ2 we have R ⊂ ∂α. Therefore, if T ⊂ α, then Conv(R, T ) ⊂ α, which
contradicts σ2 6⊂ α. Thus T meets in the interior of −α. In particular, so
does projσ1(T ). Since the latter is a spherical residue containing σ1 ⊃ R,
we have σ1 = projσ1(T ), which contradicts the fact that σ1 is contained
in α.

This confirms that there is a unique maximal residue σ ∈ Conv(R, T )
containing R. Since projR(T ) ⊃ R, we have thus projR(T ) ⊂ σ. If the
latter inclusion were proper, then there would exist some root β containing
projR(T ) but not σ. In particular R and projR(T ) are contained in the wall
∂β. This implies that T is also contained in ∂β. Therefore so is Conv(R, T )
since walls are convex. This contradicts σ 6⊂ β. �

We next introduce the interval determined by two spherical residues
R1, R2 as the set [R1, R2] consisting of those σ ∈ Ressph(X) such that
d(R1, R2) = d(R1, σ) + d(σ,R2).

Proposition 1.2. — We have the following.
(i) The root-distance turns the set Ressph(X) into a (discrete) metric

space.
(ii) Retractions on apartments do not increase the root-distance.
(iii) For all R1, R2 ∈ Ressph(X), we have Conv(R1, R2) = [R1, R2].
(iv) A set R ⊂ Ressph(X) is convex if and only if it is closed and for all

R1, R2 ∈ R, the interval [R1, R2] is entirely contained in R.

Before undertaking the proof, we record the following subsidiary fact
which will be helpful in many arguments using induction on the root-
distance.

Lemma 1.3. — Let R1, R2 ∈ Ressph(X). Then the interval [R1, R2] co-
incides with the pair {R1, R2} if and only if R1 ⊂ R2 or R2 ⊂ R1 and no
residue other than R1 or R2 is sandwiched between them.

Proof. — The ‘if’ part is straightforward. Moreover, if R1 ⊂ R2 and R
is a residue with R1 ⊂ R ⊂ R2, then R ∈ [R1, R2]. Therefore, it suffices to
show that if R1 ∩R2 is different from R1 or R2, then ]R1, R2[ := [R1, R2] \
{R1, R2} is non-empty.

Consider the CAT(0) realisation |X| of X (see [15]). Recall that the
support of a point x ∈ |X| is the unique minimal (i.e. lowest dimensional)
spherical residue R such that x ∈ |R|.

TOME 61 (2011), FASCICULE 2



626 Pierre-Emmanuel CAPRACE & Jean LÉCUREUX

Assume first that there exist points p1 ∈ |R2| and p2 ∈ |R2| such that
pi is supported by Ri and that the geodesic segment [p1, p2] is not entirely
contained in |R1| ∪ |R2|. Let then x be a point of [p1, p2] \ (|R1| ∪ |R2|) and
let R denote the spherical residue supporting x. Clearly R 6= R1, R2. We
claim that R ∈ [R1, R2].
Let A be an apartment containing R1 and R2. Then R ⊂ A. Since any

root either contains R or does not, we have ΦA(R1, R2) ⊂ ΦA(R1, R) ∪
ΦA(R,R2) and similarly with R1 and R2 interchanged. Thus it suffices to
show that every root α containing R but not R2 also contains R1 and vice-
versa. But if α does not contain R1, it does not contain p1 since p1 lies in
the interior of R1. Thus the wall ∂α does not separate p1 from p2, which
contradicts the fact that x ∈ |R| ⊂ |α|. This proves the claim.

Assume in a second case that for all points p1, p2 respectively supported
by R1, R2, the geodesic segment [p1, p2] lies entirely in |R1| ∪ |R2|. Then
|R1| ∩ |R2| is non-empty and R := R1 ∩ R2 is thus a non-empty spherical
residue. By the above, the residue R is different from R1 and R2. We claim
that R ∈ [R1, R2]. Let A be an apartment containing R1 and R2; thus
R ⊂ A. As before, it suffices to show that every root α of A containing
R but not R1 also contains R2. If it didn’t, then −α would contain two
points p1, p2 respectively supported by R1, R2. In particular the geodesic
segment [p1, p2] is entirely contained in the interior of −α and, hence, it
avoids |R| ⊂ α. This is absurd since |R| = |R1| ∩ |R2|. �

Proof of Proposition 1.2. — We start with the proof of (ii). Let ρ be a re-
traction to some apartment A and let R1, R2 ∈ Ressph(X). We need to show
that d(ρ(R1), ρ(R2)) 6 d(R1, R2). We work by induction on d(R1, R2), the
result being trivial if R1 = R2. Notice more generally that if R1 ⊂ R2,
then the restriction of ρ to the pair {R1, R2} is isometric, in which case the
desired inequality holds trivially. We may therefore assume that R1 and
R2 are not containing in one another. By Lemma 1.3, this implies that the
open interval ]R1, R2[ is non-empty. Let R ∈ ]R1, R2[. Using the induction
hypothesis, we deduce

d(R1, R2) = d(R1, R) + d(R,R2)
> d(ρ(R1), ρ(R)) + d(ρ(R), ρ(R2))
> d(ρ(R1), ρ(R2)),

where the last inequality follows since any root of A either contains R or
does not, whence ΦA(R1, R2) ⊂ ΦA(R1, R)∪ΦA(R,R2) and similarly with
R1 and R2 interchanged.
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COMPACTIFICATIONS OF BUILDINGS 627

(i) The only non-trivial point to check is the triangle inequality. We have
just observed along the way that this inequality holds for triple of residues
contained in a common apartment. The general case follows, using the fact
that retractions do not increase distances.

(iii) We first use induction on d(R1, R2) to prove that

[R1, R2] ⊂ Conv(R1, R2).

Let thus R ∈ [R1, R2]. We shall show by induction on d(R,R2) that
R ∈ Conv(R1, R2).
Assume first that ]R,R2[ contains some spherical residue T . Then

R ∈ [R1, T ] ⊂ Conv(R1, T ) ⊂ Conv(R1, R2),

where the first inclusion follows from the induction on d(R1, R2) and the
second from the induction on d(R,R2) > d(T,R2).

Assume now that ]R,R2[ is empty. If R ⊂ R2, then obviously R ∈
Conv(R1, R2). In view of Lemma 1.3 it only remains to deal with the case
R2 ( R. In particular d(R1, R) < d(R1, R2), whence [R1, R] ⊂ Conv(R1, R)
by induction. Since Conv(R1, R) is closed, it contains R2 and we deduce
that some apartment A contains R1 ∪ R2 ∪ R. Finally we observe that
Conv(R1, R) = Conv(R1, R2), since the fact that R ∈ [R1, R2] implies
that any root of A which contains R but not R2 also contains R1. Thus
R ∈ Conv(R1, R2), which confirms the claim that [R1, R2] ⊂ Conv(R1, R2).
In particular [R1, R2] ⊂ Conv(R1, R2) since convex sets are closed.

Let now x ∈ Conv(R1, R2) and pick a maximal spherical residue R ∈
Conv(R1, R2) containing x. We claim that R ∈ [R1, R2]. Let thus α be a
root containing R but neither R2 in some apartment A containing R1∪R2.
If R1 6⊂ α, then Conv(R1, R2) ⊂ −α whence R ⊂ ∂α. This implies that
projR(R2) is strictly contained in −α, thereby contradicting the maximality
of R. This shows that every root containing R but not R2 also contains
R1. A similar argument holds with R1 and R2 interchanged. This proves
R ∈ [R1, R2] as claimed. Thus x ∈ [R1, R2], which finishes the proof of (iii).

(iv) follows from (iii) since a set R ⊂ Ressph(X) is convex if and only if it
is closed and for all R1, R2 ∈ R, we have Conv(R1, R2) ⊂ Ressph(X). �

The following shows that the combinatorial projection of residues is
canonically determined by the root-distance. In the special case of pro-
jections of chambers, the corresponding statements are well known.

Corollary 1.4. — For all R, T ∈ Ressph(X), the projection projR(T )
coincides with the unique maximal element of [R, T ] which contains R. It

TOME 61 (2011), FASCICULE 2



628 Pierre-Emmanuel CAPRACE & Jean LÉCUREUX

is also the unique spherical residue π ⊃ R such that

d(π, T ) = min{d(σ, T ) | σ ∈ Ressph(X), σ ⊃ R}.

Proof. — By Proposition 1.2(iii), the projection projR(T ) is contained in
some spherical residue π ∈ [R, T ]. In particular π is contained in Conv(R, T )
and contains R. Therefore we have π = projR(T ) by Lemma 1.1. Thus
projR(T ) is contained in the interval [R, T ] and the first assertion of the
Corollary follows from Lemma 1.1 since [R, T ] ⊂ Conv(R, T ) by Proposi-
tion 1.2(iii).
The second assertion follows from arguments in the same vein than those

which have been used extensively in this section. The details are left to the
reader. �

2. Combinatorial compactifications

2.1. Definition

The key ingredient for the construction of the combinatorial compactifi-
cations is the combinatorial projection. Given a residue σ, this projec-
tion is the map projσ : Ch(X) → St(σ) which associates to a chamber C
the chamber of St(σ) which is nearest to C, see [1, §4.9]. As recalled in the
previous section, the combinatorial projection may be extended to a map
defined on the set of all residues of X. For our purposes, we shall focus on
spherical residues and view the combinatorial projection as a map

projσ : Ressph(X)→ St(σ).

This allows one to define two maps

πCh : Ch(X)→
∏

σ∈Res1(X)

St(σ) : C 7→
(
σ 7→ projσ(C)

)
and

πRes : Ressph(X)→
∏

σ∈Ressph(X)

St(σ) : R 7→
(
σ 7→ projσ(R)

)
.

The above products are endowed with the product topology, where each
star is a discrete set of residues. This allows one to consider the closure of
the image of the above maps. In symbols, this yields the following defini-
tions:

C1(X) = πCh(Ch(X)) and Csph(X) = πRes(Ressph(X)).

ANNALES DE L’INSTITUT FOURIER
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It is quite natural to consider the space πRes(Ch(X)) as well; in fact, we
shall see in Proposition 2.12 below that this is equivariantly homeomorphic
to C1(X). We shall also see that C1(X) may be identified to a closed subset
of Csph(X).

If the building X is locally finite, then the star of each spherical residue
is finite and hence the spaces C1(X) and Csph(X) are then compact, and
even metrizable since Ressph(X) is at most countable. The Aut(X)-action
on X extends in a canonical way to actions on C1(X) and Csph(X) by
homeomorphisms; the action induced by an element g ∈ Aut(X) is given
by

g : Csph(X)→ Csph(X) : f 7→
(
σ 7→ gf(g−1σ)

)
.

Definition 2.1. — The space C1(X) and Csph(X) are respectively
called the minimal and the maximal combinatorial bordifications
of X. When the building X is locally finite, we shall use instead the term
compactification.

This terminology is justified by the following.

Proposition 2.2. — The maps πCh and πRes are G-equivariant and
injective; moreover, they have discrete images. In particular πCh and πRes
are homeomorphisms onto their images.

Proof. — We argue only with πCh, the case of πRes being similar. The
equivariance is immediate. We focus on the injectivity. Let C and C ′ be
distinct chambers in X. There exists an apartment, say A, containing them
both. These chambers are separated in A by some wall H, so that the
projections of C and C ′ on every panel in H cannot coincide. This implies
that πCh(C) 6= πCh(C ′) as desired.
Let now (Cn)n>0 be a sequence of chambers such that the sequence

(πCh(Cn)) converges to πCh(C) for some C ∈ Ch(X). We have to show that
Cn = C for n large enough. Suppose this is not the case. Upon extracting
a subsequence, we may assume that Cn 6= C for all n. Then there is some
panel σn in the boundary of C such that projσn(Cn) 6= C. Up to a further
extraction, we may assume that σn is independent of n and denote by σ
the common value. Thus, we have projσ(Cn) 6= C, which contradicts the
fact that (πCh(Cn)) converges to πCh(C). �

In the case when X is locally finite, Proposition 2.2 implies that C1(X)
is indeed a compactification of the set of chambers of X. In particular
the discrete set πCh(Ch(X)) is open in C1(X), which is thus indeed a
compactification of Ch(X) in the locally finite case; a similar fact of course
holds for Csph(X).
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The elements of C1(X) and Csph(X) are considered as functions which
associate to every panel (resp. residue) a chamber (resp. residue) in the
star of that panel (resp. residue). In view of Proposition 2.2 we may – and
shall – identify Ch(X) and Ressph(X) to subsets of C1(X) and Csph(X). In
particular, it makes sense to say that a sequence of chambers converges to
a function in C1(X).

We now take a closer look at the minimal bordification. The special case
of a single apartment is straightforward:

Lemma 2.3. — Let f ∈ Csph(X) and let (Rn) and (Tn) be sequences
of spherical residues in a common apartment A such that (πRes(Rn)) and
(πRes(Tn)) both converge to f . Then for every half-apartment α in A, there
is some N ∈ N such that either Rn∪Tn ⊂ α for all n > N , or Rn∪Tn ⊂ −α
for all n > N , or Rn ∪ Tn ⊂ ∂α for all n > N .
Conversely, let (Rn) be a sequence of spherical residues of A such that for

every half-apartment α in A, there is some N ∈ N such that either Rn ⊂ α
for all n > N , or Rn ⊂ −α for all n > N , or Rn ⊂ ∂α for all n > N . Then
(Rn) converges in Csph(A).
The same statements hold for sequences of chambers of A and a point

f ∈ C1(X).

