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GEOMETRIC QUANTIZATION OF INTEGRABLE
SYSTEMS WITH HYPERBOLIC SINGULARITIES

by Mark D. HAMILTON(1) & Eva MIRANDA(2)

Abstract. — We construct the geometric quantization of a compact surface
using a singular real polarization coming from an integrable system. Such a po-
larization always has singularities, which we assume to be of nondegenerate type.
In particular, we compute the effect of hyperbolic singularities, which make an
infinite-dimensional contribution to the quantization, thus showing that this quan-
tization depends strongly on polarization.

Résumé. — On construit la quantification géométrique d’une surface compacte
en utilisant une polarisation singulière donnée par un système intégrable. Cette po-
larisation présente toujours des singularités qu’on suppose de type non-dégénéré.
En particulier, on calcule l’effet des singularités hyperboliques qui donnent une
contribution de dimension infinie à la quantification, en démontrant que cette quan-
tification dépend fortement de la polarisation choisie.

1. Introduction

In the theory of geometric quantization, the “quantization” of a symplec-
tic manifold M is constructed from sections of a complex line bundle over
M . The ingredients for geometric quantization are as follows: a symplectic
manifold (M,ω), a complex line bundle L over M , and a connection ∇ on L
whose curvature is ω. We also require a polarization, which is an integrable
complex Lagrangian distribution (see [22] for more information). A real po-
larization is given by a foliation of M into Lagrangian submanifolds. If J is
the sheaf of sections of L that are covariant constant (with respect to ∇) in
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52 Mark D. HAMILTON & Eva MIRANDA

the directions tangent to the leaves of the foliation, then the quantization
of M is

Q(M) =
⊕
k>0

Hk(M ;J ),

where H∗(M ;J ) is the cohomology of M with coefficients in J .(1)

The main result about quantization using real polarizations is a theorem
of Śniatycki [18] from 1975: If the leaf space Bn is a manifold and the map
π : M2n → Bn a fibration with compact fibres, then all of these cohomology
groups are zero except in degree n. Furthermore, Hn can be expressed in
terms of Bohr-Sommerfeld leaves. A Bohr-Sommerfeld leaf is one on which
is defined a global section which is flat along the leaf (see Definition 2.7).
The set of Bohr-Sommerfeld leaves is discrete, and Śniatycki’s result says
that the dimension ofHn is equal to the number of Bohr-Sommerfeld leaves.
(It actually applies to non-compact manifolds as well, in which case the non-
zero cohomology is in degree equal to the rank of a fibre of π. However, in
this paper we only consider the compact case.)

The hypothesis that Bn be a manifold is quite restrictive, however. For
example, in a completely integrable system, by the Arnol’d-Liouville the-
orem the fibres of the moment map are generically Lagrangian tori, but
there may be fibres which have smaller dimension or are not manifolds.
This is like a real polarization except for the singularities, and so we view
it as a singular real polarization and extend the quantization machinery to
this case.

A local classification of the types of nondegenerate singularities appear-
ing in integrable systems has been established by Eliasson and the second
author in [6, 7, 14]. It has as starting point the algebraic classification due
to Williamson [21] of Cartan subalgebras of the Lie algebra of the symplec-
tic group, and is given in terms of a local model for the components of the
moment map near the singularity. Singularities can be written as a product
of three basic types, which are called elliptic, hyperbolic, and focus-focus.

In [10], the first author computed the quantization of systems with only
elliptic singularities. The result obtained was similar to Śniatycki’s: all co-
homology groups are zero except in degree n, and Hn has dimension equal

(1) Some authors, particularly those who take an index theory approach to quantization
(e.g. [8]) define the quantization as the alternating sum of cohomology groups, rather
than the straightforward sum as we do here. However, as we will show, all but one of these
groups are zero, and so it does not really matter which definition we take. Guillemin and
Sternberg in [9] avoid this question altogether and say merely that “the main objects of
interest are the cohomology groups Hk(M ;J ).”
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GEOMETRIC QUANTIZATION WITH HYPERBOLIC SINGULARITIES 53

to the number of Bohr-Sommerfeld leaves. However, the singular Bohr-
Sommerfeld leaves do not make a contribution to the cohomology and are
not included in this count.

A natural question, then, is what are these cohomology groups for a
system with the other types of singularities? This paper addresses the case
of hyperbolic singularities in two dimensions. We plan to return to the
focus-focus case, and the general case of singularities of mixed types, in a
future paper. Note that this paper completes the case of this quantization
(with respect to singular real polarizations) for compact manifolds of two
dimensions, since focus-focus components can only appear in dimensions
four or higher.

The main result of this paper (Theorem 6.1) is:

Theorem 1.1. — Let (M,ω, F ) be a two-dimensional, compact, com-
pletely integrable system, whose moment map has only nondegenerate sin-
gularities. Suppose M has a prequantum line bundle L, and let J be the
sheaf of sections of L flat along the leaves. The cohomology H1(M,J ) has
two contributions of the form CN for each hyperbolic singularity, each one
corresponding to a space of Taylor series in one complex variable. It also
has one C term for each non-singular Bohr-Sommerfeld leaf. That is,

(1.1) H1(M ;J ) ∼=
⊕
p∈H

(
CN ⊕ CN)⊕ ⊕

b∈BS

Cb.

The cohomology in other degrees is zero. Thus, the quantization of M is
given by (1.1).

We follow the methods of [10], dividing the manifold up into open sets
and computing the cohomology of each set individually, and then piecing
them together using a Mayer-Vietoris argument. The case of neighbour-
hoods of regular leaves is covered by the theorems in [18] and [10], so we
concentrate on a neighbourhood of a singular leaf, where we compute the
cohomology groups using a Čech approach.(2)

(2) Other authors, including Śniatycki [18] and Rawnsley [17], have used an approach
based on an abstract de Rham theorem, using a resolution of the sheaf J to compute
the cohomology. One of the main issues of this approach is to prove the resolution is
fine, which requires a Poincaré lemma adapted to the polarization (see for instance
[17]). Such a lemma, for the case when the polarization has nondegenerate singularities,
has been proved by the second author and San Vũ Ngo.c in [15]; this result could be
applied to prove that a similar resolution applies to our situation. However, Śniatycki’s
computation in the regular case strongly uses the existence of action-angle coordinates in
a neighbourhood of the whole fibre (although he does not use the term “action-angle”).
When the polarization is singular, “singular action-angle coodinates” do not, in general,
exist in a whole neighbourhood of the singular fibre, but only on a neighbourhood of
the singular point (see [5]), and so we would still have to divide up a neighbourhood of

TOME 60 (2010), FASCICULE 1



54 Mark D. HAMILTON & Eva MIRANDA

One of the issues in geometric quantization is “independence of polariza-
tion,” the question of whether different polarizations give equivalent quan-
tizations. When we allow singularities in the polarization, we find that the
quantization depends strongly on the polarization, in the sense that we can
easily introduce new hyperbolic singularities by using surgery of integrable
systems (see §7). We also give explicit examples coming from mechanics
of two different systems on a sphere with different quantizations: rotation
about the vertical axis, and the Euler equations on the sphere. The first
one has no hyperbolic singularities, while the second one has two, giving
four infinite-dimensional contributions to the quantization.

