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PSEUDO-DIFFERENTIAL OPERATORS
AND GEVREY CLASSES

by Louis BOUTET de MONVEL and Paul KREE

Singular-integral operators have been studied extensively recently.
In this paper we will use the complete symbolic calculus of J. J. Kohn
and L. Nirenberg. Our aim is to construct classes of pseudo-differential
operators which are continuous on the Gevrey classes and on the asso-
ciated hyperdistribution spaces. In order to do so, we impose regularity
conditions on the symbol of these operators, and " asymptotic " conditions
which relate their symbol to their kernels. The results in this paper were
announced in [1].

In § 0 we recall briefly the definitions of the Gevrey classes and
of the pseudo-differential operators, in order to fix our notations. § 1
describes the symbols and § 2 the operators themselves. It is shown that
the composed of two such operators, their adjoints, and their parametrix
(when they are elliptic) have the same properties. An easy application to
elliptic equations with coefficients in a Gevrey class is made. Our study
includes the analytic case, where results are more precise.

0. Preliminaries.

1. In this paper, Q always denotes an open subset of R71.

We shall use the notations of L. Hormander [6] for the classical
spaces of differentiable functions and distributions.

We use the integral notation for the duality between functions and
distributions : if T EdY (Q) is a distribution and cp GCo00 (Q) a function,
the value of T on cp is written

^ T (x) cp (x) dx or / T cp for short.
^ ft J fl
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If / is a distribution with compact support, 7 will denote its Fourier
transform :

7(0= fe-^f(x)dx.
v

(Thus we have / (x) = (1/2 ̂ Y f e^ 7(0 ̂  if ̂  L1 (R"). )

If S and T are two distributions, S * T will denote their convolution
product (as defined in [6] or [12]).

Finally if P is a continuous linear operator C<F (0) —> W (^2), we
shall call kernel of P (cf. [13]) the unique distribution U x ^ which
satisfies

^ P (<y) (x) ̂  (x) dx = \ T (x, y) ̂  (x) cp (y) dx dy
^ n J si x n

for any test functions cp, ^ € C<r (Q).

2. Gevrey classes.

(For any detail on what follows, the reader may consult [4], [10J,
and [9], [11] in the analytic case.)

A function / € Cx (Q) is said to be of class s if for any compact set
K C Q, there exist constants C, A such that for any x E K and any multi-
index a, the following inequality be true :

/ <9 Y
(—) fW ^cA^W (0.1)
\<)x/

(we have set (c^/OxY = ^/Qx^\.. Ox^\ |a| = a, + ... a.,
a! -= a, L.aJ).

The Gevrey class G^ (Q) is the set of all functions that are of class s
on Q. It is a vector space ; it is closed under multiplication and derivation ;
moreover, fo.g is of class s if / and g are.

If K is a compact subset of Q, G8 (K) will denote the space of all
functions which are of class s in a neighborhood of K. (It is a quotient
space of G^ (Q) if s > 1, but not if s = 1).

If s > 1, G^ (Q) will denote the space of all functions of class s with
compact support.
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If s = 1, 0s (Q) = H (Q) is well known to be the space of all ana-
lytic functions on Q ; G8 (K) = H (K) is the space of functions which are
analytic in a neighborhood of K.

We define a bounded subset of G8 (Q) (resp. G8 (K), G'o (Q)) to be
a subset B such that all / GB satisfy uniformly condition (0.1) (i.e. with
constants C, A which depend on K but not on /) (resp. if the / E B are the
restrictions to K of the elements of a bounded subset of G8 (V) for a
convenient neighborhood V of K - resp. if it is bounded in G8 (Q), and
every / E B vanishes outside some fixed compact subset of Q).

All these spaces are given the strongest locally convex topology for
which the subsets previously described are bounded. (It is easily shown
that there are no other bounded set for this topology.)

Finally Go8 (Q) (resp. G'5 (Q) (resp. G'8 (K), G'5 (Q)) will denote the
dual space of G8 (Q) (resp. G8 (K), G§ (Q)) with the strong topology : its
elements are hyper-distributions with compact support (resp. support
contained in K, resp. any support).

All these spaces are well known to be nuclear, complete, bornologic
and barelled. G8 (K) is a (DF) space, and G'8 (K) is a Frechet space.

Let us recall that even in the analytic case (s = 1), the support of an
ultra-distribution is well defined : if T G G^ (Q), supp T is the smallest
compact subset of Q such that T can be extended continuously to G8 (K).
It is shown that there actually exists one (cf. [9]).

Still in the analytic case, we shall denote by G'8 (Q) = H' (Q) the
space of all « hyperfunctions » on Q, in the sense of M. Sato (cf. [9], [11])
— one obtains them by « sticking » together real analytic functionals with
compact support.

We shall also need spaces of hyper-distributions which are regular
in some part of Q : if K is a compact subset of Q, we shall denote by
Go^ (Q) n G8 (K) the space of all hyper-distributions with compact support
which are functions of class 5' in a neighborhood of K. A subset B of this
space is said to be bounded if there exists a neighborhood V of K and
a function <p e Co° (V) equal to 1 in a neighborhood of K such that all
/ G B are of class s in V, and their restrictions to V remain in a bounded
subset of G8 (V), and if moreover the hyper-distributions

(1—cp) / = /—(? / , / E B
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remain in a bounded subset of Go8 (Q — K) (<y/ stands for the function
equal to <y (x) f (x) if x E V and to 0 if x ^ V ; f — ^pf is clearly seen to
be vanishing in a neighborhood of K ; therefore it belongs to G'o8 (Q — K)).
The topology of Go'8 (Q) H G8 (K) is the strongest locally convex topology
for which these sets are bounded. It is easily proved that there are no other
bounded sets ; and that for this topology, Go8 (Q) H G8 (K) is nuclear,
complete, bomologic, and barelled. We emphasize that for s = 1, this
topology is not the intersection of those of G8 (K) and Go8 (Q) (for this last
topology, our space would not be complete).

Remark. — One could define in the same way a reasonable topology
on the space G'8 (Q) n G8 (Q — K) of all hyper-distributions on Q which
are functions of class s on Q — K. For this topology, it is the strong dual
of Go8 (Q) n G8 (K) if we define the duality in the following way : if
/ G Go8 (Q) n G8 (K) and g E G75 (Q) n G8 (Q—K), we choose <p e Co8 (Q)
equal to 1 in a neighborhood of the singular support K' of A and vanishing
in a neighborhood of K, and we set

( f8= I ( i ^ ) ' 8 + ( H^(l-cp)].
J a J a—K €y n—K'

The result does not depend on the choice of <y.

Finally we state without proof.