Proof. — We deal only with the maximal bordification, the case of C1(X)
being similar but easier.
Let H be a wall of A, let σ ⊂ H and C,C ′ be the two chambers of A

containing σ. For any spherical residue R of A, the projection projσ(R)
coincides with C (resp. C ′) if and only if R lies on the same side of H as C
(resp. C ′). It coincides with σ itself if and only if R lies on H. The result
now follows from the very definition of the convergence in Csph(X).
Let conversely (Rn) be a sequence of spherical residues of A which even-

tually remain on one side of every wall of A. Let R ∈ Ressph(A). Let Φ
denote the set of all roots α such that R ⊂ ∂α and (Rn) eventually pen-
etrates and remains in α. Since Φ is finite, there is some N such that
Rn ⊂

⋂
α∈Φ

α for all n > N . In particular projR(Rn) ⊂
⋂
α∈Φ

α for all n > N .

It follows from Lemma 1.1 that projR(Rn) coincides with the unique max-
imal spherical residue contained in

⋂
α∈Φ

α and containing R. In particular,

this is independent of n > N . Thus (Rn) indeed converges in Csph(A). �
The subset of C1(X) consisting of limits of sequences of chambers of

an apartment A is denoted by C1(A), and Csph(A) is defined analogously.
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One verifies easily that this is consistent with the fact that C1(A) (resp.
Csph(A)) also denotes the minimal (resp. maximal) bordification of the
thin building A. However, it is not clear a priori that for every f ∈ C1(X)
belongs to C1(A) for some apartment. Nevertheless, it turns out that this
is indeed the case:

Proposition 2.4. — The set C1(X) is the union of C1(A) taken over
all apartments A. Similarly Csph(X) is covered by the union of Csph(A)
over all apartments A.

This proposition is crucial in understanding the combinatorial compacti-
fications, since it allows one to reduce many problems to the thin case. The
proof requires some preparation and is thus postponed to §2.6

Example 2.5. — Trees without leaves are buildings of type D∞. Panels
in these trees are vertices and a sequence of chambers (i.e. edges) (xn)
converges in the minimal bordification if the projection of xn on every
vertex is eventually constant. It is easy to check that C1(X) is isomorphic
to the usual bordification of the tree, that is, to its set of ends.
It is also possible to view a homogeneous tree of valency r > 1 as the

Coxeter complex associated to the group W = 〈s1, . . . , sr | s2
1, . . . , s

2
r〉. The

panels are then the middles of the edges, a chamber is a vertex with all
the half-edges which are incident to it. From this viewpoint as well, the
combinatorial bordification coincides with the visual one.

Example 2.6. — (This example may be compared to [20, 6.3.1]) Let us
consider an apartment A of type Ã2. It is a Euclidean plane, tessellated
by equilateral triangles. We know by Lemma 2.3 that we can characterize
the points ξ ∈ U(A) by the sets of roots Φ(ξ) associated to them. We may
distinguish several types of boundary points. Let us choose some root basis
{a1, a2} in the vectorial system of roots. Then there is a point ξ ∈ U(A)
defined by Φ(ξ) = {a1 + k, a2 + l| k, l ∈ Z}. There are six such points,
which correspond to a choice of positive roots, i.e. to a Weyl chamber in
A. The sequences of (affine) chambers that converge to these points are
the sequences that eventually stay in a given sector, but whose distances
to each of the two walls in the boundary of this sector tend to infinity.
There is also another category of boundary points, which corresponds

to sequence of chambers that stay in a given sector, but stay at bounded
distance of one of the two walls defining this sector. With a choice of a1
and a2 as before, these are points associated to set of roots of the form
{a1 + k, a2 + l|k, l ∈ Z, k 6 k0}. As k0 varies, we get a ‘line’ of such points,
and there are six such lines.
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When X is a building of type Ã2, by Proposition 2.4, we can always
write a point in the boundary of X as a point in the boundary of some
apartment of X. Thus, the previous description applies to general points
of the bordification.

Example 2.7. — Let W be a Fuchsian Coxeter group, that is, whose
Coxeter complex is a tessellation of the hyperbolic plane. Assume the ac-
tion ofW on the hyperbolic plane is cocompact. As in the previous example
we shall content ourselves with a description of the combinatorial compact-
ification of some apartment A. In order to do so, we shall use the visual
boundary ∂∞A ' S1. If there is a point ξ of this boundary towards which
no wall is pointing, then we can associate to it a point of the combinatorial
compactification, just by taking the roots that contain a sequence of points
converging to ξ. If we have a point of the boundary towards which a wall is
pointing, we associate to it 2 points in C1(A), whose positions are defined
in relation to the roots which have this wall as a boundary.
Moreover, let us remark that the set of limit points of walls is dense in

the boundary of the hyperbolic plane. To prove that, it is enough to check
that the action of W on S1 is minimal (all its orbits are dense). Using [18,
Corollary 26], the action of W on its limit set L(W ) is minimal, and by
[23, Theorem 4.5.2], the limit set L(W ) is in fact S1.
Therefore, if ξ and ξ′ are two different points on the circle at infinity,

then ξ and ξ′ are separated by some wall. In particular, we see that the
construction we have just made always yields different points. Therefore,
the compactification C1(A) is a refinement of the usual boundary.

Example 2.8. — If X = X1 × X2 is a product of buildings, then a
chamber of X is just the product of a chamber in X1 and a chamber in X2,
and the projection on such a chamber is just the product of the projections
in X1 and X2. Therefore, the combinatorial bordification Csph(X) is the
product Csph(X1)× Csph(X2).

2.2. Projecting from infinity

In this section, we show that any function f ∈ C1(X) admits a projection
on every spherical residue of X. This allows us to define the embedding of
C1(X) into Csph(X) alluded to above.
Let thus ξ ∈ C1(X) and R be any residue. Recall that R is a building

[27, Theorem 3.5]. We define the projection of ξ to R, denoted projR(ξ),
to be the restriction of ξ to Res1(R). In the special case when R is a panel,
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the set Res1(R) is a singleton and the function projR(ξ) may therefore be
identified with a chamber which coincides with ξ(R).
Similarly, given ξ ∈ Csph(X) we define projR(ξ) as the restriction of ξ to

Ressph(R).
The next statement ensures that the definition of projR is meaningful.

Lemma 2.9. — Let (Cn) be a sequence of chambers converging to ξ ∈
C1(X) and let R be a residue inX. The sequence of projections (projR(Cn))
converges to an element projR(ξ) ∈

∏
σ∈Res1(R)

St(σ). In particular projR(ξ)

is an element of C1(R).
Similarly, any sequence (Rn) converging to some η ∈ Csph(X) yields a

sequence (projR(Rn)) which converges to some element of Csph(R) which
is denoted by projR(η).

Proof. — We focus on the minimal compactification; the maximal one is
similar.

It is enough to prove the very first point. By definition of the convergence
in C1(X), for every panel σ ⊃ R, there exists some integer N depending
on σ such that for n > N , projσ(Cn) = ξ(σ). Moreover we have

projR(projσ(Cn)) = projR(ξ(σ)) = ξ(σ).

Now projσ(Cn) coincides with projσ(projR(Cn)). Hence, for n > N , we
have

projσ(projR(Cn)) = ξ(σ),
which is equivalent to saying that (projR(Cn)) converges to projR(ξ). �

In Lemma 2.9, if the residue R is spherical then for any ξ ∈ C1(X), the
projection projR(ξ) may be identified with a chamber of R. Similarly, for
any η ∈ Csph(X), the projection projR(η) may be identified with a residue
in St(R).

Let now C be a chamber and ξ be a point in the boundary of C1(X). As
ξ is not equal to C, there exists some panel in the boundary of C on which
the projection of ξ is different from C. Let I be the set of all such panels,
and consider the residue R of type I containing C.

Lemma 2.10. — The residue R is spherical and projR(ξ) is a chamber
opposite C in R.

Proof. — Let (Cn) be a sequence converging to ξ. By Lemma 2.9,
(projR(Cn)) converges to projR(ξ). Therefore, the projection of projR(Cn)
on the panels adjacent to Cn is eventually the same as the projection of
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projR(ξ), that is, of ξ. In other words, the projection of Cn on every panel of
R in the boundary of C is always different from C. By [10, IV.6, Lemma 3],
this implies that R is spherical and that projR(Cn) is opposite to C. As
projR(Cn) converges to projR(ξ), this implies that projR(ξ) is opposite to
C in R. �

Definition 2.11. — The residue R defined as above is called the resid-
ual projection of ξ on C.

Proposition 2.12. — There is a G-equivariant continuous injective
map C1(X) → Csph(X). Its image coincides with the closure of Ch(X)
in Csph(X).

Proof. — As pointed out before, the set Ressph(X) may be identified
with a subset of Csph(X) via the map πRes. In particular we may view
Ch(X) as a subset of Csph(X). Projections to residues allow one to extend
this inclusion to a well defined map C1(X)→ Csph(X). The fact that it is
injective and continuous is straightforward to check; the details are left to
the reader. �

In view of this Proposition, we may identify C1(X) to a closed subset of
Csph(X). The fact that C1(X)∩Ressph(X) coincides with Ch(X) motivates
the following definition.

Definition 2.13. — A point of Csph(X) which belongs to C1(X) is
called a chamber. If it does not belong to Ch(X), we say that it is a
chamber at infinity.

2.3. Extending the notion of sectors to arbitrary buildings

The notion of sectors is crucial in analysing the structure of Euclidean
buildings. In this section we propose a generalisation of this notion to ar-
bitrary buildings. This will turn out to be a crucial tool for the study of
the combinatorial bordifications.

Let x ∈ Ressph(X) be a spherical residue and (Rn) be a sequence of
spherical residues converging to some ξ ∈ Csph(X). In order to simplify the
notation, we shall denote the sequence (Rn) by R. For any integer k > 0
we set

Qk =
⋂
n>k

Conv(x,Rn)

and
Q(x,R) =

⋃
k>0

Qk.
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Since Qk is contained in an apartment and since Qk ⊂ Qk+1 for all
k, it follows from standard arguments that Q(x,R) is contained in some
apartment of X (compare [31, §3.7.4] or [27, Theorem 3.6]).

Remark 2.14. — Retain the same notation as before and let y be a
spherical residue. If y ⊂ Q(x,R), then we have Q(y,R) ⊂ Q(x,R).

Proposition 2.15. — Let (Rn) = R be a sequence of spherical residues
converging to ξ ∈ Csph(X) and let x ∈ Ressph(X).

(i) The set Q(x,R) only depends on x and ξ, and not on the se-
quence R.

(ii) Q(x,R) may be characterised as the smallest subcomplex P of X
containing x and such that if R is a spherical residue in P , then for
every σ ∈ St(R), the projection projσ(ξ) is again in P .

Proof. — Clearly (i) is a consequence of (ii).
Set Q := Q(x,R) and define Q′ to be the ξ-convex hull of x. By defini-

tion, this means that Q′ is the minimal set of spherical residues satisfying
the following three conditions:

• x ∈ Q′.
• Q′ is closed.
• For any spherical residue σ ⊂ Q′ we have projσ(ξ) ⊂ Q′.

We have to show that Q = Q′. To this end, let V denote the collection of all
subsets of Ressph(X) satisfying the above three conditions. Thus Q′ =

⋂
V.

By definition, for each k > 0 the subcomplex Qk is convex, hence closed,
and contains x. Therefore the same holds true for Q. We claim that Q ∈
V. Indeed, for any σ ∈ Ressph(X) the projection projσ(ξ) coincides with
projσ(Rn) for n large enough (see Lemma 2.9). Therefore, for any σ ∈
Q there exists a sufficiently large k such that projσ(ξ) = projσ(Rn) ⊂
Conv(x,Rn) for all n > k. Thus projσ(ξ) ⊂ Qk ⊂ Q, which confirms that
Q ∈ V. In particular we deduce that Q′ ⊂ Q.

Let now R be a spherical residue in Q. We shall show by induction on
the root-distance of R to x that R ⊂ Q′.
Assume first that x ⊃ R. Then R ⊂ Q′ since Q′ is closed and contains

x. Assume next that x ⊂ R. As R ∈ Q, we have R ⊂ Conv(x,Rn) for
any n large enough. Since projx(Rn) is the largest residue contained in
Conv(x,Rn) and containing x (see Lemma 1.1), we have R ⊂ projx(Rn).
It follows that R ∈ Q′ since Q′ is closed and since for large n we have
projx(Rn) = projx(ξ) ∈ Q′.
In view of Lemma 1.3, we may now assume that the interval ]x,R[ is non-

empty and contains some spherical residue x′. By induction x′ ∈ Q′. Let n

TOME 61 (2011), FASCICULE 2



636 Pierre-Emmanuel CAPRACE & Jean LÉCUREUX

be large enough so thatR ∈ Conv(x,Rn). We have x′ ∈ [x,R] ⊂ Conv(x,R)
by Proposition 1.2(iii). Thus, in an apartment containing Conv(x,Rn),
any root containing x and R also contains x′. One deduces that R ∈
Conv(x′, Rn) for all large n. In particular R ∈ Q(x′, R). By induction,
we deduce that R belongs to the ξ-convex hull of x′, which we denote by
Q′(x′). Since x′ ∈ Q′, we have Q′(x′) ⊂ Q′ whence R ∈ Q′ as desired. �

Proposition 2.15 shows that Q(x,R) depends only on ξ = limR. It there-
fore makes sense to write Q(x, ξ) instead of Q(x,R).