The organization of this paper is as follows: We review definitions and
terminology in section 2, and prove some properties of the sheaf of flat sec-
tions in section 3. The cohomology computation for the simplest hyperbolic
system is carried out in sections 4 and 5, and extended to more compli-
cated leaf structures in 6. In section 7 we describe the surgery of integrable
systems and give two examples from mechanics with different polarizations
having different quantizations. Finally, section 8 contains a technical proof
having to do with Čech cohomology.

1.1. Acknowledgements

The acknowledgements part in this paper deserves its own subsection.
During the process of working on this project, the authors have been sub-
stantially helped by many people along the way. First, a big thanks must
go to Victor Guillemin who has helped us a lot with this problem, and has
enthusiastically followed up on its progress. We are also extremely grateful
to Yael Karshon for the many helpful conversations and suggestions during
our visit to Toronto during the early stages of this project. Many thanks
also to both Victor and Yael for the invitations to Boston and Toronto
which made an important contribution to our work.

We are very grateful to Mathematisches Forschungsinstitut Oberwolfach
for the opportunity to work on this project in the beautiful settings of the
Institute. Oberwolfach has provided a perfect working atmosphere in the
fantastic Black Forest, which gave a beautiful backdrop to our sometimes
messy calculations.

a singular leaf up into pieces, deal with each piece separately, and then fit them back
together again. For this reason we find it simpler to just work with Čech cohomology
directly.
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Thanks to Jerrold Marsden and Tudor Ratiu who kindly provided us
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Last but not least, we want to thank Roger and Tess from 9 Baldwin
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2. Definitions

2.1. Integrable systems

Let (M2n, ω) be a symplectic manifold of dimension 2n. The Poisson
bracket is defined on M by {fi, fj} = ω(Xfi , Xfj ) where Xfj is the Hamil-
tonian vector field of fj . A completely integrable system is given by a set
of n functions f1, . . . , fn which Poisson commute and which are generically
functionally independent.

Since 0 = {fi, fj} = ω(Xfi , Xfj ) and [Xfi , Xfj ] = X{fi,fj} = 0, the
distribution generated by the Hamiltonian vector fields of the functions fi is
involutive and the regular integral manifolds are Lagrangian submanifolds
of (M2n, ω).

The collection of functions F = (f1, . . . , fn) is often called the moment
map in the literature of integrable systems. Observe that when the man-
ifold is compact, the moment map F has singularities, which correspond
to singularities of the distribution by Hamiltonian vector fields. A whole
theory has been developed (and is still being developed) for the singulari-
ties of this mapping and the symplectic invariants attached to them. In the
case that the singularities are non-degenerate (in the sense of [7]), there is
a local symplectic Morse theory for these systems (see [6] and [14]).

If (M,ω) is two-dimensional, a completely integrable system is just a
function F : M → R. In this case, a non-degenerate singular point p is a
point where dpF = 0 and the Hessian d2

pF is non-degenerate. There are
only two types of non-degenerate singularities for integrable systems in
dimension 2: hyperbolic (when the Hessian is indefinite) or elliptic (when
the Hessian is positive or negative definite).

The following theorem is due to Colin de Verdière and Vey [3], and
is a special case in two dimensions of more general results by Eliasson
and the second author ([6, 7, 14]). It gives a symplectic local model for a
neighbourhood of the singularity.

Theorem 2.1. — Let F : (M2, ω) −→ R be a function and let p be a
non-degenerate singular point of F . Let Q be the quadratic form corre-
sponding to the Hessian of F at p.

TOME 60 (2010), FASCICULE 1



56 Mark D. HAMILTON & Eva MIRANDA

Then there exists a local diffeomorphism from a neighbourhood Z of p
to a neighbourhood of 0 in R2 taking ω to the symplectic form dx∧dy and
F to a function φ(Q). If the hessian Q is positive definite the germ of the
function φ characterizes the pair (F, ω). If Q is not definite then the jet at
the point p of the function φ characterizes the pair (F, ω).

Remark 2.2. — As a consequence of this theorem, after putting Q in a
canonical form, we can assume from now on that the foliation in a neigh-
bourhood of a singular point p corresponding to 0 ∈ R2 is given by the
vector field

• Y = −y ∂∂x + x ∂∂y when Q = x2 + y2 (p is elliptic) or
• Y = x ∂∂x − y

∂
∂y when Q = xy (p is hyperbolic)

and the symplectic form is ω = dx ∧ dy. We call these x-y coordinates
“Eliasson coordinates.”

In the case that p is hyperbolic, we usually take Z to be a “hyperbolic
cross” (see Figure 2.1), what Toulet in [5] calls an “étoile canonique.”

Figure 2.1. A “hyperbolic cross”

2.2. Geometric quantization

Let (M,ω) be a symplectic manifold. A prequantization line bundle is
a complex line bundle L over M , equipped with a connection ∇ whose
curvature is ω. A real polarization is a foliation of M into Lagrangian
submanifolds. (For a more complete description of geometric quantization,
see [22] or [19].)

Suppose (M,ω, F ) is a compact completely integrable system. We wish
to compute the quantization of M using the singular real polarization given

ANNALES DE L’INSTITUT FOURIER
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by the singular foliation by levels of F , which (as noted in the Introduction)
are generically Lagrangian tori.

Definition 2.3. — A section σ of L is flat along the leaves or leafwise
flat if it is covariant constant along the fibres of F , with respect to the
prequantization connection ∇. This means that ∇Xσ = 0 for all X tangent
to fibres of F . Denote by J the sheaf of smooth sections which are flat along
the leaves.(3)

Definition 2.4. — With (M,ω, F ), L, and J as above, the quantiza-
tion of M is

Q(M) =
⊕
k>0

Hk(M ;J ).

Remark 2.5. — In the theory of geometric quantization as originally
developed independently by Kostant and Souriau, the quantum space was
the section of “polarized” sections of L (which correspond to our leafwise
flat sections). However, with a real polarization with compact leaves, there
are no global polarized sections (see the proof of Theorem 5.4). One so-
lution to this problem, suggested by Kostant in [11], is to look at higher
cohomology, which is what we do.

A note on terminology: We have two rivals for the term “flat” in this
paper. We will distinguish them by specifying leafwise flat as above, versus
analytically flat as follows:

Definition 2.6. — A function is Taylor flat or analytically flat (at some
specified point, which is often understood) if it vanishes to infinite order at
that point, that is, if all of its Taylor coefficients are zero.

Our results will be expressed in terms of Bohr-Sommerfeld leaves.

Definition 2.7. — A leaf ` of the (singular) foliation is a Bohr-Sommer-
feld leaf if there is a leafwise flat section σ defined over all of `.

Note that, while leafwise flat sections always exist locally (because the
curvature of ∇ is ω, which is zero when restricted to a leaf), the condition
of existing globally is quite strong. The set of Bohr-Sommerfeld leaves is
discrete (in the leaf space). Note also that a leaf is Bohr-Sommerfeld iff its
holonomy is trivial around all loops contained in the leaf.

(3) The fact that the sections are smooth is an important factor in our computations.
Another approach to quantization using polarizations with singularities would be to
consider singular sections, given by distributions instead of smooth functions. We hope
to investigate this approach in a future paper.

TOME 60 (2010), FASCICULE 1



58 Mark D. HAMILTON & Eva MIRANDA

3. The leafwise flat sections

We first prove several properties of elements of the sheaf J , which will be
instrumental in what follows. In particular, sections in J are analytically
flat in particular ways: see Propositions 3.3 and 3.5. For all of this section
(and indeed, the rest of this paper), Z denotes the neighbourhood of the
hyperbolic singular point given in Theorem 2.1.

