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CONFINING QUANTUM PARTICLES WITH A
PURELY MAGNETIC FIELD

by Yves COLIN DE VERDIÈRE & Françoise TRUC

Abstract. — We consider a Schrödinger operator with a magnetic field (and
no electric field) on a domain in the Euclidean space with a compact boundary. We
give sufficient conditions on the behaviour of the magnetic field near the boundary
which guarantees essential self-adjointness of this operator. From the physical point
of view, it means that the quantum particle is confined in the domain by the
magnetic field. We construct examples in the case where the boundary is smooth
as well as for polytopes; These examples are highly simplified models of what is
done for nuclear fusion in tokamacs. We also present some open problems.
Résumé. — Nous considérons un ouvert à bord compact d’un espace euclidien

et un opérateur de Schrödinger avec champ magnétique dans cet ouvert. Nous
donnons des conditions suffisantes sur la croissance du champ magnétique près du
bord qui assurent que l’opérateur de Schrödinger est essentiellement auto-adjoint.
Du point de vue de la physique, cela signifie que la particule quantique est confinée
dans l’ouvert par le champ magnétique. Nous construisons des exemples dans les
polytopes et dans des ouverts à frontières lisses ; ces exemples de “bouteilles ma-
gnétiques” sont des modèles extrêmement simplifiés de ce qui est nécessaire pour la
fusion nucléaire dans les tokamacs. Nous présentons aussi des problèmes ouverts.

1. Introduction

1.1. The problem

Let us consider a particle in a domain Ω in Rd (d > 2) in the presence
of a magnetic field B. We will always assume that the topological bound-
ary ∂Ω := Ω r Ω of Ω is compact. At the classical level, if the strength
of the field tends to infinity as x approaches the boundary ∂Ω, we expect
that the charged particle is confined and never visits the boundary: The
Hamiltonian dynamics is complete. At the quantum level the fact that the

Keywords: Magnetic field, Schrödinger operator, self-adjointness.
Math. classification: 35J10, 35J25, 35P05, 35Q40, 46N55.



2334 Yves COLIN DE VERDIÈRE & Françoise TRUC

particle never feels the boundary amounts to saying that the magnetic field
completely determines the motion, so there is no need for boundary condi-
tions. At the mathematical level, the problem is to find conditions on the
behaviour of B(x) as x tends to ∂Ω which ensure that the magnetic oper-
ator HA is essentially self-adjoint (see Section 2.6) on C∞0 (Ω) (the space of
compactly supported smooth functions). These conditions will not depend
on the gauge A, but only on the field B. One could have called such pairs
(Ω, A) “magnetic bottles”, but this denomination is already introduced in
the important paper [3] for Schrödinger operators with magnetic fields in
the whole of Rd having compact resolvents. This question may be of techno-
logical interest in the construction of tokamacs for the nuclear fusion [14].
The ionised plasma which is heated is confined thanks to magnetic fields.

1.2. Previous works

The same problem, concerning scalar (electric) potentials, has been in-
tensively studied. In the many-dimensional case the basic result appears
in a paper by B. Simon [27] which generalises results of H. Kalf, J. Wal-
ter and U.-V. Schminke (see [16] for a general review). Concerning the
magnetic potential, the first general result is by Ikebe and Kato: In [15],
they prove self-adjointness in the case of Ω = Rd for any regular enough
magnetic potential. This result was then improved in [28, 25]. Concerning
domains with boundary, we have not seen results in the purely magnetic
case. A regularity condition on the direction of the magnetic field was
introduced in the important paper [3] (Corollary 2.10, p. 853) in order
to construct “magnetic bottles” in Rd. It was used later in many papers
like [5, 7, 30, 31, 9, 10, 11, 4].
In the recent paper [21], G. Nenciu and I. Nenciu give an optimal condi-

tion for essential self-adjointness on the electric potential near the boundary
of a bounded smooth domain; They use Agmon-type results on exponential
decay of eigenfunctions combined with multidimensional Hardy inequali-
ties.

1.3. Rough description of our results

As we will see, in the case of a magnetic potential the Agmon-type es-
timates still hold, whereas the Hardy inequalities cannot be used because
there is no separation between kinetic and potential energy. Actually the
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MAGNETIC CONFINEMENT 2335

point is that we need, to apply the strategy of [21], some lower bound on
the magnetic quadratic form hA associated with the magnetic potential A.
Our main result is as follows: Under some continuity assumption on the
direction of B(x) at the boundary, for any ε > 0 and R > 0, there exists
a constant Cε,R ∈ R such that the quadratic form hA satisfies the quite
optimal bound

(1.1) ∀u ∈ C∞0 (Ω), hA(u) > (1−ε)
∫

Ω∩{x||x|6R}
|B|sp |u|2 |dx|−Cε,R ‖u‖2.

Here |B(x)|sp is a suitable norm on the space of bi-linear antisymmetric
forms on Rd, called the spectral norm. This implies that HA is essentially
self-adjoint if there exists η > 0 so that |B(x)|sp > (1 + η)D(x)−2 where D
is the distance to the boundary of Ω.

We study then examples in the following cases:
• The domain Ω is a polytope
• The boundary ∂Ω is smooth and the Euler characteristic χ(∂Ω)

vanishes (toroidal domain)
• The boundary ∂Ω is smooth and the Euler characteristic χ(∂Ω)
does not vanish (non toroidal domain)

• The domain Ω is R3 r 0 and the field is a monopole or a dipole
• The domain Ω is the unit disk: For any ε > 0 and d = 2, we
construct an example of a non essentially self-adjoint operator HA
with |B(x)|sp ∼ (

√
3/2−ε)D(x)−2 showing that our bound is rather

sharp.