Definition 2.16. — The set Q(x, ξ) is called the combinatorial sec-
tor, or simply the sector, pointing towards ξ and based at x.

Remark 2.17. — In the affine case, sectors in the classical sense are also
combinatorial sectors in the sense of the preceding definition (see exam-
ple 2.21). However, the converse is not true in general.

The following shows that the sector Q(x, ξ) = Q(x, (Rn)) should be
thought of as the pointwise limit of Conv(x,Rn) as n tends to infinity:

Corollary 2.18. — Let x ∈ Ressph(X) and (Rn) be a sequence of
spherical residues converging to some ξ ∈ Csph(X). For any finite subset
F ⊂ Ressph(X) there is someN > 0 such that for any n > N , the respective
intersections of the sets Q(x, ξ) and Conv(x,Rn) with F coincide.

Proof. — It suffices to show that for each y ∈ F , either y ⊂ Conv(x,Rn)
for all large n, or y 6⊂ Conv(x,Rn) for all large n.

If y ⊂ Q(x, ξ), this follows at once from the definition of Q(x, ξ).
Assume now that y is not contained in Q(x, ξ). We claim that there

is some N > 0 such that y 6⊂ Conv(x,Rn) for all n > N . Indeed, in the
contrary case for each n > 0 there is some ϕ(n) > n such that y is contained
in Conv(x,Rϕ(n)). Therefore we have y ⊂

⋂
n>0

Conv(x,Rϕ(n)). Since (Rϕ(n))

converges to ξ it follows from Proposition 2.15 that Q(x, (Rϕ(n))) = Q(x, ξ)
and we deduce that y ⊂ Q(x, ξ), which is absurd. �

The following interpretation of the projection from infinity shows in par-
ticular that for all x ∈ Ressph(X) and ξ ∈ Csph(X), the projection projx(ξ)
is canonically determined by the sector Q(x, ξ), viewed as a set of spherical
residues.

Corollary 2.19. — For all x ∈ Ressph(X) and ξ ∈ Csph(X), the pro-
jection projx(ξ) coincides with the unique maximal residue containing x
and contained in Q(x, ξ).
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Proof. — Follows from Lemma 1.1 and Corollary 2.18. �

Example 2.20. — Let X be a tree. It has been seen in example 2.5 that
C1(X) coincides with the visual compactification X ∪ ∂∞X. If ξ ∈ ∂∞X,
then Q(x, ξ) is the half-line starting from x and pointing towards ξ.

Example 2.21. — Let X be a building of type Ã2. As explained in ex-
ample 2.6, there are several type of boundary points. The sectors pointing
towards different types of boundary points have different shapes. Further-
more, there are two possible orientations for chambers, which give also
different shapes to the sectors.
Let ξ1 be the point of the boundary which corresponds, in a given apart-

ment A, to a set of roots ΦA(ξ1) = {a1 + k, a2 + l|k, l ∈ Z}. Let x be a
chamber in A. To determine Q(x, ξ1), we have to consider the roots in the
direction of a1 and a2 that contain x. We then have two possibilities for
Q(x, ξ1), according to the orientation of x. If x is oriented ‘towards ξ1’, then
Q(x, ξ1) is the classical sector based at x and pointing towards ξ1. Other-
wise, Q(x, ξ1) is a troncated sector. These two possibilities are described
on Figure 2.1.

.

x

y

a2 + l

a1 + k

.

Figure 2.1. Q(x, ξ1) and Q(y, ξ1), where Φ(ξ1) = {a1 + k, a2 + l|k, l ∈ Z}
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Now, let ξ2 be the point in the boundary of A determined by ΦA(ξ2) =
{a1 + k, a2 + l|k, l ∈ Z, k 6 k0}. The sector Q(x, ξ2) is determined in the
same way as Q(x, ξ1), but we now have to stop at the root a1 + k0. Thus,
we get a ‘half-strip’ which goes from x, stops at the root a1 + k0, and
is in the direction of a2. This corresponds to what Guy Rousseau called
“cheminée” (or chimney in English) [28]. Once again, the precise shape of
this half-strip depends on the orientation of x. These two possibilites are
described on Figure 2.2.

.

x

y

a2 + l

a1 + k0

.

Figure 2.2. Q(x, ξ2) and Q(y, ξ2), where Φ(ξ2) = {a1 + k, a2 + l|k, l ∈
Z, k 6 k0}

2.4. Sectors and half-apartments

The use of sectors will eventually allow us to study the combinatorial
compactifications of X by looking at one apartment at a time. The first
main goal is to obtain a proof of Proposition 2.4. Not surprisingly, retrac-
tions provide an important tool.
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Lemma 2.22. — Let x ∈ Ch(X) and (Rn) be a sequence of spherical
residues converging to some ξ ∈ Csph(X). Let A be an apartment containing
the sector Q(x, ξ). Then we have

Q(x, ξ) =
⋃
k>0

⋂
n>k

Conv(x, ρA,x(Rn)).

Proof. — Let Qk =
⋂
n>k

Conv(x,Rn), Q′k =
⋂
n>k

Conv(x, ρA,x(Rn)), Q =

Q(x, ξ) =
⋃
Qk and Q′ =

⋃
Q′k. We must show that Q = Q′. Since these

are both (closed and) convex and contain the chamber x, it suffices to show
that Ch(Q) = Ch(Q′).

Fix k > 0. Let C ∈ Ch(Qk) and let n > k. Then C belongs to a minimal
gallery from x to a chamber containing Rn. Since C ⊂ A, the retraction
ρA,x fixes C and hence C belongs to a minimal gallery from x to a chamber
containing ρA,x(Rn). This shows that Ch(Qk) ⊂ Ch(Q′k). Therefore we
have Ch(Q) ⊂ Ch(Q′).

Suppose for a contradiction that there exists some C ∈ Ch(Q′) \Ch(Q).
Choose C at minimal possible distance to Ch(Q). Thus C is adjacent to
some chamber C ′ ∈ Ch(Q). Let σ = C ∩ C ′ be the panel shared by C and
C ′ and α be the half-apartment containing C ′ and such that ∂α contains
σ. Since σ ⊂ Q, we have projσ(x) ⊂ Q, whence projσ(x) = C ′ and x ⊂ α.

Let now k be such that C ⊂ Conv(x, ρA,x(Rn)) for all n > k and let
Cn denote the unique element of Conv(x,Rn) such that ρA,x(Cn) = C.
Each Cn contains the panel σ and we have projσ(Rn) = Cn. Therefore,
we deduce that ξ(σ) = Cn (see Lemma 2.9). Since Q ⊂ A, this implies
that Cn ⊂ A by Proposition 2.15. Therefore we have C = ρA,x(Cn) = Cn,
whence C ⊂ Conv(x,Rn) for all n > k. This implies that C is contained in
Q, which is absurd. �

Lemma 2.23. — Let x ∈ Ch(X) and (Rn) be a sequence of spherical
residues converging to some ξ ∈ Csph(X). Let A be an apartment containing
the sector Q(x, ξ). Then for any chamber C ∈ Ch(A), we have Q(C, ξ) ⊂ A.
Moreover there exists k > 0 such that ρA,C(Rn) = ρA,x(Rn) for all n > k.

Proof. — By connexity of A, it suffices to prove that for any chamber C
adjacent to x, the sector Q(C, ξ) is contained in A and furthermore that
ρA,C(Rn) = ρA,x(Rn) for all sufficiently large n. Let σ = x∩C be the panel
separating x from C.

Since σ ⊂ Q(x, ξ), Proposition 2.15 implies that ξ(σ) is contained in A.
The only possible values for ξ(σ) are thus x,C and σ. We treat these three
cases successively.
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If ξ(σ) = C then C ⊂ Q(x, ξ), whence Q(C, ξ) ⊂ A by Remark 2.14. The
desired claims follow by definition.
If ξ(σ) = x then x ∈ Conv(C,Rn) for n sufficiently large. Thus there is a

minimal gallery from C to a chamber containing Rn via x and it follows that
ρA,C(Rn) = ρA,x(Rn) since x ∈ Ch(A). The fact that Q(C, ξ) is contained
in A now follows from Lemma 2.22.
If ξ(σ) = σ, pick a large enough n so that projσ(Rn) = σ. Let An be an

apartment containing x∪Rn. Then Rn lies on a wall Hn of An containing σ,
and the convex hull Conv(x,Rn) lies entirely on one side of Hn; we call the
latter half-apartment α. Since the chamber C contains the panel σ ⊂ Hn,
there is a half-apartment β bounding Hn and containing C. Therefore,
upon replacing An by α∪ β, there is no loss of generality in assuming that
C is contained in An. It follows readily that ρA,C(Rn) = ρA,x(Rn). As
in the previous case, the fact that Q(C, ξ) is contained in A follows from
Lemma 2.22. �

The following is an analogue of Lemma 2.3 in the non-thin case.

Lemma 2.24. — Let x ∈ Ch(X), (Rn) be a sequence of spherical
residues converging to some ξ ∈ Csph(X) and A be an apartment con-
taining the sector Q(x, ξ). Set R′n = ρA,x(Rn). For any half-apartment α of
A, there is some N such that for all n > N we have R′n ⊂ α or R′n ⊂ −α.

Proof. — Let C,C ′ be the chambers of A such that C ∩ C ′ = σ. Let
also α be the half-apartment containing C but not C ′. Assume that the
sequence (R′n) possesses two subsequences R′ϕ(n) and R′ψ(n) such that R′ϕ(n)
is strictly contained in α and R′ψ(n) is strictly contained in −α. Then
Conv(C,R′ψ(n)) contains C ′ for all n while Conv(C,R′ϕ(n)) does not. This
contradicts Lemma 2.22, thereby showing that the sequence R′n eventually
remains on one side of the wall ∂α. �

Definition 2.25. — Let ΦA(ξ) denote the set of all half-apartments α
of A such that the sequence (R′n) eventually lies in α. In view of
Lemma 2.23, this set is independent of x ∈ Ch(A), but depends only on A
and ξ.

One should think of the elements of ΦA(ξ) as half-apartments ‘contain-
ing’ the point ξ. Notice that if ξ = R is a residue, then ΦA(ξ) is nothing
but the set of those half-apartments which contain R.
Notice that two opposite roots α,−α might be both contained in ΦA(ξ);

in view of Lemma 2.24, this happens if and only if the residue R′n lies on
the wall ∂α for all sufficiently large n.
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Lemma 2.26. — Let x ∈ Ch(X) and (Rn) be a sequence of spherical
residues converging to some ξ ∈ Csph(X). Let A be an apartment containing
the sector Q(x, ξ). Then the sequence (ρA,x(Rn)) converges in Csph(A) and
its limit coincides with the restriction of ξ to Ressph(A).

Furthermore, for any ξ′ ∈ Csph(A), we have ξ′ = ξ if and only if ΦA(ξ′) =
ΦA(ξ).

Proof. — Let R ∈ Ressph(A) and H(R) denote the (finite) set of all walls
containing R. By Lemma 2.24, there is some N such that R′n remains on
one side of each wall in H(R) for all n > N . The fact that the sequence
(R′n) converges to some ξ′ ∈ Csph(A) thus follows from Lemma 2.3. By
construction we have ΦA(ξ′) = ΦA(ξ). All it remains to show is thus that
ξ and ξ′ coincide.
We first show that they coincide on panels. Let thus σ ⊂ A be a panel

and C,C ′ ∈ Ch(A) be such that C ∩ C ′ = σ and C ⊂ α. The following
assertions are straightforward to check:

• ξ(σ) = C if and only if Q(C, ξ) and Q(C ′, ξ) both contain C;
• ξ(σ) = C ′ if and only if Q(C, ξ) and Q(C ′, ξ) both contain C ′;
• ξ(σ) = σ if and only if Q(C, ξ) does not contain C ′ and vice-versa.

Now remark that Q(y, ξ) = Q(y, ξ′) for any chamber y ∈ Ch(A) in view of
Lemma 2.22. Therefore, we deduce from the above that ξ and ξ′ coincide
on σ.
It remains to observe that for any two spherical residues R,R′, the projec-

tion projR(R′) is uniquely determined by the set of all projections projσ(R′)
on panels σ containing R. �

The next result supplements the description provided byProposition 2.15.

Proposition 2.27. — Let x ∈ Ch(X), ξ ∈ Csph(X) and A be an apart-
ment containing the sector Q(x, ξ). Then we have

Q(x, ξ) =
⋂

α∈ΦA(x)∩ΦA(ξ)

α.

Proof. — Set Q = Q(x, ξ) and Q′ =
⋂

α∈ΦA(x)∩ΦA(ξ)

α. By Lemma 2.26

there is a sequence (R′n) of spherical residues of A converging to ξ in
Csph(A).

A half-apartment α belongs to ΦA(ξ) if and only if R′n ⊂ α for any suf-
ficiently large n. Therefore, the equality Q = Q′ follows from Lemma 2.22.

�
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The following result allows one to extend all the results of this section to
sectors based at any spherical residues, and not only at chambers. It shows
in particular that sectors based at residues which are not chamber may be
thought of as sector-faces:

Corollary 2.28. — Let x ∈ Ressph(X), ξ ∈ Csph(X) and A be an
apartment containing the sector Q(x, ξ). Then Q(x, ξ) coincides with the
intersection of all sectors Q(y, ξ) where y runs over the set of chambers of
A containing x.