Lemma 3.1. — We may choose a trivializing section of the prequantiza-
tion line bundle L over Z so that the potential one-form of the prequantum
connection is Θ0 = 1

2 (x dy − y dx) in Eliasson coordinates.

Remark 3.2. — Remember that the potential one-form Θ of a connec-
tion, relative to some trivialization, is defined as follows: If s is the trivial-
izing section, and σ = ψs is a section, then

(3.1) ∇Xψs =
(
X(ψ)− iψΘ(X)

)
s.

Proof of Lemma 3.1. — Since Z is contractible, L is trivializable over
Z. Let s be a trivializing section, and let Θ be the potential one-form on Z
defined by (3.1). Since the curvature of the connection is ω, dΘ = ω = dΘ0,
and so Θ−Θ0 is closed on Z and, therefore, exact. Write dg = Θ−Θ0, and
define a new trivialization s0 of L over Z by s0 = eigs. Writing a section σ
as ψ0s0, it is easy to check that

∇Xψ0s0 =
(
X(ψ0)− iψ0Θ0(X)

)
s0

and so Θ0 is the potential one-form of ∇ with respect to s0. �

Proposition 3.3. — If σ : Z → L is a smooth leafwise flat section
defined over Z, then σ is Taylor flat at the singular point. That is,

∂j+kσ

∂jx ∂ky

∣∣∣∣
(0,0)

= 0 for all j, k.

Proof. — According Theorem 2.1, the foliation by level sets is generated
by

Y = x
∂

∂x
− y ∂

∂y
.

Take a trivializing section s of L as in Lemma 3.1, so that the prequantum
connection can be written

∇X(σ) = X(σ)− iΘ0(X)σ

(where here σ represents a complex-valued function). Thus any leafwise flat
section σ must satisfy the equation

Y (σ) = −ixyσ.

ANNALES DE L’INSTITUT FOURIER
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Writing σ = σ1 + iσ2 with σ1 and σ2 both real, we obtain the following two
equations:

Y (σ1) = xyσ2

Y (σ2) = −xyσ1
(3.2)

Let
∑
ij aijx

iyj be the Taylor expansion of σ1 and
∑
ij bijx

iyj the Taylor
expansion of σ2. We want to see that aij = 0 and bij = 0 ∀i, j. In order to
do that we plug the Taylor expansions into the system (3.2), and obtain,
for all i, j, the following system of equations for the aij and bij :

(i− j)aij = bi−1,j−1

(i− j)bij = ai−1,j−1
(3.3)

We distinguish two cases:
(1) i = j. In this case, we obtain immediately bi−1,i−1 = 0 and

ai−1,i−1 = 0, for all i.
(2) i 6= j. In this case, combining and solving equations (3.3) yields:

bij =
−b(i−2)(j−2)

(i− j)2 .

Now iterating this process k times we obtain:

bij =
(−1)kb(i−2k)(j−2k)

(i− j)2k .

Now let k be such that i < 2k, then b(i−2k)(j−2k) = 0 since the
coefficients of the Taylor-Laurent expansion of a smooth function
vanish for negative subindexes.

From this, we obtain bij = 0 for all i, j and therefore also aij = 0 for all
i, j. �

Proposition 3.4. — Let U be an open set which does not intersect the
singular leaf and which is contained in the set Z given in Theorem 2.1.
Leafwise flat sections defined over U (i.e. elements of J (U)) can be written
in Eliasson coordinates as

(3.4) a(xy)e
i
2xy ln| xy |

where a is a smooth complex function of one variable.

Proof. — Define coordinates (h, β) on the quadrant {x > 0, y > 0} in R2

by
h = xy

β = 1
2 ln
∣∣∣∣xy
∣∣∣∣(3.5)

TOME 60 (2010), FASCICULE 1



60 Mark D. HAMILTON & Eva MIRANDA

so that
x =
√
h eβ

y =
√
h e−β

(3.6)

This is valid provided neither x nor y is zero. Also, ω = dβ ∧ dh and
Θ = −h dβ, as can easily be checked. Finally, in these coordinates, the
vector field Y is − ∂∂β .

Using the trivializing section from Lemma 3.1 we identify a section σ

with a complex-valued function. Then, using (3.1), σ will be flat if

(3.7) ∇ ∂
∂β
σ = ∂

∂β
σ − iσh dβ

(
∂

∂β

)
= 0

which becomes
∂σ

∂β
= iσh

which has solution
σ = a(h)eihβ

where a is an arbitrary smooth (complex) function of one variable. Chang-
ing back to x-y coordinates gives the desired form for σ.

The above argument was valid for any open set in the first quadrant in R2.
A similar argument applies in the other quadrants, with a slightly different
choice of signs in (3.6). (For example, in the second quadrant one should
take x = −

√
−h eβ , y =

√
−h e−β . Equations (3.5) are unchanged.) �

Proposition 3.5. — Any leafwise flat section σ defined over Z can be
written as a collection

σj = aj(xy)e
i
2xy ln| xy | j = 1, 2, 3, 4

where aj is a complex-valued smooth function of one variable, analytically
flat at 0, with domain such that aj(xy) is defined on the jth open quadrant
of R2. Conversely, given four such aj , they fit together to define a leafwise
flat section σ over Z using the formula above.

Proof. — Suppose we are given a leafwise flat section σ. By Proposi-
tion 3.4, σ has the given form on any open set U which does not intersect
the axis, and in particular on the first quadrant part of Z (in Eliasson co-
ordinates). By Proposition 3.3, σ is analytically flat at (0, 0). This implies
that the function of one variable σ(x, x) is analytically flat at x = 0. But
σ(x, x) = a1(x2) (since the logarithm term is 0 if y = x), and so all (one-
sided) derivatives of a1 vanish at 0. A similar argument holds for the other
quadrants.

ANNALES DE L’INSTITUT FOURIER
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Conversely, suppose we are given aj as in the proposition, and note that
by Proposition 3.4 they define a leafwise flat section everywhere except on
the axes. On the axes, since the functions ak are Taylor flat, the jets of
the functions agree as we approach from either side (see below), and so the
four components piece together to make a smooth section over the entire
“hyperbolic cross” neighbourhood Z.

In more detail, note first the following facts, the proofs of which are easy
exercises in first-year calculus:

Lemma 3.6. — Let a(t) be Taylor flat at 0. Then

lim
t→0+

a(t)(ln t)n = 0 and lim
t→0+

a(t)r(t) = 0

for all n ∈ N and all rational functions r.

Proof. — L’Hôpital, plus the observation that for 0< t< 1, |ln t|<
∣∣ 1
t

∣∣.
�

Lemma 3.7. — If a(t) is Taylor flat, then limt→0+ a(t) r(t, ln t) = 0 for
all rational functions r.

Finally (continuing the proof of Proposition 3.5), any term
∂j+k

∂xj ∂yk
aj(xy)e

i
2xy ln| xy |

will be the sum of terms of the form

a(n)(xy) r(x, y)
(
ln
∣∣x
y

∣∣)me i2xy ln| xy |,

and thus by Lemma 3.7 will approach 0 as x, y → 0. �

From this proposition we see two important facts.

Remark 3.8. — As in the regular and elliptic cases (in [10]), leafwise
flat functions have the form of a smooth function on a transversal to the
leaf, times a fixed function of the leaf variable. This is related to parallel
transport, see §4.1 below. In a way, the coordinates (h, β) used in the
proof are somewhat like action-angle coordinates, except that they are not
defined on the singular leaf, and β is not an “angle,” but runs from −∞
to ∞.

