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ACCELERO-SUMMATION OF THE FORMAL
SOLUTIONS OF NONLINEAR DIFFERENCE

EQUATIONS

by Geertrui Klara IMMINK

Abstract. — In 1996, Braaksma and Faber established the multi-summability,
on suitable multi-intervals, of formal power series solutions of locally analytic,
nonlinear difference equations, in the absence of “level 1+”. Combining their ap-
proach, which is based on the study of corresponding convolution equations, with
recent results on the existence of flat (quasi-function) solutions in a particular type
of domains, we prove that, under very general conditions, the formal solution is
accelero-summable. Its sum is an analytic solution of the equation, represented
asymptotically by the formal solution in a certain unbounded domain.

Résumé. — En 1996, Braaksma et Faber ont établi la multi-sommabilité, sur
des multi-intervalles convenables, des solutions formelles d’équations aux diffé-
rences nonlinéaires, localement analytiques, sous la condition que le niveau 1+

ne se présente pas. En combinant leurs résultats avec d’autres récents pour le cas
des deux niveaux 1 et 1+, on démontre, pour une classe très générale d’équa-
tions, l’accéléro-sommabilité de la solution formelle. L’accéléro-somme est solution
analytique de l’équation, admettant la solution formelle comme développement
asymptotique à l’infini.

1. Introduction

We consider nonlinear difference equations of the form

(1.1) y(z + 1) = zλ/pF (z1/p, y(z))

where p ∈ N (the set of positive integers), λ ∈ Z and F is a Cn-valued
function, analytic in a neighbourhood of (∞, y0) for some y0 ∈ Cn. We
assume that the equation possesses a formal power series solution of the

Keywords: Nonlinear difference equation, formal solution, accelero-summation, quasi-
function.
Math. classification: 39A10, 30E15, 40G10.
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form f̂(z) =
∑∞
m=0 amz

−m/p where am ∈ Cn for all m ∈ N, a0 = y0, and,
furthermore (identifying D2F with its Taylor series at (∞, y0)), that

(1.2) Â := D2F (z1/p, f̂(z)) ∈ Gl(n; C[[z−1/p]][z1/p])

It is the purpose of this paper to lift the, usually divergent, formal solution
f̂ to actual, analytic solutions, represented asymptotically by f̂ in certain
unbounded domains of the complex plane and characterized by their as-
ymptotic properties in some way. To this end we use the powerful tool of
accelero-summation developed by Jean Ecalle.

In [3] Braaksma and Faber prove that, under some additional conditions
and on appropriate multi-intervals, f̂ is multi-summable and its multi-sum
satisfies the equation (1.1). In particular, they assume that the levels of a
linear difference operator ∆, associated with (1.1), are 6 1 (in general, the
levels of a difference operator are nonnegative rational numbers 6 1, or the
so-called level 1+). Their approach is based on the study of corresponding
convolution equations, one for each positive level kj of ∆, obtained by
applying a Borel transformation of order kj to the original equation.

The present paper is concerned with the case that ∆ possesses an addi-
tional level 1+. In that case, formal power series solutions are generally not
multi-summable on any multi-interval. Combining some of the results and
techniques from [3] with theorems on the existence of flat (quasi-function)
solutions of nonlinear difference equations in [12, 14], we establish the
accelero-summability of f̂ on appropriate multi-intervals. We restrict our-
selves to domains of the complex plane that are invariant under a “forward
shift” z 7→ z + 1. However, if condition (1.2) is satisfied, analogous results
can be proved for domains that are invariant under a “backward shift”
z 7→ z − 1.

The paper is arranged as follows. In section 2 we introduce notations and
general definitions and recall a number of basic results. Furthermore, we
present two simple examples of nonlinear difference equations with three
distinct levels, including the level 1+.

Section 3 deals with the relatively simple case that 0 is not a singular
direction of level 1, or, equivalently, −π2 is not a Stokes direction of level 1.
In that case, the formal solution is shown to be accelero-summable in the
sense of [4], where the corresponding result for linear difference equations
is proved. In this section we closely follow the method used in [3], except
for the very last step in the summation procedure. The main result of this
section is Theorem 3.8.

In section 4 we introduce a somewhat weaker notion of accelero-
summability and prove that, according to this new definition, the formal
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ACCELERO-SUMMATION FOR NONLINEAR DIFFERENCE EQUATIONS 3

solution of (1.1) is accelero-summable, even if 0 is a singular direction of
level 1. The main result of this paper is stated in § 4.2, Theorem 4.12.

2. Preliminaries

2.1. Levels and Stokes directions

We use the symbol τ to denote both the automorphism of C[[z−1/p]][z1/p]
defined by τ(z1/p) = z1/p∑∞

h=0
(1/p
h

)
z−h and the shift operator τy(z) :=

y(z+1). Two formal difference operators ∆̂1:=B̂1τ−Â1 and ∆̂2 := B̂2τ−Â2,
where Âi and B̂i ∈ Gl(n; C[[z−1/p]][z1/p]), for i = 1, 2, will be called equiva-
lent if there exists F̂ ∈ Gl(n; C[[z−1/p]][z1/p]) such that (τF̂ )−1B̂−1

1 ∆̂1F̂ =
B̂−1

2 ∆̂2, or equivalently, (τF̂ )−1B̂−1
1 Â1F̂ = B̂−1

2 Â2. Any formal difference
operator ∆̂ := B̂τ−Â, Â and B̂ ∈ Gl(n; C[[z−1/p]][z1/p]), is known to be
equivalent to a canonical operator ∆c:

(2.1) (τF̂ )−1B̂−1∆̂F̂ = ∆c = τ −Ac

where Ac ∈ Gl(n; C{z−1/p}[z1/p])(1) and Ac is a block-diagonal matrix
of a particularly simple form (cf. [17, 8]). If the convergent series Ac is
identified with its sum, the canonical operator ∆c can be viewed as an
analytic difference operator, and the homogeneous equation ∆cy = 0 has a
fundamental system of analytic solutions {yj : j = 1, . . . , n} of the following
form

(2.2) ycj(z) = zdjzeqj(z)zλjgj(z), j = 1, . . . , n,

where dj ∈ Q, qj(z) is a polynomial in z1/p of degree at most p and with
vanishing constant term, λj ∈ C and gj ∈ Cn[log z], j = 1, . . . , n. If dj = 0,
we denote the leading term of qj by µjz

κj . If dj 6= 0 we define κj = 1
and denote the term of order 1 by µjz. When κj = 1, the number µj is
determined up to a multiple of 2πi. The numbers κj with j ∈ {1, . . . , n}
such that dj = 0, are called levels of ∆̂. If there is a j ∈ {1, . . . , n} such
that dj 6= 0, ∆̂ is said to possess a level 1+.

Remark 2.1.
(i) If we replace F̂ in (2.1) by z−µF̂ , the right-hand side of (2.1) continues

to be a canonical difference operator, but with λj in (2.2) replaced by λj+µ

(1) In fact, it may be necessary to increase p to some multiple pq with q ∈ N, but here
we assume that p has been chosen sufficiently large at the outset.
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4 Geertrui Klara IMMINK

for j = 1, . . . , n. Thus, the numbers λj are determined by ∆̂ up to a multiple
of 1/p.

(ii) If ∆̂ has a level < 1, then it is considered to have a level 1 as well,
even if there is no j ∈ {1, . . . , n} with the property that dj = 0 and κj = 1.
This is related to the fact that ycj(z)e2lπiz is a solution of the homogeneous
equation ∆cy(z) = 0 for any l ∈ Z, with exponential growth or decay of
order 1 at ∞ if κj < 1 and l 6= 0.

Obviously, equivalent formal difference operators have the same canonical
forms.

Definition 2.2 (Stokes directions). — Let 0 < κ < 1 be one of the
positive levels of ∆̂. We shall call singular directions of ∆̂, of level κ, the
directions 1

κ (π − argµj), where j ∈ {1, . . . , n} is such that κj = κ and
argµj is determined up to a multiple of 2π. The singular directions of level
1 are the directions π−arg(µj+2lπi), where l ∈ Z, j ∈ {1, . . . , n} such that
dj = 0 and κj = 1, and the directions π

2 mod π if there is a j ∈ {1, . . . , n}
such that dj = 0 and κj < 1. If α is a singular direction of level κ ∈ (0, 1],
α−π/(2κ) is called a Stokes direction and the pair {α−π/(2κ), α+π/(2κ)}
a Stokes pair of ∆̂, of level κ.
The numbers θ ∈ R such that dj 6= 0 and djθ = Imµj for some value
of Imµj (determined up to a multiple of 2π) will be called pseudo-Stokes
directions of ∆̂, of level 1+. The set of all pseudo-Stokes directions of level
1+ is denoted by Θ(∆̂).

Remark 2.3.
(i) Note that, for j ∈ {1, . . . , n} such that dj = 0 and κj > 0, ycj

decreases exponentially of order κj as z → ∞ in a sector of the form:
1
κj

(π2 − argµj) < arg z < 1
κj

(π2 − argµj + π) (bounded by a Stokes pair),
uniformly on closed subsectors. The singular directions of ∆̂ are the direc-
tions of maximal decrease at ∞, of ycj(z)e2lπiz, where j ∈ {1, .., n} is such
that dj = 0 and l ∈ Z, l 6= 0 if κj = 0. (In some texts, cf. for instance [14],
the singular directions have the opposite sign.)

(ii) If ∆̂ has levels other than 1+, π2 mod π is either a singular direction
or an accumulation point of singular directions of level 1.

With equation (1.1) we associate the formal difference operator ∆̂ =
τ − Â, where Â is defined by (1.2). We shall sometimes refer to the levels
and Stokes directions of this operator as the levels and Stokes directions of
the equation.

ANNALES DE L’INSTITUT FOURIER
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2.2. Asymptotic behaviour on sectors and multi-summability

In this section, we define classes of analytic functions with different types
of asymptotic behaviour on sectors of the Riemann surface of the logarithm,
to be denoted by C̃∗. We recall the definitions of multi-summability and
k-precise quasi-function.

Definition 2.4. — Let I be an interval of R. By |I| we denote the
length of I, defined by |I| := sup I − inf I. We use the following notations

S(I) = {z ∈ C̃∗ : arg z ∈ I}, S(I,R) = {z ∈ S(I) : |z| > R}

We write I ′ ≺ I if I ′ is a relatively compact subinterval of I (i.e. I ′ is
bounded and Ī ′ ⊂ I).

By A60
0 (I) we denote the set of functions f : S(I)→ C, with the property

that, for every I ′ ≺ I, there exists a positive number r such that f is
holomorphic and bounded on {z ∈ S(I ′) : |z| < r}. (More precisely, we
consider equivalence classes of functions: two such functions are identified
if, for every I ′ ≺ I, they coincide on {z ∈ S(I ′) : |z| < r′} for some r′ > 0.)

By A0(I) we denote the set of functions f ∈ A60
0 (I) admitting an as-

ymptotic power series expansion of the form
∑∞
m=0 amz

m/p, with p ∈ N,
such that

sup
z∈S(I′) : |z|<r

|z−N/p(f(z)−
N−1∑
m=0

amz
m/p)| <∞

for any I ′ ≺ I and some sufficiently small, positive r (depending on I ′).
By A60(I) we denote the set of (equivalence classes of) functions f :

S(I)→ C, with the property that, for every I ′ ≺ I, there exists a positive
number R such that f is holomorphic and bounded on S(I ′, R).
ByA(I) we denote the set of functions f ∈ A60(I) admitting an asymptotic
expansion f̂(z) =

∑∞
m=0 amz

−m/p, with p ∈ N, such that

sup
z∈S(I′,R)

|zN/p(f(z)−
N−1∑
m=0

amz
−m/p)| <∞

for any I ′ ≺ I and some sufficiently large R (depending on I ′). For all
N ∈ N, RN (f ; z) will denote the remainder: f(z)−

∑N−1
m=0 amz

−m/p.
By A6−k(I) we denote the set of f ∈ A(I) with the property that, for any
I ′ ≺ I, there exist positive constants R and c such that

sup
z∈S(I′,R)

ec|z|
k

|f(z)| <∞

(so f̂ = 0).

TOME 61 (2011), FASCICULE 1



6 Geertrui Klara IMMINK

By A6−1+(I) we denote the set of f ∈ A(I) with the property that, for
any I ′ ≺ I, there exist positive constants R and c such that

sup
z∈S(I′,R)

ec|z| log |z||f(z)| <∞

A60
0 and A60 are sheaves on R. A6−k is a subsheaf of A for every k > 0.

Definition 2.5 (multi-summability). —Let I0 = R and Ih, h = 1,. . ., q,
be open intervals of R such that

• Iq ⊂ Iq−1 ⊂ · · · ⊂ I1.
• |Ih| > π

kh
for h = 1, . . . , q.

f̂ ∈ C[[z−1/p]] is multi-summable on the multi-interval (I1, . . . , Iq), with
multi-sum fq ∈ A(Iq) if there exist fh ∈ (A/A6−kh+1)(Ih), h = 0, . . . , q−1
with asymptotic expansion f̂ , satisfying the following conditions:

• f0(ze2pπi) = f0(z),
• fh−1|Ih = fh mod A6−kh , h = 1, . . . , q.

Any element of A60/A6−k(I) can be represented by a collection of func-
tions {φν : ν ∈ N}, where φν ∈ A60(Iν), {Iν : ν ∈ N} is an open covering
of I and φν − φµ ∈ A6−k(Iν ∩ Iµ) for all µ and ν ∈ N . {φν : ν ∈ N} is
called a k-precise quasi-function (cf. [18]).

Suppose that the formal difference operator ∆̂ associated with (1.1) has
the positive levels 0 < k1 < · · · < kq = 1. With the formal power series solu-
tion f̂ of (1.1) one can associate a unique global section f0 of (A/A6−k1)n
with the property that f0(ze2pπi) = f0(z) (this is a consequence of the
Gevrey order of f̂ : f̂ ∈ C[[z−1/p]]npk1

, cf. [18, 12]). f0 can be represented by
a k1-precise quasi-function {φν : ν ∈ N}, where φν ∈ A(Iν), {Iν : ν ∈ N}
is an open covering of R, φν −φµ ∈ A6−k(Iν ∩Iµ) for all µ and ν ∈ N and
φν is represented asymptotically by f̂ as z →∞, arg z ∈ Iν , for all ν ∈ N .
Let I0 = R and Ih, h = 1, . . . , q, be open intervals of R with the following
properties:

• (−π2 ,
π
2 ) ⊂ Iq ⊂ Iq−1 ⊂ · · · ⊂ I1.

• |Ih| > π
kh

.
• Ih does not contain a Stokes pair of level kh.

In [3] it is proved that, under these conditions, (1.1) has solutions fh ∈
(A/A6−kh+1)n(Ih), h = 1, . . . , q − 1 with the property that

fh−1|Ih = fh mod (A6−kh)n

Moreover, if ∆̂ doesn’t possess a level 1+, then (1.1) has a solution fq ∈
A(Iq)n with the property that fq−1|Iq = fq mod (A6−1)n. This implies

ANNALES DE L’INSTITUT FOURIER
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that f̂ is multi-summable on the multi-interval (I1, . . . , Iq), with multi-
sum fq.

2.3. A particular type of domains

In the case of difference equations without level 1+, the study of the
asymptotic behaviour of solutions on sectors suffices. This is no longer
true for difference equations possessing a level 1+, due to the compli-
cated asymptotic behaviour of ycj if dj 6= 0 (cf. (2.2)). For example, for
all j ∈ {1, . . . , n} such that dj < 0, ycj ∈ (A6−1+(−π2 ,

π
2 ))n and ycj(z) in-

creases supra-exponentially as z → ∞ in any direction ∈ (π2 ,
3π
2 ) mod 2π,

regardless of the value of µj . As µj is determined up to a multiple of 2πi,
this implies that, in some sense, {−π2 ,

π
2 } may be viewed as a Stokes pair

of level 1+, of “infinite multiplicity”. However, looking more carefully into
the asymptotic behaviour of ycj and noting that

|edjz log z+µjz| = e
dj(Re(z(log z+i

Imµj
dj

))
eReµjRez

and

Re
(
z
(

log z + i
Imµj
dj

))
= Re(z(log z + iθ))−

( Imµj
dj
− θ
)

Im z

where θ is a real number, we find that ycj decreases exponentially of order
1 as Im z → ∞ on any curve of the form Re(z(log z + iθ)) = c with c ∈
R and θ >

Imµj
dj

and increases exponentially if θ < Imµj
dj

. Similarly, ycj
decreases exponentially of order 1 as Im z → −∞ on a curve of this form if
θ <

Imµj
dj

and increases exponentially if θ > Imµj
dj

. This is why, in order to
characterize solutions of (1.1) by their asymptotic properties in the presence
of a level 1+, we need to consider domains bounded by curves of the type
Re(z(log z + iθ)) = c.