PROPOSITION 0.1. — Let E denote the space of all functions on R^
which are smaller than c exp (— s | ̂ l/s) for suitable constants c, s, with
the evident inductive limit topology. Then the Fourier transform is con-
tinuous from G(S (R^ to E and from E to G8 (R^.

3. Pseudo-differential operators.

We shall only recall very briefly their definition here. We refer to [7],
[8] for the demonstrations.

A pseudo-differential operator P = P (x, D) on Q is defined by the
following formula :

p./ (x) = (^Y / ^ p (x, ^) f($) ̂
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where p (x, Q is a smooth function on Q x R^, and admits when ^ —> oo
an asymptotic expansion in homogeneous functions of ^ :

PM- 2 ^(^S) (O-3)
f c==0 , 1,...

Pk (x, ̂ ) is a smooth function on Q x Rw — {0}, homogeneous of degree
r — k with respect to ^ (this is a slight restriction to the definition of [7]).

We will call symbol of P the formal series

a(P)=2M^)- (0-4)

The degree of P is the degree r of its principal symbol po (x, ^).

More generally we will call pseudo-differential operator the operator

P' == P (x, D) + R

if P (x, D) is of the type described above, and R is an operator with a
smooth kernel (thus R is continuous & (Q) —> C90 (Q)).

Following Hormander, we shall say a pseudo-differential operator P
is compactly supported if it is continuous Co° (Q) -> CS (Q) and can be
extended continuously C°° (Q) -> C00 (Q) (equivalently if for every com-
pact subset K of Q, there exists another one K' such for any cp € Co00 (2),
P-cp vanishes outside K' (resp. inside K) if cp vanishes outside K (resp.
inside KQ). Such an operator can always be represented by formula (0.2)
(although not in a unique way if Q ̂  R^).

If P and Q are two pseudo-differential operators that can be compo-
sed (for instance if P or Q is proper) P o Q is a pseudo-differential operator,
with symbol

y i / <9 v / 1 <9 v
a(P ,Q)= ^ — — a(P)- — — a(Q)7 y! \6^/ \ i O x /

^ i / a v / i 6 v
'^^(^'•'^'-(Td^^'- (a5)

If P is a pseudo-differential operator, the transposed operator t?

(defined by ^ ^Op)'^ == / cp'P(^) for all cp , (pECo (Q) is also a
J si J n

pseudo-differential operator, with symbol
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^ (—— 1)1' y ' ( 9 V / 1 <9 V
CT(T)=S——^- (-,) (———) a(P)(x,-Q

v y! \<9i;/ \ ! <9.x /

^ (— ly i 6 y / 1 a V
=1——(,,) (——)P^.-€)- (0.6)

y,fe y! \^s/ \ i Ox /

Finally let us recall that an elliptic pseudo-differential operator P (i.e.
P{) (x, f) •^ 0 if i; -^ 0) admits a parametrix — i.e. there exists a pseudo-
differential operator E such that PoE — 1 and EoP — 1 have smooth
kernels.

4. We end this section by describing some properties of the Fourier
transform of some analytic functions — in view of § 1 and § 2. For the
sake of brevity, we do not attempt at any general theorem.

For any number s such that 0 < e < 1, let Q design the cone of
all x G C" such that | Im x [ < e | Re x [ ; and let Ve design the set of all
matrices g G GL (n, C) that can be factored in the following way :

g = ( l ^ i h ) ^ (0.7)

where ^ G GL (n, R), det g ' > 0 and h^gl (n, R), | [ / i | [ < s.

Uf is connected open set in GL (n, C). It is stable by the symmetry
g-^^i (because ^-1 = (l—i^h)(l+ W)-1 Y-1). Finally g ' x des-
cribes exactly Q when g describes Ue and x describes R^ — {0}.

The following lemma is straightforward :

LEMMA 0.2. — Let T design a hyper-distribution on R" such that
g -» T (g x) (which is well defined when g E GL (n, R)) can be extended
into a holomorphic function on \Je with values in some distribution space.
Then the restriction of T to R71 — {0} can be extended in a holomorphic
function on Ce.

LEMMA 0.3. — Let f be a bounded holomorphic function on Ce.
Then the mapping g —> f (g x) G L00 (R71) is a bounded holomorphic func-
tion on Ue, with values in L°° (R71).

This follows from the Taylor and Cauchy formulas : we have

f ( ( l +h ) ' x )= lj-^(^-) fW^x)- (0.8)
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/ • 0 > \ " / I v" /yy^u i/ (— 1)1"! a \ f ( x + z)rizi... ̂
z°i... z"

|Z,i = ... p j = \ |.r| 1 TO1 . I .1 ! I ^

(We compute the integral on the poly sphere |zi[ = ... |z^| = X |x| con-
veniently oriented ; X is chosen so small that it lies inside of the cone Ce).

The second equality (Cauchy's formula) proves that for large A,

A-I"! / 6)

a ! \ Qx .
f(x) • 1 ^ 1 ° "

is uniformly bounded on R71 (i. e. the bound does not depend on a). Thus
the series (0.8) converges in L" (R71) for small hEgl(n,C), and the
mapping g —> / (g x) is holomorphic in a neighborhood of g = 1. To prove
it also is in a neighborhood of any go G Ce , we change f to / (g o x), and
diminish £ conveniently, and apply the first result.

The two following propositions are almost immediate consequences :

PROPOSITION 0.4. — Design by He, a the space of all distribution
which are homogeneous of degree a, and outside the origin can be
extended into a holomorphic function on Ce. The Fourier transform is
continuous from He, a to He,-n—a.

(With Lemma 0.3, it is easy to prove that g - - > f ( g x ) is a holo-
morphic function on Ue with values in a space of temperate distributions
if /€:He,a. Thus the Fourier transform f (g x) = degg)~1 f (tg~l Q has
the same property; and we have seen that ^~1 ranges in the whole Ue
when g does the same.)

Finally let Ee,a design the Banach space of all distributions
/ G (3y (R^) which outside of the origin can be extended into a holo-
morphic function on Ce such that | / (x) [ ̂  c \ z [a for suitable c, and
near the origin, can be decomposed into

f == l p ' f ' h + f + r
a-{-Jc<n

where fjc is homogeneous, of degree a + k + 1, holomorphic on Ce and
bounded on the set x E Ce, | x | == 1 (the finite part is defined as in [12]);
f is a sum of derivatives of order < — n — a of the Dirac distribution
S if a is entire (f = 0 if it is not), and f is holomorphic in C, and
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| f fe) | ̂  c \ z l^^o for suitable c, where ko is the first positive integer
such that a + k^ > — n.