Remark 3.9. — A smooth, leafwise flat section over a neighbourhood of
the singularity has four essentially independent components, each defined
on one quadrant. The only requirement is that each of the functions ak on
the transversals has to vanish to infinite order at the singular leaf. To give
such a section, it suffices to give four such functions ak. This will play a
key role in the cohomology computation.

TOME 60 (2010), FASCICULE 1



62 Mark D. HAMILTON & Eva MIRANDA

Definition 3.10. — Henceforth, when we say a section is “Taylor flat
at the singular leaf,” we mean that the function on the transversal defining
the section (the function a above) is Taylor flat at the singular leaf.

4. Cohomology calculation, part I: the set-up

Unlike in the elliptic case, there are different possibilities for the topology
of a leaf containing a hyperbolic singular point. We start with the simplest
possibility, where there is one singular point and the singular leaf ` has the
shape of a figure-eight. Consider a neighbourhood U(`) of this leaf formed
by unions of regular fibres of F “on either side” of `, shown in Figure 4.1.
(For a concrete realization of this system, imagine a torus standing “on its
end,” like a bicycle wheel, and take F to be the height function, normalized
so that the bottom of the inside hole is at height 0. Then F−1((−c, c)) looks
like Figure 4.1.) We will carry out the computations for this example in
some detail, as it exhibits the main features we find in general. In §6 we
show how these results extend to the case of more complicated leaves, with
more singularities.

Figure 4.1. The model system

We compute cohomology using a Čech approach, by choosing an open
covering, functions on the sets in the covering, and so on. Although Čech co-
homology is defined as the direct limit over the set of all coverings, in ([10],
§3) we saw that the interesting features of the cohomology appeared al-
ready in the computation using the simplest covering, and so this is what
we use here. In §8 we will show that we have computed the actual sheaf
cohomology.
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Also, by comparison to [18] and [10], we expect the cohomology to only
be non-trivial in degree 1, and so from now on when we say “cohomology”
without other specification, we mean first cohomology. In section 5.7 we
show that other cohomology is trivial.

The simple covering consists of three sets, the “hyperbolic cross” Z to-
gether with two other sets covering the rest of U(`), as shown in Figure 4.2:

Figure 4.2. A simple cover of the figure-eight

The thick lines indicate an overlap of open sets, denoted by AZ for
A ∩ Z, etc, and the dotted line indicates the singular leaf. The letters
a, b, and c indicate leafwise flat sections defined on particular sets, the
collection of which determines an element of Čech cohomology. We use the
convention that a and c are functions on the intersections of two sets, and
b are functions on one single set. So, for example, aA is a function defined
on AZ = A ∩ Z, and bA is a function defined on A. (Since all overlaps
include Z, we use aA rather than aAZ , for simplicity.) Also, b1

Z through b4
Z

are the sections defined on the quadrants of the hyperbolic cross, making
up a leafwise flat section over the cross as in Proposition 3.5. Thus, the
a’s and c’s make up a Čech 1-cochain, and the b’s make up a 0-cochain.
Use the ordering convention on the coboundary operator that (δb) on AZ

is bZ − bA, and on BZ is bZ − bB .
We are interested in H1, and so we are asking: Given a’s and c’s as in

the diagram, which define a 1-cocycle, when do there exist b’s so that the
coboundary of the b cochain equals the cocycle defined by the a’s and c’s?

TOME 60 (2010), FASCICULE 1



64 Mark D. HAMILTON & Eva MIRANDA

4.1. Parallel transport

In order to compare the values of sections at different points, we use
parallel transport.

Given the value of a section at one point x0 on a leaf, the value on the
rest of the leaf is determined by the condition that the section be leafwise
flat. Given a value for σ(x0), we can construct a leafwise flat σ over the
entire leaf through x0 by parallel transporting σ(x0) along the leaf.

Given two points P and Q in the same leaf, we will denote parallel
transport from P to Q by τPQ. Thus, if a is a flat section, a(Q) = a(P )τPQ.
Formally, τPQ is an automorphism of LP to LQ; if L can be trivialized over
a set containing both P and Q, then we can just think of τPQ as a nonzero
complex number. Note that τPQ = τ−1

QP , whether as automorphisms or as
complex numbers.

This is related to the description of the sections in Proposition 3.4 as
a(h)e−ihβ . For a fixed value of h, say h0, once we know a(h0), then the value
of the section is fixed everywhere on the leaf. The term e−ihβ represents
the change due to parallel transport.

5. Cohomology calculation, part II: explicit calculation

To carry out the computations, we refer to Figure 5.1.

Figure 5.1. Diagram for the cohomology calculation

This is the same as Figure 4.2 with more information: we have added
three leaves we will be considering, labelled γ1, γ2, and γ3, and marked
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points on these leaves as shown. We have also shown the overlaps between
sets, so for example P+ and P− are in A ∩ Z.

First, we fix some notation: τZPQ will denote parallel transport from P

to Q through the set Z. When we are looking at, for example, transport
from P+ to Q+ we will write τZPQ+

(rather than τZP+Q+
). There will never

be parallel transport between a “−” point and a “+” point, because they
are on different leaves.

Note that an appropriate combination of parallel transport gives us ho-
lonomy: for example,

τAPQ+
τZQP+

= holγ1 .

Remember that what we are trying to do, exactly, is to answer the fol-
lowing question: Given a collection {aA, cA, aB , cB} of sections defining a
1-cochain, when can we find sections {bA, bB , b1, b2, b3, b4} making up a 0-
cochain whose coboundary is the given 1-cochain? The set of a’s and c’s
where this is possible gives us B1, the set of 1-coboundaries. As it turns
out, the three loops γ1, γ2, and γ3 give independent contributions to the
cohomology, and H1(U(`);J ) will be the direct sum of the contributions
from each loop. We look at each one in turn and collect the results together
in Theorem 5.2.

5.1. Gamma 1

First look at γ1. We have the following relations coming from the
coboundary conditions:

aA(P+) = b1(P+)− bA(P+)(5.1a)
cA(Q+) = b1(Q+)− bA(Q+)(5.1b)

We also have the following relations between the values of the sections at
different points:

bA(Q+) = bA(P+)τAPQ+
(5.2a)

b1(P+) = b1(Q+)τZQP+
(5.2b)

From (5.2), (5.1b) becomes

cA(Q+) = b1(P+)(τZQP+
)−1 − bA(P+)τAPQ+

so that the system (5.1) becomes

aA(P+) = b1(P+)− bA(P+)(5.3a)

cA(Q+)τZQP+
= b1(P+)− bA(P+)τAPQ+

τZQP+
(5.3b)
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This can be viewed as a system of two equations for the two unknowns
b1(P+), bA(P+). The coefficient matrix of this system is[

1 −1
1 −τAPQ+

τZQP+

]
which has determinant

1− τAPQ+
τZQP+

= 1− holγ1 .

Thus this matrix is nonsingular, and so (5.1) has a unique solution, precisely
when holγ1 6= 1. This solution is:

aA(P+)− cA(Q+)τZQP+
= bA(P+)

(
holγ1 −1

)
(5.4a)

aA(P+)− cA(Q+)(τAPQ+
)−1 = b1(P+)

(
1− holγ1

)
(5.4b)

This gives b1 and bA at the single point P+; however, as noted previously,
the value of a flat section at one point determines the value everywhere else
along the leaf, and so this gives a solution for bA and b1 on the entire leaf.
Finally, by letting P+ vary along a transversal to the leaves, we get bA and
b1 on the entire neighbourhood inside the singular leaf.