Definition 2.6. — By S+ we denote the sector S(−π, π). Let θ ∈ R,
z ∈ S+ and

ψθ(z) := z(log z + iθ).
By Cθ(z) we denote the level set of Reψθ containing z:

Cθ(z) =
{
ζ ∈ S+ : Reψθ(ζ) = Reψθ(z)

}
C+
θ (z) and C−θ (z) are defined by

C±θ (z) =
{
ζ ∈ Cθ(z) : ± Im(ζ − z) > 0

}
.

TOME 61 (2011), FASCICULE 1



8 Geertrui Klara IMMINK

In previous papers we introduced two types of domains, denoted byDI(z)
and D̃I(z) and arising rather naturally in the study of difference equations
possessing a level 1+ (cf. [11], [12], [14] and the appendix below). DI(z)
is an intersection of domains of the form {ζ ∈ S+ : Reψθ(ζ) > Reψθ(z)},
whereas D̃I(z) is a union of such domains. In problems involving the level
1+, these domains play a role similar to that of sectors of aperture 6 π

and > π, respectively, in problems of level 1. For notational convenience,
we combine both types of domain into one, more general type of domain,
somewhat similarly to the example of sectors. Roughly speaking, we ‘label’
C−θ (z) by a negative number and C+

θ (z) by a positive number and define
a domain D̂(a,b)(R), bounded by two such ‘rays’, with ‘labels’ a and b,
respectively, and part of the ‘circle’ |z| = R. By providing a unified notation
for the domains to be considered, this somewhat artificial construction
considerably simplifies the study of asymptotic behaviour on these domains.
In particular, it allows us to identify a class of “1+-precise” quasi-functions
with the representatives of sections of a (quotient-) sheaf on R.

Let φ− : R → (−∞, 0) and φ+ : R → (0,∞) be continuous, monotone
decreasing and onto. By ϑ : R∗ → R we denote the mapping defined by

ϑ(a) =

{
φ−1
− (a) if a < 0
φ−1

+ (a) if a > 0
.

For example, one might choose

φ−(θ) := −eθ and φ+(θ) := e−θ.

In that case,

ϑ(a) =

{
log(−a) if a < 0
− log a if a > 0

.

Definition 2.7 (domains). — Let a, b ∈ R, a < b, and R > 1.
If a < 0 < b,

D̂(a,0)(R) = {z ∈ S+ : arg z 6 0, |z| > R, Reψϑ(a)(z) > 0},

D̂(0,b)(R) = {z ∈ S+ : arg z > 0, |z| > R, Reψϑ(b)(z) > 0}
and

D̂(a,b)(R) = D̂(a,0)(R) ∪ D̂(0,b)(R).

If a < b < 0,

D̂(a,b)(R) = {z ∈ S+ : |z| > R, Reψϑ(a)(z) > 0 and Reψϑ(b)(z) 6 0}

and if 0 < a < b,

D̂(a,b)(R) = {z ∈ S+ : |z| > R, Reψϑ(a)(z) 6 0 and Reψϑ(b)(z) > 0}.

ANNALES DE L’INSTITUT FOURIER
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Figure 2.1. This figure shows the curves Ĉa(6) for various values of a.

For any finite interval (a, b) ⊂ R such that a 6= 0 6= b, D̂(a,b)(R) is
bounded by an arc of the ‘circle’ |z| = R, and the level curves of Reψϑ(a)
and Reψϑ(b) with height 0. In order to determine the points of intersection
of these curves with the circle |z| = R, we note that Reψθ(z) = 0 iff
log |z| cos arg z = (arg z+θ) sin arg z. For any R > 1 and θ ∈ R, the equation
G(φ, θ) := logR cosφ−(φ+θ) sinφ = 0 has unique solutions for φ in (−π, 0)
and in (0, π). Noting that, for all (φ, θ) ∈ G−1(0), ∂G/∂θ∂G/∂φ (φ, θ) = sin2 φ

logR+sin2 φ ,
one easily verifies that both solutions are continuous, monotone decreasing
functions of θ, mapping R onto (−π, 0) and (0, π), respectively. Now, let
R > 1 and a ∈ R. For a > 0, let φR(a) denote the unique φ ∈ (0, π) such
that

(2.3) logR cosφ = (φ+ ϑ(a)) sinφ

and, for a < 0, the unique φ ∈ (−π, 0) such that (2.3) holds. Putting
φR(0) := 0, we obtain a continuous, monotone increasing mapping φR
from R onto (−π, π).

TOME 61 (2011), FASCICULE 1
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Definition 2.8. — Let R > 1. For all a ∈ R we define

za(R) := ReiφR(a),

Ĉa(R) :=
{
z ∈ S+ : Reψϑ(a)(z) = 0, Im(z − za(R)) 6 0

}
if a < 0,

Ĉa(R) :=
{
z ∈ S+ : Reψϑ(a)(z) = 0, Im(z − za(R)) > 0

}
if a > 0,

and
Ĉ0(R) := (R,∞) (cf. Figure 2.1).

If a 6= 0, Reψϑ(a)(za(R)) = 0. Obviously, Ĉa(R) = C−ϑ(a)(za(R)) if a < 0,
Ĉa(R) = C+

ϑ(a)(za(R)) if a > 0. From (2.3) we deduce that φR(a) = ±π2 iff
ϑ(a) = ∓π2 , so Ĉφ−(π2 )(R) is the half line {z ∈ S+ : arg z = −π2 , |z| > R}
and Ĉφ+(−π2 )(R) is the half line {z ∈ S+ : arg z = π

2 , |z| > R}.
Thus, for any finite interval (a, b) ⊂ R, D̂(a,b)(R) is the closed do-

main in S+ bounded by Ĉa(R), Ĉb(R) and the arc of the circle |z| = R

between za(R) and zb(R). In particular, D̂(φ−(π2 ),0)(R) = S((−π2 , 0), R),
D̂(0,φ+(−π2 ))(R) = S((0, π2 ), R) and D̂(φ−(π2 ),φ+(−π2 )(R) = S((−π2 ,

π
2 ), R).

For every bounded interval I = (a, b), we note

θ−(I) :=

{
∞ if a = 0
ϑ(a) otherwise

, θ+(I) :=

{
−∞ if b = 0
ϑ(b) otherwise

.

For every open interval I ⊂ R not containing 0, we define

Ĩ := ϑ(I)

and for every interval I = (a, b) containing 0, such that ϑ(a) 6= ϑ(b),

Ĩ :=
(
min{ϑ(a), ϑ(b)},max{ϑ(a), ϑ(b)}

)
.

We call I = (a, b) a large interval if 0 ∈ I and θ+(I) < θ−(I). If I is a large
interval, then Ĩ = (ϑ(b), ϑ(a)) = (θ+(I), θ−(I)). If θ−(I) = θ+(I) = θ,
then I = (φ−(θ), φ+(θ)). In this case, Ĩ is not defined. If θ−(I) < θ+(I),
then Ĩ = (ϑ(a), ϑ(b)) = (θ−(I), θ+(I)). Note that θ−(I) < θ+(I) implies
that 0 ∈ I. If I is a large interval, we have a = φ−(ϑ(a)) < φ−(ϑ(b)) <
0 < φ+(ϑ(a)) < φ+(ϑ(b)) = b. Hence I ′ := (φ−(ϑ(b)), φ+(ϑ(a))) ≺ I and
Ĩ ′ = Ĩ. D̂I(R) and D̂I′(R) are bounded by different parts of the same level
curves: Reψϑ(a)(z) = 0 and Reψϑ(b)(z) = 0 (cf. Figure 2.2). For each open
interval (θ1, θ2) there exist two intervals I1 and I2 such that 0 ∈ I1∩I2 and
Ĩ1 = Ĩ2 = (θ1, θ2): the large interval I1 = (φ−(θ2), φ+(θ1)) and the interval
I2 = (φ−(θ1), φ+(θ2)).

We end this subsection with some properties of the domains D̂I(R) that
will be needed later on. In this paper, we are mainly interested in the
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Figure 2.2. The dark region is D̂(φ−(−π),φ+(−π4 ))(6), the larger domain is
D̂(φ−(−π4 ),φ+(−π))(6). The interval (φ−(−π4 ), φ+(−π)) is a large interval,
whereas (φ−(−π), φ+(−π4 )) is not. In both cases, D̂I(R) is bounded by the
level curves Reψ−π(z) = 0 and Reψ−π4 (z) = 0, and Ĩ = (−π,−π4 ).

case that 0 ∈ I. From (2.3) it easily follows that arg z → ±π2 as z → ∞
on Ĉa(R) if ±a > 0. Hence, if I ′ is an open interval containing [−π2 ,

π
2 ],

D̂I(R) ⊂ S(I ′) for any bounded, open interval I and all sufficiently large
R. On the other hand, if I ′ ≺ (−π2 ,

π
2 ), I is an interval containing 0 and

R > 1, then S(I ′, R′) ⊂ D̂I(R) for all sufficiently large R′.
Obviously, I ′ ⊂ I implies D̂I′(R) ⊂ D̂I(R). In particular, I ⊂ (φ−(π2 ),

φ+(−π2 )) implies that D̂I(R is contained in the right half plane
S((−π2 ,

π
2 ), R). It can be shown that, for any interval I ≺ (φ−(π2 ), φ+(−π2 )),

(2.4) Re z > δ
|z|

log |z|
for all z ∈ D̂I(R)

where δ > 0, provided R is sufficiently large (this is a particular case of
(4.5) below).

Let I be an open interval such that θ1 := θ−(I) < θ2 := θ+(I). Noting
that, for i ∈ {1, 2}, θ ∈ (θ1, θ2) and all z ∈ D̂I(R), Reψθ(z) = Reψθi(z) +
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(θi − θ) Im z > (θi − θ) Im z, one easily verifies that

(2.5) Reψθ(z) > c|z| for all z ∈ D̂I(R),

where c > 0.

2.4. Sheaves of functions with particular asymptotic properties
in the domains D̂I(R)

We shall now introduce sheaves on R of functions with different types of
asymptotic behaviour in the domains D̂I(R).

Definition 2.9. — Let I be an interval of R. By Â(I) we denote the set
of (equivalence classes of) continuous functions f : S+ → C, holomorphic in
int D̂I′(R) and admitting an asymptotic expansion f̂ =

∑∞
m=0 amz

−m/p,
with p ∈ N, uniformly on D̂I′(R), for any open interval I ′ ≺ I and some
sufficiently large R (depending on I ′). By Â6−1(I) we denote the set of all
f ∈ Â(I) with the property that, for any open interval I ′ ≺ I, there exist
positive constants R and c such that

sup
z∈D̂I′ (R)

ec
|z|

log |z| |f(z)| <∞.

By Â6−1+(I) we denote the set of all f ∈ Â(I) with the property that, for
any open interval I ′ ≺ I, there exist positive constants R and c such that

sup
z∈D̂I′ (R)

ec|z||f(z)| <∞.

Â is a sheaf on R and Â6−1 and Â6−1+ are subsheaves. From the prop-
erties of the domains D̂I(R) discussed at the end of § 2.3 it follows, with
a slight abuse of notation, that A([−π2 ,

π
2 ]) ⊂ Â(R) (strictly speaking, the

elements of A([−π2 ,
π
2 ]) should first be extended to continuous functions on

S+) and, for any open interval I containing 0, Â(I) ⊂ A(−π2 ,
π
2 ). More-

over, it can be shown that Â6−1(I) ⊂ A6−1(−π2 ,
π
2 ) (cf. Lemma 4.9 and

remark 4.10) and from Lemma 2.12 below it follows that Â6−1+(I) ⊂
A6−1+(−π2 ,

π
2 ), for any open interval I containing 0.

Example 2.10.
(i) (2.4) implies that, for any µ < 0, eµz ∈ Â6−1(I) iff I ⊂ (φ−(π2 ),

φ+(−π2 )).

(ii) Let d < 0 and µ ∈ R. From (2.5) we deduce that edz log z+µz ∈
Â6−1+(I) iff I ⊂ (φ−(θ), φ+(θ)) with θ = Imµ/d.
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In § 3, where we consider (finite) Laplace transforms of functions admit-
ting an asymptotic power series expansion in t1/p at the origin, we shall
need the following lemma.

Lemma 2.11. — Let r > 0 and let u be a continuous function on (0, r),
admitting an asymptotic power series expansion in t1/p as t → 0. Then∫ r

0 u(t)e−tzdt ∈ Â
(
φ−(π2 ), φ+(−π2 )

)
.

Proof. — Let yr(z)=
∫ r

0 u(t)e−tzdt. It is a known fact that yr∈A
(
−π2 ,

π
2
)
.

More precisely, there exist positive numbers MN , N ∈ N, such that, for all
z ∈ C with the property that Re z > C > 0 and all N ∈ N, |RN (yr; z)| 6
MN (Re z)−N/p. Let I ≺

(
φ−(π2 ), φ+(−π2 )

)
. In view of (2.4) there exist

positive numbers R and δ such that, for all z ∈ D̂I(R), Re z > δ |z|
log |z| and

thus,

|RN (yr; z)| 6 MNδ
−N/p

( |z|
log |z|

)−N/p
, N ∈ N.

The proof is completed by observing that

|RN (yr; z)| 6 |RN+1(yr; z)|+ CN |z|−N/p

where CN > 0 and, for all z ∈ D̂I(R) and h > 0,

(log |z|)h 6 (h
e

)h|z|.

�

Lemma 2.12.
1. Let I be an open interval such that θ1 := θ−(I) 6 θ2 := θ+(I) and

let θ ∈ [θ1, θ2]. f ∈ Â6−1+(I) iff, for every interval I ′ ≺ I and some
sufficiently large R, there exists a positive number t such that

sup
z∈D̂I′ (R)

|etψθ(z)f(z)| <∞.

2. For every large interval I, Â6−1+(I) = {0}.

This lemma is easily deduced from [12, Lemma 0.15], with the aid of
Lemma 5.3 in the appendix (§ 5).

We end this section with an important preliminary result. Two difference
operators B1τ − A1 and B2τ − A2, where Ai and Bi ∈ Gl(n, Â(I)[z1/p]),
admitting asymptotic expansions Âi and B̂i, for i = 1, 2, will be called
formally equivalent if the formal operators B̂1τ − Â1 and B̂2τ − Â2 are
equivalent in the sense of § 2.1.

Theorem 2.13. — Let I be an open interval such that θ−(I) 6 θ+(I)
and let A ∈ Gl(n, Â(I)[z1/p]).
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14 Geertrui Klara IMMINK

(i) The difference operator ∆ := τ −A is formally equivalent to an op-
erator ∆c of the form (2.1), and the homogeneous linear difference
equation ∆y(z) = 0 has a fundamental system of solutions of the
form

(2.6) yj(z) = zdjzeqj(z)zλjgj(z), j = 1, . . . , n

where gj ∈ (Â(I))n[log z], dj , qj and λj are defined as in (2.2).

(ii) Ker(∆, (Â6−1+(I))n) is a linear space over C, spanned by all so-
lutions of the form yj(z)e2lπiz with j ∈ {1, . . . , n} and l ∈ Z such
that dj < 0 and Imµj+2lπ

dj
∈ [θ−(I), θ+(I)].

(iii) Ker(∆, (Â6−1(I))n) = Ker(∆, (Â6−1+(I))n) if I 6⊂ (φ−(π2 ),
φ+(−π2 )). If I ⊂ (φ−(π2 ), φ+(−π2 )), then Ker(∆, (Â6−1(I))n) is
the linear space over C, spanned by all solutions of the form
yj(z)e2lπiz with j ∈ {1, . . . , n} and l ∈ Z, such that dj < 0 and
Imµj+2lπ

dj
∈ [θ−(I), θ+(I)], or dj = 0, kj = 1, argµj = π and l = 0.

Proof.
(i) A has an asymptotic expansion Â ∈ Gl(n; C[[z−1/p]][z1/p]) and there

exists F̂ ∈ Gl(n; C[[z−1/p]][z1/p]) such that (τF̂ )−1ÂF̂ = Ac. Hence the
difference equation

Y (z + 1) = A(z)Y (z)Ac(z)−1

has the formal solution F̂ . Consequently, it has an analytic solution F ∈
Gl(n, Â(I)[z1/p]) with asymptotic expansion F̂ and {Fycj : j = 1, . . . , n} is
a fundamental system of solutions of the difference equation ∆y = 0 (cf.
[11, Theorem 1.2] and Remark 5.2 below).