PROPOSITION 0.5. — If (X. < — n, and if € < s, the courier trans-
form is continuous from Ee,a to the space of functions which are holo-
morphic on Ce, and bounded in a neighborhood of the origin.

The proof is similar to the preceding one, when one has remarked
that if / G Ee, a, then the mapping g -> / (g x) is holomorphic in Ue, with
values in a space of integrable distributions on Ry.

1. The symbols of class s.

As before, Q designs an open set in R^. Let (p) = ^ p^ (x, i;) be a
symbol on Q. Thus pjc (x, ^) is a smooth function on Q x (R71— { 0 }),
homogeneous of degree r — k with respect to ^.

DEFINITION 1.1. — The symbol (p) = ][ pi, (x, ̂ ) is said to be of
class s ̂  1 if for any given compact set K C Q there exists constants c,
A such that for any integer k, any multi-indexes a, (3, and any x E K, the
following inequality holds :

/ o Y / o Y
(——) (—) Pjc(x^) ^cA f c+la+^| r- f c-101f^+ |a|)!^!
\ dx / \ </c /. 6x / \ <9^

Let us set
d.i)

/ I <9 \" / o> \0

"^(rd he) '"(^-? Q x / \^
Then Definition (1.1) is equivalent to the following : the series

^ / 2(2n)-kk\ \
N3 ((p), T) = ^ ——————————————— [^ , |T^+i^3« (1.2)

<A \ (A: + | a |) i5 (^ + | P |) ! / ' 1

is a convergent power series, uniformly (with respect to T) when (x, ^)
ranges in a compact subset of Q x (^n — {0 }). N5 ((p), T) will be called
the formal norm of the symbol (p). (The monstrous coefficient in (1.2) is
justified by Lemma 1.2 below. Of course for the equivalence with Defi-
nition 1.1 it could be considerably simplified.)
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It follows from Definition 1.1 that p, (x, Q is holomorphic with
respect to ^ when A ( Im ^ [ < | Re ^ [. In fact Definition 1.1 is equivalent
to the following :

DEFINITION 1.1 bis. — For any compact set K C Q there exist
constants e, c, A such that for any x e K, pj, is holomorphic with respect
to i; when | Im g | < £ | Re ^ (, and that for any x e K, ^ G Q (i.e.
g E C^ a^ | Im ^ [ < s | Re g |), a^ multi-indexes a, (3 ^nri any m^r A:,
r/^ following inequality holds

/ <9 Y
[~^) pk(x9^ ^A f c+l a l |^-^(^+ |a|)!8 . (1.1^)

The fact that (1.1) implies (1.1 bis) follows from the Taylor formula :

| P^a (X, ̂  + 7j) | = ̂  ————p,% (x, )̂ ̂  (
3 P '

^ cA^i-i I S 1^ (A: + [ a |) ^ ̂  (-^A^ | ̂  |-0 TJ^
0 V P ! /

^cA f c + ' a l | ^ | r - ^ (^+ |a | ! 8 ( I — A | T J \^\-l)-n

if A 7) | < | ̂  |.

The implication in the other direction follows from the Cauchy
formula, applied as in Lemma 0.3, and we leave the easy proof to the
reader.

Recall that if (p) and (q) are two symbols, the composed symbol
(?) o (q) = (r) is given by formula (0.5) :

, , v 1 / <9 V / 1 6 Vi ( ^ y / i ^ \^
T Y7' ̂ ^ (p) ^ -^"

(r)=^ i \ (p). (-——) (q).
y Y ! \ (9£ / \ I Ox /

Thus

v 1 / ° V / 1 ^ Vi / o y / 1 o v
A'+zT^i-w Y ! \ ̂  / V f ^r^= ^ ——rt^e"^ ^'("'"T-) ^
A'+Z+M-w Y ' \ ̂  / v ? ^•y /

and

<" = 2—— (^)(3) P^0-^^ , (1.3)
y ! VaWp"
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where the last sum ranges over all integers and multi-indexes k, I, a', a".
y, y, Y such that k + I + \ y | == m, yf + a!' = a, ^ + r = ̂

/ a \ /P \
( and (w/ Vp'v

stand for the " binomial " coefficients

a ! / a'! a" ! , P ! / ̂  ! p" ! .

LEMMA 1.2. — TTie following inequalities are true:

N, ((p) + (q), T) « N, ((p), T) + N, ((<?), T)
N, ((p) o (q), T) « N, ((p), T) • N, ((<?), T)

(the sign « means that the coefficient of T* in the first member is less
than the same in the second member.)

The first inequality is obvious. To prove the second, let us set
c!..a = 2(2n)-*A:!(^ + jaj)!-^ + | P |) !-1; and let us estimate
| r^,a I by the sum of all absolute values in the second member of (1.3).
We then get:

N« ((/•), T) « ^ d^T^+^+^l

• S 2 -(X)-^''^
\ fc4-Z+|7l==m Y ' v0^ / ^P / /

a'+a"==a * l

0'+3"==0

= Ij <<.' | P '̂ | T^+l^+^'l c^. [ '̂a- | T^+r+^l.
fc,;, a'

j V 1 /« \/P \ '•i,. ) ,, .,-f^U^^T^i (L4)

In the last sum, we have set a' + a" — y, ^ = ^ + p" — y,
m =z k + I + | Y |. After simplification, this is shown to be equal to

y 1 o^-M^4"^4"^1^^^ ym+ l a l \~7 w +1 3 ! y
y^~.^ 2 n k\l\ y! Va'Ar/U + a' / \ / + |r|/
Using the easy inequalities

/a \ /^ /m+|a| \ /P \//n\ ^ + 1 3 | \
Uu/^u+ia'i/' \ rA; /^\ /+ in/
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and
( k + l + |Y | ) ! /my /m \-1 |Y | ! (k+ |Y|) ! ( /+ \^\)\

k\l\\^\\ W \ l ) ^ y! | Y | ! ( ^ + / + |Y|)!Y!

I Y I '^ U_ if s^ 1
y!

we find that the last sum in (1.4) is less than

v 1 | Y | ! 1 / 1 1 \-1
^ — ( 2 n ) - N i 1 — = — ( l — — — . . . — == 1.
T 2 y! 2 \ In I n /

Therefore it follows from (1.4) that

N^(r,T) ^SC^IP^IT^+I^'I c^K^lT^+r+n
which proves Lemma 1.2.

The following propositions follow immediately.

PROPOSITION 1.3. — Let (p) and (q) be two symbols of class (s).
Then the composed symbol (r) = (p)o(q) is also of class (s).

proof. — We have N, ((r), T) « N, ((p), T)-N, ( (q), T), so that
the formal norm of (r) converges whenever those of (p) and (q) do so.