If holγ1 = 1, then a linear algebra argument shows that (5.1) has a
solution (and thus the cocycle is a coboundary) iff aA(P+)−cA(Q+)τZQP+

=
0. Since a cocycle is defined by two smooth functions on the transversal
(determining the sections aA and cA), the Bohr-Sommerfeld contribution
to the cohomology from γ1 is

{cocycles}
{coboundaries}

∼=
{(a, c) smooth functions on an interval}

{a = c at one point}

This is exactly what we saw appearing in [10] (§3.2.2). As we saw there
(Lemma 3.3), the above quotient is isomorphic to C, and so if γ1 is Bohr-
Sommerfeld, it gives a one-dimensional contribution to cohomology. (See
also Theorem 5.2.)

However, this is not the only contribution from γ1. The flatness properties
discussed in §3 affect the calculation as well: in searching for solutions
to (5.1), we do not have complete freedom in choosing bA and b1, because
of the condition that b1 has to be Taylor flat at the singular leaf.

Consider again the system (5.4). It is valid for all P+ inside the singular
leaf. If we think of the sections as functions of one variable as P+ varies
along a transversal to the leaf, then the properties discussed in §3 imply
that b1(P+), and thus the right-hand side of (5.4b), is Taylor flat as P+
approaches the singular leaf. Therefore, in order for the system (5.4) to
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have a solution, it is necessary that

(5.5) aA(P+)− cA(Q+)(τAPQ+
)−1

be Taylor flat at the singular leaf (viewing P+ as a variable, which deter-
mines Q+), which is to say that aA and cA(Q+)(τAPQ+

)−1 agree to infinite
order at the singular leaf. This will give another contribution in cohomol-
ogy, which we will clarify in §5.4 and 5.6.

5.2. Gamma 2

The picture is similar for γ2 as for γ1. The coboundary equations

aB(S+) = b3(S+)− bB(S+)
cB(R+) = b3(R+)− bB(R+)

are exactly the same as system (5.1), with A replaced by B, P replaced
by S, Q replaced by R, and b1 replaced by b3. Thus, they have solutions
identical to (5.4) with these same replacements, namely:

aB(S+)− cB(R+)τZRS+
= bB(S+)

(
holγ1 −1

)
(5.6)

aB(S+)− cB(R+)(τBSR+
)−1 = b3(S+)

(
1− holγ1

)
(5.7)

The second equation gives us, by the same argument, the condition that

(5.8) aB(S+)− cB(R+)(τBSR+
)−1

has to be Taylor flat at the singular leaf. This gives another “flat functions”
contribution to the cohomology, which we will discuss in §5.6.

5.3. Gamma 3

The computation for γ3 is similar, except that since γ3 passes through
all four components of AZ and BZ, we have four equations instead of
two. We get a similar phenomenon involving the holonomy, giving us a
contribution of C for each Bohr-Sommerfeld leaf. Since the calculation is
similar to (although longer than) the previous two, and since our main
interest at the moment is in the flat functions and the infinite contribu-
tions to cohomology, we will leave out the Bohr-Sommerfeld calculation,
except to note in passing that the Bohr-Sommerfeld contribution will come
from the holonomy all around γ3, but will still give one factor of C in
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cohomology. Thus, the Bohr-Sommerfeld leaves inside and outside the sin-
gular leaf make equal contributions to the cohomology. For example, in the
torus realization mentioned in section 4, even if the level set has two con-
nected components (represented in Figure 4.1 by the inner circles), each
component is independent in terms of its cohomology. (In fact, since these
leaves are regular, Śniatycki’s results apply to give us their contribution to
cohomology directly.)

We focus now on the question of role of the flat functions for γ3. As there
are two Taylor flat functions in this computation, b4 and b2, we wish to find
the solutions to the coboundary equations for b4 and b2, which will give
us two conditions that certain combinations of the a’s and c’s have to be
Taylor flat. The calculations are similar in form, though more complicated,
to those given in 5.1. Out of compassion for the reader, we omit the details,
and merely give the results.

We start with four equations coming from the coboundary conditions,
starting at P−:

aA(P−) = b4(P−)− bA(P−)(5.9a)
cA(Q−) = b2(Q−)− bA(Q−)(5.9b)
cB(R−) = b2(R−)− bB(R−)(5.9c)
aB(S−) = b4(S−)− bB(S−)(5.9d)

We also have relationships between the values of each function at different
points, coming from parallel transport:

bA(Q−) = bA(P−)τAPQ−(5.10a)

b2(R−) = b2(Q−)τZQR−(5.10b)

bB(S−) = bB(R−)τBRS−(5.10c)

b4(P−) = b4(S−)τZSP−(5.10d)

Starting at P−, we can use these formulae to “push along” the leaf until
we come back around to P−. The calculation involving b4 (details omitted)
yields

(5.11) b4(P−)− b4(P−)τAPQ−τ
Z
QR−τ

B
RS−τ

Z
SP− = aB(S−)τZSP−

+cA(Q−)τZQR−τ
B
RS−τ

Z
SP−−aA(P−)τAPQ−τ

Z
QR−τ

B
RS−τ

Z
SP−−cB(R−)τBRS−τ

Z
SP−
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We recognize the coefficient of the second b4 as the holonomy (it also ap-
pears with aA), and so this simplifies to

b4(P−)
(
1− holγ3

)
= aB(S−)τZSP− + cA(Q−)τZQR−τ

B
RS−τ

Z
SP−

−aA(P−) holγ3 −cB(R−)τBRS−τ
Z
SP− .

(5.12)

As in the previous sections, this tells us that this particular combination
of a’s and c’s has to be Taylor flat at the singular leaf in order for the
cohomology equations to have a solution.

At first, this seems like another condition, which will give another con-
tribution to the cohomology. However, if we look more closely, we see that
it is not independent of our earlier conditions. Explicitly, if we take (5.5)
times holγ3 plus (5.8) times −τZSP+

, we obtain exactly the right-hand side
of (5.12), except the points have +’s instead of −’s. However, the condi-
tion applies at the singular leaf. Since P+ and P− approach the same point
on the singular leaf, and since the Taylor series of a function is the same
“from either side,” the condition in (5.12) is already implied by conditions
coming from (5.4) and (5.6), and so does not give any new contribution to
the cohomology.

Similarly, we can go through the same process to solve (5.9) for b2, which
gives us another combination of as and cs that has to be Taylor flat at
the singular leaf, but which also turns out to be already implied by (5.4)
and (5.6).

5.4. The “flat functions” contribution to cohomology

So far we have found two independent conditions (5.5) and (5.8) that
certain combinations of sections must be analytically flat (as well as two
similar conditions that turn out not to be independent). In this section we
explore what contributions these conditions make to the cohomology. In
both cases, the condition requires that two sections agree to infinite order
at the singular leaf, which is equivalent to the condition that two functions
of one variable (on a transversal to the leaf, defining the section) agree to
infinite order at one point. Let I be an open interval, and fix a reference
point x0 ∈ I. For two functions a, c ∈ C∞(I), let a ≈ c mean that a and c

agree to infinite order at x0. Since each section is defined by a function on
a transversal to the leaves, and the coboundaries are those where the two
functions agree to infinite order at the singular leaf, we will be looking at
quotients of the form C∞(I)2/{a ≈ c}.