1.4. Open problems

The following questions seem to be quite interesting:
• What are the properties of a classical charged particle in a confining

magnetic box? Are almost all trajectories not hitting the boundary?
• What is the optimal constant C in the estimates |B(x)|sp >
CD(x)−2 of our main result 3.2 given in Section 3? From our main
results and the example in the unit disk given in Section 5.4, we see
that the optimal constant lies in the interval [

√
3/2, 1].

2. Definitions and background results

In this section, we will give precise definitions and related notations. We
will also review some known results with references to the literature.

TOME 60 (2010), FASCICULE 7



2336 Yves COLIN DE VERDIÈRE & Françoise TRUC

2.1. The domain Ω

In what follows, we will keep the following definitions: Ω is an open set
in the Euclidean space Rd (d > 2) with a compact topological boundary
∂Ω = Ω r Ω, so that either Ω or Rd r Ω is bounded.

Definition 2.1. — We will denote by dR the distance defined on Ω by
the Riemannian metric induced by the Euclidean metric

dR(x, y) = inf
γ∈Γx,y

length(γ)

where Γx,y is the set of smooth curves γ : [0, 1]→ Ω with γ(0) = x, γ(1) = y.
We will denote by Ω̂ the metric completion of (Ω, dR) and by Ω∞ = Ω̂rΩ

the metric boundary of Ω.
We say that Ω is regular if Ω∞ is compact.

If Ω is regular, ∂Ω is compact. In fact the identity map of Ω extends to
a continuous map π from Ω̂ onto Ω and π(Ω∞) = ∂Ω. (Ω̂, π) is a “desin-
gularisation” of Ω. If X = ∂Ω is a compact C1 sub-manifold or a compact
simplicial complex embedded in a piecewise C1 way, Ω is regular.
If X = ∪n∈N[0, 1]en with en a sequence of unit vectors in R2 converging

to e0, then Ω = R2 rX is not regular, even if ∂Ω = X is compact. We will

Ω∞

π

e1

e2

e0

en

∂Ω

Figure 2.1. An example where ∂Ω is compact while Ω∞ is not compact

use the following regularity property.

Definition 2.2. — Let us assume that Ω is regular. A continuous func-
tion f : Ω→ C is regular at the boundary if it extends by continuity to Ω̂.

ANNALES DE L’INSTITUT FOURIER



MAGNETIC CONFINEMENT 2337

The Lebesgue measure will be |dx| and we will denote by 〈u, v〉 :=∫
Ω uv̄ |dx| the L

2 scalar product and by ‖u‖ the L2 norm of u. We will
denote by C∞0 (Ω) the space of complex-valued smooth functions with com-
pact support in Ω.

2.2. The distance to the boundary

2.2.1. The distance function

Definition 2.3. — Let us denote by d̂R the extension of dR by conti-
nuity to Ω̂. For x ∈ Ω, let D(x) be the distance to the boundary Ω∞, given
by D(x) = miny∈Ω∞ d̂R(x, y).

Lemma 2.4. — The function D is 1-Lipschitz and almost everywhere
differentiable in Ω. At any point x of differentiability of D, we have
|dD(x)| 6 1.

The inequality |D(x) − D(x′)| 6 dR(x, x′) follows from the triangle in-
equality for d̂R. The almost everywhere differentiability of Lipschitz func-
tions is the celebrated Theorem of Hans Rademacher [23]; See also [20], p. 65
and [13].

2.2.2. Adapted charts for smooth boundaries

Assuming that the boundary is smooth, we can find, for each point x0 ∈
∂Ω, a diffeomorphism F from an open neighbourhood U of x0 in Rd onto
an open neighbourhood V of 0 in Rdx1,x′ satisfying:

• x1(F (x)) = D(x)
• The differential F ′(x0) of F is an isometry
• F (U ∩ Ω) = V ∩ {x1 > 0}.

We will call such a chart an adapted chart at the point x0. Such a chart
is an ε-quasi-isometry (see the definition in Section 4.2) with ε as small as
one wants by choosing U small enough.

2.3. Antisymmetric forms

Let us denote by ∧kRd the space of real-valued k-linear antisymmetric
forms on the Euclidean space Rd. The space ∧1Rd is the dual of Rd, and it

TOME 60 (2010), FASCICULE 7



2338 Yves COLIN DE VERDIÈRE & Françoise TRUC

is equipped with the natural Euclidean norm: |
∑d
j=1 ajdxj |2 =

∑d
j=1 a

2
j .

The space ∧2Rd is equipped with the spectral norm: If B ∈ ∧2Rd, there
exists an orthonormal basis of Rd so that B = b12dx1 ∧ dx2 + b34dx3 ∧
dx4 + · · ·+ b2d̄−1,2d̄ with d̄ = [d/2] and b12 > b34 > · · · > 0. The sequence
b12, b34, . . . is unique: The eigenvalues of the antisymmetric endomorphism
B̃ of Rd associated with B(x) are ±ib12,±ib34, . . . ,±ib2d̄−1,2d̄ and 0 if d is
odd.

Definition 2.5. — We define the spectral norm of B by |B|sp :=∑d̄
j=1 b2j−1,2j .

|B|sp is one half of the trace norm of B̃, hence |B|sp is a norm on ∧2Rd.
If d = 2, |B|sp = |B|; If d = 3, |B|sp is the Euclidean norm of the vector
field ~B associated with B, defined by ι

(
~B
)
dx ∧ dy ∧ dz = B where ι

(
~B
)
ω

is the inner product of the vector field ~B with the differential form ω.

Remark 2.6. — |B|sp is the infimum of the spectrum of the Schrödinger
operator with constant magnetic field B in Rd.

Remark 2.7. — If B = L1 ∧ L2, |B|sp = |L1| |L′2| where L′2 is the re-
striction of L2 to the orthogonal of kerL1.