PROPOSITION 1.4. — Let (p) be an elliptic symbol of class s (i.e.
po (x, f) ̂  0 when ^ -^ 0). Then the inverse symbol (q) of (p) is also of
class s.

Proof. — (q) is the unique symbol such that (p) o (q) = (q) o(p) = 1.

Let (^0 design the symbol whose only non vanishing term is the
first: qo = po~1 • It is of course of class s.

Define (h) by (^)o(p) == 1 —(h). Thus (h) is a symbol of class s,
and degree — 1.

00

Now put (̂ ") = ^ (A)P.
p==o

The inverse of (p) is (q) = (^") o (^).

Since (</) is of class s, we only need to prove that (</') also is. This
follows from the inequality

00

N, ( (q"), T) « 2 N. ( (h), T)o = [1 — N« ((A), T)]-i.
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The last series is a convergent one since N^ ((A), T) is a convergent series,
and has no constant term.

PROPOSITION 1.5. — Let (p) be a symbol of class s. Then the tran-
sposed symbol (t?) is also of class s.

(W is defined by (0.6):

^ 1 / 6) V / 1 6> V
(W- S-^(-) ——r) ^)^-S).y y! \c^/ \ ; ̂ /

We shall show N, ( Cp), T) << 2N, ((p),V2T), which will prove the
proposition. Effectively we have

N, ((W, T) « ^ c,+i,,,5— |p,.^ | T^+2m+|a+3|
A-,a,0,y Y *

=1 c^ip^iT^^i 2: If^^j
^". 0 V y ̂  a, 0 Y ! Cfc, ̂  )

The last sum in this inequality is equal to

V 1 2(2n)" fc~ly l(^+IYI)' (^+|a | )^(^+|P|) !
v<a ,0 y! (k + |a|)!^(A: + |p[) ! 2(2n)-1ck\

v ( ^ + I r l ) 1 / 1 i \'+l
= i ——————(2n) -N^ l———.. .— =2fc+l.

y<a.0 ^ iy ! \ 2n 2n/
Thus

N.s (W, T) « ^ 2^1 CA,§ T^+l^^l « 2N. ((p), V2T).
fc.a.P

2. The analytic case.

We now make a special study of the analytic case (s == 1). Let us
first remark that in this case, the proof of the equivalence between Defi-
nition 1.1 and 1.1 bis, when applied to the x variable, shows that the
symbol (p) -=^pk (x, Q is analytic (of class s = 1) if and only if for
any given compact set K c 2 there exist constants £, c, A such that every
Pk (x, §) is holomorphic in the complex domain Ke x Ce (where Ke stands
for the set of all x G 0 such that d (x, K) < s [Re ^ j ) and further, that
the following inequality holds in this domain :

I^Oc, ^)| ̂  cA^ ̂ -^k! (l.l)ter
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Let now (p) = ^ pk (x, Q be a symbol. The functions pjc (x, §) are
supposed to be analytic on Q x (^n — {0}). Let pjc (x, y) design the
inverse Fourier transform with respect to !; of the distribution p -f-pj, (x, Q
(we refer to L. Schwartz [12] for the definition of the finite part).

PROPOSITION 1.5. — The symbol (p) = ̂  pj, (x, Q is analytic if and
only if for every compact subset K C 2 there exists a constant s > 0 such
that the series ^ pjc (x, y) converges uniformly in the complex domain of
all x, y such that d (x, K) < £ and | Im y | < s | Re y | < s2.

Proof. — In regard to (l.l)ter, it is sufficient to prove the equiva-
lence when (p) does not depend on x. Let us first suppose that (p) =
S Pk (^) ^ an analytic symbol: there exist constants £ < 1, c, A such that
every p^ is holomorphic in the complex cone Q ([Im ^[ < £ |Re ^|), and
that in this cone, the following inequality holds :

Ip.^l^cA^I-^! (1.5)

It follows from Prop. 0.4 and 0.5 that the distributions pk(y) are
holomorphic in the same cone Ce.

Let us now choose an integer m such that m + r < — n, and con-
sider the set of all distributions of the form

^!A-fc(^^-+^•^p,(^)=^/-lA-fcp./•((.c,^-+^,(^),

xeC^ \x\ = 1 ; m + k^O.

Formula 1.5 clearly shows that this set is bounded in the Banach
space Fe.m+r of Proposition 0.5. It follows from that proposition that the
set of Fourier transforms :

k^A-^x'Dr^P^) (xeC\\x\ = 1 ; m+ k^O)

is a set of functions which are holomorphic and uniformly bounded for
| Im y [ < £' | Re y \ < £'2 (if e' < e). (if (x^,..., Xn) are the coordinate of
x, we set

/ 1 ^ <9 Y
(X-D)^ —1X,—— .

V i o 6y, /

Further, it follows from the definition of finite parts that pu (y) and
its derivatives of order < — n — r + k are continuous and vanish at the
origin (even if p ' f ' p j c C ! ; ) is not a homogeneous distribution). If we inte-
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grate m + k times in the direction of x when x E Ce', we therefore get the
inequality

\k\-lA-1cp,(y)\^c(m + k)\-1 ̂ ^ if \lmy\ < € |Rey| < s'2.
(1.6)

The convergence of the series ̂  pjc (y) in a domain such as described
in Prop. 1.5 follows immediately (naturally, the first terms, which are
eventually not included in inequalities (1.5) and (1.6), have no influence
on the result).

To prove the converse implication, we consider the set of all distri-
butions of the form

k^A-^X'Dr^p^y), A: =0,1,. . . ; x E 0, \x\ = 1,

where m is chosen such that — ^ < m + r < 0. These distributions are
homogeneous of degree — n — m — r, and it follows from Cauchy's
formula (applied as in Lemma 0.3) that for sufficiently large A, their set
is bounded in the space He, -n-m-r of Prop. 0.4 if ^ pk (y) behaves as
described in Prop. 1.5.

Prop. 0.4 then proves that the set of all distributions of the form

ki-^-^x^r^pk^), ^=0,1 , . . . ; xec\ M = i,
is bounded in the space He,m+rf and this of course implies inequality (1.5).
This ends the proof of Prop. 1.5.

2. Pseudo-differential operators of class s.

The notations are the same as in § 0 and § 1.

DEFINITION 2.1. — Let P = P (x, D) be a pseudo-differential ope-
rator on Q, with symbol a (P) == }[ pk (x,!;) and degree r. P will be said
to be strictly of class s if for any given compact set K C Q there exist
constants c, A such that for any x G K, any multi-indexes a, j3, and any
integer N, the following inequality holds :

i / ^w^v / v \
^ -7 ^—S^^S) <cA^la+^|r-N-!/3!^+ lap ! 8 ?!