Lemma 5.1. — The quotient C∞(I)2/{a ≈ c} is isomorphic to the space
of complex-valued sequences, which we denote by CN.
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Proof. — Let a(n)(x0) denote the nth Taylor coefficient of a at x0. Then
map C∞(I)2 to CN by the map that puts

(
a(n)(x0) − c(n)(x0)

)
in the nth

place. This map has kernel exactly {a ≈ c}. To see it is surjective we apply
Borel’s theorem which says that given a sequence zn of complex numbers
there exists a complex smooth function f such that f (p)(x0) = zp. (See for
example [20] or [16].) �

5.5. If the singular leaf is Bohr-Sommerfeld

So far, we have only considered the possibility of non-singular Bohr-
Sommerfeld leaves. What happens if the singular leaf is Bohr-Sommerfeld?
(Note that each of the two loops in the singular leaf can be Bohr-Sommer-
feld, and that these conditions are independent.)

Look at the system (5.4), which we reproduce here, and consider what
happens as γ1 approaches the singular leaf.

aA(P+)− cA(Q+)τZQP+
= bA(P+)

(
holγ1 −1

)
aA(P+)− cA(Q+)(τAPQ+

)−1 = b1(P+)
(
1− holγ1

)
The holonomy holγ1 will be a smooth function of the “leaf variable,” and so
we can look at each side of, say, the first equation above as a function of the
“leaf variable.” Even if the holonomy at the singular leaf is 1, so that the
right side vanishes at the singular leaf, the right side as a function already
vanishes to infinite order at the singular leaf. Thus the left side still has to
be Taylor flat, and so we still get the infinite-dimensional contribution to
cohomology, regardless of whether the singular leaf is Bohr-Sommerfeld or
not.

On the other hand, the contribution of one factor of C for a regular Bohr-
Sommerfeld leaf does not occur for the singular leaf. This factor comes out
of the cohomology calculation because of a condition that the values of
a and c at the Bohr-Sommerfeld leaf have to agree, but this is already
required by the condition that they have to agree to infinite order. Thus
there is no additional Bohr-Sommerfeld contribution.

5.6. Summary of the calculations

Here we collect the results from the preceding calculations into one place.

Theorem 5.2. — The first cohomology of the neighbourhood U(`) of
the figure-eight hyperbolic system given in Figure 4.1 has two contributions
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of the form CN, each one corresponding to a space of Taylor series in a com-
plex variable. It also has one C term for each non-singular Bohr-Sommerfeld
leaf. That is,

(5.13) H1(U(`),J
) ∼= CN ⊕ CN ⊕

⊕
b∈BS

Cb

where the sum is over the non-singular Bohr-Sommerfeld leaves.

Proof. — Let the points P , Q, R and S be the points on the singular leaf
that are the limits of P+, P−, Q+,Q−, etc. when γ1, γ2 and γ3 approach
the singular leaf. As we pointed out in the computations involving γ1 and
γ2, the expressions

aA(P+)− cA(Q+)(τAPQ+
)−1

(equation (5.5)) and

aB(S+)− cB(R+)(τBSR+
)−1

(equation (5.8)) can be seen as functions in the variables P+ and S+ re-
spectively (since the variables Q+ and R+ can be determined from these).
These functions can be seen as functions on the two transversals at P and
S to the singular leaf. Thus we can think of these functions as functions
of one variable (on an open interval I centered at zero), which we denote
by aA − cAτA and aB − cBτB , respectively. As in Lemma 5.1, let f (n)(0)
denote the nth Taylor coefficient of the function f at 0.

As noted at the beginning of §5, the space Z1 of 1-cocycles is the collec-
tion Z1 = {(aA, cA, aB , cB)}. Map Z1 into the right-hand side of (5.13) as
follows:

• Map (cA, aA, cB , aB) to (aA − cAτA)(n)(0) in the nth term of the
first CN factor, and
• (cA, aA, cB , aB) to (aB − cBτB)(n)(0) in the nth term of the second

CN factor; also,
• for each non-singular Bohr-Sommerfeld leaf, passing through points
Pj and Qj , map (aA, cA, aB , cB) to aA(Pj)− cA(Qj)τZQjPj in the C
component corresponding to that Bohr-Sommerfeld leaf.

From the preceding discussion, the kernel of this map is precisely the set of
coboundaries, as follows. From §5.1, if the cocycle is a coboundary then aA−
cAτA is Taylor flat at the singular leaf (equation (5.5)). From §5.2, (5.8), we
have the same for aB − cBτB . And finally, for each regular Bohr-Sommer-
feld leaf, being a coboundary requires that the values of the corresponding
a and cτ functions agree on that leaf. Conversely, if all these conditions
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hold, the collection (cA, aA, cB , aB) defines a coboundary. Thus, the kernel
of this map is the set of coboundaries.

On the CN components, this map is the same map as was used in the
proof of Lemma 17, which was shown there to be surjective, and so this
map is surjective onto the CN components. It is also surjective on the
C components: the (a − cτ)(n)(0) determine the jet of the functions at
the origin, but not their values at any point away from the origin. Since
aA, cA, etc. can be any smooth functions, it is easy to choose them so that
aA(Pj) − cA(Qj)τPjQj has any desired value. Thus, the map is surjective
onto the C components.

Finally, if the singular leaf is Bohr-Sommerfeld, it is excluded from the
sum by §5.5.

Therefore we have a surjective map from the space of cocycles to the
right side of (5.13) whose kernel is the space of coboundaries, and so the
cohomology is as claimed. �

Remark 5.3. — We can make the infinite-dimensional cohomology look
slightly more natural by viewing it as a graded vector space. Following the
ideas of the Arnol’d school around singularity theory (see for example [1]),
it is possible to define a filtration on the sheaf J by letting Jk consist of
solutions up to order k of the leafwise flat sections equation. This induces a
grading on the cohomology, so that the CN term has one C in each degree.

5.7. Cohomology in other degrees

So far we have been concerned with the cohomology in degree 1. We now
briefly dispose of the other degrees.

Theorem 5.4. — Let (U(`), ω, F ), L, and J be as above. Then the
cohomology groups Hk

(
U(`),J

)
are zero for k 6= 1.

Proof. — This is immediate. First, H0(U(`),J
)

is the set of global leaf-
wise flat sections of L. Any such section is zero except on the Bohr-Sommer-
feld leaves; since the set of Bohr-Sommerfeld leaves is discrete, the entire
section must be zero by continuity, and so H0(U(`),J

)
= 0. Higher coho-

mology groups are trivial because there are no triple or higher intersections
in the cover. �

Remark 5.5. — Although we have computed the cohomology with re-
spect to a certain cover (and this is particularly evident here), we show in
§8 that it is isomorphic to the actual sheaf cohomology.
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6. More than one singular point

Thus far, all of the calculations have been for the simplest system with
a hyperbolic singularity, given in Figure 4.1. In this section we perform the
calculations for more complicated systems.

6.1. The next simplest examples

In the case where there is more than one hyperbolic singular point on the
same leaf, there are many different possibilities for the topology of the leaf.
Two examples are the “triple-eight” with three loops and the “double-lung”
systems, each with two hyperbolic singularities, shown below in Figures 6.1
and 6.2. Bolsinov and Fomenko in [2] give a classification of the possible
topological types of leaves.