(ii) Obviously,
y ∈ Ker(∆, (Â6−1+(I))n) iff u := F−1y ∈ Ker(∆c, (Â6−1+(I))n). Let θ ∈
[θ−(I), θ+(I)]. In view of Lemma 2.12, u ∈ (Â6−1+(I))n iff, for every open
interval I ′ ≺ I and some sufficiently large R, there exists a positive number
t such that sup

z∈D̂I′ (R) |e
tψθ(z)u(z)| < ∞. Let I = (a, b), I ′ = (a′, b′) such

that a < a′ < 0 < b′ < b and Ĩ ′ = (θ1, θ2). Then θ1 = ϑ(a′) < ϑ(a) = θ−(I)
and θ2 = ϑ(b′) > ϑ(b) = θ+(I). Without loss of generality, we may assume
that Ĩ ′ ∩ Θ(∆c) = [θ−(I), θ+(I)] ∩ Θ(∆c) and that conditions (1) - (4)
of Proposition 1.5 in [12] are satisfied (note that there a slightly different
definition of ycj is used and cf. Lemma 5.3 below for the relation between the
domains DI(R) and D̂I(R)). By that proposition, with k = 1+, ∆c has a
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right inverse Λc with the property that Λc∆cu(z) = u(z)−
∑n
j=1 y

c
j(z)pj(z),

where pj ≡ 0 unless dj < 0 and

pj(z) =
lj∑
l=sj

pjle
2lπiz

if dj < 0. Here, pjl ∈ C, sj = inf{l ∈ Z : Imµj+2lπ
dj

∈ (θ1, θ2)} and
lj = sup{l ∈ Z : Imµj+2lπ

dj
∈ (θ1, θ2)}. Consequently, y = Fu =

∑n
j=1 yjpj ,

where yj = Fycj . Conversely, it is easily verified that every function of this
form belongs to Ker(∆, (Â6−1+(I))n).

(iii) Similarly,
y ∈ Ker(∆, (Â6−1(I))n) iff u := F−1y ∈ Ker(∆c, (Â6−1(I))n). The last
two statements follow again from Proposition 1.5 in [12] by observing that
I ⊂ (φ−(π2 ), φ+(−π2 )) iff θ−(I) 6 π

2 and θ+(I) > −π2 . �

Corollary 2.14. — Let I be an open interval such that θ−(I) 6 θ+(I),
A ∈ Gl(n, Â(I)[z1/p]) and ∆ = τ − A. If [θ−(I), θ+(I)] ∩ Θ(∆c) = ∅, then
Ker(∆, (Â6−1+(I))n) = {0}.

2.5. A prepared form of (1.1)

Following Braaksma and Faber in [3], we first transform (1.1) into a
convenient ‘prepared form’, consisting of a linear part in canonical form
plus a “perturbation” (which may also contain linear terms).

Let ∆̂ = τ−Â denote the formal difference operator associated with (1.1),
where Â is defined by (1.2) and let ∆c be a canonical form of ∆̂. Thus, there
exists F̂ ∈ Gl(n; C[[z−1/p]][z1/p]) such that (τF̂ )−1∆̂F̂ = ∆c = τ −Ac (cf.
(2.1) and (2.2)). Ac is a block-diagonal matrix of the form

Ac(z) =
r⊕

h=0

{
Inh + zkh−1(Ah + z−1/pBh(z))

}
.

Here, r is a positive integer and, for each h ∈ {0, . . . , r}, nh is a nonnegative
integer and kh is a nonnegative multiple of 1/p, such that 0 = k0 < k1 <

· · · < kq = 1 6 kq+1 6 · · · 6 kr, where 1 6 q 6 r. Moreover, nh > 0
if h 6∈ {0, q} and kh > 1 if h > q + 1. The rational numbers k1, . . . , kq
correspond to the positive levels of ∆̂: for each h ∈ {0, . . . , q} such that
nh > 0, there exists an integer j ∈ {1, . . . , n} with the property that
dj = 0 and κj = kh. (The exceptional case that q = 1 and n0 = nq = 0
will not concern us here as it has been dealt with in [10].) Ah is a constant
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nh × nh matrix in Jordan normal form, nonsingular and diagonal if h > 0,
and Bh ∈ End(nh; C{z−1/p}). Here, we shall assume that n0 + n1 > 0,
that r > q, that Aq + Inq is nonsingular if nq > 0, that kq+1 = 1 and
Aq+1 = −Inq+1 . In this case the equation (1.1) possesses both a level 6 1
and the level 1+. More precisely, nq+1 = #{j ∈ {1, . . . , n} : dj < 0} and∑
q+1<h6r nh = #{j ∈ {1, . . . , n} : dj > 0}. If nq > 0, the eigenvalues of

Aq + Inq are the numbers eµj with j ∈ {1, . . . , n} such that dj = 0 and
κj = 1. Note that, if n0 > 0 or q > 1, ∆̂ has a level 1, even if nq = 0 (cf.
remark 2.1 (ii)).

Now, let S ∈ Gl(n; C{z−1/p}[z1/p]) and P ∈ Cn[z−1/p] be obtained by
truncating F̂ and the formal solution f̂ of (1.1), respectively, at some suf-
ficiently large power M of z−1/p. By the substitution

y 7→ Sy + P

(1.1) is transformed into an equation of the form:

(2.7) ∆y(z) = ϕ0(z1/p) + E(z1/p, y(z)),

with formal solution f̂N := S−1(f̂−P ) ∈ z−N/pCn[[z−1/p]] for some N ∈ N.
∆ is a linear difference operator of the form

(2.8) ∆ =
r⊕

h=0
z1−khInh(τ − 1)−

r⊕
h=0

Ah − z−1/pB(z)

where B ∈ End(n; C{z−1/p}). ϕ0 is an analytic function in a neighbourhood
of ∞, which is O(z−N ′) as z → ∞ for some positive integer N ′, and E is
analytic in a neighbourhood U of (∞, 0). Furthermore, E(z1/p, 0) = 0 and
D2E(z1/p, 0) = 0 for all sufficiently large z. If F̂ ∈ z−µGl(n; C[[z−1/p]][z1/p])
for some sufficiently large µ ∈ N, then E(∞, y) = 0 as well. We shall assume
that this is the case (cf. Remark 2.1 (i)). Moreover,

(2.9)
r⊕

h=0
zkh−1Inh∆−∆c ∈ z−M

′/p End(n; C{z−1/p})

where M ′ > 0. N , N ′ and M ′ can be made arbitrarily large by choosing a
sufficiently large M . Therefore, since Ac ∈ Gl(n; C{z−1/p}[z1/p]),

r⊕
h=0

(z1−khInh +Ah) + z−1/pB(z) ∈ Gl(n; C{z−1/p}[z1/p])

if M is sufficiently large. We shall refer to (2.7) as a “prepared form of
(1.1)”. It is easily seen that ∆ and ∆c are formally equivalent. Therefore,
we also call ∆c a canonical form of ∆.
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The following result is essentially due to Sibuya, who used a similar idea
in the theory of differential equations (cf. [19]).

Proposition 2.15. — Let I1 and I2 be open intervals and, for i = 1, 2,
let yi ∈ (Â(Ii))n be a solution of the nonlinear difference equation (2.7).
Then y1− y2 satisfies a homogeneous linear difference equation of the form

(2.10) ∆̃y(z) := ∆y(z)−H(z)y(z) = 0

where H ∈ End(n; Â(I1 ∩ I2)). There exists a positive constant K, inde-
pendent of y1 and y2, such that, for any I ′ ≺ I1 ∩ I2 and some sufficiently
large number R, depending on I ′, and for all z ∈ D̂I′(R),
(2.11)∣∣∣E(z1/p, y1(z))− E(z1/p, y2(z))

∣∣∣ 6 K max
{
|y1(z)|, |y2(z)|

}∣∣y1(z)− y2(z)
∣∣

and

(2.12) |H(z)| 6 K max
{
|y1(z)|, |y2(z)|

}
.

Moreover, if N is sufficiently large, ∆̃ and ∆ have the same canonical
form ∆c.

Proof. — As both y1 and y2 are solutions of (2.7),

∆(y1 − y2)(z) = E(z1/p, y1(z))− E(z1/p, y2(z))

=
∫ 1

0
D2E(z1/p, ty1(z) + (1− t)y2(z))dt(y1 − y2)(z).

Thus, y1 − y2 satisfies (2.10), with H(z) =
∫ 1

0 D2E(z1/p, ty1(z) + (1 −
t)y2(z))dt. Obviously, ty1 + (1 − t)y2 ∈ Â(I1 ∩ I2)n for all t ∈ [0, 1] and
(z1/p, ty1(z)+(1−t)y2(z)) ∈ U for all z ∈ D̂I′(R), provided I ′ ≺ I1∩I2 and
R is sufficiently large. E is analytic in U , hence H ∈ End(n; Â(I1∩I2)). As
D2E(z1/p, 0) = 0, there exists a positive constant K, independent of z and
y, such that |D2E(z1/p, y)| 6 K|y| for all (z1/p, y) ∈ U and thus, (2.11)
and (2.12) hold for all z such that (z1/p, ty1(z) + (1 − t)y2(z)) ∈ U and,
consequently, for all z ∈ D̂I′(R), provided I ′ ≺ I1∩I2 and R is sufficiently
large. Due to the fact that f̂N ∈ z−N/pC[[z−1/p]]n, yi ∈ z−N/p(Â(Ii))n for
i = 1, 2. This implies that |H(z)| 6 K ′|z|−N/p for all z ∈ D̂I′(R) and hence
it can be deduced that ∆̃ and ∆ are formally equivalent if N is sufficiently
large and thus have the same canonical form ∆c. �
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2.6. Examples

In [14] we discuss in some detail the trivial, but instructive example of
a system of two uncoupled difference equations, of level 1 and 1+, respec-
tively. Below, we give two simple examples of equations with three distinct
levels: 1

2 , 1 and 1+, both having analytic coefficients at ∞.

Example 2.16.

(2.13) y(z + 1) =

 1 1 0
a1
z 1 + a1

z 0
0 0 a2

z

 y(z) + z−2f(z, y(z))

where a1 and a2 ∈ C∗ and f is a 3-dimensional vector function, polynomial
in y and analytic at ∞ in z. The substitution

y 7→ Sy

where

S(z) =

 1 1 0
a

1/2
1 z−1/2 −a1/2

1 z−1/2 0
0 0 1


changes (2.13) into an equation of the form:

(2.14) diag
{
z1/2, z1/2, 1

}
(y(z + 1)− y(z))

= diag
{
a

1/2
1 ,−a1/2

1 ,−1
}
y(z) + z−1/2g

(
z1/2, y(z)

)
where g is a 3-dimensional vector function, analytic at (∞, 0). In this ex-
ample, r = 3, q = 2, k1 = 1/2, n0 = n2 = 0, n1 = 2 and n3 = 1.
From [13, Theorem 2.7] one easily deduces the existence of a formal so-
lution f̃ ∈ z−1/2C[[z−1/2]]3 of (2.14) and hence the existence of a formal
solution f̂ = S−1f̃ ∈ C[[z−1/2]]3 of (2.13). The formal difference operator
∆̂ associated with (2.13) has a diagonal canonical form ∆c and the homoge-
neous equation ∆cy = 0 has solutions of the form yc1(z) = e2a1/2

1 z1/2
z1/4e1,

yc2(z) = e−2a1/2
1 z1/2

z1/4e2 and yc3(z) = z−z(a2e)zz1/2e3, where ei denotes
the i-th unit vector of C3. Thus, the singular directions of level 1

2 are given
by − arg a1 mod 2π, those of level 1 by π

2 mod π and the pseudo-Stokes di-
rections of level 1+ correspond to the different determinations of − arg a2.

Example 2.17.

(2.15) y(z + 1) =


1 1 0 0
a1
z 1 + a1

z 0 0
0 0 1 + a2 0
0 0 0 a3

z

 y(z) + z−2f(z, y(z))
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where a1,a2 and a3 ∈ C∗, a2 6= −1 and f is a 4-dimensional vector function,
polynomial in y and analytic at ∞ in z. Similarly to (2.13), (2.15) can be
transformed into an equation of the form:

diag
{
z1/2, z1/2, 1, 1

}(
y(z + 1)− y(z)

)
= diag

{
a

1/2
1 ,−a1/2

1 , a2,−1
}
y(z) + z−1/2g

(
z1/2, y(z)

)
where g is a 4-dimensional vector function, analytic at (∞, 0). In this ex-
ample, r = 3, q = 2, k1 = 1/2, n0 = 0, n1 = 2, and n2 = n3 = 1. (2.15) has
a formal power series solution ∈ z−1/2C[[z−1/2]]4. In this case, the singular
directions of level 1 are π

2 mod π and π − arg{log(1 + a2) + 2lπi}, where
l ∈ Z. 0 is a singular direction of level 1 iff a2 ∈ (−1, 0).

3. The case that 0 is not a singular direction of level 1

Throughout most of this section (with the exception of Theorem 3.8),
we assume that the difference equation already is in a prepared form (2.7),
where ∆ has the form (2.8), and (2.9) is satisfied for some sufficiently
large M . Thus, f̂ will denote the formal solution of (2.7) and, consequently,
f̂ ∈ z−N/pCn[[z−1/p]], where N is some sufficiently large integer, depending
on M . Let I0 = R, let f0 denote the unique global section of (A/A6−k1)n
with the property that f0(ze2pπi) = f0(z), associated with f̂ (cf. §2.2), and
let Ih, h = 1, . . . , q, be open intervals of R with the following properties:

• (−π2 ,
π
2 ) ⊂ Iq ⊂ Iq−1 ⊂ · · · ⊂ I1.

• |Ih| > π
kh

.
• Ih does not contain a Stokes pair of level kh.

From [3] we know that (2.7) has solutions fh ∈ z−N/p(A/A6−kh+1)n(Ih)
such that

(3.1) fh−1|Ih = fh mod (A6−kh)n, h = 1, . . . , q − 1.

The approach taken in [3] is based on a study of convolution equations.
With (2.7) one can associate, for every h ∈ {1, . . . , q}, a convolution equa-
tion of the form Thη = η, obtained by applying a formal Borel transforma-
tion of order kh to (2.7). The formal Borel transform of order k1 of f̂ is a
convergent power series, defining an analytic solution u1 of T1η = η. In [3]
it is shown that u1 is analytic in an infinite sector of the form S(Î1), where
−Î1 is an open interval not containing any singular direction of level k1,
and that u1 satisfies a specific growth condition in this sector. By means of
a so-called acceleration operator (an extension of a Laplace transformation
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of order k1 followed by a Borel transformation of order k2) u1 can be trans-
formed into a solution u2 of T2η = η. u2 is analytic in a sector of the form
S(Î2), where −Î2 is an open interval not containing any singular direction
of level k2, and, if q > 2, it can be transformed into a solution u3 of T3η = η,
etc. Moreover, for h = 1, . . . , q, uh coincides with a Borel transform of order
kh of fh−1. If r = q, then uq has at most exponential growth of order 1 and
its Laplace transform fq is the (k1, . . . , kq)-sum of f̂ on (I1, . . . , Iq). In the
case that r > q, one has to deal with an additional convolution equation,
corresponding to the level 1+, which, in general, doesn’t admit an analytic
solution in a sector of the form S(I) for any open interval I.

In this section it is assumed that 0 is not a singular direction of level 1,
or, equivalently, that −π2 is not a Stokes direction of level 1. Similarly to the
case without level 1+, uq can be analytically continued to a sector of the
form S(I∗q ), where −I∗q is an open interval not containing any singular di-
rection of level 1, but it may have supra-exponential growth. We show that
it satisfies a particular growth condition, making it accelerable from level
1 to level 1+, by means of a so-called weak acceleration operator. From the
growth property of uq we can deduce the existence of a particular represen-
tative of fq−1|Iq , which also represents a solution fq ∈ (A/A6−1+(Iq))n of
(2.7) (cf. proposition 3.9 below). In proposition 3.11 it is shown that fq has
a representative defining a solution fq+1 ∈ Â(Iq+1)n, for every large inter-
val Iq+1 ⊂ (φ−(π2 ), φ+(−π2 )) such that Ĩq+1 doesn’t contain any pseudo-
Stokes directions. fq+1 is the (k1, . . . , kq, 1+)-sum or accelero-sum of f̂ on
(I1, . . . , Iq+1).

3.1. Growth properties of uq

Definition 3.1 (Laplace and Borel transformations). — For any open
interval I = (α, β), with β − α > π, I∗ is defined by

I∗ :=
(
−β + π

2
,−α− π

2

)
.

By
L : t1/p−1A60

0 (I∗)→ z−1/pA60/A6−1(I)
we denote the finite (or incomplete) Laplace transformation, defined as
follows. Let u ∈ t1/p−1A60

0 (I∗). Let {αν : ν ∈ N} ⊂ I∗ such that {(−αν −
π
2 ,−αν + π

2 ) : ν ∈ N} is a covering of I, and, for each ν ∈ N , let rν >
0 such that u is continuous on (0, rνeiαν ]. Then L(u) is the element of
z−1/pA60/A6−1(I) represented by {

∫ rνeiαν
0 u(t)e−tzdt : ν ∈ N}. L is a

bĳection and its inverse B is the “ordinary” Borel transformation.

ANNALES DE L’INSTITUT FOURIER



ACCELERO-SUMMATION FOR NONLINEAR DIFFERENCE EQUATIONS 21

Remark 3.2. — It is well-known that L(tN/p−1A0(I∗)) = z−N/pA/A6−1(I)
for every N ∈ N. Note that −I∗ doesn’t contain a singular direction of level
1 iff I doesn’t contain a Stokes pair of level 1.