2.4. Magnetic fields

Let us give the basic definitions and notations concerning magnetic fields
in a domain Ω. The magnetic potential is a smooth real 1-form A on Ω ⊂
Rd, given by A =

∑d
j=1 ajdxj , and the associated magnetic field is the 2-

form B = dA; More explicitly, we have B(x) =
∑

16j<k6d bjk(x)dxj ∧ dxk
with bjk(x) = ∂jak(x)− ∂kaj(x).
Let us define now the Schrödinger operator with magnetic field B = dA.

Definition 2.8. — The magnetic connection ∇ = (∇j) is the differen-
tial operator defined by

∇j = ∂

∂xj
− iaj .

The magnetic Schrödinger operator HA is defined by

HA = −
d∑
j=1
∇2
j .

ANNALES DE L’INSTITUT FOURIER
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The magnetic Dirichlet integral hA = 〈HA · |·〉 is given, for u ∈ C∞0 (Ω), by

hA(u) =
∫

Ω

d∑
j=1
|∇ju|2 |dx|.

Let us note the commutator formula [∇j ,∇k] = −ibjk which will be very
important. From the previous definitions and the fact that the formal ad-
joint of ∇j is −∇j , it is clear that the operator HA is symmetric on C∞0 (Ω).

Definition 2.9. — We will say that B = dA is a confining field in Ω if
HA is essentially self-adjoint (see Section 2.6).

2.5. The Riemannian context

2.5.1. “Regular” Riemannian manifolds

The context of an Euclidean domain is not the most natural one for
our problem. In particular, the “regularity assumption” of Definition 2.1
can easily be extended to the Riemannian context. Let (Ω, g) be a smooth
Riemannian manifold. We are interested in cases where (Ω, g) is not com-
plete. Let us recall that g induces on Ω a distance dg defined by dg(x, y) =
infγ∈Γx,y

length(γ) where Γx,y is the set of smooth paths γ : [0, 1] → Ω so
that γ(0) = x, γ(1) = y. We will denote by Ω̂ the metric completion of
Ω and by Ω∞ = Ω̂ r Ω the metric boundary. In the case where Ω ⊂ Rd
is equipped with the Euclidean Riemannian metric, Ω∞ is in general not
equal to the boundary ∂Ω.

Definition 2.1 is now replaced by

Definition 2.10. — The Riemannian manifold (Ω, g) is regular if
(1) Ω∞ is compact
(2) For any ε > 0, every x0 ∈ Ω∞ has a neighbourhood U so that U ∩Ω

is ε-quasi-isometric (see Definition 4.4) to an open set of Rd with
an Euclidean metric.

A function f : Ω→ C is regular at the boundary if it extends by continuity
to Ω̂.

2.5.2. Magnetic fields on Riemannian manifolds

The magnetic potential is a smooth real valued 1-form A on Ω, the
magnetic field is the 2-form B = dA. The norm |B(x0)|sp is calculated

TOME 60 (2010), FASCICULE 7



2340 Yves COLIN DE VERDIÈRE & Françoise TRUC

with respect to the Euclidean metric gx0 . The magnetic potential defines a
connection ∇ on the trivial line bundle Ω×C→ Ω by ∇Xf = df(X)− iAf .
The magnetic Dirichlet integral is hA(f) =

∫
Ω ‖∇f‖

2
g |dx|g where the norm

of the 1-form ∇f(x) is calculated with the dual Riemannian norm ‖∇f‖2g =∑
ij g

ij∇∂i
f∇∂j

f and |dx|g = θ |dx1 · · · dxd| is the Riemannian volume. The
magnetic Schrödinger operator is then defined by

HAf = −θ−1
∑
ij

∇∂i

(
θgij∇∂j

f
)
.

2.6. Essential self-adjointness

In this section, we will review what is an essentially self-adjoint operator
and give some easy propositions which we were not able to point in the
literature.

2.6.1. Essentially self-adjoint operators

Let us recall the following

Definition 2.11. — A differential operator P : C∞0 (Ω) → C∞0 (Ω) is
essentially self-adjoint in L2(Ω, |dx|) if P is formally symmetric (for any
u, v ∈ C∞0 (Ω), 〈Pu | v〉 = 〈u | Pv〉) and the closure of P is self-adjoint.

A basic criterion for essential self-adjointness is the following (see crite-
rion (4) of Theorem X.1 and Corollaries in [24] ).

Proposition 2.12. — Let P be as before and formally symmetric. Let
us assume either that

(1) there exists E ∈ R so that any solution v ∈ L2(Ω) of (P −E)v = 0
(in the weak sense of Schwartz distributions) vanishes,

or that
(2) there exists λ± ∈ C with ±=(λ±) > 0 so that any solution v ∈

L2(Ω) of (P−λ±)v = 0 (in the weak sense of Schwartz distributions)
vanishes.

Then P is essentially self-adjoint.

2.6.2. Essential self-adjointness depends only
on the boundary behaviour

Proposition 2.13. — Let X be a smooth manifold with a smooth den-
sity |dx|. Let Lj , j = 1, 2 be two formally symmetric elliptic differential

ANNALES DE L’INSTITUT FOURIER
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operators of degree m on L2(X, |dx|) and let us assume that L1 is essen-
tially self-adjoint and L2 − L1 = M is compactly supported. Then L2 is
essentially self-adjoint.

Let us denote, for 1 6 t 6 2, Lt = L1 + (t − 1)(L2 − L1) and by D the
domain of the closure of L1. We will need the

Lemma 2.14. — The domain of the closure of Lt is D and there exists
some constants c(t) so that, for any u ∈ D,

‖Mu‖ 6 c(t)
(
‖Ltu‖+ ‖u‖

)
where the norms are L2 norms.