\\ax/ \ac/ \ o /
(2.1)
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(the factor (J^-N-iei ought to be replaced by (1 + l!;^"^!31 without
changing anything else when r — N — j j3) > 0).

DEFINITION 2.1.bis. — A linear continuous operator

P:CS (Q^C- (Q)

will be called a pseudo-differential operator of class s if its kernel is a
function of class s outside of the diagonal of Q X 2? ^d if its restriction
to any relatively compact open set Q/ in Q can be decomposed into
P = P' + R where P/ is strictly of class s and the kernel of R is a function
of class s on Q' x Q7.

(This second definition will be justified by the two propositions
below.)

Definition 2.1 implies that the symbol of P is of class s. It also implies
that the function p (x, f) is holomorphic with respect to ^ in some cone
Q C j I m ^ ) < £ [Re^() , and a formula analogous to (l.l)bis (or (l.l)ter
when s = 1) could be written out.

We now have

PROPOSITION 2.2. — Let P be a pseudo-differential operator which
is strictly of class s (Definition 2.1). Then the kernel of P is a function of
class s outside the diagonal of Q x Q.

Proof. — We only have to remark that formula (1.1) implies that
x —> p (x, ^) is a function of class s with values in a space of distributions
which are holomorphic and bounded by a power of | ^ | in a cone Ce (at
least when x remains in a relatively compact subset of Q). It then follows
from Prop. 0.2 to 0.5 that x—> p ( x , y) is a function of class s with values
in a space of distributions which are analytic outside the origin (p (x, y)
denotes the inverse Fourier transform of p (x, ^) with respect to i;). Since
the kernel of P is the restriction to Q x Q of p ( x , x — y ) , this proves
Prop. 2.2.

PROPOSITION 2.3. — Let P be a pseudo-differential operator, of
class s, and suppose a (P) = 0. Then the kernel of P is a function of class
s on Q x ^. (Thus P can be extended into a continuous operator
G(? (0)^^(0).)
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Proof. — When the symbol of P is zero, inequality (2.1) gives

/ Q Y
{—) ^P ^A^^ li^-^i^ + I a I)!5 if r—k<0. (2.2)
\ (yx /

If we take k = [ (31 + m (with m + r < — n), then A: = | (i | + w' (with
,r + w' ̂  0) and add the two corresponding inequalities, we get (with
other constants c\ A')

/oy
(—) ^P ^'A/la+^mf(l,|^|w+r)|a+ P|!8 (2.3)

and finally, integrating this last inequality,

y^Y/c^v
\9x) \0y

/ o Y / o y
— — P^y^ ^^Ar+^l la+Pl!8

\0x/ \0y/

(where we have set c" = </• ^ inf (1, [i;^-^) d^ < oo).
»7 RU

(2.4)

This proves the lemma.

Remark 2.4. — The proof of Prop. 2.3 does not depend on the
^-derivatives of p (x, ^). It follows that if ^ pjc (x, ^) is a symbol of class s
such that there exists a pseudo-differential operator P7, of class s (in the
sense of Definition 2.1), with symbol ^ p^ (x, ^) (this will be shown to be
always true in Section 4), if p (x, Q is a function on Q x (R" — {0}) such
that for any compact set K c Q there exists constants c, A such that

(^-) (P (̂  S) —2 ̂  (̂  S) ^ ^ A^M I g |r-N (N + j a |) !5 (^

then the operator p (x, D) is a pseudo-differential operator of class s, with
symbol ^ p^ Qc, ^), in the sense of Definition 2. Ibis (because the operator
P'—P (.c, D) satisfies inequality (2.2), hence also (2.3) and (2.4), which
means its kernel is a function of class s).

(1) Here also IS^^ ought to be replaced by (1 + l?))7'^ if r — N > 0 or if
N =0.
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2. The analytic case (s = 1).

In the analytic case, Proposition 1.5 is completed by the following :

PROPOSITION 2.5. — Let ^ pjc (x, ^) be an analytic symbol, and
P == P (x, D) an analytic pseudo-differential operator with symbol
S Pk (xy S)' Then the kernel of P (x, D) differs from the sum of the series
^ pk (x, x — y ) by a function which is analytic in a neighborhood of the
diagonal of Q X Q.

Proof. — We can assume that P = P (x, D) is strictly of class s, and
further, that p (x, Q does not depend on x. We shall then prove Prop. 2.5
by estimating the derivatives of p (y) — ][ pk (y) (where p (y) designs the
Fourier transform of p (^), and pj, (y), that of p. f. pj, (§), as in Prop. 1.5) :
we have

( /) \ a / ^ \ a / m+|a|--l \ / /) \ a / oe \

^)-z^))^)(.- 2 ̂  (S,4
where m is chosen such that m — n — r > 0.

The proof of Prop. 1.5 shows that the second sum can be estimated
by

^ (^-) P^y) ^cA^ 'a ! (2.6)
m+|a|\(9v/^+iai \c)y '

for any a, when | Imy | < s | Rey [ < s2, for sufficiently small £, and
large c, A.

The first term in the second member of (2.5) is the Fourier transform
of

[ w+|a|-l ^ r / w+la|-l \ -1

Ta=^ p(Q- 2 P-f-^(S) \=pf S" p- ^ ^)-
o J L \ o / J

(2.7)
Now it follows from Definition 1.1 and 2.1 that for suitable £, c, A,

(cAM a!)~1 Ta remains in a bounded subset of the space Ee,r-w of
Prop. 0.5.

Therefore it follows from Prop. 0.5 that for sufficiently small s and
suitable constants c. A, the functions

/^\7.,, -w-^ \U v^- ? ^^)
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are holomorphic in the set | Im y | < e | Re y \ < e2, and we have in this
set

^ X " / . m+_l-l M

^){p(y)- ? ^))|^A-a!

We now only have to add up inequalities (2.6) and (2.8) to finish the
proof.

3. Continuity properties.

In this section we show that our pseudo-differential operators are
continuous on some of the hyper-distribution spaces introduced in § 0,
No. 2.

THEOREM 2.6. — Let P be a pseudo-differential operator of class s
on Q. Then P has a unique continuous extension :

Go8 (Q) n 0s (U) -> G'8 (Q) 0 G8 (U)

for any open subset U C Q such that Q — U be compact.
(The hyper-distribution spaces involved are defined in § 0, No. 2). In
other words, if T is a hyper-distribution with compact support, P (x, D) • T
is well defined ; and it is a function of class s in any open set where T is.