If M is sufficiently large, the function uq = B(fq−1) satisfies the convolu-
tion equation Tη = η, obtained by applying a formal Borel transformation
to (2.7). Let Ẽ(z, y(z)) = z−1/pB(z)y(z) + ϕ0(z1/p) + E(z1/p, y(z)) and
y =

⊕r
h=0 yh, in the partition used in (2.8). Then we have

yh(z + 1)− yh(z) = zkh−1{Ahyh(z) + Ẽ(z, y(z))h} for h < q,

yq(z + 1)− (Inq +Aq)yq(z) = Ẽ(z, y(z))q ( if nq > 0),
(3.2)

yq+1(z + 1) = Ẽ(z, y(z))q+1,

Ahyh(z) = z1−kh(yh(z + 1)− yh(z))− Ẽ(z, y(z))h for h > q + 1.

Hence we deduce the following form for Tη:

(Tη)h = (e−t − 1)−1{ t−kh

Γ(1− kh)
∗ (Ahηh + E(t, η)h)} for h < q,

(Tη)q = {(e−t − 1)Inq −Aq}−1E(t, η)q ( if nq > 0),
(3.3)

(Tη)q+1 = etE(t, η)q+1,

(Tη)h = A−1
h {

tkh−2

Γ(kh − 1)
∗ (e−t − 1)ηh − E(t, η)h} for h > q + 1.

where ∗ denotes the convolution product: u ∗ v(t) =
∫ t

0 u(s)v(t− s)ds and
E(t,By(t)) = B(Ẽ(., y(.)))(t). Thus, E(t, η) =

∑
m∈Nn0

Em ∗ η∗m(t), where
N0 denotes the set of nonnegative integers and each Em is analytic on the
Riemann surface of log t, satisfying a condition of the form

(3.4) |Em(t)| 6 Kb|m||t|1/p−1ec0|t|

uniformly on S(I∗q ), and E0(t)h = O(tN/p−1) for all h. K, b and c0 are pos-
itive constants. |m| denotes the 1-norm of the n-vector m: |m| :=

∑n
i=1 mi.

Lemma 3.3. — Assume that I∗q ⊂ (−π2 ,
π
2 ) and −I∗q does not contain

a singular direction of level 1. Then uq can be analytically continued to
S(I∗q ), and its analytic continuation, also denoted by uq, has the following
property: for every interval I ′ ≺ I∗q there exist positive numbers B and C

(depending on I ′) such that, for all t ∈ S(I ′),

(3.5) |uq(t)| 6 Cee
B|t|

.

Proof. — The proof of the first statement is analogous to the proof in
the case without level 1+, sketched in [3] (cf. also [1]). In order to prove
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the growth property, proceeding as in [3], we introduce an operator T :
C([0,∞))→ C([0,∞)), defined by

(3.6) Tψ(t) = Met(t1/p−1ec
′
0t) ∗

∞∑
m=0

bmψ∗m(t)

where M is a sufficiently large positive number and c′0 > c0. Let I ′ ≺ I∗q
and let v ∈ C([0,∞)) be defined by

v(t) = sup
{
|uq(s)| : arg s ∈ I ′, |s| = t

}
if t > 0, v(0) = 0

(v is continuous, due to the fact that uq ∈ tN/p−1(A0(I∗q ))n.) As I ′ ≺
(−π2 ,

π
2 ), e−t and (e−t− 1)−1 are bounded on S(I ′, 1). Due to the assump-

tion that −I∗q does not contain a singular direction of level 1, ((e−t−1)Inq−
Aq)−1 is bounded on S(I ′, 1) as well (the eigenvalues of (e−t − 1)Inq −Aq
are e−t − eµj with j ∈ {1, . . . , n} such that dj = 0 and κj = 1, and
− arg t 6= π − arg(µj + 2lπi) for all such j and all l ∈ Z). Furthermore, for
all t ∈ (0,∞),

t−k ∗ (t1/p−1ec0t) 6 B(1− k, 1/p)t1/p−kec0t 6 Ct1/p−1ec
′
0t

and t−k 6 Ct1/p−1ec
′
0t if 0 6 k 6 1 − 1/p, and tk−2 6 Ct1/p−1ec

′
0t for all

t ∈ (0,∞) if k > 1/p+ 1. Here, B denotes the Euler beta-function and C is
a positive constant. Hence it follows that |uq(t)| = |Tuq(t)| 6 Tv(|t|) for all
t ∈ S(I ′, 1), provided M is sufficiently large. Let M0 > max{v(t) : t 6 1}
and χ0(t) = eBt+e

B′t , where B and B′ > 0. Then |uq(t)| < M0χ0(|t|) for
all t ∈ S(I ′) such that |t| 6 1. Suppose there exists t0 ∈ (0,∞) such that

v(t) < M0χ0(t) for all t < t0 and v(t0) = M0χ0(t0).

Obviously, t0 > 1. Consequently, v(t0) = sup{|uq(s)| : arg s∈I ′, |s|=t0} 6
Tv(t0) < T (M0χ0)(t0), T being a monotone operator. From Lemma 3.4(iii)
below we deduce that TM0χ0(t) 6 M0χ0(t) for all t > 1, sufficiently large
B′ and suitable values of B. This implies v(t0) < M0χ0(t0), contradictory
to the assumption and thus we conclude that |uq(t)| < M0χ0(|t|) for all
t ∈ S(I ′), provided B′ and M are sufficiently large. Hence the result follows.

�

Lemma 3.4. — Let p ∈ N, B′ > 0 and 0 < B < eB′, and let

χ0(t) = eBt+e
B′t
.

(i) χ∗m0 (t) 6 ( e
2e

B′ )
m−1χ0(t) for all t ∈ (0,∞) and all m ∈ N.
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(ii) Let 1/p 6 a 6 1, c > 0 and B > B′ + c. Then

(ta−1ect) ∗ χ0(t) 6 (p+ 1)e−B
′atχ0(t)

for all t > 1, provided B′ is sufficiently large.

(iii) For all sufficiently large values of B′ and B′ + c′0 < B < eB′, there
exists a positive constant K(B′) with the property that K(B′)→ 0
as B′ →∞, and

T (M0χ0)(t) 6 bMK(B′)M0χ0(t)

for all t > 1.

Proof.
(i) We have

(χ0 ∗ χ0)(t) = eBt
∫ t

0
ee
B′(t−τ)+eB

′τ
dτ = 2teBt

∫ 1/2

0
ee
B′t(1−s)+eB

′ts
ds.

Due to the convexity of eB′ts w.r.t. s,

eB
′t(1−s) + eB

′ts 6 eB
′t + 1 + 2s(2eB

′t/2 − eB
′t − 1)

for all s ∈ [0, 1/2], and thus

(χ0 ∗ χ0)(t) 6 2teBt+e
B′t+1

∫ 1/2

0
e2s(2eB

′t/2−eB
′t−1)ds

= 2teBt+e
B′t+1

∫ 1/2

0
e−2(eB

′t/2−1)2sds

= te(1− e−(eB
′t/2−1)2)

(eB′t/2 − 1)2 χ0(t).

Hence we deduce that

(χ0 ∗ χ0)(t) 6
te

(eB′t/2 − 1)2χ0(t) 6
4e
B′2t

χ0(t) 6
4e
B′
χ0(t)

for all t > 1/B′. Furthermore, for all t 6 1/B′, we have

(χ0 ∗ χ0)(t) 6 χ0(1/B′)(1 ∗ χ0)(t) 6
eB/B

′+e

B′
χ0(t) 6

e2e

B′
χ0(t)

provided B 6 eB′. The first statement of the lemma follows easily by means
of an inductive argument.
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(ii) For all t > 1, B′ > 1 and B > B′ + c we have

(ta−1ect) ∗ χ0(t) = ect
∫ t−e−B

′t

0
(t− τ)a−1e(B−c)τ+eB

′τ
dτ

+ ect
∫ t

t−e−B′t
(t− τ)a−1e(B−c)τ+eB

′τ
dτ

6 e(B−B′)te(1−a)B′t
∫ t

0
eB
′τ+eB

′τ
dτ

+ eBt+e
B′t
∫ t

t−e−B′t
(t− τ)a−1dτ

6 χ0(t)( 1
B′

+ 1
a

)e−B
′at 6 (p+ 1)e−B

′atχ0(t).

(iii) From (i) we deduce that, for all t > 0,

e−tT (M0χ0)(t) 6 M
(

(t1/p−1ec
′
0t) ∗ 1 + (t1/p−1ec

′
0t)

∗
∞∑
m=1

b(e
2ebM0

B′
)m−1M0χ0(t)

)
6 pMt1/pec

′
0t + 2Mb(t1/p−1ec

′
0t) ∗M0χ0(t)

if B′ > 2e2ebM0. In view of (ii) this implies that

e−tT (M0χ0)(t) 6 pMt1/pec
′
0t + 2M(p+ 1)be−

B′
p tM0χ0(t)

for all t > 1, provided B′ + c′0 < B < eB′ and hence the result follows,
with K(B′) = 3(p + 1)e1−B′/p, provided bM0 > 1, B′ > p and B′ + c′0 <

B < eB′. �

3.2. Accelero-summability of f̂

We begin by giving the definition of accelero-summability used in [4],
which suits our present purpose. The accelero-sum of the formal solution
of (1.1) will be an element of (Â(Iq+1))n, where Iq+1 is an appropriate
interval. The main result for the case that 0 is not a singular direction of
level 1 is stated in Theorem 3.8.

Definition 3.5 (accelero-summability, first version). — Let 0 = k0 <

k1 < · · · < kq = 1, I0 = R and let Ih, h = 1, . . . , q + 1, be open intervals of
R with the following properties:

• [−π2 ,
π
2 ] ⊂ Iq ⊂ · · · ⊂ I1.

• |Ih| > π
kh

for h = 1, . . . , q and Iq+1 is a large interval.
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f̂ ∈ C[[z−1/p]] is called (k1, . . . , kq, 1+)-summable on (I1, . . . , Iq+1) with
(k1, . . . , kq, 1+)-sum fq+1, if there exist fh ∈ A/A6−kh+1(Ih), h = 0, . . . , q−
1, fq ∈ A/A6−1+(Iq) and fq+1 ∈ Â(Iq+1), with asymptotic expansion f̂ ,
such that

• f0(ze2pπi) = f0(z),
• fh−1|Ih = fh mod A6−kh , h = 1, . . . , q

and any representative {φν : ν ∈ N} of fq, where φν ∈ A(Iq,ν) and {Iq,ν :
ν ∈ N} is an open covering of Iq, has the following property: for any interval
I ′q,ν ≺ Iq,ν and any interval I ′ ≺ Iq+1, there exist positive constants R, c
and C such that

(3.7) |fq+1(z)− φν(z)| 6 Ce−c|z| for all z ∈ D̂I′(R) ∩ S(I ′q,ν).

Remark 3.6.
(i) If fq has one representative {φν : ν ∈ N} such that (3.7) holds,

then all representatives have this property.
(ii) In § 4.1 (Lemma 4.6) it is shown that any f ∈ A/A6−1+([−π2 ,

π
2 ])

defines an element f̃+ ∈ Â/Â6−1+(R). Thus, (3.7) can be replaced
by the condition

f̃q
+
|Iq+1 = fq+1 mod Â6−1+

.

Lemma 2.12 shows that fq+1 is determined uniquely by fq. The unique-
ness of fq can be deduced from the following lemma:

Lemma 3.7 (“relative Watson Lemma” I). — Let I be an open interval
of R such that |I| > π. Then A6−1/A6−1+(I) = {0}.

The proof of this lemma is analogous to the one given in [15, 16], cf. also
Lemma 4.14 below.

Theorem 3.8. — Let F be a Cn-valued function, analytic in a neigh-
bourhood of (∞, y0) for some y0 ∈ Cn. Suppose that (1.1) has a formal
solution f̂ ∈ Cn[[z−1/p]], with constant term y0, such that (1.2) holds, and
that the corresponding difference operator ∆̂ = τ − Â has positive levels
k1 < · · · < kq = 1 and a level 1+. Let Ih, h = 1, . . . , q+1, be open intervals
of R with the following properties:

• Ĩq+1 ⊂ [−π2 ,
π
2 ] ⊂ Iq ⊂ · · · ⊂ I1.

• |Ih| > π
kh

for h = 1, . . . , q and Iq+1 is a large interval.
• Ih does not contain a Stokes pair of level kh for h = 1, . . . , q.
• Ĩq+1 ∩Θ(∆̂) = ∅.
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Then f̂ is (k1, . . . , kq, 1+)-summable on (I1, . . . , Iq, Iq+1) and its sum is a
solution of (1.1).

This theorem can be derived from propositions 3.9 and 3.11 below. The
condition Ĩq+1 ⊂ [−π2 ,

π
2 ], implying that fq+1 is defined on a subset of

S((−π2 ,
π
2 )), will be lifted in section 4, Theorem 4.12, I.

As before, let us assume that (1.1) is in prepared form (2.7), let fh ∈
z−N/p(A/A6−kh+1)n(Ih) be solutions of (2.7), satisfying (3.1) for h =
1, . . . , q − 1, and let uq = B(fq−1). The conditions on Iq imply that 0 ∈ I∗q
and −I∗q does not contain a singular direction of level 1 (cf. Remark 3.2).
Hence, in view of Remark 2.3(ii), I∗q ⊂ (−π2 ,

π
2 ).

For all α ∈ I∗q , θ ∈ R and z ∈ S((−π, π)) such that α+arg log(zeiθ) ∈ I∗q ,
we define

φθα(z) :=
∫ eiα log(zeiθ)/B′α

0
uq(s)e−szds.

(The idea of using finite Laplace integrals of the form
∫ r(z)

0 u(s)e−szds,
where r(z)→∞ as z →∞ is due to Braaksma, cf. [2].)

Proposition 3.9. — Let (−π2 ,
π
2 ) ⊂ Iq ⊂ Iq−1 such that |Iq| > π,

I∗q ⊂ (−π2 ,
π
2 ) and −I∗q does not contain a singular direction of level 1. Let

I ⊂ R. Then {φθα : α ∈ I∗q , θ ∈ I} represents a solution fq of (2.7) in
(A/A6−1+(Iq))n with the property that fq mod (A6−1)n = fq−1|Iq .

Proof. — By Lemma 3.3, for every α ∈ I∗q and δα > 0 such that [α −
δα, α + δα] ⊂ I∗q , there exist positive numbers Bα and Cα, such that
|uq(s)| 6 Cαe

eBα|s| for all s ∈ S[α − δα, α + δα]. Let α ∈ I∗q , B′α > Bα,
β ∈ (0, π2 ), 0 < δβα < min{δα, π2 −β}, θ ∈ R and let R be a sufficiently large
number such that arg log(zeiθ) ∈ [−δβα, δβα] for all z ∈ S([−α−β,−α+β], R).
It is easily seen that, for all z ∈ S([−α− β,−α+ β], R),

|φθα(z)−
∫ reiα

0
uq(s)e−szds| 6 Ce−δ|z|

provided R is sufficiently large, where C and δ > 0. Hence it follows that
φθα ∈ (A(−α− π

2 ,−α+ π
2 ))n and {φθα : α ∈ I∗q , θ ∈ I} is a representative of

L(uq)|Iq = fq−1|Iq . From Lemma 3.10(ii) below we deduce that {φθα : α ∈
I∗q , θ ∈ I} also represents an element fq ∈ (A/A6−1+(Iq))n. Obviously,
fq mod (A6−1)n = fq−1|Iq . The fact that fq−1|Iq is a solution of (2.7) in
(A/A6−1(Iq))n implies that {∆φθα − ϕ0 − E(z1/p, φθα) : α ∈ I∗q , θ ∈ I}
represents an element of (A6−1/A6−1+(Iq))n. As |Iq| > π, by Lemma 3.7,
fq is a solution of (2.7) in (A/A6−1+(Iq))n. �
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Note that Proposition 3.9 also holds if 0 is a singular direction of level 1,
provided 0 6∈ I∗q (cf. Remark 4.13 below).