Proof of Lemma 2.14. — The statement is clear from elliptic theory: If
u ∈ D, u is in the local Sobolev space Hm

loc and Mu is in L2. The map
u → Mu is well defined on D(Lt) and continuous from the closed graph
theorem. �

Proof of Proposition 2.13. — Kato-Rellich Theorem (Theorem X.12 of
[24]) implies that, if |t− t′|c(t) < 1/2, Lt is essential self-adjoint if and only
if Lt′ is essential self-adjoint. Hence, the set of t’s so that Lt is essential
self-adjoint is open and closed. �

2.6.3. Essential self-adjointness is independent
of the choice of a gauge

Proposition 2.15. — Let X be a smooth manifold with a smooth den-
sity |dx|. Let us consider a Schrödinger operator HA1 and A2 = A1 + dF

with F ∈ C∞(X,R). Then, if HA1 is essentially self-adjoint, HA2 is also
essentially self-adjoint.

Proof. — We have formally (as differential operators)

HA2 = eiFHA1e
−iF .

Hence, HA2 − ci = eiF
(
HA1 − ci

)
e−iF . The domain D2 of the closure of

HA2 (defined on C∞0 (X)) is eiF times the domain D1 of the closure of
HA1 . The result follows from the fact that e±iF is invertible in L2 and an
isomorphism of the domains. �

3. Main results

Let us take HA with domain D(HA) = C∞0 (Ω). As explained in the in-
troduction, we are looking for growth assumptions on |B|sp close to ∂Ω

TOME 60 (2010), FASCICULE 7



2342 Yves COLIN DE VERDIÈRE & Françoise TRUC

ensuring essential self-adjointness of HA. We formulate now our main re-
sults.

Theorem 3.1. — Let Ω ⊂ R2 with ∂Ω compact. IfB(x) satisfies near ∂Ω

(3.1) |B(x)|sp > (D(x))−2,

then the Schrödinger operator HA is essentially self-adjoint. This still holds
true for any gauge A′ such that dA′ = dA = B.

Theorem 3.2. — Let d > 2 and Ω ⊂ R2 be regular. Assume that there
exists η > 0 such that B(x) satisfies near ∂Ω

(3.2) |B(x)|sp > (1 + η)(D(x))−2,

and that the functions

(3.3) njk(x) = bjk(x)
|B(x)|sp

are regular at the boundary Ω∞ (for any 1 6 j < k 6 d) (see Definition 2.2).
Then the Schrödinger operatorHA is essentially self-adjoint. This still holds
true for any gauge A′ such that dA′ = dA = B.

Remark 3.3. — If Ω is defined (locally or globally) by Ω :=
{
x ∈ Rd |

f(x) > 0
}
with f : Rd → R smooth, df(y) 6= 0 for y ∈ ∂Ω, then f(x) ∼

|df(x)|D(x) for x close to ∂Ω. And we can replace in the estimates (3.2)
D(x) by f(x)/|df(x)|.

Theorem 3.2 can be extended to Riemannian manifolds as follows.

Theorem 3.4. — Let (Ω, g) be a regular Riemannian manifold with a
magnetic field B = dA. Let us assume that there exists η > 0 so that
|B|sp > (1 + η)D−2 near Ω∞ and that, for each x0 ∈ Ω∞, the direction
n(x) of B, calculated with the metric gx0 (i.e. using the trivialisation of
the tangent bundle associated with gx0), has a limit as x→ x0, then HA is
essentially self-adjoint on C∞0 (Ω).

The exponent 2 of the leading term in Equations (3.1) and (3.2) is opti-
mal, as shown in the following

Proposition 3.5. — For any 0 < α <
√

3/2, there exists a magnetic
field B such that HA (with dA = B) is not essentially self-adjoint and such
that the growth of |B|sp near the boundary ∂Ω satisfies

|B(x)|sp >
α

(D(x))2 .

ANNALES DE L’INSTITUT FOURIER
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We prove this proposition in Section 5.4 in the case d = 2, but the proof
can be easily generalised to larger dimensions.
As a consequence of this proposition, together with Theorem 3.1 (respec-

tively 3.2 ), we get that the optimal constant in front of the leading term
(D(x))−2 is in [

√
3/2, 1].(1)

Hence we see that the situation for confining magnetic fields is not the
same as for confining potentials (for which the optimal constant is 3/4,
hence is smaller than

√
3/2).

Indeed this is due to the difference between the Hardy inequalities in the
two situations: The term 1/(4D2) does not appear in the magnetic case,
as it does in the case of a scalar potential, where it plays the role of an
“additional barrier”.

4. Proof of the main results

In this section, we prove Theorems 3.1, 3.2 and 3.4 using the method
of [21] which we first review.

4.1. Agmon estimates

The following statement is proved, using Agmon estimates [1], in [21].

Theorem 4.1. — Let (Ω, g) be a Riemannian manifold with Ω∞ com-
pact. Assume that there exists c ∈ R such that, for all u ∈ C∞0 (Ω),
hA(u)−

∫
ΩD(x)−2|u(x)|2 |dx| > c‖u‖2. Then HA is essentially self-adjoint.

Reading the proof in [21], one sees that the only property of Ω which is
used is that the function D(x) is smooth near the boundary and satisfies
|dD(x)| 6 1. One can extend the proof to the case where ∂Ω is not a
smooth manifold by using the properties of the function D described in
Lemma 2.4. The fact that Ω is bounded does not play an important role,
only the compactness of ∂Ω is important. The essential self-adjointness of
HA results from the Proposition 2.12 and the following

(1)Added in proofs. In the preprint [22], the authors proved, in the case of the disk, that
the optimal constant is

√
3/2, provided that the non radial part of the magnetic field is

small enough.

TOME 60 (2010), FASCICULE 7
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Theorem 4.2. — Let v ∈ L2(Ω) be a weak solution of (HA − E)v = 0.
Let us assume that there exists a constant c > 0 such that, for all u ∈
C∞0 (Ω),

(4.1)
〈
u | (HA − E)u

〉
−
∫
{x∈Ω|D(x)61}

|u(x)|2

D(x)2 |dx|g > c‖u‖
2.

Then v ≡ 0.