Proof. — By Lemma 2.26, there is a sequence (Rn) of spherical residues
of A converging to ξ in Csph(A). By Proposition 2.15 we have Q(x, ξ) =⋃
k>0

⋂
n>k

Conv(R,Rn).

Let C be the set of all chambers of A containing x. Using the fact that
the convex hull of two residues is nothing but the intersection of all roots
containing them, we deduce that for any Rn we have

Conv(x,Rn) =
⋂
y∈C

Conv(y,Rn).

It follows that
Q(x, ξ) =

⋃
k>0

⋂
y∈C

⋂
n>k

Conv(y,Rn).

All it remains to show is thus that⋃
k>0

⋂
y∈C

⋂
n>k

Conv(y,Rn) =
⋂
y∈C

⋃
k>0

⋂
n>k

Conv(y,Rn).

To establish this equality, notice that the inclusion ⊂ is immediate. The
reverse inclusion follows similarly using the fact that C is a finite set. �

We close this section with the following subsidiary fact.

Lemma 2.29. — Let x ∈ Ressph(X), ξ ∈ Csph(X) and A be an apart-
ment containing the sector Q = Q(x, ξ). Then for all α1, . . . , . . . αn ∈
ΦA(ξ), the intersection

Q(x, ξ) ∩ (
n⋂
i=1

αi)

is non-empty.

Proof. — In view of Corollary 2.28, it is enough to deal with the case x
is a chamber. Thus we assume henceforth that x ∈ Ch(X).

If the result is true with n = 1, then it is true for any n by a straightfor-
ward induction argument using Remark 2.14.
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We need to show that the sector Q(x, ξ) penetrates any α ∈ ΦA(ξ). We
work by induction on the dimension of Davis’ CAT(0) realisation |X| of X
(see [15]). Recall that this dimension equals the maximal possible rank of
a spherical residue of X. We call it the dimension of X for short.
Pick a sequence (Rn) of spherical residues ofA converging to ξ in Csph(A);

such a sequence exists in view of Lemma 2.26. In order to simplify the nota-
tion, choose (Rn) in such a way that R0 = x. Since the desired result clearly
holds if ξ is an interior point, namely ξ ∈ Ressph(X), we shall assume that
(Rn) goes to infinity.
Let pn ∈ |Rn|. Upon extracting, the sequence (pn) converges to some

point η of the visual boundary ∂∞|A| ⊂ ∂∞|X|. Let Hη denote the set
of all walls H of A such that η ∈ ∂|H|. Equivalently some geodesic ray
of |A| pointing to η is contained in a tubular neighbourhood of |H|. Let
also W denote the Weyl group of X (which acts on |A| by isometries), and
Wη denote the subgroup generated by the reflections associated with the
elements of Hη. Recall from [16] that Wη is a Coxeter group.

Let now α ∈ ΦA(ξ). If x ⊂ α, then Q(x, ξ) ⊂ α by Proposition 2.27 and
we are done. We assume henceforth that x is not contained in α.

Recall that x = R0. In particular p0 ∈ |x|. Therefore, Proposition 2.27
implies that the geodesic ray [p0, η) is entirely contained in |Q(x, ξ)|. In
particular, if this ray penetrates |α|, then we are done. We assume hence-
forth that this is not the case. Since pn ∈ |α| for any large n, this implies
that the wall ∂α belongs to Hη.

We claim that there is some R ∈ Ressph(A) such that R ⊂ α and R ⊂ β
for all β ∈ ΦA(x) ∩ ΦA(ξ) such that ∂β ∈ Hη. The proof of this claim
requires to use the induction hypothesis for the thin building Aη associated
to the Coxeter groupWη. The walls and the roots of Aη may be canonically
and Wη-equivariantly identified with the elements of Hη. This yields a well
defined Wη-equivariant surjective map πη : Ressph(A)→ Ressph(Aη) which
maps a residue σ to the unique spherical residue which is contained in all
roots φ containing σ and such that ∂φ ∈ Hη. The way πη acts on Ch(A)
is quite clear: it identifies chambers which are not separated by any wall
in Hη.
We now verify that dim(Aη) < dim(A) = dim(X). Indeed, a spherical

residue in a Davis complex is minimal (i.e. does not contain properly any
spherical residue) if and only if it coincides with the intersection of all walls
containing it. Now, given a spherical residue of maximal possible rank σ
in Aη, then on the one hand the intersection in |Aη| of all the walls in Hη
containing |σ| coincides with |σ|, but on the other hand the intersection
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of these same walls in |A| is not compact since it contains a geodesic ray
pointing to η. This shows that dim(A) > dim(Aη) as desired.

We are now in a position to apply the induction hypothesis in Aη. Notice
that, upon extracting, the sequence (πη(Rn)) converges in Csph(Aη) to a
point which we denote by πη(ξ). Furthermore, we have

ΦAη (πη(ξ)) = {β ∈ ΦA(ξ) | ∂β ∈ Hη}.

By induction there is some R′ ∈ Ressph(Aη) contained in both α and
Q(πη(x), πη(ξ)). Let R ∈ Ressph(A) be any element such that πη(R) = R′.
In view of Proposition 2.27, we have R ⊂ α and R ⊂ β for all β ∈
ΦA(x) ∩ ΦA(ξ) such that ∂β ∈ Hη, which confirms the above claim.

Pick now p ∈ |R| any point supported by R and consider the geodesic
ray ρ joining p to η. We shall prove that this ray penetrates |Q(x, ξ)|, from
which the desired conclusion follows. Let qn = ρ(n) for all n > 0.
Suppose for a contradiction that for all n, we have qn 6∈ |Q(x, ξ)|. Then,

in view of Proposition 2.27 there exists a root αn ∈ ΦA(x) ∩ ΦA(ξ) which
does not contain qn.

We claim that none of the ∂αn’s separate the ray [x, η) from [p, η). In-
deed, if ∂αn did, then it would belong to Hη, which contradicts the defini-
tion of R.
Since [x, η) ⊂ |Q(x, ξ)| ⊂ |αn| for any n, it follows in particular that for

each n there is some n′ such that qn′ is contained in αn. Upon extracting,
we may assume that either n′ > n or n′ < n for all n. In either case, it
follows that the set {αn} is infinite and that for any k, the intersection⋂
n6k

(−αk) contains some point of q′k ∈ [p, η). In particular, when k tends to

infinity, the number of walls separating q′k from [x, η) tends to infinity, which
contradicts the fact that [x, η) and [p, η) are at finite Hausdorff distance
from one another. �

2.5. Incidence properties of sectors

The goal of this section is to establish that two sectors pointing towards
the same point at infinity have a non-empty intersection. This should be
compared to the corresponding statement in the classical case of Euclidean
buildings, see [11, 2.9.1].

Proposition 2.30. — Let ξ be any point in Csph(X). Given any two
residues x, y ∈ Ressph(X), there exists z ∈ Ressph(X) such that Q(z, ξ) ⊂
Q(x, ξ) ∩Q(y, ξ).
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Proof. — In view of Remark 2.14, it suffices to prove that the intersection
Q(x, ξ)∩Q(y, ξ) contains some spherical residue z. We proceed by induction
on the root-distance d(x, y).
If x ⊂ y or y ⊂ x, the result is clear. Thus there is no loss of generality

in assuming that the open interval ]x, y[ is non-empty, see Lemma 1.3.
Let z ∈ ]x, y[. By induction there exists a ∈ Q(x, ξ) ∩ Q(z, ξ) and b ∈
Q(y, ξ)∩Q(z, ξ). Therefore, it suffices to show that Q(a, ξ)∩Q(b, ξ) is non-
empty. Since the sectors Q(a, ξ) and Q(b, ξ) are both contained in Q(z, ξ),
it follows in particular that they are contained in a common apartment, say
A. Let α1, . . . , αk be the finitely many elements of (ΦA(a)∩ΦA(ξ))\ΦA(b).
By Lemma 2.29, there is some spherical residue R contained in Q(b, ξ) as
well as in each αi.
We claim that R ∈ Q(a, ξ). If this were not the case, there would exist

some α ∈ ΦA(a)∩ΦA(ξ) not containing R in view of Proposition 2.27. The
same proposition shows that if b ⊂ α, then Q(b, ξ) ⊂ α which is absurd
since R ⊂ Q(b, ξ). Therefore we have b 6⊂ α or equivalently α 6∈ ΦA(b).
Thus α coincides with one of the αi’s, and yields again a contradiction

since R ⊂
k⋂
i=1

αi. This confirms the claim, thereby concluding the proof of

the proposition. �

2.6. Covering the combinatorial compactifications with
apartments

We are now able to prove Proposition 2.4. In fact we shall establish the
following more precise version.

Proposition 2.31. — Given ξ ∈ Csph(X), we have the following.
(i) There exists a sequence of spherical residues (x0, x1, . . . ) which pen-

etrates and eventually remains in every sector pointing to ξ, and
such that xn = projxn(ξ) for all n.

(ii) Every such sequence converges to ξ.

Proof of Propositions 2.4 and 2.31. — In view of Proposition 2.12 and
the fact that a sequence as in (i) eventually remains in one apartment, it
suffices to prove Proposition 2.31.

(i) Let Q be some sector pointing to ξ and A be an apartment containing Q.
Since A is locally finite and since any finite intersection of sectors pointing
to ξ is non-empty by Proposition 2.30, it follows that Q contains a sequence

TOME 61 (2011), FASCICULE 2



646 Pierre-Emmanuel CAPRACE & Jean LÉCUREUX

(xn) of spherical residues which penetrates and eventually remains in every
sector contained in A and pointing to ξ. Furthermore, upon replacing xn by
projxn(ξ) for all n > 0, we may and shall assume without loss of generality
that (xn) is eventually meets the interior of every root α ∈ ΦA(ξ) such
that −α 6∈ ΦA(ξ). Notice that projxn(projxn(ξ)) = projxn(ξ) in view of
Corollary 2.19.
If Q′ is any other sector pointing to ξ, then Q∩Q′ contains some sector

by Proposition 2.30. Therefore (xn) eventually penetrates and remains in
Q′ as desired.

(ii) Let (Rn) be a sequence of spherical residues which eventually penetrates
and remains in every sector pointing to ξ, and such that Rn = projRn(ξ) for
all n. Let R be a spherical residue and A an apartment containting Q(R, ξ).
The assumption on (Rn) ensures that the sequence (Rn) eventually remains
on one side of every wall of A (see Proposition 2.27). In particular (Rn)
converges to some ξ′ ∈ Csph(A) by Lemma 2.3. By construction we have
ΦA(ξ) ⊂ ΦA(ξ′). Furthermore, since the sequence (Rn) eventually leaves
every root α of A such that −α 6∈ ΦA(ξ), we obtain in fact ΦA(ξ) = ΦA(ξ′).
Thus ξ = ξ′ by Lemma 2.26. Therefore we have projR(ξ) = projR(ξ′) =
projR(Rn) for any sufficiently large n.

Since R ∈ Ressph(X) is arbitrary, we have just established that Rn con-
verges to ξ in Csph(X) as desired. �

We have seen in Lemma 2.3 that a sequence (Rn) contained in some
apartment A converges to ξ ∈ Csph(A) if and only if it eventually remains
on one side of every wall of A. By Proposition 2.27, the latter is equivalent
to the fact that (Rn) eventually penetrates and remains in every sector of
A pointing to ξ. As we have just seen in the above proof, this implies that
(Rn) converges in Csph(X). Thus we have proven the following:

Corollary 2.32. — Let (Rn) be a sequence of spherical residues con-
tained in some apartment A. If (Rn) converges in Csph(A), then it also
converges in Csph(X). In particular, it always admits a subsequence which
converges in Csph(X).

3. Horofunction compactifications

Let Y be a proper metric space, i.e. a metric space all of whose closed
balls are compact. Given a base point y0 ∈ Y , we define F (Y, y0) as the
space of 1-Lipschitz maps Y → R taking value 0 at y0. The topology
of pointwise convergence (which coincides with the topology of uniform
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convergence since Y is proper) turns F (Y, y0) into a compact space. To
each p ∈ Y we attach the functions

dp : Y → R : y 7→ d(p, y)

and
fp : Y → R : y 7→ d(p, y)− d(p, y0).

Then fp belongs to F (Y, y0) and it is a matter of routine verifications to
check that the map

Y → F (Y, y0) : p 7→ fp

is continuous and injective. We shall implicitly identify Y with its image.
The closure of Y in F (Y, y0) is called the horofunction compactifica-
tion of Y . We denote it by Choro(Y ).
Since F (Y, y0) may be canonically identified with the quotient of the

space of all 1-Lipschitz functions by the 1-dimensional subspace consisting
of constant functions, it follows that the horofunction compactification is
independent of the choice of the base point y0.
It is well known that the horofunction compactification of a proper

CAT(0) space coincides with the visual compactification, see [8, Theo-
rem II.8.13]. In the case of a locally finite building X, several proper metric
spaces may be viewed as realisations of X: Davis’ CAT(0) realisation |X| is
one of them; the chamber graph (i.e. the set of chambers endowed with
the gallery distance) is another one; the set of spherical residues Ressph(X)
endowed with the root-distance is yet another. It should be expected that
the respective horofunction compactifications of these metric spaces yield
different spaces which may be viewed as compactifications of the build-
ing X. This is confirmed by the following.

Theorem 3.1. — The minimal combinatorial compactification of a lo-
cally finite building X is Aut(X)-equivariantly homeomorphic to the horo-
function compactification of its chamber graph.
Similarly, the maximal combinatorial compactification of X is Aut(X)-

equivariantly homeomorphic to the horofunction compactification of
Ressph(X) endowed with the root-distance.