Lemma 3.10. — Let I be an open interval of R and u : S(I) → C a
holomorphic function, satisfying a growth condition of the form

|u(s)| 6 Cee
B|s|

,

where B and C are positive constants.
(i) Assume that 0 ∈ I and let I ′ ≺ (φ−(π2 ), φ+(−π2 )) be an open

interval with the property that θ−(I ′) < θ+(I ′). Let r > 0, B′ > B,
and θ ∈ Ĩ ′. There exist positive constants C ′ and δ such that∣∣∣∫ log(zeiθ)/B′

r

u(s)e−szds
∣∣∣ 6 C ′e−δ

|z|
log |z|

for all z ∈ D̂I′(R), provided R is sufficiently large.
Let θ1, θ2 ∈ Ĩ ′. There exist positive constants C ′ and c such that∣∣∣∫ log(zeiθ2 )/B′

log(zeiθ1 )/B′
u(s)e−szds

∣∣∣ 6 C ′e−c|z|

for all z ∈ D̂I′(R), provided R is sufficiently large.
(ii) For j = 1, 2, let Bj > B, θj ∈ R, αj ∈ I and let Ij ≺ (−αj −

π
2 ,−αj + π

2 ). There exist positive constants C ′ and δ such that

∣∣∣∫ eiα1 log(zeiθ1 )/B1

0
u(s)e−szds−

∫ eiα2 log(zeiθ2 )/B2

0
u(s)e−szds

∣∣∣
6 C ′e−δ|z| log |z|

for all z ∈ S(I1 ∩ I2, R), provided R is sufficiently large.
(iii) Assume that 0 ∈ I and let I ′ ≺ (φ−(π2 ), φ+(−π2 )) be an open

interval with the property that θ−(I ′) < θ+(I ′). Let B′ > B, θ ∈ Ĩ ′,
α ∈ I and I ′′ ≺ (−α − π

2 ,−α + π
2 ). There exist positive constants

C ′ and c such that∣∣∣∫ eiα log(zeiθ)/B′

log(zeiθ)/B′
u(s)e−szds

∣∣∣ 6 C ′e−c|z|

for all z ∈ D̂I′(R) ∩ S(I ′′), provided R is sufficiently large.

Proof.
(i) As D̂I′(R) ⊂ S((−π2 ,

π
2 ), R), we have, for all z ∈ D̂I′(R),∣∣∣∫ | log(zeiθ)|/B′

r

u(s)e−szds
∣∣∣ 6 C(Re z)−1ee

B| log(zeiθ)|/B′−rRez.
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With the aid of (2.4) it follows that, for all z ∈ D̂I′(R),∣∣∣∫ | log(zeiθ)|/B′

r

u(s)e−szds
∣∣∣ 6 C ′eKθ|z|

B
B′ −δ′ |z|

log |z|

provided R is sufficiently large, where C ′, Kθ and δ′ > 0. As arg log(zeiθ)→
0 as |z| → ∞, log(zeiθ)/B′ ∈ S(I) for all z ∈ D̂I′(R) if R is sufficiently
large. Let ε ∈ (0, π2 ) such that (−ε, ε) ⊂ I, and take R so large that
| arg log(zeiθ)| < ε/2 for all z ∈ D̂I′(R). Let C12(z) denote the arc of
the circle |s| = | log zeiθ|/B′ between arg s = 0 and arg s = arg log(zeiθ).
For all z ∈ D̂I′(R) such that | arg z| 6 π

2 − ε we have∣∣∣∫ log(zeiθ)/B′

r

u(s)e−szds−
∫ | log zeiθ|/B′

r

u(s)e−szds
∣∣∣

=
∣∣∣∫
C12(z)

u(s)e−szds
∣∣∣

6 C

∫
C12(z)

ee
B|s|−|s||z| cos((π−ε)/2))|ds|

6 C ′ee
B| log(zeiθ)|/B′−| log zeiθ||z| sin(ε/2)/B′ ,

whereas, for all z ∈ D̂I′(R) such that | arg z| > π
2 − ε and s ∈ C12(z),

| arg z + arg s| 6 | arg(z log zeiθ)|, hence, with (2.5),∣∣∣∫
C12(z)

u(s)e−szds
∣∣∣ 6 C

∫
C12(z)

ee
B|s|−|s||z| cos(arg(z log(zeiθ)))|ds|

6 C ′ee
B| log(zeiθ)|/B′−Re(ψθ(z))/B′

6 C ′eKθ|z|
B
B′ −c′|z|

where c′ > 0. From the above estimates the first statement of the lemma
follows. Similarly, supposing that θ1 < θ2, we find∣∣∣∫ log(zeiθ2 )/B′

log(zeiθ1 )/B′
u(s)e−szds

∣∣∣ 6 C ′eK|z|
B
B′
∫ θ2

θ1

e−Re(ψθ(z))/B′dθ

6 C ′′eK|z|
B
B′ −c′′|z|

where C ′′, K and c′′ > 0.

(ii) Without loss of generality we may take Ij = (−αj − β,−αj + β)
for j = 1, 2, where 0 < β < π

2 . Let ε ∈ (0, π2 − β) such that, for j = 1, 2,
(αj − ε, αj + ε) ⊂ I, and take R so large that | arg log(zeiθj )| < ε/2 for
all z ∈ S(I1 ∩ I2, R). Then, for j = 1 and 2, and all z ∈ S(I1 ∩ I2, R),
cos(arg z log(zeiθj ) + αj) > sin(ε/2). Let sj := eiαj log(zeiθ1)/B1, j = 1, 2
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and let C12(z) denote the arc of the circle |s| = | log(zeiθ1)|/B1 between s1
and s2. For all z ∈ S(I1 ∩ I2, R), C12(z) ⊂ S(I) and cos(arg z + arg s) >
sin(ε/2) for all s ∈ C12(z), hence∣∣∣∫ s1

0
u(s)e−szds−

∫ s2

0
u(s)e−szds

∣∣∣
6 C

∫
C12(z)

ee
B|s|−|s||z| cos(arg z+arg s)|ds|

6 C|α2 − α1|| log z|ee
B| log(zeiθ1 )|/B1−|z log(zeiθ1 )| sin(ε/2)/B1

= e− sin(ε/2)/B1|z| log |z|(1+o(1)) as z →∞ in S(I1 ∩ I2, R).

Furthermore, supposing that B1 6 B2, we have for all z ∈ S(I1 ∩ I2, R),∣∣∣∫ s2

0
u(s)e−szds−

∫ eiα2 log(zeiθ2 )/B2

0
u(s)e−szds

∣∣∣
6 C

∫ | log(zeiθ1 )|/B1

| log(zeiθ2 )|/B2

ee
B|s|−ε′|s||z||ds|

6 C/(ε′|z|)eK|z|
B
B1 −ε′|z| log |z|/B2

where K > 0 and ε′ = sin(ε/2). The statement of the lemma now follows
immediately.

(iii) Suppose 0 < α < π and let C12(z) denote the arc of the circle
|s| = | log(zeiθ)|/B′ between log(zeiθ)/B′ and eiα log(zeiθ)/B′. In view
of (ii) it suffices to consider z ∈ D̂I′(R) with the property that arg z 6
−α/2 − δ, where 0 < δ < (π − α)/2. Then arg(z log(zeiθ)) 6 arg z +
arg s 6 α/2− δ + arg log(zeiθ). As −π/2 < arg(z log(zeiθ)) 6 −α/2− δ +
arg log(zeiθ) < α/2 + δ − arg log(zeiθ) if R is sufficiently large, cos(arg z +
arg s) > cos arg(z log(zeiθ)) for all s ∈ C12(z), provided R is sufficiently
large. Then we have, with (2.5),∣∣∣∫

C12(z)
u(s)e−szds

∣∣∣
6 C

∫
C12(z)

ee
B| log(zeiθ)|/B′−|z log(zeiθ)| cos(arg z+arg s)/B′ |ds|

6 C ′ee
B| log(zeiθ)|/B′−Re(ψθ(z))/B′

6 C ′eKθ|z|
B
B′ −c′|z|

where C ′, Kθ and c′ > 0. The proof for the case that −π < α < 0 is similar.
If |α| > π, then D̂I′(R) ∩ S(I ′′) = ∅ for all R > 1. �
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In order to establish the accelero-summability of the formal solution of
(2.7) in the case that 0 is not a singular direction of level 1, it remains
to prove the existence of a solution fq+1 ∈ (Â(Iq+1))n with the properties
mentioned in definition 3.5. This will be done by suitably modifying some
of the functions φθ0 defined above.

Proposition 3.11. — Let Iq+1 be a large interval such that Ĩq+1 ⊂
[−π2 ,

π
2 ] ⊂ Iq and Ĩq+1 ∩ Θ(∆c) = ∅. Assume that −I∗q does not contain

a singular direction of level 1. Then equation (2.7) has a solution fq+1 ∈
(Â(Iq+1))n with the properties mentioned in definition 3.5.

Proof. — Let θ ∈ Ĩq+1 and y = w + φθ0. Then (φ−(θ), φ+(θ)) ⊂ Iq+1 ⊂
(φ−(π2 ), φ+(−π2 )) and y is a solution of the equation (2.7) if and only if w
satisfies the equation

(3.8) ∆w(z) = G(z, w(z)) := E(z1/p, w(z) + φθ0(z)) + ϕ0(z1/p)−∆φθ0(z).

By Lemma 2.11, the function φr defined by φr(z) =
∫ r

0 uq(s)e
−szds, is an

element of (Â(φ−(π2 ), φ+(−π2 )))n ⊂ (Â(φ−(θ), φ+(θ)))n. From Lemma 3.10
(i) we infer that φθ0 − φr ∈ (Â6−1(φ−(θ), φ+(θ)))n, hence φθ0 ∈ (Â(φ−(θ),
φ+(θ)))n. With proposition 3.9, (2.11) and Lemma 3.10 (iii) it follows that
G(z, 0) = E(z1/p, φθ0(z)) + ϕ0(z1/p) − ∆φθ0(z) ∈ (Â6−1+(φ−(θ), φ+(θ)))n.
According to [12, Theorem 1.2], with I = {θ}, k = 1+ and l = 0, the
equation (3.8) has a solution wθ ∈ (Â6−1+(φ−(θ), φ+(θ)))n. Now, let
θ1, θ2 ∈ Ĩq+1, θ1 < θ2, and let yi = wθi + φθi0 , i = 1, 2. As wθi ∈
(Â6−1+(φ−(θi), φ+(θi)))n for i = 1, 2, and, by Lemma 3.10(i), φθ1

0 − φ
θ2
0 ∈

(Â6−1+(φ−(θ1), φ+(θ2)))n, y1 − y2 ∈ (Â6−1+(φ−(θ1), φ+(θ2)))n as well.
Both y1 and y2 are solutions of the nonlinear difference equation (2.7), so
the difference y1 − y2 satisfies a homogeneous linear equation of the form
(2.10), with H ∈ End(n; (Â(φ−(θ1), φ+(θ2)). By proposition 2.15, ∆̃ and
∆ have a common canonical form ∆c if N is sufficiently large and so, by
Corollary 2.14, Ker(∆̃, (Â6−1+(φ−(θ1), φ+(θ2)))n) = {0}. It follows that
the solutions wθ + φθ0, with θ ∈ Ĩq+1, can be glued together, to define an
analytic function fq+1 ∈ ∩θ∈Ĩq+1

(Â(φ−(θ), φ+(θ)))n = Â(Iq+1)n. �

Remark 3.12. — Let I ≺ Iq+1 be a large interval, let θ ∈ Ĩ and let fq+1 ∈
(Â(Iq+1))n be the unique solution of (1.1) with the properties mentioned
in definition 3.5. Then the function uq+1,θ defined by

uq+1,θ(t) = 1
2πi

∫
δD̂I(R)

fq+1(z)etψθ(z)dψθ(z), arg t = 0
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where R is a sufficiently large positive number and δD̂I(R) is described in
the direction of increasing imaginary part, is quasi-analytic on the half line
arg t = 0. uq+1,θ is a so-called weak accelerate of uq = B(fq−1). uq+1,θ has
exponential growth as t→∞ and fq+1 can be represented by the Laplace
integral

fq+1(z) = y0 +
∫ ∞

0
uq+1,θ(t)e−tψθ(z)dt, Reψθ(z) > cθ

where cθ > 0.

For a very general discussion of weak acceleration operators and their
properties we refer the reader to [5, 7].

4. The general case

Let Iq−1 be an open interval of R such that |Iq−1|>π/kq−1 and [−π2 ,
π
2 ] ⊂

Iq−1, and fq−1 ∈ (A/A6−1(Iq−1))n. In the case that 0 is a singular direction
of ∆c, of level 1, the matrix ((e−t−1)Inq −Aq)−1 in (3.3) has a singularity
on the half line arg t = 0 and, consequently, the Borel transform uq of fq−1
cannot be continued analytically to this half line. In order to “bypass” in
some sense, possible singularities of uq on arg t = 0, we introduce a variable
rθ(z), equivalent to z in the sense that limz→∞ rθ(z)z−1 = 1.

Definition 4.1. — For all z ∈ S((−π, π), 1) and θ ∈ R we define

rθ(z) = ψθ(z)
log z

and ρθ(z) = Re rθ(z).

We can illustrate the “bypassing” of a singularity on the half line arg t = 0
with the following, very simple example.

Example 4.2. — For any θ ∈ R and R > 1, the function

φθ(t) =
∫ ∞
R

e−z+trθ(z)drθ(z)

is analytic in the half plane Re t < 1. For θ = 0 we have

φ0(t) =
∫ ∞
R

e(t−1)zdz = −e
R(t−1)

t− 1
,

so φ0 has a simple pole at 1. For any θ 6= 0, however, φθ can be continued to
a quasi-analytic function on the positive real axis. Let us consider the case
that θ > 0. By deformation of the path of integration we get, if Im t > 0,

φθ(t) =
∫ R+i∞

R

e−z+trθ(z)drθ(z).
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Noting that, for all z on the line Re z = R and all t ∈ R,

Re(−z + trθ(z)) = (t− 1 + θt arg z
| log z|2

)R− θt Im z log |z|
| log z|2

one easily verifies that the function defined by the right-hand side is con-
tinuous on the half plane Im t > 0 and C∞ on Im t = 0. Moreover, for any
closed interval [a, b] ⊂ (0,∞), there exist positive constants K and A such
that

|φ(m)
θ (t)| 6 K

∫ R+i∞

R

|rθ(z)|me
− θt Im z log |z|

| log z|2 |drθ(z)|

6 KAm(m logm)m for all m ∈ N and all t ∈ [a, b].

This implies that φθ belongs to the Denjoy class 1D[a, b] and thus is quasi-
analytic on the positive real axis.

For every θ ∈ R, the function φθ has exponential growth of order 1 as
t → ∞ on the positive real axis. The function fθ, defined by the Laplace
integral

fθ(z) :=
∫ ∞

0
φθ(t)e−trθ(z)dt

is analytic in a domain of the form ρθ(z) > K ′ > 0. In the case that θ = 0
this obviously is a right half plane. In general, as we shall see, it contains a
domain of the form D̂I(R) for every interval I ≺ (φ−(θ+ π

2 ), φ+(θ− π
2 )). If

θ 6= 0 it does not contain a half plane, but is slightly ‘tilted’ and contains
a part of either the positive (if θ < 0) or negative (if θ > 0) imaginary axis
(cf. Figures 4.1 and 4.2).

Remark 4.3. — There is a certain amount of freedom in the choice of
the variable rθ(z). However, the “perturbation” z − rθ(z) shouldn’t be too
small. If, in example 4.2, rθ(z) is defined as rθ(z) = z + iθz

(log z)2 , we obtain
the estimate

|φ(m)
θ (1)| = mm(logm)2m(θe)−m+o(m) as m→∞

which implies that φθ is not quasi-analytic on any interval of the positive
real axis containing 1. Moreover, in order to deal with the level 1+, the
set Re rθ(z) > 0 (with θ 6= 0) should contain a domain of the form D̂I(R),
where I is a large interval. This rules out larger perturbations of z like
rθ(z) = z + iθz

log log z . On the other hand, an alternative definition of the
type rθ(z) = z + (iθ − 1) z

log z would yield completely analogous results
to those obtained with Definition 4.1, provided θ 6= 0. The case θ = 0
corresponds to a “pseudodeceleration” in the terminology used by Ecalle,
serving to regularize the singularities of uq (cf. [6]).
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Figure 4.1. The domain D̂(φ−(θ+π2 ),φ+(θ−π2 ))(6) with θ = −π4
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Figure 4.2. The domain D̂(φ−(θ+π2 ),φ+(θ−π2 ))(6) with θ = π
4 .

As the convolution equations obtained from (2.7) by applying a Borel
transformation with respect to the variable rθ(z), in the case that θ 6= 0,
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appear quite unwieldy, we take a different approach here, more along the
lines of the proof given by Ramis and Sibuya in [19]. However, instead
of using an existence theorem for ordinary, analytic solutions of nonlin-
ear difference equations, we use an existence theorem for quasi-function
solutions, which considerably simplifies the argument. In this subsection
we introduce 1-precise and 1+-precise quasi-functions ‘of the second kind’,
which, instead of being defined on sectors, are defined on domains of the
type D̂I(R) and represent sections of the quotient sheaves Â/Â6−1 and
Â/Â6−1+ . We show that fq−1|(−π2 ,π2 ) has a particular representative, which
also represents an element of (Â/Â6−1(R))n. Now, let Iq be a large interval
such that |Ĩq| > π. On every large subinterval I of Iq such that |Ĩ| 6 π, we
can modify this representative by means of exponentially small, 1+-precise
quasi-function solutions of an associated difference equation, using a re-
cent existence result for this type of solutions (Theorem 4.16), and obtain
a solution of (2.7) in (Â/Â6−1+(I))n. Moreover, this has the property that
its restriction to any large subsector I ′ of I is represented by a solution
of (2.7) in (Â(I ′))n, provided Θ(∆c) ∩ Ĩ ′ = ∅. Due to the fact that the
difference of two solutions of (2.7) satisfies a homogeneous linear difference
equation of the form (2.10) and by virtue of Theorem 2.13, these solutions
can be glued together, resulting in a solution fq ∈ (Â/Â6−1+(Iq))n, with
the property that fq|Iq+1 is represented by a solution fq+1 ∈ (Â(Iq+1))n,
provided Θ(∆c)∩ Ĩq+1 = ∅. fq+1 is an accelero-sum of f̂ in a slightly weaker
sense than that of Definition 3.5 (cf. Definition 4.11 below).