Figure 6.1. The “triple-eight” system

Figure 6.2. The “double-lung” system
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We first consider the “triple-eight” and carry out the cohomology cal-
culation for this system. Loops around either of the two outside “holes,”
inside the singular leaf, will clearly give identical calculations as in the
figure-eight case, and so we do not repeat them. The computation for the
middle loop γ4, shown in Figure 6.3, is a bit different.

Figure 6.3. Closeup of the centre loop

From Y Z we get the two equations

aY Z(T ) = b3
Z(T )− b1

Y (T )(6.1a)

cY Z(U) = b3
Z(U)− b1

Y (U)(6.1b)

and from parallel transport we get

b3
Z(U) = b3

Z(T )τZTU(6.2a)

b1
Y (T ) = b1

Y (U)τYUT(6.2b)

Use (6.2) to write (6.1b) at T :

cY Z(U) = b3
Z(T )τZTU − b1

Y (T )τYTU
so

cY Z(U)τYUT = b3
Z(T )τZTUτYUT − b1

Y (T )
Subtracting this from (6.1a), we get

aY Z(T )− cY Z(U)τYUT = b3
Z(T )− b1

Y (T )− b3
Z(T )τZTUτYUT + b1

Y (T )

= b3
Z(T )
(
1− holγ4

)(6.3)
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A similar procedure gives us a solution for b1
Y in terms of aY Z and cY Z ,

also involving a holonomy term. These are the familiar equations involving
holonomy, which give us the contribution due to a Bohr-Sommerfeld leaf.

However, the more interesting part is the contribution coming from flat
functions, for which we don’t even need the calculation leading to (6.3),
but we can see directly from (6.1). Since b1

Y and b3
Z are both Taylor flat

at the singular leaf, the right-hand sides of (6.1a) and (6.1b) both vanish
to infinite order at the singular leaf, and so in order for (6.1) to have a
solution, it is necessary that both aY Z and cY Z vanish to infinite order
at the singular leaf as well. Thus, this piece gives a contribution to the
cohomology that looks like

{smooth functions}2/{a ≈ 0, c ≈ 0}

namely, (CN)2. Together with the two contributions coming from the loops
around the outer “holes,” each of which will be one contribution of CN,
we see that there are a total of four CN contributions from the pair of
singularities.

We leave as an exercise for the reader to set up and carry out the com-
putations for the “double lung” system in Figure 6.2, and show that it also
has four CN components in the cohomology.

6.2. The general case

Here we show that, in general, we get two CN contributions to the coho-
mology for each hyperbolic singular point.

Figure 6.4. The covering of the leaf
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Consider a covering of a neighbourhood of the singular leaf by overlap-
ping rectangles together with hyperbolic crosses, as illustrated in Figure 6.4
(and as used in §8). Near a hyperbolic singular point, the system looks like
Figure 6.5.

Figure 6.5. The covering near one hyperbolic singular point

Consider the part of the leaf passing through the set labelled A in Fig-
ure 6.5. If we continue along this leaf, we will pass through a number of
other rectangles, each with their own functions defined on them and on the
corresponding intersections, and eventually reach another hyperbolic cross
(possibly the same one on a different branch). See Figure 6.6, where the
a’s denote elements of J on double intersections (part of a 1-cochain), and
the b’s denote elements on the sets (part of a 0-cochain).

Figure 6.6. Leaf between two singular points
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If we look at the coboundary conditions for this part of the picture, we
will get a system of equations like

a1 = b1 − bZ
a2 = b2 − b1

...
an = bY − bn−1

(6.4)

(where for simplicity we have omitted the terms giving parallel transport).
Adding up all these equations gives

(6.5) a1 + a2 + · · ·+ an = bY − bZ

which, since bY and bZ must be analytically flat, shows that the sum of the
aj ’s must be analytically flat.

The part of the cohomology coming from this part of the picture will
therefore have a term of the form

(6.6) C∞(I)⊕n

{a1 + · · ·+ an ≈ 0}
,

which is isomorphic to CN by a similar argument as in the proof of
Lemma 5.1. Thus, the H1 cohomology will have one term of the form
CN coming from this part of the singular leaf.

This will be true for each arc connecting two singularities in the singular
leaf, and these conditions will be independent of each other. Since there are
twice as many such arcs as singular points (four emitting from each point,
each of which gets counted twice this way), there are two CN contributions
in per singularity.

For the same reason as in the proof of Theorem 5.4 (namely that the cov-
ering has no triple or higher intersections), the higher cohomology groups
are zero. From [10], we have a Mayer-Vietoris principle for this cohomology
(see Propositions 3.4.2 and 6.3.1). Putting together the results of this sec-
tion with the results from [18] and [10] (which give the regular and elliptic
cases, respectively), and patching together with Mayer-Vietoris, we obtain
the following:

Theorem 6.1. — Let (M,ω, F ) be a two-dimensional, compact, com-
pletely integrable system, whose moment map has only nondegenerate sin-
gularities. Suppose M has a prequantum line bundle L, and let J be the
sheaf of sections of L flat along the leaves. The cohomology H1(M,J ) has
two contributions of the form CN for each hyperbolic singularity, each one
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corresponding to a space of Taylor series in one complex variable, and one
C term for each non-singular Bohr-Sommerfeld leaf. That is,

(6.7) H1(M ;J ) ∼=
⊕
p∈H

(
CN ⊕ CN)⊕ ⊕

b∈BS

Cb.

The cohomology in other degrees is zero.
Thus in particular, the quantization of M is given by (6.7).

Remark 6.2. — So far, we have only shown the above for cohomology
computed with respect to the particular coverings used in the computa-
tions, but we prove below in §8 that this is isomorphic to the actual sheaf
cohomology.

7. Dependence on polarizations

The theorem above establishes a strong dependence of the quantization
of an integrable system on a surface on the singularities of the function
determining the integrable system. In particular, if we can find examples of
integrable systems on the same surface with different kinds of singularities,
Theorem 6.1 would show that this notion of quantization depends strongly
on the polarization considered.

7.1. Two examples from Mechanics

In this section we give two examples which show up naturally in mechan-
ics and then we give a method to construct general examples of surfaces
with prescribed number of hyperbolic singularities.

Example 7.1 (Rotations on the sphere). — Consider the height function
h on the 2-sphere of integer height k together with its standard area form.
The Hamiltonian vector field of the function h is the vector field given by
rotations along the central axis.

As described in [10] Chapter 5, this system has k− 1 non-singular Bohr-
Sommerfeld leaves, corresponding to the circles with integer height. A pic-
ture of the integrable system with the Bohr-Sommerfeld leaves marked on
it for k = 4 is shown in Figure 7.1.

According to theorem 6.1, the dimension of the quantization for this in-
tegrable system is just given by the regular Bohr-Sommerfeld leaves, which
in this case is k − 1. The elliptic singularities (north and south poles) do
not contribute.
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Figure 7.1. The height function on a sphere

Example 7.2 (Euler’s equations restricted to a sphere). — Consider Eu-
ler’s equations of the rigid body on T ∗(SO(3)) and consider the lifted action
of SO(3). These equations correspond to the movement of the Euler top
(a rigid body moving around its center of mass) which has configuration
space SO(3). Using symplectic reduction by the lifted action of SO(3) we
obtain a Hamiltonian system on S2. The topology and geometry of the
induced system on the symplectic reduced space is well-known; see for ex-
ample Cushman and Bates [4] for details. In section III.4, they show that
this system has two hyperbolic singularities and four elliptic singularities.