For the reader’s convenience, we give here the proof of Theorem 4.2
following the strategy of [21] in a slightly simplified way.

Proof. — The proof is based on the following simple identity ([21])

Lemma 4.3. — Let v be a weak solution of (HA − E)v = 0, and let f
be a real-valued Lipschitz function with compact support. Then

(4.2)
〈
fv | (HA − E)(fv)

〉
=
〈
v | |df |2v

〉
.

Let us give two numbers ρ and R satisfying respectively 0 < ρ < 1/2 and
1 < R < +∞. We will apply identity (4.2) with f = F (D) where F is the
piecewise smooth function defined by

F (u) =



0 for u 6 ρ and for u > R+ 1
2(u−ρ) for ρ 6 u 6 2ρ
u for 2ρ 6 u 6 1
1 for 1 6 u 6 R
R+ 1−u for R 6 u 6 R+ 1

F (u)

R R + 1ρ 12ρ

1

0
u

Figure 4.1. The function F

We have |df |2 = F ′(D)2 almost everywhere. From the inequality (4.1)
applied to fv, we get

(4.3)
〈
(HA − E)(fv) | fv

〉
>
∫

2ρ6D(x)61
|v|2 |dx|g + c‖fv‖2.

ANNALES DE L’INSTITUT FOURIER
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On the other hand, using the explicit values of df and Equation (4.2), we
get

(4.4)
〈
(HA − E)(fv) | fv

〉
6 4

∫
ρ6D(x)62ρ

|v|2 |dx|g

+
∫

2ρ6D(x)61
|v|2 |dx|g +

∫
R6D(x)6R+1

|v|2 |dx|g.

Putting together the inequalities (4.3) and (4.4), we get

(4.5) c‖fv‖2 6 4
∫
ρ6D(x)62ρ

|v|2 |dx|g +
∫
R6D(x)6R+1

|v|2 |dx|g.

Taking ρ → 0 and R → +∞ in the inequalities (4.5), we get that the L2

norm of v vanishes. �

4.2. Quasi-isometries

In Section 5 we give examples which have smooth boundaries (except for
the convex polyhedra (Section 5.1)). In order to build new examples, like
non convex polyhedra, one can use quasi-isometries.

Definition 4.4. — Given 0 < c 6 C, a (c, C)-quasi-isometry of Ω1
onto Ω2 is an homeomorphism F of Ω1 onto Ω2 whose restriction to Ω1 is
a smooth diffeomorphism onto Ω2 and such that

∀x, y ∈ Ω1, cdR(x, y) 6 dR
(
F (x), F (y)

)
6 CdR(x, y).

An ε-quasi-isometry is a (1− ε, 1 + ε)-quasi-isometry.

Lemma 4.5. — If F is a (c, C)-quasi-isometry of Ω1 onto Ω2, we have the
bounds ‖F ′‖ 6 C, ‖(F−1)′‖ 6 c−1, |det(F ′)| 6 Cd, cD1(x) 6 D2(F (x)) 6
CD1(x), where, for i = 1, 2, Di(x) denotes, for any x ∈ Ωi, the distance to
the boundary (Ωi)∞.

We start with a magnetic potential A2 in Ω2 and define A1 = F ?(A2).
We want to compare the magnetic quadratic forms hA2(u) and hA1(u ◦ F )
as well as the L2 norms of u and u ◦ F . We get

Theorem 4.6. — Assuming that, for any u ∈ C∞0 (Ω2),

hA2(u) > K
∫

Ω2

|u|2

D2
2
|dx2| − L‖u‖2,

we have, for any v ∈ C∞0 (Ω1),

hA1(v) > K
( c
C

)d+2 ∫
Ω1

|v|2

D2
1
|dx1| − Lc2‖v‖2.
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In other words, we can check that HA1 is essentially self-adjoint from an
estimate for hA2 using Theorem 4.1.
Proof. — Let us start making the change of variables x2 = F (x1) in the

integral hA2(u). Putting v = u ◦ F , we get

hA2(u) =
∫

Ω1

‖∇A1v(x1)‖2g|det(F ′(x1))| |dx1|

where g is the inverse of the pull-back by F of the Euclidean metric. Using
Lemma 4.5, we get the estimate. �

4.3. Lower bounds for the magnetic Dirichlet integrals
4.3.1. Basic magnetic estimates

Lemma 4.7. — For any u ∈ C∞0 (Ω), we have, with d̄ = [d/2],

hA(u) >
∣∣〈b12u | u〉

∣∣+
∣∣〈b34u | u〉

∣∣+ · · ·+
∣∣〈b2d̄−1,2d̄u | u〉

∣∣.
Proof. — We have∣∣〈b12u | u〉

∣∣ =
∣∣〈[∇1,∇2]u | u〉

∣∣ 6 2
∣∣〈∇1u | ∇2u〉

∣∣ 6 ∫
Ω

(
|∇1u|2 + |∇2u|2

)
|dx|.

We take the sum of similar inequalities replacing the indices (1, 2) by
(3, 4), . . . , (2d̄− 1, 2d̄). �

Lemma 4.8. — Let Ω be a regular open set in Rd. Let x0 ∈ Ω∞ and
assume that B(x) does not vanish near the point x0 and that the direction
of B is regular near x0. Let A be a local potential for B near x0, then,
for any ε > 0, there exists a neighbourhood U of x0 in Rd so that, for any
u ∈ C∞0 (U ∩ Ω),

(4.6) hA(u) > (1− ε)
∫
U

|B(x)|sp|u(x)|2 |dx|,

where |B(x)|sp is defined in Definition 2.5.