Abusing notation slightly, we shall denote by Choro(X) the horofunction
compactification of (Ressph(X), d), where d denotes the root-distance. Since
by definition the chamber graph embeds isometrically into (Ressph(X), d),
it follows that Choro(Ch(X)) is contained as a closed subset in Choro(X).
This is confirmed by combining Proposition 2.12 with Theorem 3.1.
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Proof of Theorem 3.1. — In one sentence, the above theorem holds
because the combinatorial bordifications are defined using combinatorial
projections, and the latter notion may be defined purely in terms of the
root-distance (see Corollary 1.4). Here are more details.
We deal only with the maximal combinatorial compactification, the case

of the minimal one being similar but easier.
Let (Rn) and (Tn) be two sequences of spherical residues which converge

to the same point ξ ∈ Csph(X). We claim that the sequences (fRn) and
(fTn) both converge in Choro(X) and have the same limit.
Let x ∈ Ressph(X). We show by induction on the root-distance d(x, y0)

between x and a base point y0 ∈ Ressph(X) that fRn(x) and fTn(x) take
the same value for all sufficiently large n. This implies the above claims.

Assume first that x ⊂ y0. Let A be an apartment containing y0 and Rn.
Consider the roots of A. Since x ⊂ y0, we have

|ΦA(Rn, y0)| − |ΦA(Rn, x)| = |ΦA(Rn, y0) \ ΦA(Rn, x)|
= |ΦA(projx(Rn), y0)|,

where the last equality follows since every root containing Rn ∪ x also
contains projx(Rn), and conversely any root containing projx(Rn) but not
y0 also contains Rn ∪ x. By similar arguments, one obtains

|ΦA(x,Rn)| − |ΦA(y0, Rn)| = |ΦA(x, projx(Rn) ∪ y0)|,

where ΦA(x, projx(Rn)∪y0) denotes the set of all the roots of A containing
x but neither projx(Rn) nor y0. Remark that the projection projx(Rn)
coincides with projx(ξ) for any sufficiently large n. Let dRn(x) = d(Rn, x).
This shows that
fRn(x) = dRn(x)− dRn(y0)

= 1
2(|ΦA(Rn, x)| − |ΦA(Rn, y0)|+ |ΦA(x,Rn)| − |ΦA(y0, Rn)|)

depends only on x, y0 and projx(ξ) for any large enough n. In particular
this shows that the sequence (fRn) converges and its limit coincides with
the limit of (fTn) as expected.
The same arguments apply to the case x ⊃ y0.
Assume now that x and y0 are not contained in one another. Then the

open interval ]x, y0[ is non-empty by Lemma 1.3. Let z be an element of
this interval. By induction the sequences

n 7→ dRn(z)− dRn(y0)

and
n 7→ dRn(x)− dRn(z)
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both converge to some value which depends only on ξ. Since the sum of
these sequences yields (fRn(x)), the desired result follows.
This provides a well defined Aut(X)-equivariant map Csph(X) →

Choro(X) : ξ 7→ fξ. A straightforward modification of the above arguments
also show that the latter map is continuous.

Let now (Rn) be a sequence of spherical residues such that (fRn) con-
verges to some f ∈ Choro(X). Given x ∈ Ressph(X), the projection
projx(Rn) coincides with the unique spherical residue σ containing x and
such that fRn(σ) is minimal with respect to the latter property (see Corol-
lary 1.4). Since X is locally finite, the set St(x) is finite and we deduce
from the above that projx(Rn) takes a constant value, say ξf (x), for all
sufficiently large n. Furthermore, if (Tn) were another sequence such that
(fTn) converges to f ∈ Choro(X), then the same arguments shows that
projx(Tn) also converges to the same ξf (x). This shows that there is a well
defined Aut(X)-equivariant map Choro(X) → Csph(X) : f 7→ ξf such that
fξf = f and ξfξ = ξ for all f ∈ Choro(X) and ξ ∈ Csph(X).

Thus Choro(X) and Csph(X) are indeed Aut(X)-equivariantly homeo-
morphic. �

4. Group-theoretic compactifications

4.1. The Chabauty topology

Let G be a locally compact metrizable topological group and S(G) de-
note the set of closed subgroups of G. The reader may consult [7] for an
exposition of several equivalent definitions of the Chabauty topology on
S(G); this topology is compact (Theorem 1 of §5.2 in loc. cit), metriz-
able and preserved by the conjugation action of G. The next proposition
provides a concrete way to handle convergence in this space and could be
viewed as yet another definition of the Chabauty topology.

Lemma 4.1. — Let Fn ∈ S(G) for n > 1. The sequence (Fn) converges
to F ∈ S(G) if and only if the two following conditions are satisfied:

(i) For every sequence (xn) such that xn ∈ Fn, if there exists a subse-
quence (xϕ(n)) converging to x ∈ G, then x ∈ F .

(ii) For every element x ∈ F , there exists a subsequence (xn) converging
to x and such that xn ∈ Fn for every n > 1.

Proof. — See [20, Lemma 2]. �
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4.2. Locally finite groups

Let G be a topological group. The group G is said topologically locally
finite (or simply locally finite when there is no ambiguity) if every finitely
generated subgroup of G is relatively compact. By Zorn’s lemma, there
exists a subgroup of G which is normal, topologically locally finite, and
maximal for these properties. This subgroup is unique: indeed, if H and
H ′ are two such subgroups, then G/H has no non-trivial locally finite
normal subgroup, by [12, Proposition 2.2]. Thus, the image of H ′ in G/H
is trivial, which means that H ′ = H by maximality. This subgroup is called
the locally finite radical of G (or LF-radical) and denoted RadLF(G).
It may be shown that if G is locally compact, then the closure of a locally
finite subgroup is itself locally finite (see [12, Lemma 2.1]). In particular,
in that case the LF-radical is a closed subgroup.
One also shows that if G is locally compact, then G is locally finite if and

only if every compact subset of G topologically generates a relatively com-
pact subgroup of G (see [12, Lemma 2.3]). In particular a locally compact
topologically locally finite group is amenable.

Example 4.2. — Let F be a non-archimedean local field, with absolute
value | · | and ring of integers OF . In contrast with the archimedean case,
the group (F,+) is locally finite. Indeed, if x1, . . . , xn are elements of F ,
then the subgroup they generate is included in the ball centered at the
origin and of radius equal to the maximum of the absolute values of the xi.

The group F× is not locally finite: if |x| is different than one, then xn will
leave every compact set as n tends to ±∞. So RadLF(F×) ⊂ O×F , which is
itself a compact group, and thus we have equality: RadLF(F×) = O×F .

Example 4.3. — With the same notations as in the example above, let
P be the subgroup of SL3(F ) consisting of upper triangular matrices. The
same argument as above proves that RadLF(P ) is included in the group D
of matrices of the form

a ∈ O×F ∗ ∈ F ∗ ∈ F
0 b ∈ O×F ∗ ∈ F
0 0 (ab)−1

 .

It turns out that D itself is locally finite. Indeed, if A1, . . . , An are matrices
in D, then a simple calculation shows that the absolute values of the ele-
ments of the upper diagonal elements in products and inverses of the Ai are
bounded. Then it follows that the upper right element is also of absolute
value bounded. Hence RadLF(P ) = D.

ANNALES DE L’INSTITUT FOURIER



COMPACTIFICATIONS OF BUILDINGS 651

The group D appears as an example of a limit group in [20, §6.2]. Similar
calculations also prove that the other limit groups which appear in [20,
§6.2], such as the group of matrices of the form

a b ∗ ∈ F
c d ∗ ∈ F
0 0 (ad− bc)−1

 ,

with
(
a b
c d

)
∈ GL2(OF ), are locally finite.

4.3. Stabilisers of points at infinity

Let X be a building and G be a locally compact group acting contin-
uously by type-preserving automorphisms on X in such a way that the
stabiliser of every spherical residue is compact. A special case in which the
latter condition automatically holds is when the G-action on the CAT(0)
realisation |X| is proper. In particular, this happens if X is locally finite
and G is a closed subgroup of Aut(X).

The goal of this section is to provide a description of the G-stabilisers of
points in Csph(X).

Lemma 4.4. — Let x ∈ Ressph(X) and ξ ∈ Csph(X). Then any element
g ∈ G fixing x and ξ fixes the sector Q(x, ξ) pointwise.

Proof. — It is clear that g stabilises Q(x, ξ). Let A be an apartment
containing Q(x, ξ) and ρ be a retraction onto A centred at some chamber
C containing x. Let gA : A→ A denote the restriction of ρ ◦ g to A. Thus
gA is a type-preserving automorphism of A and all we need to show is that
it fixes Q(x, ξ) pointwise. Let y ∈ Q(x, ξ). If y ⊂ x, then y is fixed by
gA since gA is type-preserving. If x ⊂ y, then y is contained in projx(ξ)
by Corollary 2.19 and is thus fixed by gA. Now, in view of Lemma 1.3,
the desired assertion follows from a straightforward induction on the root-
distance d(x, y). �

Recall that an element of a topological group is called periodic if the
cyclic subgroup it generates is relatively compact.

Lemma 4.5. — Let ξ ∈ Csph(X) and Gξ be its stabilizer in G. We have
the following.

(i) The set of periodic elements of Gξ coincides with RadLF(Gξ).
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(ii) For any apartment A containing a sequence of spherical residues
converging to ξ, we have

RadLF(Gξ) =
⋃

x∈Ressph(X)

Fix(Q(x, ξ)) =
⋃

x∈Ressph(A)

Fix(Q(x, ξ)).

Proof. — (i) Clearly, every element of RadLF(Gξ) is periodic. Conversely,
let g be a periodic element in Gξ. Then g fixes a point in |X| by [8, II.2.8],
and hence a spherical residue x ∈ Ressph(X). Now, given finitely many
periodic elements gn and denoting by xn ∈ Ressph(X) a gn-fixed point,

the group 〈g1, . . . , gn〉 fixes
n⋂
i=1

Q(xi, ξ) pointwise by Lemma 4.4. In view

of Proposition 2.30, the latter intersection is non-empty. Thus 〈g1, . . . , gn〉
fixes a spherical residue and is thus contained in a compact subgroup of G.
This shows in particular that the set of periodic elements forms a subgroup
of G which is locally finite. The desired conclusion follows.

(ii) In view of Lemma 4.4, the equality RadLF(Gξ) =
⋃

x∈Ressph(X)

Fix(Q(x, ξ))

is a reformulation of (i). The inclusion⋃
x∈Ressph(X)

Fix(Q(x, ξ)) ⊃
⋃

x∈Ressph(A)

Fix(Q(x, ξ))

is immediate and the reverse inclusion follows from Proposition 2.30. �

Example 4.6. — In the case of affine buildings, there are some points
ξ ∈ Csph(X) such that the combinatorial sectors are usual sectors. In this
case, the group Gξ and RadLF(Gξ) were already considered in [11, §4],
where they were denoted respectively B and B0.

Although we shall only need the following in the special case of sectors,
it holds for arbitrary thin sub-complexes.

Lemma 4.7. — Let Y be a convex sub-complex of an apartment A of
X. Assume that G acts strongly transitively on X. Then the pointwise
stabiliser of Y in G is topologically generated by the pointwise stabilisers of
those roots of A which contain Y . Furthermore, this group acts transitively
on the set of apartments containing Y .

Proof. — As Y is convex, it coincides with the intersection of roots in
A containing it. Let H be the subgroup of FixG(Y ) topologically gener-
ated by the pointwise stabilisers of such roots. We will first prove that
H is transitive on the set of apartments containing Y . Let A′ be such an
apartment.
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We shall repeatedly use the following fact which is easy to verify: since the
G-action is strongly transitive, given two apartments A1, A2 which share
a common half-apartment α, there is an element g ∈ G fixing α pointwise
and mapping A1 to A2.
This remark implies in particular that there is an element of H which

maps A′ to some apartment containing a chamber of C of A which meets
Y . Therefore, it suffices to prove the desired assertion for the convex hull
of C ∪ Y . In other words, we may and shall assume that Y contains some
chamber C0.
Let C1 be a chamber of A which meets Y but is not contained in it.

The above remark yields an element g1 ∈ H which maps A′ =: A′0 to
some apartment A′1 containing C1. Proceeding inductively, one constructs
sequences (Cn), (A′n) and (gn) such that:

• Cn is a chamber of A not contained in

Yn := Conv(Y ∪ {C0, . . . , Cn−1});

• A′n is an apartment containing Yn∪Cn and sharing a half-apartment
with A′n−1;

• gn is an element of H which maps A′n−1 to A′n.

Furthermore, these sequences are built in such a way that A is covered
by
⋃
n

Yn. Thus for each C ′ ∈ Ch(A′) there is some large n such that

ρA,C(C ′) ⊂ Yn and we deduce that hm(C ′) is contained in A for all m > n,
where the sequence (hm) defined by hm = gm · · · g1. Since H is compact,
the sequence (hm) subconverges to some h ∈ H. Since the G-action is
continuous, the above implies that h maps A′ to A, as desired.