4.1. The quotient sheaves Â/Â6−1 and Â/Â6−1+

Definition 4.4 (1-precise and 1+-precise quasi-functions). — Let I be
an interval of R. A 1-precise quasi-function (of the second kind) on I is a
collection of functions {φν : ν ∈ N}, where φν ∈ Â(Iν), {Iν : ν ∈ N} is an
open covering of I, and φν−φν′ ∈ Â6−1(Iν∩Iν′) for all ν and ν′ ∈ N . Two
1-precise quasi-functions {φν ∈ Â(Iν) : ν ∈ N} and {ψµ ∈ Â(I ′µ) : µ ∈M}
on I are considered equivalent if φν − ψµ ∈ Â6−1(Iν ∩ I ′µ), for all ν ∈ N
and all µ ∈M.

Similarly, a 1+-precise quasi-function (of the second kind) on I is a collec-
tion of functions {φν : ν ∈ N}, where φν ∈ Â(Iν), {Iν : ν ∈ N} is an open
covering of I, and φν−φν′ ∈ Â6−1+(Iν∩Iν′) for all ν and ν′ ∈ N . Two 1+-
precise quasi-functions {φν ∈ Â(Iν) : ν ∈ N} and {ψµ ∈ Â(I ′µ) : µ ∈ M}
on I are considered equivalent if φν − ψµ ∈ Â6−1+(Iν ∩ I ′µ), for all ν ∈ N
and all µ ∈M.
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Obviously, 1-precise and 1+-precise quasi-functions of the second kind
represent sections of the quotient sheaves Â/Â6−1 and Â/Â6−1+ , respec-
tively. The following two lemma’s provide us with the necessary link be-
tween A/A6−1 and A/A6−1+ on one hand and Â/Â6−1 and Â/Â6−1+

on the other.

Lemma 4.5. — For every f ∈ A/A6−1([−π2 ,
π
2 ]) there exists a global

section f̃ of (Â/Â6−1), represented by a 1-precise quasi-function {ϕ̃θ : θ ∈
R} of the second kind, with the following properties:

(i) ϕ̃θ ∈ Â(φ−(θ + π
2 ), φ+(θ − π

2 )),
(ii) If {φν : ν ∈ N}, where φν ∈ A(Iν) and {Iν : ν ∈ N} is an open

covering of [−π2 ,
π
2 ], is a representative of f , then, for any open

interval I ′ν ≺ Iν and any I ′ ≺ (φ−(θ + π
2 ), φ+(θ − π

2 )), there exist
positive constants R, c and C such that

(4.1) |ϕ̃θ(z)− φν(z)| 6 Ce−c
|z|

log |z|

for all z ∈ D̂I′(R) ∩ S(I ′ν).
(iii) ϕ̃θ1 − ϕ̃θ2 ∈ Â6−1(φ−(θ1 + π

2 ), φ+(θ2 − π
2 )) if θ1 < θ2.

Lemma 4.6. — For every f ∈ A/A6−1+([−π2 ,
π
2 ]) there exists f̃+ ∈

(Â/Â6−1+)(R), represented by a 1+-precise quasi-function {ϕ̃+
θ : θ ∈ R}

of the second kind, with the following properties:
(i) ϕ̃+

θ ∈ Â(φ−(θ), φ+(θ)),
(ii) If {φν : ν ∈ N}, where φν ∈ A(Iν) and {Iν : ν ∈ N} is an open

covering of [−π2 ,
π
2 ], is a representative of f , then, for any I ′ν ≺ Iν

and any I ′ ≺ (φ−(θ), φ+(θ)), there exist positive constants R, c and
C such that

(4.2) |ϕ̃+
θ (z)− φν(z)| 6 Ce−c|z|

for all z ∈ D̂I′(R) ∩ S(I ′ν).
(iii) ϕ̃+

θ1
− ϕ̃+

θ2
∈ Â6−1+(φ−(θ1), φ+(θ2)) if θ1 < θ2.

Remark 4.7. — Let f ∈ A/A6−1([−π2 ,
π
2 ]) and g ∈ A/A6−1+([−π2 ,

π
2 ])

such that f = g mod A6−1. Let f̃ and g̃+ denote the corresponding ele-
ments of (Â/Â6−1)(R) and (Â/Â6−1+)(R), respectively. Then it is easily
seen that f̃ = g̃+ mod Â6−1.

Definition 4.8. — Let f ∈ A/A6−1([−π2 ,
π
2 ]) or f ∈ A/A6−1+([−π2 ,

π
2 ]), respectively, and let f̃ or f̃+ denote the corresponding elements of
(Â/Â6−1)(R) and (Â/Â6−1+)(R), respectively. Let I be an interval of R.
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Then by f |̃I we denote f̃ |I (∈ Â/Â6−1(I)), or f̃+|I (∈ Â/Â6−1+(I)),
respectively.

In order to prove Lemma’s 4.5 and 4.6, we first derive some asymptotic
properties of ρθ. A straightforward computation shows that, for all θ and
θ′ ∈ R,

ρθ(z) = {(Reψθ′(z) + (θ′ − θ + arg z) Im z} log |z|+ arg z(arg z + θ) Re z
| log z|2

.

Hence we deduce the estimates

(4.3) ρθ(z) =
(θ − θ′ + 1

2π)|z|
log |z|

(
1 +O( 1

log |z|
)
)

as z →∞ on Ĉφ−(θ′)(R)

valid for any real θ′ 6= θ + π
2 and all sufficiently large R, and

(4.4) ρθ(z) =
(θ′ − θ + 1

2π)|z|
log |z|

(
1 +O( 1

log |z|
)
)

as z →∞ on Ĉφ+(θ′)(R)

valid for θ′ 6= θ− π
2 and sufficiently large R (cf. [12]). Furthermore, for any

interval I ≺ (φ−(θ + π
2 ), φ+(θ − π

2 )), there exist positive numbers R and δ
such that

(4.5) ρθ(z) > δ
|z|

log |z|
for all z ∈ D̂I(R).

If, in addition, 0 6∈ I, there exist positive numbers R, δ1 and δ2 such that

(4.6) δ1
|z|

log |z|
6 ρθ(z) 6 δ2

|z|
log |z|

for all z ∈ D̂I(R).

From [12, Lemma 0.13]) and (4.6) we deduce the following result.

Lemma 4.9.
1. Let θ ∈ R, I = (a, b) such that a 6= 0 6= b, I ≺ (φ−(θ+ 1

2π), φ+(θ− 1
2π))

and let R be a sufficiently large number. Let f : D̂I(R) → C be a
continuous function, holomorphic in int D̂I(R). Then the following
statements are equivalent.

(i) There exist positive numbers c and C, such that, for all z∈D̂I(R),

|f(z)| 6 Ce−cρθ(z).

(ii) There exist positive numbers δ and C, such that, for all z∈D̂I(R),

|f(z)| 6 Ce−δ
|z|

log |z| .

2. Let I be a large, open interval such that |Ĩ| > π. Then Â6−1(I) = {0}.
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Remark 4.10. — From Lemma’s 4.9 and 2.12 we deduce that, for any
open interval I containing 0, Â6−1(I) ⊂ A6−1(−π2 ,

π
2 ) and Â6−1+(I) ⊂

A6−1+(−π2 ,
π
2 ). Obviously, e−crθ(z) ∈ Â6−1(φ−(θ + 1

2π), φ+(θ − 1
2π)) for

all c > 0 and θ ∈ R. Statement 2 of Lemma 4.9 extends the well-known
result that A6−1([−π2 ,

π
2 ]) = {0}.

Proof of Lemma 4.5. — Let {φν : ν ∈ {1, . . . , N}} be a representative
of f , with respect to a “good” open covering {Iν : ν ∈ {1, . . . , N}} of
[−π2 ,

π
2 ] (i.e. Iν ∩Iµ = ∅ unless |ν−µ| = 1), such that inf Iν < inf Iν+1 for

ν = 1, . . . , N − 1. For all ν ∈ {1, . . . , N} let I ′ν ≺ Iν , such that {I ′ν : ν ∈
{1, . . . , N}} is a good, open covering of [−π2 ,

π
2 ]. Choose open subintervals

I ′′ν of Iν , such that I ′ν ≺ I ′′ν ≺ Iν for ν ∈ {1, . . . , N} and let α0 = inf I ′′1 ,
αN = sup I ′′N , αν ∈ I ′′ν ∩I ′′ν+1r(I ′ν∩I ′ν+1) for ν = 1, . . . , N−1, and let R > 0
such that φν is analytic and bounded on S(I ′′ν , R) for all ν ∈ {1, . . . , N}.
There exist C ′ and c′ > 0 such that, for all z ∈ S(I ′′ν ∩ I ′′ν+1, R) and
ν = 1, . . . , N − 1,

|φν(z)− φν+1(z)| 6 C ′e−c
′|z|.

Let r < c′. Then the function ϕ̃θ defined, for all z ∈ ∪ν=1,...,NS((αν−1,

αν), R), by

ϕ̃θ(z) =
N∑
ν=1

∫
Cν

er(rθ(ζ)−rθ(z)) − 1
2πi(rθ(ζ)− rθ(z))

φν(ζ)drθ(ζ)

+
N∑
ν=0

∫ ∞eiαν
Reiαν

er(rθ(ζ)−rθ(z)) − 1
2πi(rθ(ζ)− rθ(z))

(φν − φν+1)(ζ)drθ(ζ)

where Cν denotes the arc of the circle |z| = R from Reiαν−1 to Reiαν
and φ0 ≡ φN+1 ≡ 0, can be analytically continued to S((α0, αN ), R) by
deformation of the paths of integration. Moreover, with Cauchy’s theorem
it follows that, for all z ∈ S(I ′ν , R)

ϕ̃θ(z)− φν(z) = e−rrθ(z)

2πi

(
N∑
µ=1

∫
Cµ

errθ(ζ)

rθ(ζ)− rθ(z)
φµ(ζ)drθ(ζ)

+
N∑
µ=0

∫ ∞eiαµ
Reiαµ

errθ(ζ)

rθ(ζ)− rθ(z)
(φµ − φµ+1)(ζ)drθ(ζ)

)
.

Hence we deduce, with the aid of (4.5), that for any interval I ′ ≺ (φ−(θ +
π
2 ), φ+(θ − π

2 )), there exist positive constants c and C such that

|ϕ̃θ(z)− φν(z)| 6 Ce−c
|z|

log |z|
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for all z ∈ D̂I′(R) ∩ S(I ′ν). It is easily seen that ϕ̃θ is independent of
the choice of representative and the covering {Iν : ν ∈ {1, . . . , N}}. As
D̂I′(R) ⊂ ∪ν∈{1,...,N}S(I ′ν) for all sufficiently large R, it follows that ϕ̃θ ∈
Â(φ−(θ + π

2 ), φ+(θ − π
2 )).

Now, let θ1, θ2 ∈ R, θ1 < θ2. Using the estimates for ϕ̃θi − φν derived
above and varying the I ′ν , one easily shows that ϕ̃θ1− ϕ̃θ2 ∈ Â6−1(φ−(θ1 +
π
2 ), φ+(θ2 − π

2 )). �

Note that, for any θ ∈ R, ϕ̃θ is a representative of f |(−π2 ,π2 ). Lemma 4.6
can be proved similarly, with the aid of (2.5).

4.2. Accelero-summability of f̂ in the general case

Definition 4.11 (accelero-summability (generalization)). — Let 0 =
k0 < k1 < · · · < kq = 1, I0 = R and let Ih, h = 1, . . . , q + 1, be open
intervals of R with the following properties:

• [−π2 ,
π
2 ] ⊂ Iq−1 ⊂ · · · ⊂ I1 and Iq+1 ⊂ Iq.

• |Ih| > π
kh

for h = 1, . . . , q − 1, Iq and Iq+1 are large intervals and
|Ĩq| > π.

f̂ ∈ C[[z−1/p]] is called (k1, . . . , kq, 1+)-summable on (I1, . . . , Iq+1) with
(k1, . . . , kq, 1+)-sum fq+1, if there exist fh ∈ A/A6−kh+1(Ih), h = 0, . . . , q−
1, fq ∈ Â/Â6−1+(Iq) and fq+1 ∈ Â(Iq+1), with asymptotic expansion f̂ ,
such that

• f0(ze2pπi) = f0(z),
• fh−1|Ih = fh mod A6−kh , h = 1, . . . , q − 1,
• fq−1̃|Iq = fq mod Â6−1,
• fq|Iq+1 = fq+1 mod Â6−1+ .

Note that the role played by Iq in this definition is quite different from
that in definition 3.5. Here, we consider sections over Iq of Â/Â6−1+ and
in definition 3.5 sections of A/A6−1+ .

From Lemma 2.12, 2 we deduce that fq+1 is determined uniquely by fq.
For, suppose gq+1 ∈ Â(Iq+1) has the same properties as fq+1. Then fq+1−
gq+1 ∈ Â6−1+(Iq+1), and thus, by Lemma 2.12, 2, gq+1 ≡ fq+1. Similarly,
it can be deduced from Lemma 4.14 below that fq is determined uniquely
by fq−1. Suppose gq ∈ Â/Â6−1+(Iq) has the same properties as fq. Then
fq − gq ∈ Â6−1/Â6−1+(Iq) and from Lemma 4.14 it follows that fq = gq.

Now let Ih, h = 1, . . . , q + 1, be open intervals of R, satisfying the
conditions of definition 3.5. Assume that f̂ is (k1, . . . , 1, 1+)-summable on
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(I1, . . . , Iq, Iq+1) according to definition 3.5. With the aid of Lemma’s 4.5,
4.6 and Remark 4.7, replacing fq by f̃q

+
, it is easily seen that f̂ is (k1, . . . ,

1, 1+)-summable on (I1, . . . , Iq−1,R, Iq+1) according to definition 4.11.
The main result of this paper is stated in the following theorem.

Theorem 4.12. — Let F be a Cn-valued function, analytic in a neigh-
bourhood of (∞, y0) for some y0 ∈ Cn. Suppose that (1.1) has a formal
solution f̂ ∈ Cn[[z−1/p]], with constant term y0, such that (1.2) holds, and
that the corresponding difference operator ∆̂ = τ − Â has positive levels
k1 < · · · < kq = 1 and a level 1+. Let Ih, h = 1, . . . , q+1, be open intervals
of R with the following properties:

• [−π2 ,
π
2 ] ⊂ Iq−1 ⊂ · · · ⊂ I1.

• |Ih| > π
kh

for h = 1, . . . , q − 1 and Iq+1 is a large interval.

• Ih does not contain a Stokes pair of level kh for h = 1, . . . , q − 1.

• Ĩq+1 ∩Θ(∆̂) = ∅.

I. Suppose that 0 is not a singular direction of level 1 and [−π2 ,
π
2 ] ⊂

Iq⊂Iq−1. Then f̂ is (k1, . . . , kq−1, 1, 1+)-summable on (I1, . . . , Iq+1)
in the sense of definition 3.5, and the sum is a solution of (1.1).

II. Suppose that 0 is a singular direction of level 1, Iq = (φ−(π2 ),∞)
or (−∞, φ+(−π2 )) and Iq+1 ⊂ Iq. Then f̂ is (k1, . . . , kq−1, 1, 1+)-
summable on (I1, . . . , Iq+1) in the sense of definition 4.11, and the
sum is a solution of (1.1).