Proof. — Let us choose U so that, for all x ∈ U ∩Ω, |n(x)−n(x0)|Eucl 6

ε
√

2/d(d− 1), where
∣∣∑

i<j aijdxi ∧ dxj
∣∣2
Eucl =

∑
i<j a

2
ij , by applying Def-

inition 2.2 to n(x) at the point x0. We choose orthonormal coordinates in
Rd so that n(x0) = n12dx1 ∧ dx2 + n34dx3 ∧ dx4 + · · · with n2k−1,2k > 0
and

∑
k n2k−1,2k = 1. From Lemma 4.7, we have, for u ∈ C∞0 (Ω ∩ U),

hA(u) >
∫
U

|B(x)|sp
(
n12(x) + n34(x) + · · ·

)
|u(x)|2 |dx|

and n12(x) + n34(x) + · · · > 1 − ε, because the Euclidean norm of n(x) is
independent of the orthonormal basis. �
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Remark 4.9. — The estimate (4.6) is optimal in view of Remark 2.6.

4.3.2. The 2-dimensional case

Theorem 4.10. — Under the Assumptions of Theorem 3.2, there exists
cR ∈ R so that, ∀u ∈ C∞0 (Ω),

(4.7) hA(u) >
∫

Ω∩B(O,R)
|B| |u|2 |dx| − cR‖u‖2.

Proof. — Let Ω0 = {x ∈ Ω | |B(x)| < 2 or D(x) > 1}, Ω1 = {x ∈ Ω |
B(x) > 1 and D(x) < 2} and Ω2 = {x ∈ Ω | B(x) < −1 and D(x) < 2}.
Let φl, l = 0, 1, 2 be a smooth partition of unity with Support(φl) ⊂ Ωl.

Now we use the IMS formula (see [26])

(4.8) hA(u) =
2∑
l=0

hA(φlu) −
∫

Ω

( 2∑
l=0
|dφl|2

)
|u|2 |dx|

with the lower bound of Lemma 4.7 in Ωl for l = 1, 2 and the lower bound
0 for Ω0. �

4.3.3. The case d > 2

Theorem 4.11. — Let us assume that ∂Ω ⊂ B(O,R). Assume that
B = dA does not vanish near ∂Ω and that the functions njk(x) are regular
at the boundary ∂Ω, then, for any ε > 0, there exists Cε,R > 0 so that,
∀u ∈ C∞0 (Ω),

(4.9) hA(u) > (1− ε)
∫

Ω∩B(O,R)
|B|sp|u|2 |dx| − Cε,R

∫
Ω
|u|2 |dx|.

Proof. — We first choose a finite covering of Ω∞ by open sets Ul, l =
1, . . . , N of Rd which satisfies the estimates of Lemma 4.8. We choose then
a partition of unity φl, l = 0, . . . , N with

• For l > 1, φl ∈ C∞0 (Ul)
• φ0 is smooth and supported in Ω
•
∑
l φ

2
l ≡ 1 in Ω

• sup
∑
l |dφl|2 = M .

Using the estimates given in Lemma 4.8 for l > 1 and the fact that∑
l |dφl|2 is bounded by M , we get, using IMS identity (4.8), the inequal-

ity (4.9). �
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4.4. End of the proof of the main theorems

Using Theorem 4.1, it is enough to show that there exists c ∈ R such
that, for all u ∈ C∞0 (Ω),

hA(u) >
∫

Ω∩B(O,R)
|D(x)|−2|u(x)|2 |dx| − c‖u‖2,

under the assumptions of Theorems 3.1 and 3.2. This is a consequence of
Theorem 4.10 for d = 2 and Theorem 4.11 for d > 2.
The proof of Theorem 3.4 is an adaptation of the case of an Euclidean

domain. The partition of unity is constructed using only the distance func-
tion which has enough regularity. We use also the fact that near each point
x0 of the boundary the metric is quasi-isometrically close to the Euclidean
metric gx0 .

5. Examples

5.1. Polytopes

A polytope is a convex compact polyhedron. Let Ω be a polytope given by

Ω = ∩Ni=1
{
x | Li(x) < 0

}
,

where the Li’s are the affine real-valued functions

Li(x) =
d∑
j=1

nijxj + ai.

We will assume that, for i = 1, . . . , d,
∑d
j=1 n

2
ij = 1 (normalisation) and

ni1 6= 0 (this last condition can always be satisfied by moving Ω by a generic
isometry). We have the

Theorem 5.1. — The operator HA in Ω with

A =
(

1
n11L1

+ 1
n21L2

+ · · ·
)
dx2,

is essentially self-adjoint.

Proof. — We have

B =
(

1
L2

1
+ 1
L2

2
+ · · ·

)
dx1 ∧ dx2 +

d∑
j=3

bjdxj ∧ dx2,

and D = min16i6N |Li|. So that B = b12dx1 ∧ dx2 +
∑d
j=3 bj2dxj ∧ dx2

with b12 > D−2. We then apply directly Lemma 4.7 and Theorem 4.1. �
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5.2. Examples in domains whose Euler characteristic of the
boundary vanishes (“toroidal domains”).

Let us assume that ∂Ω is a smooth compact manifold of co-dimension 1
and denote by j : ∂Ω→ Rd the injection of ∂Ω into Rd. A famous theorem
of H. Hopf (see [2, 12]) asserts that there exists a nowhere vanishing tangent
vector field to ∂Ω (or 1-form) if and only if the Euler characteristic of ∂Ω
vanishes.

Theorem 5.2. — Let us assume that the Euler characteristic of ∂Ω
vanishes (we say that Ω is toroidal). Let A0 be a smooth 1-form on Ω
so that the 1-form on ∂Ω defined by ω = j?(A0) does not vanish, and
consider a 1-form A in Ω defined, near ∂Ω, by A = A0/D

α. We assume
that either α > 1, or α = 1 with the additional condition that for any
y ∈ ∂Ω, |ω(y)| > 1. Then HA is essentially self-adjoint.

Remark 5.3. — The existence of ω is provided by the topological as-
sumption on ∂Ω. This works if Ω ⊂ R3 is bounded by a 2-torus. It is the
case for tokamacs.