It remains to show that FixG(Y ) ⊂ H. Let thus g ∈ FixG(Y ) and set
A′ = gA. There exists some h ∈ H such that hA′ = A. Hence hgA = A

and since hg fixes Y pointwise, it is enough to show that the subgroup
of StabG(A) which fixes Y pointwise is contained in H. As the pointwise
stabiliser of the apartment is obviously contained in H, it is enough to
prove that each element of StabG(A)/FixG(A) ' W which fixes Y can be
lifted to an element in H. This subgroup FixW (Y ) is trivial if Y contains
a chamber. Otherwise it is generated by all the reflections of W fixing Y .
It is well known and easy to see how to express such a reflection as a
product of three elements, which each fixes pointwise a root of A. Thus
these reflections indeed belong to H, as desired. �
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Combining Lemmas 4.5 and 4.7, one obtains a description of the locally
finite radical RadLF(Gξ) in terms of root groups.

4.4. Description of the group-theoretic compactification

We now assume that the building X thick and locally compact, i.e.
of finite thickness. In particular the automorphism group Aut(X) of X,
endowed with the topology of pointwise convergence, is locally compact
and metrisable. Let G < Aut(X) be a closed subgroup consisting of type-
preserving automorphisms.
We assume that G acts strongly transitively on X, i.e. G acts tran-

sitively on the set of ordered pairs (C,A) where C is a chamber and A an
apartment containing C. (Throughout it is implicitly understood that the
only system of apartments we consider the full system.) In particular, the
group G is endowed with a Tits system, or BN -pair, see [10, Ch. V]. A
basic exposition of Tits systems may be found in [6, IV,§2].

The group-theoretic compactification of X is based on the following sim-
ple fact.

Lemma 4.8. — The map ϕ : Ressph(X)→ S(G) : R 7→ GR which asso-
ciates to a residue R its stabiliser GR is continuous, injective, G-equivariant
and has discrete image. In particular it is a homeomorphism onto its image.

Proof. — Continuity is obvious since Ressph(X) is discrete. The fact that
ϕ is equivariant is equally obvious. The injectivity follows since, by strong
transitivity of the action, any two distinct residues have distinct stabilisers.
It only remains to show that if some sequence (Rn) of spherical residues is
not asymptotically constant, then the sequence of stabilisers GRn does not
converge to some point of the image of ϕ.
Let thus (Rn) and R be spherical residues such that the sequence (GRn)

converges to GR. Suppose for a contradiction that Rn is not eventually
constant.
Assume first that GRn 6⊂ GR for infinitely many n. Then for each such

n there is an element gn ∈ GRn \ GR. Since the action of G is strongly
transitive, we may even choose gn so that it stabilises a spherical residue
at root-distance at most one from R. In particular, the sequence (gn) is
relatively compact in G. By construction, no accumulation point of (gn)
in G can stabilise R. In view of Lemma 4.1, this contradicts the fact that
lim
n
GRn = GR.
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Assume now that GRn ⊂ GR for all but finitely many n’s. Since X
is locally finite, the spherical parabolic subgroup GR contains only finitely
many parabolic subgroups. This shows that the converging sequence (GRn)
takes only finitely many values. Therefore it is eventually constantly equal
to GR. Since ϕ is injective, we deduce the absurd conclusion that Rn = R

for almost all n’s. This finishes the proof. �

Definition 4.9. — The closure of the image of ϕ in S(G) is called the
group-theoretic compactification of X. It is denoted by Cgp(X).

The main result of this section is the following.

Theorem 4.10. — The group-theoretic compactification Cgp(X) is
Aut(X)-equivariantly homeomorphic to the maximal combinatorial com-
pactification Csph(X). More precisely, a sequence (Rn) of spherical residues
converges to some ξ ∈ Csph(X) if and only if the sequence of their stabilisers
(GRn) converges to RadLF(Gξ) in the Chabauty topology.

It follows in particular that the closure of the image of the chamber-
set Ch(X) under ϕ is Aut(X)-equivariantly homeomorphic to the minimal
combinatorial compactification C1(X) (see Proposition 2.12).

Example 4.11. — The group-theoretic compactification of Bruhat–Tits
buildings was already studied in [20]. In particular they explicitely calculate
the stabilizers and limit groups. In the case of the building associated to
SL3 over a local field, there is some point ξ such that Gξ = P is the group
of upper triangular matrices. The limit group is thus the group calculated
in Example 4.3.

The proof of Theorem 4.10 requires some additional preparations, col-
lected in the following intermediate results.

Lemma 4.12. — Let (Rn) be a sequence of spherical residues converging
to a point ξ ∈ Csph(X) and such that the sequence (GRn) converges to some
closed group D in Cgp(X). Then D fixes ξ.

Proof. — Let g ∈ D and gn ∈ GRn be a sequence which converges to
g (see Lemma 4.1). Let σ ∈ Ressph(X). Then we have g−1

n .σ = g−1.σ for
n large enough. Likewise, for n large enough, g.(ξ(g−1σ)) = gn.(ξ(g−1σ)).
Therefore we have (g.ξ)(σ) = gnξ(g−1

n σ) = (gn.ξ)(σ) for large n. Now,
taking n so large that ξ(σ) = projσ(Rn) and ξ(g−1σ) = projg−1σ(Rn), we
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obtain sucessively

(g.ξ)(σ) = g.(ξ(g−1σ))
= gn.(ξ(g−1

n σ))
= gn.(projg−1

n σ(Rn))
= gn.(projg−1

n σ(g−1
n Rn))

= gn.(g−1
n projσ(Rn))

= projσ(Rn)
= ξ(σ).

Thus g.ξ = ξ as desired. �

Lemma 4.13. — Let (Rn) be a sequence of spherical residues converging
to ξ ∈ Csph(X). Then the sequence (GRn) converges in Cgp(X) and its limit
coincides with RadLF(Gξ).

Proof. — Let D be a cluster value of the sequence (GRn). It suffices to
prove that D = RadLF(Gξ). This indeed implies that (GRn) admits D has
its unique accumulation point, and hence converges to D.
Since X is locally finite, the pointwise stabiliser of every bounded set of

X is open in G. Moreover, since G acts by simplicial isometries on |X|,
it follows that every element acts either as an elliptic or as a hyperbolic
isometry. This implies that the set of elliptic isometries is closed in G.
Notice that this set coincides with the set of periodic elements of G.(1)

Since every element of D is limit of some sequence of periodic elements
by Lemma 4.1, it follows that D itself is contained in the set of periodic
elements. Lemmas 4.5 and 4.12 thus yield D ⊂ RadLF(Gξ).
In order to prove the reverse inclusion, pick x ∈ X and let A be an

apartment containingQ(x, ξ). By strong transitivity, there exists some kn ∈
Gx such that knRn ∈ A. As Gx < G is compact, we may assume upon
extracting that (kn) converges to some k ∈ Gx. Let R′n = kn.Rn. Then
(R′n) is contained in A converges to k.ξ. Furthermore, (GR′n) converges to
kDk−1 in Cgp(X).
The sequence (R′n) penetrates and eventually remains in every α ∈

ΦA(k.ξ). In particular, for any sufficiently large n, the pointwise stabiliser
G(α) of α is contained in GR′n . By Lemma 4.1, this implies that G(α) <

kDk−1. Conjugating by k−1, we deduce that for all α ∈ ΦA(ξ), we have

(1) It turns out that the latter fact is general and does not depend on the existence of
an action on a CAT(0) space. Indeed, by [32, Theorem 2] the set of periodic elements is
closed in any totally disconnected locally compact group.
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G(α) < D. In view of Lemma 4.7, this shows that G(Q(x,ξ)) < D. The de-
sired results follows since

⋃
x∈Ressph(x)

G(Q(x,ξ)) = RadLF(Gξ) by Lemma 4.5.

�

Lemma 4.14. — Let (Rn) be a sequence of spherical residues. If the
sequence (GRn) converges to D ∈ Cgp(X), then (Rn) also converges in
Csph(X).

Furthermore, for all ξ, ξ′ ∈ Csph(X), we have ξ = ξ′ if and only if
RadLF(Gξ) = RadLF(Gξ′).

Proof. — Assume that (GRn) converges. If the sequence (Rn) has two ac-
cumulation points ξ, ξ′ ∈ Csph(X), then Lemma 4.13 implies that
RadLF(Gξ) = RadLF(Gξ′). Therefore, the Lemma will be proved if one
shows that the stabilisers of two distinct points of Csph(X) have distinct
LF-radicals.
Given any ξ ∈ Csph(X) and x ∈ Ressph(X), the sector Q(x, ξ) coin-

cides with the fixed-point-set of Gx,ξ by Lemmas 4.4 and 4.7. Furthermore
Lemma 4.5 implies that Gx,ξ = Rx, where R = RadLF(Gξ). Thus Q(x, ξ) is
nothing but the fixed point set of Rx for all x ∈ Ressph(X). It follows that
for any other ξ′ ∈ Csph(X) such that RadLF(Gξ′) = RadLF(Gξ), the re-
spective combinatorial sectors based at any x ∈ Ressph(X) and associated
to ξ and ξ′ coincide. In view of Corollary 2.19, this implies that ξ = ξ′. �
We are now ready for the following.
Proof of Theorem 4.10. — Consider now the map

Ψ : Csph(X)→ S(G) : ξ 7→ RadLF(Gξ).

By Lemma 4.13, the map Ψ takes its values in Cgp(X). By Lemma 4.14, it
is bijective. The Aut(X)-equivariance is obvious. It only remains to show
that Ψ is continuous.
Let (ξn) be a sequence of elements of Csph(X) converging to ξ ∈ Csph(X).

We claim that every accumulation point of (Ψ(ξn)) equals Ψ(ξ). Let D be
such an accumulation point. Upon extracting, we shall assume that (Ψ(ξn))
converges to D.

Since ξn belongs to Csph(X), there exist some sequences (xnm)m of spher-
ical residues such that (xnm)m converges to ξn for each n. Let d be some ar-
bitrary distance on Csph(X) compatible with the topology. We can assume
d(xnm, ξn) < 1

m
for all m,n. Then, if d(ξn, ξ) < ε, then we have d(xmm, ξ) <

1
m

+ ε, so that the sequence (xmm)m converges to ξ. By Lemma 4.13, we de-
duce that (Ψ(xmm))m converges to Ψ(ξ) while (Ψ(xnm))m converge to Ψ(ξn).
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Therefore, the sequence (Ψ(xmm))m converges to lim
n

Ψ(ξn) = D. The desired
equality Ψ(ξ) = D follows. �

5. Comparison to the refined visual boundary

As opposed to the previous section, we do not assume here that X be
locally finite. In order to simplify the notation, we shall often identify X
with its CAT(0) realisation |X|. This will not cause any confusion. This
section is devoted to the relationship between the combinatorial and visual
compactifications and their variants.

5.1. Constructing buildings in horospheres

Let ξ ∈ ∂∞X be a point in the visual boundary of X. In this section we
present the construction of a building Xξ which is canonically attached to
ξ; it is acted on by the stabiliser Gξ and should be viewed as a structure
which is ‘transverse’ to the direction ξ. The construction goes as follows.

Let Aξ denote the set of all apartments A such that ξ ∈ ∂∞A. Let also
1
2Aξ denote the set of all half-apartments α such that the visual boundary
of the wall ∂α contains ξ. In particular, every α ∈ 1

2Aξ is a half-apartment
of some apartment in Aξ.

Since any geodesic ray is contained in some apartment (see [13, Theorem
E]), it follows that the set Aξ is non-empty. This is not the case for 1

2Aξ,
which is in fact empty when ξ is a ‘generic’ point at infinity. We shall not
try to make this precise.

Lemma 5.1. — For all A,A′ ∈ Aξ and each C ∈ Ch(A) and each ge-
odesic ray ρ′ ⊂ A′ pointing to ξ, there exists an apartment A′′ ∈ Aξ
containing both C and a subray of ρ′.

Proof. — We work by induction on d(C,Ch(A′)). Let thus C ′ be a cham-
ber ofA′ at minimal possible distance from C and let C ′ = C0, C1, . . . , Cn =
C be a minimal gallery. The panel which separates C0 from C1 defines a
wall in A′, and there is some half-apartment α of A′ bounded by this wall
which contains a subray of ρ′. Then C1∪α is contained in some apartment,
and the desired claim follows by induction on n. �

Given R ∈ Ressph(X), let Rξ denote the intersection of all α ∈ 1
2Aξ such

that R ⊂ α. Thus, in the case of chambers, the map C 7→ Cξ identifies two
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adjacent chambers of X unless they are separated by some wall ∂α with
α ∈ 1

2Aξ. Let Cξ be the set of all Cξ. We call two elements of Cξ adjacent
if they are the images of adjacent chambers of X. If 1

2Aξ is empty, there is
only one chamber Cξ (and one spherical residue Rξ), which can be identified
to the whole building.
Let W be the Weyl group of X. Choose an apartment A ∈ Aξ and view

W as a reflection group acting on A. The reflections associated to half-
apartments α of A which belong to 1

2Aξ generate a subgroup of W which
we denote by Wξ. If

1
2Aξ is empty, Wξ is equal to {1}. By the main result

of [16], the group Wξ is a Coxeter group and the set {Cξ | C ∈ Ch(A)}
endowed with the above adjacency relation is Wξ-equivariantly isomorphic
to the chamber-graph of the Coxeter complex of Wξ.

Lemma 5.2. — The Coxeter group Wξ depends only on ξ but not on
the choice of the apartment A.

Proof. — By the above, it suffices to show that for any two A,A′ ∈ Aξ,
the adjacency graphs of {Cξ | C ∈ Ch(A)} and {Cξ | C ∈ Ch(A′)} are
isomorphic.
We claim that if the apartments A and A′ contain a common chamber,

then the retraction ρ onto A based at this chamber yields such an isomor-
phism. Indeed ρ fixes A∩A′ pointwise, and this intersection contains a ray
pointing to ξ. This implies that for any half-apartment α of A′, we have
α ∈ 1

2Aξ if and only ρ(α) ∈ 1
2Aξ. This proves the claim.