We give the proof in two steps : first suppose P == P (x, D) is a
convolution operator (i.e. p (x, ^) does not depend on x). We then have
P (x, D) • T == E * T, where E is a function of class s outside of the origin.
Theorem 2.6 then follows from

LEMMA 2.7. — Let S, T be two hyper-distributions of class s, one of
which has a compact support. We then have

sing supp (S * T) C sing supp (S) + sing supp (T).

(Here sing supp T designates the smallest closed set outside of which T
is a function of class s. If A and B are two sets in R/1, A + B designates
the set of all x + y, x E A, y G B. In our case, A + B is closed since
A and B are, and one of them is compact.)

Proof. — We first remark that

sing supp (S * T) c sing supp (S) + supp T.
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This follows from the equality S * T (x) =, ^ S (x — t) T (t) dt if x lies
outside of sing supp S + supp T, and from the fact that if K is a compact
set and has void intersection with supp sing (S) + supp T, then
t —> S (x — t)/K is a function of class s with values in G8 (K) in a neigh-
borhood of sing supp S.

In the general case, let Xo lie outside sing supp (S) + sing supp (T).
We can choose two neighborhoods K, K' of sing supp (S) and sing supp (T)
which are unions of cubes with small side length such that XQ ̂  K + K'.
We then write S = Si + 82, T = Ti + T2, where Si (resp. Ti) is the
function equal to zero in K (resp. KQ and to S (x) (resp. T (x)) outside K
(resp. K'). It follows from the remark above that Si * Ta, 82 * Ti and
82 * T2 are of class •s" in a neighborhood of Xo. Thus it is sufficient to prove

that Si * Ti (x) = j S (x — t) T (r) dt also is. When K, K' have
J x—t^K.

t€K'

this particular shape, this is quite elementary to prove, and we leave
the proof to the reader 0. (When s > 1, it is easier to prove Lemma 2.7
by means of a partition of unity of class s. This of course cannot be done
when s = 1.)

The following corollary is an immediate consequence of Lemma 2.7
(also cf. [13], Lectures No. 4, 5, 6).

COROLLARY 2.8. — Let Ti be a bounded set of hyperdistributions in
G8 (R71) n G8 (^ — {0}) (cf. § 0, No. 2). Then the convolutions
u -» T^ * u form an equi-bounded and therefore equi-continuous set of
linear mappings Go8 (R^) n G8 (U) -> G'8 (R^) n G8 (U) for any open set
U such that 1̂  — U is compact.

We now prove Theorem 2.6 in the general case. Since an operator R
whose kernel is a function of class s is continuous from Go8 (Q) to G8 (Q),
we will assume that P = P (x, D) is strictly of class s (Definition 2.1). Let
us now denote by Ea the inductive limit when s -> 0 of the Banach spaces
Ee, a of Proposition 0.5, and by Fa its isomorphic image by the Fourier
transform : it is a complete bomological space of type (DF) (cf. (5)). It
follows from inequality (2.1) that x -» p (x, y) is a function of class s in Q,
with values in Fy.. It also follows from Prop. 0.5 that Fa is a topological
subspace of G" (R^) n G8 (R^ — {0}). Theorem 2.6 then follows from the
three remarks below:
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1. The bilinear mapping B (cp, T) == P, where the operator P is
defined by P (u) = cp • (T * u), is continuous from G8 (Q) Fa to

e [Go8 (Q) n o8 (U), G'8 (Q) n G8 (U)]
(on this last space we put the topology of uniform convergence on bounded
sets of Go8 (Q) 0 G8 (U)). In order to prove this, it is sufficient to prove
the same when one replaces Q by any compact set KcQ, containing
Q — U, and G8 (Q) (resp. Go8 (Q) 0 G8 (U), G'8 (Q) n G8 (U)) by G- (K)
(resp. G^lOnG^U), resp. the space of hyperdistributions which are
defined in some neighborhood of K and of class s in U). This last assertion
follows from the fact that B is clearly bounded on those spaces (Cor. 2.8),
and G8 (K) and Fa are both bomological, of type (DF) (cf. [5]).

2. Since Go^nG^U) is bomological, and G'8 (Q) n G'(U)
complete, £ [Go8 (Q) H G8 (U), G'8 (Q) n G8 (U)] is complete, and B has a
continuous extension to the Grothendieck product G8 (Q) ® Fa.

3. By Grothendieck's theorem, this last space is identified to the
space of functions of class s in Q, with values in Fa. And through this
identification, the operator corresponding to the function p (x, y) is the
operator with kernel p ( x , x — y ) which is precisely P (x, D). This com-
pletes the proof.

4. An existence theorem.

THEOREM 2.9. — Let (p) = ^ pjc (x,!;) be any symbol of class s ̂  1
on Q. Then there exists a pseudo-differential operator of class s on Q
with symbol (p).

We shall first prove the theorem when (p) satisfies inequality (1.1)
uniformly. It is clear that we can suppose that the degree of (p) is zero
— which we will do. The problem is to construct a function p (x, Q
satisfying (2.1) uniformly on Q. We first reduce this problem to a problem
concerning functions of one complex variable t :

Let us designate by Be.A.< (resp. B^A.s) the space of all smooth
functions / on the closed complex cone j I m ^ | ^ £ | R e r [ (resp. and
t ̂  0), which are holomorphic in the interior, and satisfy

f d y-j' < c A^ k!8 for suitable c. (2.9)
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In order that the function p (x, i;) satisfy inequality (2.1) it is sufficient
that the function (x, ̂ ) -> f (t) = p (x, r-1!;) be partiaUy analytic in !; and
of class s in x on the manifold Q X S (where ̂  designs the unit cotangent
sphere J ^ l = 1), with values in Be,A,«+i, and satisfy

(^Y/(0)=A:!M^). (2.10)

(We leave the easy proof of the reader.)

Let us now denote by Be, A, a the space of all functions which are
holomorphic in the cone Ce: | Im t \ < s (<Re t \ and satisfy the inequality

| /(0|^cexp—(2A|^|1 /8): (2.11)

Lemma 0.3, and the end of No. 2 in § 0 imply that the Fourier
transform is continuous from Be.A,s to Be', ̂ , 8 ' for sufficiently large A'

A.

and small s'. And of course if / G Be, A, a we have

/ d V ^ r +oc

— f(0)=i^ / y f ( t )d t .
\dt/ J-oo

Finally let us designate by SA. « the space of all sequences

S = (^)fc=0.1....

such that
Sk 2

IMI^ZIA-^.'^^I^S — < ° ° - <2-12)
\k

Definition 1.1 implies that (x, ̂ )-> (pfc (x, i;)-*!)fc=o,i.... is partiaUy
of class s in x and analytic in ^ on Q x S» wlt^ values in the Hilbert space
SA,«+I» for sufficiently large A.