Remark 4.13. — Let I ≺ Iq+1 be a large interval, let θ′ ∈ Ĩ and let
fq+1 ∈ (Â(Iq+1))n be the unique solution of (1.1) with the properties men-
tioned in definition 4.11. Then the function uq+1,θ′ defined by

uq+1,θ′(t) = 1
2πi

∫
δD̂I(R)

fq+1(z)etψθ′ (z)dψθ′(z), arg t = 0

where R is a sufficiently large positive number and δD̂I(R) is described in
the direction of increasing imaginary part, is quasi-analytic on the half line
arg t = 0 (like φθ in Example 4.2 it belongs to the Denjoy class 1D[a, b]
for any closed interval [a, b] ⊂ (0,∞)). Let θ ∈ −Ĩq

∗
(i.e. θ < 0 if Iq =

(φ−(π2 ),∞), θ > 0 if Iq = (−∞, φ+(−π2 ))) and let uq,θ := B1,θ(fq−1) denote
the Borel transform of fq−1 with respect to the variable rθ(z), defined by
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(4.7) uq,θ(t) = 1
2πi

(
N∑
ν=1

∫
Cν

φν(z)etrθ(z)drθ(z)

+
N∑
ν=0

∫ ∞eiαν
Reiαν

(φν − φν+1)(z)etrθ(z)drθ(z)

)
where {φν : ν ∈ {1, . . . , N}} is a representative of fq−1|[−π2 ,π2 ] with respect
to a good, open covering {Iν : ν ∈ {1, . . . , N}} of [−π2 ,

π
2 ] such that −π2 ∈

I1 and π
2 ∈ IN , and φ0 ≡ φN+1 ≡ 0. For ν = 1, . . . , N − 1, αν ∈ Iν ∩Iν+1,

α0 ∈ I1∩(−∞,−π2 ) and αN ∈ IN ∩(π2 ,∞). Cν denotes the arc of the circle
|z| = R from Reiαν−1 to Reiαν . It is easily seen that the function defined by
the right-hand side is independent of the choice of representative {φν : ν ∈
{1, . . . , N}}. It is analytic in a sector of the form {t ∈ S(π2 −αN ,−

π
2 −α0) :

|t| < r}, where r > 0. From the fact that fq−1̃|Iq = fq mod (Â6−1)n it
can be derived that uq,θ can be continued quasi-analytically to the half
line arg t = 0. This quasi-analytic continuation can be represented by an
expression similar to (4.7), obtained by deforming the paths of integration
and replacing {φν : ν ∈ {1, . . . , N}} with a representative of fq. uq+1,θ′ is
a weak accelerate of uq,θ, provided |θ′− θ| < π

2 . (Cf. [14, Proposition 4 and
Theorem 5] for the case that q = 1.)

On the other hand, in view of proposition 3.9, there exist α < −π2 , β > π
2

and f±q ∈ (A/A6−1+(I±q ))n, where I−q = (α, π2 ), I+
q = (−π2 , β), with the

property that f±q mod (A6−1)n = fq−1|I±q . This implies that, for every
θ ∈ R, uq,θ can be analytically continued to the sectors S(π2 − β, 0) and
S(0,−α − π

2 ). One might expect that, for arg t = 0, limε↓0 uq,θ(t + iε) =
uq,θ(t) if θ > 0 and limε↓0 uq,θ(t− iε) = uq,θ(t) if θ < 0, but that is as yet
an open question.

4.3. Another relative Watson Lemma

Lemma 4.14 (“relative Watson Lemma” II). — Let I be a large, open
interval of R such that |Ĩ| > π. Then Â6−1/Â6−1+(I) = {0}.

Proof. — We sketch a proof of this lemma, analogous to the one given
in [15, 16]. Let f ∈ Â6−1/Â6−1+(I) and let I ′ ≺ I be a large interval such
that Ĩ ′ = (θ1, θ2) with θ2−θ1 > π. Similarly to the statement of Lemma 4.6,
it is easily shown that f |I′ admits a representative {φ1, φ2}, where φj ∈
Â6−1(φ−(θj), φ+(θj)), j = 1, 2, and φ1 − φ2 ∈ Â6−1+(φ−(θ1), φ+(θ2)).
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We shall show that φj ∈ Â6−1+(φ−(θj), φ+(θj)) for j = 1, 2. This implies
f |I′ = 0 and, consequently, f = 0. By remark 4.10, φj ∈ A6−1(−π2 ,

π
2 ),

hence there exist positive numbers c, C and R such that, for j = 1, 2,

|φj(z)| 6 Ce−cz, z ∈ (R,∞).

For all θ ∈ −Ĩ ′∗ = (θ1 + π
2 , θ2 − π

2 ) and j ∈ {1, 2} we define

(4.8) ηθj (s) =
∫ ∞
R

φj(z)e−srθ(z)drθ(z), Re s > −c.

We begin by proving that, for j = 1, 2, ηθj is an entire function, satisfying
a specific growth condition. ηθj is analytic in the half plane Re s > −c.
By rotation of the path of integration, it can be analytically continued to
the sector | arg(s + c)| < π. It has at most exponential growth of order
1, uniformly on closed subsectors. Note that φ−(θ + π

2 ) > φ−(θ2) and
φ+(θ − π

2 ) < φ+(θ1). Now choose I ′j = (aj , bj) ≺ Ij := (φ−(θj), φ+(θj)),
j = 1, 2, such that a2 < φ−(θ+ π

2 ) < a1 < 0 < b2 < φ+(θ− π
2 ) < b1. Thus,

ϑ(a2) > θ + π
2 and ϑ(b1) < θ − π

2 . By (4.3) and (4.4), ρθ(z) is bounded
above on Ĉa2(R) and Ĉb1(R). If R is sufficiently large, there exist C ′ and
c′ > 0, such that

|φj(z)| 6 C ′e−c
′ |z|

log |z| , z ∈ D̂I′
j
(R).

Hence we can deform the path of integration in (4.8) into a path γj , con-
sisting of the arc of the circle |z| = R between z = R and z = zb1(R)
and Ĉb1(R) if j = 1, or the arc of the circle |z| = R between z = R and
z = za2(R) and Ĉa2(R) if j = 2. Noting that Im rθ(z) = Im z+θRe( z

log z ) =
Im z(1 + o(1)) as z → ∞ on γj , we conclude that ηθ1 is continuous on
−π 6 arg(s+ c) < π, and has at most exponential growth of order 1, uni-
formly on sectors of the form −π 6 arg(s+c) 6 π−δ, for any δ > 0, whereas
ηθ2 is continuous on −π < arg(s + c) 6 π, and has at most exponential
growth of order 1, uniformly on sectors of the form −π+δ 6 arg(s+c) 6 π,
for any δ > 0. Moreover, it is easily seen that ηθ1 and ηθ2 are C∞ on
arg s = −π and arg s = π, respectively. For all s such that arg s = −π
and all m ∈ N0 we have∣∣∣ dm

dsm
ηθ1(s)

∣∣∣ 6 C̃ec̃|s|
∫
γ1

|rθ(z)|me−c
′ |z|

log |z| |drθ(z)|

where C̃ and c̃ are positive numbers, depending on θ. Applying the method
of Laplace to the integral, we obtain estimates of the form | d

m

dsm η
θ
1(s)| 6

Kec̃|s|Am(m logm)m for all m > 2, where K and A are positive constants
(depending on θ), proving that ηθ1 is quasi-analytic on the half line arg s =
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−π (cf. [9]). Similarly it is shown that, for all θ ∈ (θ1 + π
2 , θ2 − π

2 ), ηθ2 is
quasi-analytic on arg s = π.

Obviously,

ηθ1(s)− ηθ2(s) =
∫ ∞
R

(φ1(z)− φ2(z))e−srθ(z)drθ(z).

The fact that φ1 − φ2 ∈ Â6−1+(I1 ∩ I2) implies the existence of positive
constants C ′′, δ′ and R′, such that, for all z ∈ (R′,∞),

|φ1(z)− φ2(z)| 6 C ′′e−δ
′z log z.

Consequently, if R > R′, the integral can be estimated as follows∣∣∣∫ ∞
R

(φ1(z)− φ2(z))e−srθ(z)drθ(z)
∣∣∣ 6 C ′′

∫ ∞
R

e−δ
′z log z+c′′|s|zdz, s ∈ C

where c′′ is a positive constant, depending on θ. The integrand on the right-
hand side is maximal when log z + 1 = c′′|s|/δ′ and its maximum value is
eδ
′ec
′′|s|/δ′−1 . Hence we deduce that ηθ1 − ηθ2 is an entire function, satisfying

a growth condition of the form

|ηθ1(s)− ηθ2(s)| 6 C ′′′ee
B|s|

where C ′′′ and B are positive constants, depending on θ. It now follows
that, for j = 1, 2 and θ ∈ (θ1 + π

2 , θ2− π
2 ), ηθj is analytic in | arg(s+ c)| < π,

continuous on | arg(s+ c)| 6 π and quasi-analytic on arg s = ±π, hence an
entire function, satisfying a growth condition of the form

(4.9) |ηθj (s)| 6 C ′′′′ee
B|s|

where C ′′′′ is a positive constant, depending on θ.
Note that φ−(θ2) < φ−(θ1 + π) < φ−(θ1) and φ+(θ2) < φ+(θ2 − π) <

φ+(θ1). Now, let I ′j = (aj , bj) ≺ Ij such that a2 < φ−(θ1 + π) < a1 <

0 < b2 < φ+(θ2 − π) < b1. Choose θ ∈ (ϑ(a2) − π
2 , θ2 − π

2 ). Then θ ∈
(θ1 + π

2 , θ2− π
2 ) and (a2, 0) ≺ (φ−(θ+ π

2 ), φ+(θ− π
2 )). By (4.5), there exists

δ > 0 such that

(4.10) ρθ(z) > δ
|z|

log |z|
for all z ∈ D̂(a2,0)(R)

ηθ2 has at most exponential growth of order 1 as s→∞, uniformly on S+
α :=

S[−π + α, π], for any α > 0. Let α and β ∈ (0, π2 ). Then, in view of (4.10),
−π2 < arg rθ(z) < π

2 − α for all z ∈ D̂I′2
(R′) ∩ S[−π,−β](⊂ D̂(a2,0)(R′)),

provided R′ is sufficiently large. Thus, according to the inversion formula
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we have, for all z ∈ D̂I′2
(R′) ∩ S[−π,−β],

φ2(z) = 1
2πi

∫
∂S+
α

ηθ2(s)esrθ(z)ds.

Replacing the path of integration by the path Γ (in C), consisting of the
half line l1 from ∞e−i(π−α) to σ/ cosαe−i(π−α), where σ := cosα

B log ρθ(z)
B ,

the segment l2 from σ/ cosαe−i(π−α) to −σ and the half line l3 from −σ
to −∞, we get, with the aid of (4.9),

|φ2(z)| 6 C2

[∫
l1

ec2|s|e−σρθ(z)−Im s Im rθ(z)|ds|

+
∫
l2

ee
B2|s|

e−σρθ(z)−Im s Im rθ(z)|ds|+
∫ −σ
−∞

e(ρθ(z)−c2)sds
]

where C2 and c2 are positive constants. Using the (in)equalities∫
l1

ec2|s|e−σρθ(z)−Im s Im rθ(z)|ds| 6 e−σρθ(z)
∫ ∞

0
e(c2+Im rθ(z) sinα)|s|d|s|

= e−
cosα
B2

log( ρθ(z)
B2

)ρθ(z)

−(Im rθ(z) sinα+ c2)
if Im rθ(z)

< − c2

sinα
,∫

l2

ee
B2|s|

e−σρθ(z)−Im s Im rθ(z)|ds| 6 σ tanαee
B2σ/ cosα−σρθ(z)

= sinα
B2

log(ρθ(z)
B2

)e
ρθ(z)
B2

(1−cosα log ρθ(z)
B2

)

and ∫ −σ
−∞

e(ρθ(z)−c2)sds = e−(ρθ(z)−c2) cosα
B2

log ρθ(z)
B2

ρθ(z)− c2
if ρθ(z) > c2

and noting that both − Im rθ(z) < − c2
sinα and ρθ(z) > c2 for all z ∈

D̂I′2
(R′)∩S[−π,−β] if R′ is sufficiently large, we obtain an estimate of the

form
|φ2(z)| 6 C ′2e

−ε2ρθ(z) log ρθ(z), z ∈ D̂I′2
(R′) ∩ S[−π,−β],

where C ′2 and ε2 > 0, and, in view of (4.10), this implies |φ2(z)| 6 C ′2e
−c′2|z|

for z ∈ D̂I′2
(R′) ∩ S[−π,−β], where c′2 > 0, provided R′ is sufficiently

large. A similar estimate can be derived for φ1(z) for all z ∈ D̂I′1
(R′) ∩

S[β, π]. Combining this with the fact that φ1 ∈ A6−1(−π2 ,
π
2 ) and φ1 −

φ2 ∈ Â6−1+(I1 ∩ I2), we conclude that |φ1(z)| 6 C ′1e
−c′1|z| for all z ∈
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D̂I′1
(R′), where C ′1 and c′1 > 0, provided R′ is sufficiently large. Hence

φj ∈ Â6−1+(Ij) for j = 1, 2. �

4.4. The proof of Theorem 4.12

In the remaining part of this section we show that the condition Ĩq+1 ⊂
[−π2 ,

π
2 ] in Theorem 3.8 can be lifted and, in case II, we prove the existence,

for appropriate intervals Iq and Iq+1, of solutions fq ∈ (Â/Â6−1+(Iq))n

and fq+1 ∈ (Â(Iq+1))n of (1.1) satisfying the conditions of definition 4.11.
With fq−1 we can associate an element f̃q−1 of (Â/Â6−1(R))n, similarly to
the scalar case (cf. Definition 4.8). By suitably modifying a representative
of fq−1̃|Iq := f̃q−1|Iq we obtain a representative of fq. Without loss of
generality we may assume that the equation is in the prepared form (2.7)
and f̃q−1 ∈ z−N/p(Â/Â6−1(R))n for some sufficiently large N ∈ N.

Lemma 4.15. — f̃q−1 is a solution of (2.7) in (Â/Â6−1(R))n. More pre-
cisely, it has a representative {ϕ̃q,θ : θ ∈ R} with the following properties.

(i) For all θ ∈ R, ϕ̃q,θ ∈ (Â(φ−(θ + π
2 ), φ+(θ − π

2 )))n.
(ii) ϕ̃q,θ1 − ϕ̃q,θ2 ∈ (Â6−1(φ−(θ1 + π

2 ), φ+(θ2 − π
2 )))n if θ1 < θ2.

(iii) For all θ ∈ R,

∆ϕ̃q,θ(z)− E(z1/p, ϕ̃q,θ(z))− ϕ0(z1/p) ∈ (Â6−1(φ−(θ + π

2
), φ+(θ − π

2
)))n

If 0 is not a singular direction of level 1, then fq defines a section f̃+
q ∈

(Â/Â6−1+(R))n, represented by a 1+-precise quasi-function {ϕ̃+
q,θ : θ ∈ R}

with the following properties.
(iv) For all θ ∈ R, ϕ̃+

q,θ ∈ (Â(φ−(θ), φ+(θ)))n,
(v) ϕ̃+

q,θ1
− ϕ̃+

q,θ2
∈ (Â6−1+(φ−(θ1), φ+(θ2)))n if θ1 < θ2.

(vi) For all θ ∈ R,

∆ϕ̃+
q,θ(z)− E(z1/p, ϕ̃+

q,θ(z))− ϕ0(z1/p) ∈ (Â6−1+
(φ−(θ), φ+(θ)))n

Proof. — For all θ ∈ R, ϕ̃q,θ is defined similarly to ϕ̃θ in Lemma 4.5
and the first two statements of Lemma 4.15 follow immediately from that
lemma.

Now, let {φν : ν ∈ {1, . . . , N ′}}, where φν ∈ A(Iν) and {Iν : ν ∈
{1, . . . , N ′}} is a good, open covering of [−π2 ,

π
2 ], be a representative of

fq−1|[−π2 ,π2 ]. As fq−1 is a solution of (2.7) in z−N/p(A/A6−1)(Iq−1)n, we
have, for all ν ∈ {1, . . . , N ′},

(4.11) ∆φν(z)− E(z1/p, φν(z))− ϕ0(z1/p) ∈ (A6−1(Iν))n.
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Let I ′ ≺ (φ−(θ + π
2 ), φ+(θ − π

2 )) and I ′ν ≺ Iν . From (2.11) and (4.1) we
deduce the existence of positive numbers C and c such that

|∆(φν(z)− ϕ̃q,θ(z))− (E(z1/p, φν(z))− E(z1/p, ϕ̃q,θ(z)))| 6 Ce−c
|z|

log |z|

for all z ∈ D̂I′(R) ∩ S(I ′ν), if R is sufficiently large. Using (4.11) and vary-
ing ν, we conclude that there exist R′, C ′ and c′ > 0 such that

|∆ϕ̃q,θ(z)− E(z1/p, ϕ̃q,θ(z))− ϕ0(z1/p)| 6 C ′e−c
′ |z|

log |z|

for all z ∈ D̂I′(R′) and this implies ∆ϕ̃q,θ(z)−E(z1/p, ϕ̃q,θ(z))−ϕ0(z1/p) ∈
(Â6−1(φ−(θ + π

2 ), φ+(θ − π
2 )))n.

The statements concerning f̃+
q are proved analogously. �

First, consider the case that 0 is not a singular direction of level 1. Let
{ϕ̃+

q,θ : θ ∈ R} be a representative of f̃+
q with the properties mentioned in

Lemma 4.15. Analogously to the proof of proposition 3.11, with φθ0 replaced
by ϕ̃+

q,θ, θ ∈ Ĩq+1 (so that (φ−(θ), φ+(θ)) ⊂ Iq+1), it can be proved that
this proposition continues to hold when Ĩq+1 6⊂ [−π/2, π/2]. Hence the first
statement of the theorem follows.