In view of Lemma 5.1, the general case of arbitrary A,A′ ∈ Aξ follows
from the special case that has just been dealt with. �

Keeping in mind the above preparation, the proof of the following result
is a matter of routine verifications which are left to the reader. Lemma 5.1
ensures that two chambers of Xξ are contained in an apartment; this is the
main axiom to check.

Proposition 5.3. — The set Cξ = {Cξ | C ∈ Ch(X)} is the chamber-
set of a building of type Wξ which we denote by Xξ. Its full apartment
system coincides with Aξ. The map R 7→ Rξ is a Gξ-equivariant map from
Ressph(X) onto Ressph(Xξ) which does not increase the root-distance.

Remark 5.4. — We have dim(Xξ) < dim(X). This was established im-
plicitly in the course of the proof of Lemma 2.29.
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5.2. A “stratification” of the combinatorial compactifications

By Proposition 5.3 each point ξ of the visual boundary of X yields a
buildingXξ and it is now desirable to compare the respective combinatorial
bordifications of X and Xξ.

Theorem 5.5. — For each ξ ∈ ∂∞X, there is a canonical continuous
injective Aut(X)ξ-equivariant map rξ : Csph(Xξ)→ Csph(X). Furthermore,
identifying Csph(Xξ) with its image, one has the following decomposition:

Csph(X) = Ressph(X) ∪
( ⋃
ξ∈∂∞X

Csph(Xξ)
)
.

The following lemma establishes a first basic link between points at in-
finity in the combinatorial bordification and points in the visual boundary.

Lemma 5.6. — Let (Rn) be a sequence of spherical residues and let (pn)
denote the sequence of their centres. Assume that (Rn) converges to some
f ∈ Csph(X). Then (pn) admits convergent subsequences. Furthermore, any
accumulation point of (pn) lies in the visual boundary of any combinatorial
sector pointing to f .

It is not clear a priori that (pn) subconverges in X ∪ ∂∞X since X need
not be locally compact.
Proof. — Fix a base point p ∈ X and let R ∈ Ressph(X) denote its

support. For each n, the geodesic segment joining p to pn is contained in
Conv(R,Rn) which is geodesically convex also in the sense of CAT(0) ge-
ometry. Therefore, in view of Corollary 2.18, it follows that for any r > 0
there is some N such that the geodesic segment [p, pn] ∩ B(p, r) lies en-
tirely in Q(R, f) for all n > N . Since combinatorial sectors are contained
in apartments and since apartments are proper, it follows that (pn) subcon-
verges to some ξ ∈ ∂∞X, and the above argument implies that the geodesic
ray [p, ξ) is entirely contained in the sector Q(R, f). �

Proof of Theorem 5.5. — Let ξ ∈ ∂∞X, f ∈ Csph(Xξ). We shall now de-
fine an element f̂ : Ressph(X)→ Ressph(X) belonging to

∏
σ∈Ressph(X)

St(σ).

To this end, we proceed as follows.
Consider the map Ressph(X) → Ressph(Xξ) : σ 7→ σξ which was con-

structed in Section 5.1. Let σ ∈ Ressph(X), let ρ be a geodesic ray ema-
nating from the centre of σ and pointing to ξ and let A be an apartment
containing ρ. Let ΨA(ξ) denote the set of all half-apartments α of A such
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that α 6∈ 1
2Aξ and α contains a subray of ρ. Notice that if α ∈ ΨA(ξ), then

−α 6∈ ΨA(ξ).
Given τ ∈ St(σξ), there is a unique spherical residue τ ′ ∈ St(σ) such

that (τ ′)ξ = τ and that τ ′ is contained in every root α ∈ ΨA(ξ) containing
σ. We denote this residue τ ′ by rξ(τ). It is easy to see that the map rξ :
St(σξ)→ St(σ) does not depend on the choice of the apartment A.
Now we define f̂ ∈

∏
σ∈Ressph(X)

St(σ) by

f̂ : σ 7→ rξ(f(σξ)).

Notice that the definition of f̂ does not depend on the choice of A.
We claim that f̂ belongs to Csph(X). Indeed, let (xn) be a sequence of

spherical residues of Xξ converging to f and contained in some apartment
A′ of Xξ (see Proposition 2.4). We may view A′ as an apartment of X.
Choose Rn ∈ Ressph(A′) with (Rn)ξ = xn in such a way that the sequence
(Rn) eventually penetrates and remains in the interior of every α ∈ ΨA′(ξ).
It is easy to see that such a sequence exists. If follows from Lemma 2.3
and Proposition 5.3 that (Rn) converges in Csph(A′). The fact that (Rn)
converges in Csph(X) follows from Corollary 2.32. The fact that lim

n
Rn

coincides with f̂ follows from Lemma 2.26. This proves the claim.

We now show that Csph(X) admits a decomposition as described above.
Let h ∈ Csph(X)\Ressph(X) and let (Rn) be a sequence of spherical residues
contained in some apartment A of X and converging to h (see Proposi-
tion 2.4). Upon extracting, the sequence of centres of the Rn’s converges to
some ξ ∈ ∂∞A, and the sequence ((Rn)ξ)n>0 converges in Csph(Xξ). Let
h′ denote its limit. Using the very definition of the map f 7→ f̂ , one verifies
that ĥ′ = h, which yields the desired conclusion. �

We can apply Theorem 5.5 recursively: each compactification Csph(Xξ)
is itself the union of all the Csph(Xξ,ξ′) where ξ′ ∈ ∂∞Xξ, and so on. Note
that, because of Remark 5.4, after a finite number of steps (bounded by the
dimension of X), we will get a spherical building, so that the construction
terminates. Hence, we obtain a decomposition:

(*)
Csph(X) = Ressph(X)∪

⋃
ξ1∈∂∞X

(
Ressph(Xξ1)∪

⋃
ξ2∈∂∞Xξ1

(
Ressph(Xξ1,ξ2)

∪ · · · ∪
⋃

ξn∈∂∞Xξ1,...,ξn−1

Ressph(Xξ1,...,ξn−1)
)
. . .
)
,
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where n 6 dim(X).
It is important to remark that the decomposition (*) is a priori not a dis-

joint union. Indeed, it could happen that Ressph(Xξ1,ξ2)∩Ressph(Xξ′1,ξ
′
2) 6=

∅ for some distinct ξ1, ξ′1 ∈ ∂∞X and some ξ2 ∈ ∂∞Xξ1 and ξ′2 ∈ ∂∞Xξ′1 .
The easiest example of such a situation is to be found in an apartment
of type Ã1 × Ã1. In an apartment A of type Ã2, one also finds the fol-
lowing situation: There exist points ξ, ξ1 ∈ ∂∞A and ξ2 ∈ ∂∞A

ξ1 such
that Ressph(Aξ) ∩ Ressph(Aξ1,ξ2) 6= ∅. In order to address this issue, we
introduce an equivalence relation on Csph(X) defined as follows, where
x, y ∈ Csph(X):

x ∼ y ⇔ there is an apartment A such that x, y ∈ Csph(A)
and |ΦA(x)4ΦA(y)| <∞.

In order to facilitate the discussion, we shall say that a tuple ξ =
(ξ1, . . . , ξk) is an admissible k-tuple if ξ1 ∈ ∂∞X, ξ2 ∈ ∂∞X

ξ1 , . . . ,
ξk ∈ ∂∞Xξ1,...,ξk−1 .
The following lemma shows in particular that the relation ∼ is well de-

fined.

Lemma 5.7. — Let ξ be an admissible tuple and let x ∈ Ressph(Xξ).
For any y ∈ Csph(X), we have x ∼ y if and only if y ∈ Ressph(Xξ).

Proof. — The ‘if’ part is clear. Assume conversely that x ∼ y. There is
no loss of generality in assuming that X = A.
Write ξ = (ξ1, . . . , ξk) and let (yn) be a sequence in Ressph(A) converging

to y. Upon extracting, we may assume that the sequence (yn) converges in
the visual compactification A∪∂∞A to some point ξ ∈ ∂∞A. The assump-
tion that |ΦA(x)4ΦA(y)| is finite guarantees that ξ = ξ1. In particular this
shows that y ∈ Csph(Aξ1). An induction on k now completes the proof. �
For any x ∈ Csph(X) \ Ressph(X), we define the level of x to be the

maximal integer k > 0 such that there is an admissible k-tuple ξ with
x ∈ Ressph(Xξ). We declare moreover that the level of the elements of
Ressph(X) is zero. Remark 5.4 guarantees that the level of each element is
bounded above by dim(X). Lemma 5.7 implies that the level function is
constant on every subset Ressph(Xξ) ⊂ Csph(X), and if ξ is an admissible
k-tuple then the level of each element of Ressph(Xξ) is at least k.
Now, for each i > 0, we denote by Y i the subset of Csph(X) consisting

of those elements of level i. Thus the decomposition (*) may be rewritten
as a finite partition

(**) Csph(X) = Y 0 ∪ Y 1 ∪ · · · ∪ Y n
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where n = dim(X). It is tempting to verify that this partition provides a
stratification of the compactification Csph(X) in the sense of the following
definition, which is taken over from [24, §3, Définition 1] (and slightly
generalises a definition due to Siebenmann [29, Definition 1.1]).

Definition 5.8. — A stratification of a topological space Y is a lo-
cally finite partition (Y s)s∈S by locally closed sets called strata such that
the frontier condition holds: if Y s ∩ Y t 6= ∅, then Y s is included in Y t.
In other words, the closure of any stratum is a union of strata.

Proposition 5.9. — If the building X is affine, then the decomposi-
tion (**) is a stratification of Csph(X).

Since this result will not be used in the sequel, we only provide a sketch.

Sketch of proof. — The only thing to check is that, for each i > 0, we
have Y i =

⋃
j>i

Y j . Since the closure of Ressph(Xξ) is Csph(Xξ) for any

admissible tuple ξ, we deduce from the definition that Y i ⊇
⋃
j>i

Y j for each

i > 0. In order to prove the reverse inclusion, it suffices to show that
⋃
j>i

Y j

is closed. This is where the hypothesis that X is affine will be used. Let v
be a special vertex. One first shows that x ∈ Csph(X) has level > k if and
only if the combinatorial sector Q(v, x) contains a k-dimensional simplicial
cone based at v. One next considers a sequence (xn) of points of Csph(X),
each of level at least k, converging to some x ∈ Csph(X). Let Cn be a k-
dimensional cone with vertex v contained in Q(v, xn). Given anym > 0, the
intersection Q(v, xn) ∩ B(v,m) of the combinatorial sector Q(v, xn) with
them-ball around v is a subset of X which becomes independent of n for all
n > 0 large enough (in other words the sequence of combinatorial sectors
Q(v, xn) converges pointwise to Q(v, x)). In particular this implies that
the sequence of truncated cones (Cn ∩B(v,m))n converges to a truncated
cone of dimension at least k. Letting now m tend to infinity, we infer that
Q(v, x) contains a k-dimension simplicial cone with vertex v. This implies
that the level of v is at least k, as desired. �

If the building X is Gromov-hyperbolic, then the level of every point
of Csph(X) is at most 1, and the fact that (**) is a stratification is thus
tautological in this case. We conclude this section by an example showing
that some assumption on the type of X has to be made for (**) to define
a stratification.
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Example 5.10. — LetW be the Coxeter group associated with the tiling
of the real hyperbolic 3-space H3 by ideal tetrahedra, and let A denote the
Davis realization of the corresponding apartment. The Coxeter matrix of
W has size 4 and each off-diagonal entry equals 3. ThusW is a non-uniform
lattice of Is(H3); the ideal tetrahedron is a non-compact fundamental do-
main of finite volume for the W -action on H3. On another hand W acts
cocompactly on A. We shall use the hyperbolic space H3 as an auxiliary
space in order to describe the combinatorial compactification of A.

Lemma 2.26 allows one to define a map π : Csph(A)\Ressph(A)→ ∂∞H3

as follows. For each ξ ∈ Csph(A)\Ressph(A), we define π(ξ) to be the unique
point of ∂∞H3 such that π(ξ) ∈ ∂∞α for every α ∈ ΦA(ξ). One verifies that
π is continuous and surjective. It is however far from being injective. For
example, if R ⊂ A is a residue of type Ã2, then the whole boundary of R
in Csph(A) is mapped onto a single parabolic point of ∂∞H3.
Let now (ξn) be a sequence of parabolic points in ∂∞H3 which converges

to a conical limit point ξ. Since π−1(ξn) contains the boundary of a residue
of type Ã2, we can choose for each n a point xn ∈ π−1(ξn) which has level 2.
Upon extracting, we may assume that the sequence (xn) converges to some
point x ∈ Csph(A). Since π is continuous, we conclude π(x) = ξ is a conical
limit point. Since a point of level 2 in Csph(A) belongs to the boundary of a
residue of type Ã2 and is thus mapped by π on a parabolic point, we infer
that x has level at most 1. This shows that the level function is not upper
semi-continuous on Csph(A), and thus that (**) is not a stratification.