Theorem 2.9 will now readily follow from.

LEMMA 2.10. — For any s ̂  2, there exists a continuous linear
mapping U: SA.«-> Be, ̂ ,3 (for sufficiently small 5 and AQ ^McA ^flr if
f (0 = U (j) we Aav^

/- 4-0°
^ t^f{t)dt=s^ (2.13)

^ — 00

(The lemma is also true, in fact, for any s > 1. We only give a proof
when s ̂  2).
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The following proof only adds minor details to the article of
L. Carleson [3], whose notations we adopt. We do not repeat here the
proofs that can be found in [3] :

m
Let us designate by P^ (t) = j a^,p tp the sequence of real poly-

0
nomials which is uniquely determined (up to the factor ± 1) by the fact
that Pm is real, its degree is m and the relations

r i 0 if m ̂ z n
/ Pm (t) Pn (0 exp (— 2 1 1 |1/5) dt =\ . (2.14)

J { 1 if m = n.

We try to construct a solution f = U (s) by the formula

f = exp (2 — 2 A | t |1/8) (J, ^ P, ) (2.15)
\ 0 /

Formulae (2.13) and (2.14) then imply
/'» w

b^ == f (r) p^ (r) A = ^ a^,p ̂  . (2.16)
•̂  p=o

Now it follows from L. Carleson's article that the coefficients am, p
satisfy the following estimates : let w (z) be the unique harmonic function
defined for Im z ̂  0, infinitely small compared to z when z —> oo, with
boundary value c | z j175 for real z :

r -^ /1 \i
w ( z ) = = R e c ^ 2 8 e x p ( — l o g z ) . (2.17)

Put
/ n \-1

[JL (r) = sup w (z) == c ( cos ——— ) r1/5 == a r1/8. (2.18)
[^[=r \ 2 5 /

(Here we have a = c (cos 7i/2 •y)-1 < 2 c since ^ ̂  2.)

Finally we define

[ s ( p + 1/2) -|^+v^)
M^ = sup rP+^e-^^ == ——————— . (2.19)

r>o a e J

Then we have for suitable constant A;
00

2 la^l^^M,-2. (2.20)
w==0
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Let us now choose c so small that 2 , Xp/Mp |2 = k'2 < oo. We then
have

oo / m

2lM^;S(S
m=0 \»=(m=0 \D=O I A

\ / m

) 2
/ \p=0

1 « lo

Ap OCw, p |

[0 / 00 \ -1 / 00

1 y X2 • ( T I a \2\\<k2\\s\\2 (Y<IN12
^ Ap \ ^ I OCm,? | / 1^: /c || 3 U \/J

oo \m==0 /J \ 0

=(k,kr\\s\\2.
Further it follows from (2.16), (2.17) and (2.21) that

cp (z) = 2 ̂  p- (^) == i ̂  ̂
is an entire analytic function.

In fact we have

S^o^p <^k2k/\\s\\M, ,

and

Xp
Mp I /

(2.21)

M._^V2

|cp(^)|^/:'|M|211^||.
Mp l^i^T-+

iMo oo M
it follows from (2.19) that we have ^+V2 / Mp ̂  e^-W and

2Mp/Mp+i< oo
so that finally we get

I 2 ̂  Pm (z) | ̂  k (1 + VT Î̂ I'I17')

M̂ i

(2.22)

Since we have a < 2 c, ^ == exp (— 2 c 1 1 I178) (^ ^w Pm W) lies in
the space 6e, A' if £ and A' are small enough. Moreover it is quite evident
that the operator U thus defined is continuous from S^,s to 6e,A',s • This
ends the proof of Lemma 2.10.

Since we are not able to vary the constant A in Lemma 2.10 (from
one point x, ^ to another), Lemma 2.10 only permits us to construct a
solution (a pseudo-differential operator of class s with symbol (p)) locally.
If s > 1, it is easy to achieve the construction globally by means of
partitions of unity. If s == 1, Lemma 2.10 and Prop. 1.5 and 2.5
prove that the operator which is defined in small open subsets of Q by the
distribution kernel K (x, y) = ^^ic(x,x-y) is an analytic pseudo-diffe-
rential operator in these small open sets. Next it is a well known property
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of real analytic functions that there exists a function /:" (x, y) defined and
analytic in Q x Q — A (where A designates the diagonal) such that
V (x, y) — '̂ (^ y) ls analytic in a neighborhood of A. It is then clear
that the operator with kernel

! A/' (x, y) outside of A
k (x, y) = ^ ̂  ̂  ^ ̂  ̂  ̂  _ ̂  ̂  ̂  ̂  ̂

is an analytic pseudo-differential operator with symbol ̂  pjc (x, ^), accord-
ing to Definition 2.1 fc^.

5. In this section, we examine the composed of two pseudo-diffe-
rential operators of class s.

PROPOSITION 2.11. — Let P and Q be two pseudo-differential opera-
tors of class s, one of which is compactly supported (cf. § 0, No. 3). Then
P o Q = R is also a pseudo-differential operator of class s.

We give separate proofs in the analytic and non-quasianalytic cases.
In the first case, the hypothesis of Prop. 2.11 implies that either P or Q
is a differential operator. The result is evident when P is (by Leibniz'
formula), or when Q is a differential operator with constant coefficients.
The only case that remains to be examined is therefore when Q is the
multiplication by an analytic function q (x). By Prop. 1.5 and 2.5, the
kernel of PoQ then differs from (^ pjc(x, x-y))'q(y) by a function which is
analytic in a neighborhood of the diagonal (here we use the notations of
Prop. 1.5 and 2.5). Next we remark that for small x—y we have:

(^P^x,x—y)\ • < 7 ( y ) = £ - t — q ( a ) ( x ) p ^ x , x — y ) ' ( y — x ) a .
\ / k.a OC !

This last series is exactly the series which corresponds to the symbol of
P o Q = R (i.e. ^ rfc (x, x-y)), and Prop. 1.3 and show that it is conver-
gent in a neighborhood of the diagonal if the degree of P is not a integer.

If the degree of P is integer, pjc (x, x-y) (y-x)" differs from the
corresponding term in the series that corresponds to the symbol of P o Q
by

(-1-)" ̂  [(-4-) P- f- P» (^ 9 — P- f- (—) ^ (^ ©] = ̂  (^ ̂ )-
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Here ^ designates the inverse Fourier transform. It is easy to prove that
for fixed x, p^ a (x, x-y) is a polynomial with respect to (x-y), which is
homogeneous of degree [ a | — r — n + k, where r is the degree of P
(so that the degree of pj, is r — k). Further, the coefficients of this poly-
nomial only depend on the spherical moments of p^ (x,!;). An exact
computation shows that for suitable constants c, A, they are bounded by

-A^i-f \Pu(x^)\da(^
K\ J |f|^i

(where do is the superficial measure of the sphere | ^ ( = 1).