Now, suppose that 0 is a singular direction of level 1 (case II). Let
θ1 < θ2 and let I = (φ−(θ2 + π

2 ), φ+(θ1 − π
2 )). According to Lemma 4.15,

{ϕ̃q,θ1 , ϕ̃q,θ2} represents a solution of (2.7) in (Â/Â6−1(I))n (viz. f̃q−1|I).
We shall show that ϕ̃q,θ1 and ϕ̃q,θ2 can be modified by exponentially small
functions in such a manner that the resulting quasi-function is 1+-precise
and represents a solution fq of (2.7) in (Â/Â6−1+(I))n. For that purpose
we need the following theorem.

Theorem 4.16. — Let I = (a, b) be a large, open interval such that
|Ĩ| 6 π. Let ∆c be a canonical difference operator (cf. (2.1) and (2.2)) and
ϕ : S(−π, π)× Cn → Cn a function of the form

ϕ(z, y) = ϕ0(z) +A(z)y + ψ(z, y)

where ϕ0 ∈ Â6−1(I)n, A ∈ z−ν0−1/p End(n; Â(I)) with ν0 = max{−dj :
j ∈ {1, . . . , n}} and ψ has the following properties: for any open interval
I ′ ≺ I there exists a positive number R, such that

(i) ψ is holomorphic on D̂I′(R)×U , where U ⊂ Cn is a neighbourhood
of 0,

(ii) ψ admits an asymptotic expansion of the form
∑∞
m=m0

ψm(y)z−m/p

as z → ∞, uniformly on D̂I′(R) × U , where m0 ∈ Z and the ψm
are holomorphic Cn-valued functions,

(iii) ψ′2(z, 0) = 0 for all z ∈ D̂I′(R).
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Furthermore, we assume: if −π2 is a Stokes direction of ∆c of level 1, then
either a < φ−(π2 ) or b > φ+(−π2 ).

Let I1 = (a, b1) and I2 = (a2, b) be large, open subintervals of I such
that ϑ(a2) 6 ϑ(b1) (i.e. I1 ∩I2 is not a large interval), and Ĩi ∩Θ(∆c) = ∅
for i = 1, 2. Then the equation

(4.12) ∆cy(z) = ϕ(z, y(z))

has a unique solution f ∈ Â6−1/Â6−1+(I)n with representative {f1, f2},
where fi is a solution of (4.12) in Â6−1(Ii)n and f |Ii = fi mod (Â6−1+)n.
Moreover, if Ĩ∩Θ(∆c) = ∅, then (4.12) has a unique solution f ∈ Â6−1(I)n.

In the case that ∆c has no levels κj ∈ (0, 1) and A(z) ∼ 0 as z → ∞,
uniformly on D̂I′(R) for any open interval I ′ ≺ I and some sufficiently large
R, this theorem follows easily from Theorems 4 and 2 in [14]. Using the
same type of argument, it can be shown that these results continue to hold
when κj ∈ (0, 1) for certain j ∈ {1, . . . , n} and A ∈ z−ν0−1/p End(n; Â(I)),
where ν0 = max{−dj : j ∈ {1, . . . , n}} (cf. also [14, Remark 7]).

From Theorem 4.16 we derive the following result.

Lemma 4.17. — Let ∆ and ∆c be the difference operators in (2.7) and
(2.9). Let I = (a, b) be a large, open interval such that either a < φ−(π2 )
or b > φ+(−π2 ) and |Ĩ| 6 π. Let I1 = (a, b1) and I2 = (a2, b) be large
subintervals of I such that ϑ(a2) 6 ϑ(b1) and Ĩi ∩ Θ(∆c) = ∅ for i = 1, 2.
Then (2.7) has a unique solution f in (Â/Â6−1+(I))n such that f mod
(Â6−1)n = fq−1̃|I and f |Ii = φi mod (Â6−1+)n, where φi is a solution of
(2.7) in (Â(Ii))n for i = 1, 2.

Moreover, φ1 is unique if a < φ−(π2 ), φ2 is unique if b > φ+(−π2 ).

Proof. — Let Ĩ = (α, β), θ ∈ [β − π
2 , α + π

2 ] and y = w + ϕ̃q,θ. Then
I ⊂ (φ−(θ+ π

2 ), φ+(θ− π
2 )). y is a solution of the equation (2.7) if and only

if w satisfies the equation
(4.13)

∆w(z) = G(z, w(z)) := E(z1/p, w(z) + ϕ̃q,θ(z)) + ϕ0(z1/p)−∆ϕ̃q,θ(z).

According to (2.9), there exists L ∈ Gl(n; C[z−1/p][z1/p]) such that
L(z)∆ = ∆c + A(z), where A ∈ z−ν0−1/p End(n; C{z−1/p}) provided M

is chosen sufficiently large (cf. §2.5). Thus, w is a solution of the equation
(4.13) if and only if

(4.14) ∆cw(z) = ϕ(z, w(z)) := L(z)G(z, w(z))−A(z)w(z).

By Lemma 4.15, ϕ(z, 0) = L(z)(E(z1/p, ϕ̃q,θ(z)) + ϕ0(z1/p) −∆ϕ̃q,θ(z)) ∈
(Â6−1(φ−(θ+ π

2 ), φ+(θ− π
2 )))n. From the fact that ϕ̃q,θ ∈ z−N/p(Â(φ−(θ+
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π
2 ), φ+(θ − π

2 )))n, it follows that ϕ admits an asymptotic expansion in
z−1/p as z → ∞, uniformly on D̂I′(R) × V , for any interval I ′ ≺ (φ−(θ +
π
2 ), φ+(θ − π

2 )), sufficiently large R and some neighbourhood V ⊂ Cn of 0
(cf. [8, Lemma 14.3] and [10, Lemma 4.6]). Furthermore,

ϕ′2(z, 0) = L(z)D2E(z1/p, ϕ̃q,θ(z))−A(z).

As D2E(z1/p, 0) = 0, there exist positive constants K and K ′ such that
|D2E(z1/p, ϕ̃q,θ(z))| 6 K|ϕ̃q,θ(z)| 6 K ′|z|−N/p for all z ∈ D̂I′(R), where
I ′ ≺ (φ−(θ+ π

2 ), φ+(θ− π
2 )) and R sufficiently large (K ′ and R depend on

I ′). Consequently, ϕ′2(z, 0) ∈ z−ν0−1/p End(n; Â(φ−(θ+ π
2 ), φ+(θ− π2 ))) if N

is sufficiently large. According to Theorem 4.16, (4.14) has a unique solution
w ∈ Â6−1/Â6−1+(I)n with representative {w1, w2}, where wi is a solution
of (4.14) in Â6−1(Ii)n with the property that wi mod (Â6−1+)n = w|Ii , for
i = 1, 2. Now let φi = wi+ ϕ̃q,θ, i = 1, 2. Then φi ∈ Â(Ii)n, φi is a solution
of (2.7) for i = 1, 2 and φ1 − φ2 = w1 − w2 ∈ Â6−1+(I1 ∩ I2)n. Moreover,
φi−ϕ̃q,θ = wi ∈ (Â6−1(Ii))n for i = 1, 2. The uniqueness of φ1 or φ2 follows
immediately from the last statement of Theorem 4.16. {φ1, φ2} represents
an element f ∈ (Â/Â6−1+(I))n with the required properties. �

From Lemma 4.17 we deduce the following proposition, which completes
the proof of Theorem 4.12.

Proposition 4.18. — Let I be a large, open interval such that 0 6∈ Ĩ∗
and |Ĩ| > π. Then (2.7) has a unique solution f ∈ (Â/Â6−1+(I))n with
the property that fq−1̃|I = f mod (Â6−1)n.

Moreover, if J is a large, open subinterval of I such that J̃ ∩Θ(∆c) = ∅,
there exists a solution g ∈ (Â(J))n of (2.7) with the property that f |J =
g mod (Â6−1+)n.

Proof. — We shall prove the proposition for the case that I (and hence
J) is a bounded interval and leave the reader to extend the proof to the
general case (i.e. I ⊂ (−∞, φ+(−π2 )) or (φ−(π2 ),∞)). Let −Ĩ∗ = (θ1, θ2).
Then Ĩ = (θ1 − π

2 , θ2 + π
2 ) and I = (φ−(θ2 + π

2 ), φ+(θ1 − π
2 )) =: (a, b).

Either θ1 > 0 or θ2 6 0. Suppose that θ1 > 0. The proof of the other
case is similar. Let I1 = (a, b1) and I2 = (a2, b) be large subintervals of
I such that ϑ(a2) 6 ϑ(b1), |Ĩi| 6 π and Ĩi ∩ Θ(∆c) = ∅ for i = 1, 2.
Let I ′ = (a′, b) := (φ−(θ1 + π

2 ), φ+(θ1 − π
2 )) and let I ′1 = (a′, b′) be

a large subinterval of I ′ such that Ĩ ′1 ∩ Θ(∆c) = ∅. Note that |Ĩ ′| =
π and thus |Ĩ ′1| 6 π and I2 ⊂ I ′. Without loss of generality we may
assume that b1 6 b′. Then I1 ∩ I ′ = I1 ∩ I ′1 = (a′, b1). θ1 > 0 im-
plies that a = φ−(θ2 + π

2 ) < a′ = φ−(θ1 + π
2 ) 6 φ−(π2 ). According to
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Lemma 4.17, (2.7) has unique solutions φ1 ∈ (Â(I1))n, φ′1 ∈ (Â(I ′1))n
and f ′ ∈ Â/Â6−1+(I ′)n, and a solution φ2 ∈ (Â(I2))n, such that φ1 mod
(Â6−1)n = fq−1̃|I1 , f ′ mod (Â6−1)n = fq−1̃|I′ , f ′|I′1 = φ′1 mod (Â6−1+)n

and f ′|I2 = φ2 mod (Â6−1+)n. Obviously, φ′1 mod (Â6−1)n = fq−1̃|I′1 , so
φ1−φ′1 ∈ Â6−1(I1∩I ′1)n. If I1∩I ′1 is a large interval, then, by Lemma 4.17,
φ1|I1∩I′1 is the unique solution of (2.7) in (Â(I1 ∩ I ′1))n with the property
that φ1|I1∩I′1 mod (Â6−1)n = fq−1̃|I1∩I′1 , so φ′1 = φ1. Now assume I1∩I ′1 is
not a large interval (i.e. θ−(I1∩I ′1) = θ1+ π

2 6 θ+(I1∩I ′1) = ϑ(b1) or, equiv-
alently, b1 > φ+(θ1 + π

2 )). φ1−φ′1 satisfies a homogeneous linear difference
equation of the form (2.10) (with y1 = φ1 and y2 = φ′1). As a′ < φ−(π2 ),
I1 ∩ I ′1 6⊂ (φ−(π2 ), φ+(−π2 )) and thus, according to Theorem 2.13(iii),
Ker(∆̃, Â6−1(I1∩ I ′1)n) = Ker(∆̃, Â6−1+(I1∩ I ′1)n) = Ker(∆̃, Â6−1+(I1∩
I ′)n). Let f1 := φ1 mod (Â6−1+)n. Then f1|I1∩I′ = f ′|I1∩I′ and, conse-
quently, there exists a unique f ∈ Â/Â6−1+(I1 ∪ I ′)n = Â/Â6−1+(I)n
such that f |I1 = f1 and f |I′ = f ′. Obviously, f mod (Â6−1)n = fq−1̃|I .
Its uniqueness follows from Lemma 4.14. Moreover, f |I2 = f ′|I2 = φ2 mod
(Â6−1+)n.

Now suppose J = (c, d) is a large subinterval of I such that J̃∩Θ(∆c) = ∅.
To begin with, assume that |J̃ | 6 π. Let I1 and I2 as above. If J ⊂ I1 or
J ⊂ I2, the last statement of the theorem immediately follows from the
above argument. So suppose that a < c < a2 and b1 < d < b. Without loss
of generality we may assume that ϑ(c) 6 ϑ(b1) and ϑ(a2) 6 ϑ(d) (this can
always be achieved by decreasing b1 and increasing a2, if necessary, taking
care that ϑ(b1) remains less than ϑ(a) and ϑ(a2) > ϑ(b)). Let I ′′ := (a, d),
I ′′1 := I1 and I ′′2 := J . Then the above argument proves the existence
of a unique solution f ′′ ∈ (Â/Â6−1+(I ′′))n, of (2.7), with the following
properties:

(i) f ′′ mod (Â6−1)n = fq−1̃|I′′ .
(ii) (2.7) has a solution φ′′i ∈ Â(I ′′i )n such that f ′′|I′′

i
= φ′′i

mod (Â6−1+)n for i = 1, 2.

The uniqueness of φ1 implies that φ′′1 = φ1. Furthermore, φ′′2 − φ2 ∈
(Â6−1(I ′′2 ∩ I2))n. Thus, φ′′2 − φ2 satisfies a homogeneous linear differ-
ence equation of the form (2.10), with y1 and y2 replaced by φ′′2 and φ2 and
H ∈ End(n; Â6−1(I ′′2 ∩I2)). Note that θ−(I ′′2 ∩I2) = ϑ(a2) 6 θ+(I ′′2 ∩I2) =
ϑ(d). According to Theorem 2.13, φ′′2 − φ2 can be written in the form

φ′′2(z)− φ2(z) =
n∑
j=1

zdjzeqj(z)zλjgj(z)pj(z)
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where gj ∈ Â(I ′′2 ∩ I2)n[log z] and the pj are trigonometric polynomials,
pj ≡ 0 unless dj < 0, or dj = 0, kj = 1 and argµj = π. As φ1 − φ2 ∈
(Â6−1(I1 ∩I2))n, and φ′′2 −φ1 ∈ (Â6−1+(I1 ∩ I ′′2 ))n ⊂ (Â6−1+(I1 ∩I2))n,
we have φ′′2 − φ2 ∈ (Â6−1(I ′′2 ∩ I2))n ∩ (Â6−1+(I1 ∩ I2))n. This implies
that pj ≡ 0 unless dj < 0. Consequently, φ′′2 −φ2 ∈ (Â6−1+(I ′′2 ∩I2))n and
thus f |J = φ′′2 mod (Â6−1+)n.

Finally, suppose that |J̃ | > π. For any pair of large subintervals J1 and
J2 of J such that |J̃i| 6 π, there exist solutions φ′1 ∈ (Â(J1))n and φ′2 ∈
(Â(J2))n of (2.7) such that f |Ji = φ′i mod (Â6−1+)n for i = 1, 2. If, in
addition, J1 ∩ J2 is again a large interval, then, in view of Lemma 2.12 2,
φ′1 − φ′2 ∈ (Â6−1+(J1 ∩ J2))n = {0}, so φ′1 = φ′2 and the result follows by
glueing together all these solutions. �

5. Appendix

In this section we compare the domains D̂I(R) to the domains DI(R)
and D̃I(R) used in previous papers ([11, 12, 14]).

Definition 5.1 (“old domains”). — Suppose that Reψθ(z) > 1/e+ |θ|.
By Dθ(z) we denote the domain

Dθ(z) :=
{
z ∈ S+ : Reψθ(ζ) > Reψθ(z)

}
.

Let I be a finite interval of R, such that I = [θ1, θ2]. Let z ∈ S+ such
that Reψθ(z) > 1/e+ |θ| for all θ ∈ I. By DI(z) and D̃I(z) we denote the
domains

DI(z) = ∩θ∈IDθ(z) = Dθ1(z) ∩Dθ2(z)
and

D̃I(z) = ∪θ∈IDθ(z).

Remark 5.2. — Let I be an open interval, containing 0. If θ−(I) <

θ+(I), Â(I), Â6−1(I) and Â6−1+(I) coincide with the sets A(Ĩ), A1,0(Ĩ)
and A1+,0(Ĩ) defined in [14], respectively. If I is a large interval, Â(I) and
Â6−1(I) coincide with the sets Ã(Ĩ) and Ã1,0(Ĩ) defined in [14], respec-
tively. This is an immediate corollary to the following simple lemma.

Lemma 5.3. — Let I be an open interval, containing 0, and R > 1. If
θ−(I) < θ+(I) there exists R′ > R such that

D
Ĩ
(R′) ⊂ D̂I(R).
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Figure 5.1. The picture on the left shows the “old” domains D[−π,−π4 ](6)
and D̃[−π,−π4 ](6) (the large domain, bounded by C−−π4 (6) and C+

−π(6)). The

corresponding domains in the picture on the right are D̂[φ−(−π),φ+(−π4 )](6)
and D̂[φ−(−π4 ),φ+(−π)](6).

For every interval I ′ ≺ Ĩ there exists R′ > R such that

D̂I(R′) ⊂ DI′(R).

If I is a large interval, there exists R′ > R such that

D̃
Ĩ
(R′) ⊂ D̂I(R).

For every interval I ′ such that Ĩ ≺ I ′, there exists R′ > R such that

D̂I(R′) ⊂ D̃I′(R).
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