Proof. — We will apply Theorem 3.2. We have to check:
• The uniform continuity of the direction of the magnetic field or the
extension by continuity to Ω. It has to be checked locally near the
boundary ∂Ω. We will use an adapted chart (see Section 2.2.2).
In these local coordinates we write A0 = a1dx1+β with β = a2dx2+
· · ·+ addxd and ω = a2(0, y)dx2 + · · ·+ ad(0, y)dxd so we get

B = d

(
A0

xα1

)
= x1dA0 − αdx1 ∧ β

xα+1
1

.

Thus we get that the direction of B is equivalent as x1 → 0+ to
that of dx1 ∧ ω which is non vanishing and continuous on Ω.

• The lower bound (3.2) |B|sp > (1 + η)D−2 near ∂Ω. The norm of
B near the boundary is given, using Remark 2.7, as x→ (0, y), by

|B(x)|sp ∼
α|ω(y)|
Dα+1 .

Therefore we conclude that the hypotheses of Theorem 3.2 are fulfilled. �

Remark 5.4. — The asymptotic behaviour of B(x) as x → (0, y) ∈ ∂Ω
is

B(x) ∼ −αdx1 ∧ ω(y)
Dα+1 .

It follows that ω and α depend only of B and are invariant by any gauge
transform in Ω.
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Remark 5.5. — If d = 3, the magnetic field B can be identified with a
vector field ~B in Ω defined by

ι
(
~B
)
dx1 ∧ dx2 ∧ dx3 = B

as in Section 2.3. Using the induced Riemannian structure, we can identify
any 1-form ω on ∂Ω with a vector field ~ω. Moreover ∂Ω is oriented by any
2-form Σ = ι(ν)dx1 ∧ dx2 ∧ dx3 with ν any outgoing vector field near ∂Ω.
Using the previous identifications, the asymptotic behaviour of ~B near ∂Ω
is given by

~B ∼ αr (~ω)
Dα+1 ,

where r is the rotation by +π/2 in the tangent space of ∂Ω.
It means that ~B is very large near ∂Ω and parallel to ∂Ω. From the point

of view of classical mechanics, the trajectories of the charged particle are
spiralling around the field lines and do not cross the boundary. It would be
nice to have a precise statement.

5.3. Non toroidal domains

5.3.1. Statement of results

We try to follow the same strategy as in Section 5.2, but now we will
allow the 1-form ω on X = ∂Ω to have some zeroes. This is forced by the
topology if the Euler characteristic of ∂Ω does not vanish. We need the

Definition 5.6. — A 1-form ω on a compact manifold X is generic if
ω has a finite number of zeroes and dω does not vanish at the zeroes of ω.

We have the

Theorem 5.7. — Let Ω ⊂ Rd with a smooth compact boundary X =
∂Ω. Let A0 be a smooth 1-form in Rd so that ω = j?X(A0) is generic. We
assume also that, at each zero m of ω,

(5.1) |dω(m)|sp > 1,

where the norm |dω(m)|sp is calculated in the space of anti-symmetric bi-
linear forms on the tangent space Tm∂Ω. Then, if A is a 1-form in Ω such
that near X, A = A0/D

2, B = dA is confining in Ω.

We see that the field needs to be more singular than in the toroidal case.
We could have taken this highly singular part only near the zeroes of ω.
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5.3.2. Local model

To prove Theorem 5.7, we will work in an adapted chart at a zero of
ω. We take A = A0/x1

2 with j?X(A0) = ω, so that A0 = a1dx1 + β and
β(0) = 0. There exists a 1-form ρ so that we have

B = dω

x2
1

+ dx1 ∧ ρ+ 0(x−1
1 ).

Applying the basic estimates of Lemma 4.7 in some orthonormal coor-
dinates in Rd−1 so that dω(0) = b23dx2 ∧ dx3 + · · · , we see, using the
assumption (5.1), that there exists a neighbourhood U of the origin and an
η > 0 so that, for any u ∈ C∞0 (U),

hA(u) > (1 + η)
∫
U

|u|2

x2
1
|dx|.

5.3.3. Globalisation

Near each zero of ω, we take a local chart of Rd where A is given by the
local model. Such a chart is an ε-quasi-isometry (see 4.4 ) with ε as small
as one wants. This gives the local estimate near the zeroes of ω. The local
estimate outside the zeroes of ω is clear because we have then |B|sp > C/D3

with C > 0: This follows from the estimates in Section 5.2 with α = 2. We
finish the proof of Theorem 5.7 with IMS formula and the local estimates
needed in Theorem 4.1.

5.4. An example of a non essentially self-adjoint Schrödinger
operator with large magnetic field near the boundary

Let us consider the 1-form defined on Ω =
{

(x, y) ∈ R2 | x2 + y2 =
r2 < 1

}
by A = α(xdy − ydx)/(r − 1) where 0 < α <

√
3/2. The magnetic

potential A is invariant by rotations. Then

Theorem 5.8. — The operator HA is not essentially self-adjoint.

The corresponding magnetic field B writes B(x, y) = α(r−2)/(r−1)2dx∧
dy and, near the boundary, |B(x)| ∼ α/(D(x))2. We have, in polar coor-
dinates (r, θ),

HA = − ∂2

∂r2 −
1
r

∂

∂r
− 2iαr
r − 1

∂

∂θ
+ α2r2

(r − 1)2 .

Hence the operator HA splits as a sum
∑
m∈ZHA,m where HA,m acts on

functions eimθf(r). We will look at the m = 0 component: Theorem 5.8
follows from the
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Lemma 5.9. — If 0 < α <
√

3/2, on the Hilbert space L2( ]0, 1[, rdr
)
,

the operator

H = − d2

dr2 −
1
r

d

dr
+ α2r2

(r − 1)2

is in the limit circle case near r = 1 and hence is not essentially self-adjoint.