It follows that if p and q are analytic, the series

V (—1)"2j —— P (^ ^y) c^y)" ̂ (a) wk,a a!

is convergent for small complex (x-y), so that it sum is analytic in a
neighborhood of the diagonal x == y. Prop. 2.5 then shows that P o Q
is an analytic pseudodifferential operator.

So that Prop. 2.11 is proved in this case.

In the other case (s > 1) we will suppose that both P = p (x, D)
and Q = q (x, D) are strictly of class s (Definition 2.1); we will also
suppose that p (x, ̂ ) and q (x, ^) vanish for large s (if they do not, we can
replace P and Q by P' o cpP, Q' = cpQ where cp E Gg (Q) and <p = 1 in
an open bounded subset U of Q : the restrictions of P' (resp. Q', P' o Q')
and P (resp. Q, P o Q) to G§ (U) differ by an operator whose kernel is
a function of class s). We shall show that R == P o Q satisfies the ine-
quality (2.1 bis) of Remark 2.4, wherefore it is a pseudo-differential
operator of class s. To do so we first remark that we have R == r (x, D)
where

r (x, Q = (2 n)- r e^ p (x, ̂  + 7]) q (rj, §) A], (2.23)

where q designates the Fourier transform of q with respect to x. We now
wish to estimate the jc-derivatives of

vi l / ^ \7 / I d \7
r^(x^)=r(x^)— ^ — — — ( ) p(x,^)(— ——) q(x^).

jy |<N Y • v ^S / \ I dx /
(2.24)
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We have

(±)\.(,,P= 2 ('\r^^(±\"
\0x/ ' a'+c^Aa'VJ \Qx/

•L(^+^)- ^(—\p(x^)^]q^f)dri.
L M<N\ai;/ Y ! -I

(2.25)
It follows from (2.1) that the Taylor expansion of p (x, ̂  + Y)) is

convergent if | r] ( < e | i; | for small s. On account of this, we separate
the integral (2.24) into

/ +/ •</ I^K^I ^ |T?|>€|^|

In the following estimates, c, A designate constants which do not
depend on P, Q, x, ^, but which can vary from one line to the next.
We designate by ri, ̂  the degree of P and Q.

It immediately follows from (2.1) that we have for suitable c, A

/ o Y
\~Qx') p (x9 ̂  + Yi) ^ CAIal 1 a I !s (1 + I S D'1 ̂  + I Y) D'2 <2-26)

/ Q Y i / o y
\~0x') "—" \^) p (x9 s) ^ c Ala+yl I a ] !s I s ! rl-171 (2'26 ̂ )

and if | T) | < £ | ^ | (when e is small enough).

/o^T \^ ^ i ^V 11
(-) P^S+T) ) -^ ±i \p(x^) ^CAN+MI^^ITIIN
\^/ L iyi<N Y ! \^/ Jl

Further we have | (Q/QxY q(x,Q\^c AW | a [ !5 (1 + [ ^ [A and
since q (x, f) vanishes for large x, we get

I ^a q (T], g) | ^ c A'"! | a [ !5 (1 + | ^ 1) .̂ (2.28)

If we multiply (2.28) by (2.26) or (2.27) and add the result for
convenient values of a in (2.28), we then get

^[(^"P^+^I^S)
^ cAN+la'+""| (1 + | i; [y^ (N + ) vf + v." |) !' | TI l-^-"

(2.29)
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i r / Q y / Q V i^"""LU hj-)^J?(i.E)
^ cA^i^+^l | ̂  j^+^-M (N + | a' + a" |)!5 | T] |-N-n-m

, ., , , , ,, (2.29^)and if |rj | <s|i; |

r (^V [p (̂  + ̂  - S ^ (-) p ̂  S)1 ^(^ §)\ox/ L i y i < N y! \^7 J
^cA^+^^ | ^ I^+^-N (N + I a' + a" |)!8 (1 + ̂  l-^-1.

(2.30)
We now introduce inequality (2.30) (resp. (2.29) and (2.29 bis) in the
first (resp. second) integral into which we have broken up (2.25), and add
up. Since there are less than 2N terms in the sum (2), and also we have the
estimate

f hl-^^cj^ if p ^ l ,
^ m >e 1^1

where the constant c does not depend on p, we finally get

/ ̂ v{—\ r^(x,^) s^cA^^ [i^i+^-^N + (a])!8 . (2.31)

Estimate (2.1 bis) for R then follows immediately from estimate (2.1)
for P and Q. This ends the proof.

In a similar way (and we do not repeat the proof, which is completely
analogous to the preceding one) we have.

PROPOSITION 2.12. — Let P be a pseudo-differential operator of class
s ̂  1. Then the adjoint P* of P (which is defined by the equality

f cp-P*^)^ f P(cp)'^
J Sl ^ Sl

for all (p, ^ G Co° (Q)) is also a pseudo-differential operator of class s.

Finally we state.

(2) And the binominal coefficients (a,) which figure in it are less than an
exponential of (| a | + N).
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PROPOSITION 2.13. — Let P be an elliptic pseudo-differential ope-
rator of class s. There exists a pseudo-differential operator of class s, E,
such that E o P — 1 and PoE— 1 have for kernel a function of class s.

Proof. — It follows from Prop. 1.4 and Theorem 2.9 that there exists
a pseudo-differential operator of class s, E, with symbol inverse to that
of P. If P is proper (cf. § 0) (this means that P is an ordinary differential
operator in the analytic case), EoP and PoE are well defined. And it
follows from Prop. 2.11 that E o P — 1 and P o E — 1 are pseudo-diffe-
rential operators of class s with symbol zero. Prop. 2.13 then follows from
Prop. 2.3.

COROLLARY 2.14. — Let P be an elliptic differential operator with
coefficients in G8 (Q), and T G G'5 (Q) any hyperdistribution. Then T is
a function of class s in any open set where P (T) is.

This follows immediately from the existence of a parametrix E of
class s : E (P (T)) — T is a function of class s, and Theorem 2.6 shows
that E (P (T)) is one in any open set where P (T) is.

It seems that this corollary has only been proved for differential
operators with constant coefficients (cf. [2]). In the usual proofs of the
regularity of the solutions of an elliptic equation, it is usually assumed
that T is (locally) a finite sum of derivatives of continuous functions.
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