5.3. Comparison to the refined visual boundary

Besides its own intrinsic CAT(0) realisation, the building Xξ inherits a
CAT(0) realisation in a canonical way from X. This follows actually from a
general construction which may be performed in an arbitrary CAT(0) space
and which attaches a transverse CAT(0) space to every point in the visual
boundary. This construction was described by Karpelevič in the case of
symmetric spaces; it was introduced by Leeb [26] in the general context of
CAT(0) spaces and used recently in [12] to study the structure of amenable
groups acting on CAT(0) spaces. A brief description is included below.
Let ξ ∈ ∂∞X. We let X∗ξ denote the set of geodesical rays ρ pointing

towards ξ. The set X∗ξ is endowed with a pseudo-distance defined by

d(ρ, ρ′) = inf
t,t′>0

d(ρ(t), ρ′(t′)).
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If bξ is a Busemann function associated to ξ, and if the parametrisa-
tion of ρ and ρ′ is chosen so that bξ ◦ ρ = bξ ◦ ρ′, then in fact d(ρ, ρ′) =

lim
t→+∞

(ρ(t), ρ′(t)). This remark justifies that d is indeed a pseudo-distance.
Identifying points at distance 0 in X∗ξ yields a metric space X ′ξ. There

is no reason for this new space to be complete; its metric completion is
denoted by Xξ. There is a canonical projection

πξ : X → Xξ

which associates to a point x the (equivalence class of the) geodesic ray
from x to ξ. It is immediate to check that πξ is 1-Lipschitz.

Moreover, there is a canonical morphism ϕ′ξ : Gξ → Isom(X ′ξ), where
G = Isom(X), defined by

ϕ′ξ(g).πξ(x) = πξ(g.x).

The space Xξ is CAT(0) (see [26, Proposition 2.8]). Furthermore the mor-
phism ϕ′ξ is continuous (see [12, Proposition 4.3]).

As before, the space Xξ is transverse to the direction ξ. Since each trans-
verse space Xξ admits its own visual boundary, it is natural to repeat in-
ductively the above construction and consider sequences (ξ1, ξ2, . . . ) such
that ξn+1 ∈ ∂∞Xξ1,ξ2,...ξn . The next proposition shows that this inductive
process terminates after finitely many steps (in the case of buildings, this
should be compared to Remark 5.4):

Lemma 5.11. — If X is finite-dimensional or if it is of bounded geom-
etry, then there exists an integer K ∈ N, depending only on X, such that
for every sequence (ξ1, . . . , ξK) with ξ1 ∈ ∂∞X and ξi+1 ∈ ∂∞Xξ1,...,ξi we
have ∂∞Xξ1,...,ξK = ∅.

Proof. — See the remark after [12, Corollary 4.4]. �

The following definition is taken over from [12].

Definition 5.12. — The refined visual boundary of level k of X
is the set of all sequences (ξ1, . . . , ξk, x), where ξ1 ∈ ∂∞X and ξi+1 ∈
∂∞Xξ1,...,xi for all 1 6 i 6 k − 1 and x ∈ Xξ1,...,ξk .

The refined visual boundary of X is the union over all k ∈ N of the
refined boundaries of level k. It is denoted by ∂fine

∞ X.

As mentioned earlier, in case the underlying space X is a building, the
transverse space Xξ may be viewed as a CAT(0) realisation of the build-
ing Xξ constructed combinatorially in Section 5.1. The following result
shows that in some sense, the refined visual boundary is a realisation of
the boundary at infinity of the combinatorial bordification.
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Theorem 5.13. — Let X be a building. Then there is an Aut(X)-
equivariant map F : X ∪ ∂fine

∞ X → Csph(X).

Proof. — There is an Aut(X)-equivariant surjective map F : X →
Ressph(X) which associates to each point its support. Recall that the sup-
port of a point x may be characterised as the unique spherical residue
contained in the intersection of all half-apartments containing x. We are
going to prove, by induction on the dimension of X, that this map extends
to ∂fine

∞ X.
Let now ξ ∈ ∂∞X. To ξ is associated a building Xξ and a CAT(0) space

Xξ ; furthermore, it is easy to see that Xξ is a metric realisation of Xξ. By
the induction hypothesis (see Remark 5.4) there is a well-defined Aut(X)ξ-
equivariant map ∂fine

∞ Xξ → Csph(Xξ). Upon post-composing with the map
rξ of Theorem 5.5, we may assume that this map takes it values in Csph(X).
Since by definition, we have a partition

∂fine
∞ X =

⊔
ξ∈∂∞X

∂fine
∞ Xξ,

the existence of the desired map F follows. �

Notice that it is not clear a priori (and not true in general) that this
map is surjective. Indeed, it might be the case that the CAT(0) space Xξ

be reduced to a single point while the associated building Xξ is a spherical
building not reduced to a single chamber. This happens for example of X
is a Fuchsian building and ξ is an end point of some wall. In this case,
the combinatorial boundary is just the usual boundary, and the map F

associates to a point ξ of the visual boundary the whole building Xξ, which
is spherical, hence itself a spherical residue in Xξ.

6. Amenability of stabilisers

Let X be a building. The following shows the relationship between
amenable subgroups of Aut(X) and the combinatorial bordification
Csph(X).

Theorem 6.1. — Let G be a locally compact group acting continuously
on X, and H a subgroup of G. If H is amenable, then some finite index
subgroup of H fixes a point in Csph(X).
Assume in addition that the stabiliser in G of every spherical residue is

compact. Then the stabiliser of any point of Csph(X) is a closed amenable
subgroup.
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Proof. — By [12, Theorem 1.4] (see also [14, Theorem 1.7] in case X is
not locally compact), the group H has a finite index subgroup H∗ which
fixes a point in X ∪ ∂fine

∞ X. Its image under the equivariant map F of
Theorem 5.13 is thus a H∗-fixed point in the combinatorial bordification
Csph(X).

Assume now that the elements of Ressph(X) have compact stabilisers
in G and let f ∈ Csph(X). We shall prove by induction on dim(X) that
the stabiliser Gf fixes some point in the refined visual bordification X ∪
∂fine
∞ X. The desired result on amenability will then be provided by [12,

Theorem 1.5] (see also the remark following Theorem 1.1 in loc. cit. as well
as [14, Theorem 1.7] for the non-locally compact case).
If f ∈ Ressph(X), then Gf fixes the centre of the residue f and there is

nothing to prove. Since the latter happens when X is has dimension 0, the
induction can start and we assume henceforth that f is a point at infinity.

Notice that combinatorial sectors are closed and convex in the CAT(0)
sense. Let Qf denote the collection of all combinatorial sectors pointing
to f . By Proposition 2.30, the set Qf forms a filtering family of closed
convex subsets, i.e. any finite intersection of such sectors is non-empty and
contains such a sector. Since f lies at infinity, it follows that

⋂
Qf is

empty. It then follows from [14, Theorem 1.1] and [4, Proposition 1.4] that
the intersection of the visual boundaries of all elements of Qf admits a
canonical barycentre ξ ∈ ∂∞X which is thus fixed by Gf . In particular Gf
acts on the building Xξ transverse to ξ.

We claim that Gf fixes a point in Csph(Xξ). In order to establish it,
notice first that by definition ξ belongs to the visual boundary of every
apartment containing a sector in Qf . Pick such an apartment A. Then A
may also be viewed as an apartment of Xξ and its walls in Xξ is a subset
of its walls in X. By Lemmas 2.3 and 2.24 and Corollary 2.32, it follows
that f determines a point f ′ ∈ Csph(Xξ). Furthermore, since A contains
a subsector of every element of Qf , it follows from Lemma 2.26 that f ′ is
uniquely determined by f . In particular Gf fixes f ′ ∈ Csph(Xξ) as claimed.

Since dim(Xξ) < dim(X) by Remark 5.4, it follows from the induction
hypothesis that Gf < Gf ′ fixes a point in the refined visual bordification
Xξ∪∂fine

∞ Xξ. By definition, the latter embeds in the refined visual boundary
∂fine
∞ X. Thus we have shown that Gf fixes a point in the refined visual

boundary of X as desired. �
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Appendix A. Combinatorial compactifications of CAT(0)
cube complexes

In this appendix, we outline how some of the above results may be
adapted in the case of finite-dimensional CAT(0) cube complexes. Since
the arguments are generally similar but easier than in the case of build-
ings, we do not include detailed proofs but content ourselves by referring
to the appropriate arguments in the core of the text.

Let thus X be such a space. The 1-skeleton X(1) induces a combinatorial
metric on the set of vertices X(0) which is usually called the `1-metric.
In general it does not coincide with the restriction of the CAT(0) metric.
The distance between two vertices may be interpreted as the number of
hyperplanes separating them.
Let P denote the product of all pairs {h+, h−} of complementary half-

spaces. Then there is a canonical embedding X(0) → P which is defined by
remembering on which side of every wall a point lies. The closure of X(0)

in P is denoted by Cultra(X). It is called the Roller compactification or
ultrafilter compactification of X; see [21, §3.3] and references therein.
It is a natural analogue of the minimal combinatorial compactification of
buildings introduced in the core of the paper. Notice that, as opposed to
the case of buildings, the space Cultra(X) is compact even if X is not
locally finite. The following result is due to U. Bader and D. Guralnick
(unpublished); it should be compared to Theorem 3.1.

Proposition A.1. — The ultrafilter compactification coincides with
the horofunction compactification of the vertex-set X(0) endowed with the
`1 metric.

The following is an obvious adaption Lemma 2.3; it is established with
the same proof.

Lemma A.2. — Let (vn) be a sequence of vertices. Then the sequence
(vn) in Cultra(X) if and only if for each wall W there is some N such that
the subsequence (vn)n>N lies entirely on one side of W .

This allows one to associate with every ξ ∈ Cultra(X) the set Φ(ξ) of
all half-spaces in which every sequence converging to ξ penetrates and
eventually remains in. We define the combinatorial sector based at a
vertex v and pointing to ξ as the set

Q(v, ξ) =
⋂

h∈Φ(v)∩Φ(ξ)

h.
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The (combinatorial) convex hull of a set of vertices is defined as
the intersection of all half-spaces containing it. Having this in mind, it is
straightforward to prove that for all v ∈ X(0) and any sequence (vn) of
vertices converging to some ξ ∈ Cultra(X), we have

Q(v, ξ) =
⋃
k>0

⋂
n>k

Conv(v, vn),

compare Propositions 2.15 and 2.27. The key property of combinatorial
sectors pointing to some ξ ∈ Cultra(X) is that they form a filtering family:

Proposition A.3. — Let v, v′ ∈ X(0) and ξ ∈ Cultra(X). Then there
exists some vertex v′′ such that Q(v′′, ξ) ⊂ Q(v, ξ) ∩Q(v′, ξ).

Proof. — Use induction on dim(X) mimicking the proof of Lemma 2.29.
�

Assume for the moment that X is locally finite; then the automorphism
group G = Aut(X) is locally compact and we may as before consider
the closure of the set of vertex-stabilisers in the Chabauty compact space
S(G) of closed subgroups of G. Notice however that one should not expect
the latter to coincide with the ultrafilter compactification in general: the
most obvious reason for this is that the group-theoretic compactification
need not be a genuine compactification if G is to small — for example
if G is discrete and torsion free, the group-theoretic compactification is a
singleton. In fact, as opposed to the case of buildings, where the condition
of strongly transitive actions is very natural, the transitivity properties one
should impose on G to make sure that the group-theoretic compactification
is indeed a compactification of the vertex set do not seem natural at all.
Therefore we shall not pursue this here and content ourselves with the
following fact.

Proposition A.4. — Let (vn) be a sequence of vertices ofX converging
to some ξ ∈ Cultra(X). Then the sequence of stabilisers (Gvn) converges in
the Chabauty topology and its limit coincides with RadLF(Gξ).

Proof. — Let D be an accumulation point of the sequence (Gvn). It
suffices to show that D = RadLF(Gξ).
The proof of Lemma 4.12 applies verbatim to the present situation and

ensures that D ⊂ Gξ. Moreover, by similar arguments as in Lemma 4.5,
one deduces from Proposition A.3 that the set of periodic elements of Gξ
coincides with RadLF(Gξ). Since Lemma 4.1 implies that D consists of
periodic elements, one obtains the inclusion D ⊂ RadLF(Gξ).
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In order to prove the reverse inclusion, consider an element g ∈
RadLF(Gξ). Then g is periodic and hence it fixes some cube C of X. Since
the point ξ determines exactly one side of each of the walls of C, it follows
that g fixes some vertex v of C. In particular g stabilises the sector Q(v, ξ).
It is easy to see by induction on the distance to v that g fixes pointwise all
vertices contained in Q(v, ξ). On the other hand, Lemma A.2 implies that
the sequence (vn) penetrates and eventually remains in Q(v, ξ). Therefore,
we deduce that g belongs to Gvn for any sufficiently large n. By Lemma 4.1,
this implies that g ∈ D as desired. �

We now drop off the assumption that X be locally finite. The ultrafilter
compactification may also be compared to the visual boundary in a similar
way as in Section 5; in particular Cultra(X) admits a stratification as in
Theorem 5.5. This may be used to established the following by mimicking
the proof of Theorem 6.1.

Theorem A.5. — Every amenable locally compact group acting contin-
uously onX has a finite index subgroup which fixes some point in Cultra(X).
Conversely, given a locally compact group G acting continuously on X

in such a way that every vertex has compact stabiliser, then the stabiliser
in G of every point of Cultra(X) is a closed amenable subgroup.

In the special case of a discrete group G, this last part was established
independently in [9]. Remark that, as in the case of buildings, a closed sub-
group H < G is amenable if and only if H/RadLF(H) is virtually Abelian
(see [12], as well as [14, Theorem 1.7] for the non-locally compact case)
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