Proof. — Let U be the unitary transform : u→r1/2u from L2( ]0, 1[, rdr
)

onto L2( ]0, 1[, dr
)
. Then K = UHU−1 is given by

− d2

dr2 −
1

4r2 + α2r2

(r − 1)2 .

K is known to be in the limit circle case at r = 1 (Theorem X.10 in [24]). �

5.5. Singular points
5.5.1. Monopoles

We will first discuss the case of monopoles in R3. Here Ω is R3 r 0.

Definition 5.10. — The monopole of degree m, m ∈ Zr0, is the mag-
netic field Bm = (m/2)p?(σ) where p : R3 r 0→ S2 is the radial projection
and σ the area form on S2. In coordinates

Bm = m

2
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

(x2 + y2 + z2)3/2 .

Remark 5.11. — Let us note, for comparisons with the case where ∂Ω
is of codimension 1, that |Bm|sp = |m|/2r−2.

The flux of Bm through S2 is equal to 2πm. This is a well-known quan-
tisation condition which is needed in order to build a quantum monopole.
In order to define the Schrödinger operator Hm, we introduce an Hermit-
ian complex line bundle Lm with an Hermitian connexion ∇m on Ω with
curvature Bm. We first construct Lm and ∇m on S2 and then take their
pull-backs: ∇m in a direction tangent to a sphere is the same and ∇m
vanishes on radial directions. We have, using spherical coordinates,

Hm = − ∂2

∂r2 −
2
r

∂

∂r
+ 1
r2Km,

where Km is the angular Schrödinger operator on S2 (discussed for exam-
ple in [29]). Let us denote by λm1 the lowest eigenvalue of Km. The self-
adjointness of Hm depends of the value of λm1 . As a consequence of Weyl’s
theory for Sturm-Liouville equations, Hm is essentially self-adjoint if and
only if λm1 > 3/4. From [18, 19, 29] (sketched in Section 5.5.2), we know
that λm1 = |m|/2 so that
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Theorem 5.12. — The Schrödinger operator Hm (monopole of degree
m) is essentially self-adjoint if and only if |m| > 2.

5.5.2. The spectra of the operators Km, the “spherical Landau levels”

These spectra are computed in [18, 19] and in the PhD thesis [29]. We
sketch here the calculus. Recall that Km is the Schrödinger operator with
magnetic field mσ/2 where σ is the area form on S2. The metric is the
usual Riemannian metric on S2.

Theorem 5.13. — The spectrum of Km is the sequence

λk = 1
4
(
k(k + 2)−m2) , k = |m|, |m|+ 2, . . . ,

with multiplicities k + 1. In particular, the ground state λ|m| of Km is
|m|/2, with multiplicity |m| + 1. The ground state is exactly the norm of
the magnetic field.

If m = 0, the reader will recognise the spectrum of the Laplace operator
on S2.

We start with the sphere S3 with the canonical metric. Looking at
S3 ⊂ C2, we get a free isometric action of S1

θ on S3 : θ· (z1, z2) = eiθ(z1, z2).
The quotient manifold is S2 with 1/4 times the canonical metric; The vol-
ume 2π2 of S3 divided by 2π is π which is one forth of 4π.

The quotient map S3 → S2 is the Hopf fibration, a S1-principal bundle.
The sections of Lm over S2 are identified with the functions on S3 which
satisfy f(θz) = eimθf(z). With this identification of the sections of Lm, we
have

Km = 1
4
(
∆S3 −m2) ,

where 1/4 comes from the fact that the quotient metric is 1/4 of the canon-
ical one andm2 from the action of ∂2

θ which has to be removed. It is enough
then to look at the spectral decomposition of ∆S3 using spherical harmon-
ics: The kth eigenspace of ∆S3 is of dimension (k+ 1)2 and splits into k+ 1
subspaces of dimension k + 1 corresponding to m = −k,−k + 2, . . . , k.

5.5.3. A general result for Ω = Rd r 0

In this section Ω = Rd r 0 and B is singular at the origin.

Theorem 5.14. — If limx→0 |x|2|B(x)|sp = +∞ and, for any x 6= 0, the
direction n(tx) has a limit as t→ 0+, then MB is essentially self-adjoint.
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Proof. — The proof is essentially the same as the proof of Theorem 3.2
except that in the application of IMS method, we have to take a conical
partition of unity whose gradients can only be bounded by |x|−1. �

5.5.4. Multipoles

Let us denote, for x ∈ R3, Bx the monopole with centre x : Bx = τ?x (B2)
with τx the translation by x andB2 the monopole withm = 2. If P (∂/∂x) is
a homogeneous linear differential operator of degree n on R3 with constant
coefficients, we define BP = P (Bx)x=0. Then BP is called a multipole
of degree n. All multipoles are exact! It is a consequence of the famous
Cartan’s formula: If P is of degree 1, hence a constant vector field V ,

BV = LV B0 = d
(
ι(V )B0

)
.

A multipole of degree 1 is called a dipole; Viewed from very far away, the
magnetic field of the earth looks like a dipole.

Theorem 5.15. — If BV = dAV is a dipole, HAV
is essentially self-

adjoint.

Proof. — Because BV is homogeneous of degree −α = −3, it is enough,
using Theorem 5.14, to show that BV does not vanish. V is a constant
vector field, hence up to a dilatation, we can take V = ∂/∂z. We have

B∂/∂z = d

dt
∣∣t=0

xdy ∧ dz + ydz ∧ dx+ (z − t)dx ∧ dy
(x2 + y2 + (z − t)2)3/2 ,

which gives

B∂/∂z = 3xzdy ∧ dz + 3yzdz ∧ dx+ (2z2 − x2 − y2)dx ∧ dy
(x2 + y2 + z2)5/2 .

The form B∂/∂z does not vanish in Ω. �

Remark 5.16. — We do not know if all multipoles of degree > 2 are
essentially self-adjoint.
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