A picture of the integrable system is given in Figure 7.2.

Figure 7.2. Reduced Hamiltonian flow of Euler’s equations
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Using the recipe given in Theorem 6.1, the quantization of this system
is

Q(M) = H1(M ;J ) ∼=
⊕
p∈H

(CN
p )2 ⊕

⊕
b∈BS

Cb.

Since the hyperbolic set has two elements, this cohomology group has four
infinite-dimensional contributions. If we compare this example to the pre-
vious one (in which the quantization is finite-dimensional), we can conclude
that this quantization of the sphere strongly depends on the polarization
when we allow singularities.

7.2. Surgery of integrable systems

Indeed, we can perform surgery of integrable systems to include as many
hyperbolic singularities into the picture as the Euler characteristic allows.
We briefly present this method in this small subsection, for the sake of
completeness. Though the construction might seem elementary, such an
explicit description is not detailed in the literature of integrable systems.

Given a function on a compact orientable surface f : S −→ R with non-
degenerate singularities (a Morse function), consider the Hamiltonian vec-
tor field Xf associated to this function. It is well-known (see for instance,
[13]) that the number of elliptic and hyperbolic singularities of this vector
field on a surface is related to the Euler characteristic via the Poincaré-Hopf
formula:

(7.1) χ(S) = number of elliptic
singularities − number of hyperbolic

singularities
In the case of compact orientable surfaces, we can find examples of inte-

grable systems on them with any numbers se of elliptic and sh hyperbolic
singularities greater than for the height function and satisfying (7.1). These
examples can be created via surgery of integrable systems, adding cylinders
with one elliptic and one hyperbolic singularity and therefore increasing by
one the number of each type of singularity at each step. Bolsinov and
Fomenko [2] have developed a whole Morse theory for integrable systems
of singularities with special attention to the cases of surfaces.

We denote s0
e and s0

h the total number of elliptic and hyperbolic singu-
larities given by the height function on the compact surface.

The method has the following steps, which we illustrate on the sphere in
the figures below.(4)

(4) We wish to thank Alexey Bolsinov for clarifying this procedure to us in Oberwolfach
during the finishing stages of work on this paper.
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Figure 7.3. Cutting out a cylinder.

Figure 7.4. Hyperbolic singularity inside the cylinder. (Front and rear
view)

Step 1: Start with the height function h on a given compact surface. Cut
out a cylinder containing only regular levels following the level sets of the
height function h. The upper and lower border of the cylinder are level sets
of h. (Figure 7.3)
Step 2: Leaving the foliation by level sets of h the same on the complement
of the cylinder, change the function inside the cylinder (which is regular)
in such a way as to create a hyperbolic singularity and simultaneously an
elliptic singularity inside the cylinder. See Figure 7.4.
Step 3: Glue the cylinder back into the surface. This gives an example
of a “modified” integrable system with one more elliptic and one more
hyperbolic singularity than we started with.
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Finally, given se and sh such that χ(S) = se−sh and se > s0
e and sh > s0

h,
by repeating this process we can obtain an example of an integrable system
on a compact surface with exactly se elliptic singularities and sh hyperbolic
singularities.

For these systems, we can apply the main recipe of theorem 6.1 to get
the following result:

Proposition 7.3. — The quantization of the integrable system con-
structed above via integrable surgery on a compact orientable surface with
Euler characteristic χ(S) = se−sh and exactly se elliptic and sh hyperbolic
singularities such that se > s0

e and sh > s0
h is given by the formula:

H1(M ;J ) ∼= (CN)2sh ⊕
⊕
b∈BS

Cb.

This shows that this quantization of any compact surface strongly de-
pends on the polarization when we allow polarizations with singularities.

8. Refinements and coverings

In this somewhat technical section we show that the cohomology com-
puted in sections 4 – 6 is the actual sheaf cohomology. We use the methods
and terminology of [10], especially §3.4 and 3.5. We review these briefly
and refer the reader there for more details.

Let M be a compact 2-dimensional prequantized integrable system, as
usual. Recall that sheaf cohomology is defined as the direct limit, over all
open coverings ofM , of the cohomology computed with respect to the cover.
In order to show that the cohomology we have computed in §5 is the actual
sheaf cohomology, we show that every open covering has a refinement whose
cohomology is isomorphic to that found in §5. For simplicity, we assume
that M has only one leaf with hyperbolic singularities; the extension to the
case of several such leaves is reasonably straightforward.

We copy from [10] the following definition. We assume we have a given
set of coordinates (which will usually be action-angle coordinates), which
we call (t, θ).

Definition 8.1. — A brick wall cover of a t-θ rectangle is a finite cov-
ering by open t-θ rectangles (“bricks”), satisfying the following properties:

• The rectangles can be partitioned into sets (“layers”) so that all
rectangles in one layer cover the same interval of t values (“All
bricks in the same layer have the same height”);

ANNALES DE L’INSTITUT FOURIER



GEOMETRIC QUANTIZATION WITH HYPERBOLIC SINGULARITIES 83

• Each brick contains points that are not in any other brick; and
• There are no worse than triple intersections, i.e., the intersection of

two bricks in one layer does not meet the intersection of two bricks
in either of the two adjoining layers.

Figure 8.1. A brick wall cover, and one which is not

Note that we do not require that the number of bricks be the same in each
layer, nor that the layers have the same height, nor that the bricks within
one layer have the same width. See Figure 8.1, where thick lines indicate
intersections. The definition extends in the obvious way to cylinders, where
we identify θ = 0 and θ = 2π.

Let U be an open covering of M . By Lebesgue’s number lemma, there
is some number δ such that any set of diameter less than δ is contained
entirely in some set U ∈ U.

Let Lδ be a “fattening” of the singular leaf, a neighbourhood of the sin-
gular leaf which is the union of leaves of width δ/2. Cover Lδ by rectangles
of width δ/2, together with a small “hyperbolic cross” at the singularity
that also has diameter less than δ. Then let the open covering V be the
collection of these rectangles, together with a brick wall covering of MrLδ
with bricks of diameter less than δ. Then V is a refinement of U.

Now we show that the Čech cohomology of M calculated with respect
to V is the same as we found in 5.

Let E be the union of all layers of bricks which do not meet the singular
leaf. Let A ⊂ Lδ be an open union of leaves around the singular leaf which
does not intersect E and which does not contain any Bohr-Sommerfeld leaf
other than possibly the singular leaf. (This is possible by the discreteness
of Bohr-Sommerfeld leaves.) Let B be an open union of regular leaves such
that A ∪ B = M . Then the covering V induces a covering on A and B

which is a brick wall covering on B, and on A has the same form as shown
in Figure 6.4.

(The point of this construction is the following: A meets only one layer
of bricks, namely the ones covering the singular leaf. B is an open union
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of leaves which, together with A, covers M . We have chosen A and B so
that all intersections between layers of bricks happen outside of A. This
means that the covering induced on A has no triple intersections, and we
can apply the results of §6.2. Since we have from [10] a Mayer-Vietoris for
unions of regular leaves, and since A∩B consists only of regular leaves, we
can apply Mayer-Vietoris to A and B. Thus we avoid having to calculate
with a covering of A with more “layers of bricks,” and thus avoid triple
intersections.)

By the assumption that A contains no Bohr-Sommerfeld leaf, the coho-
mology of A with respect to the covering induced by V is C2N in degree
1, and zero otherwise. Since B is regular, the results of [10] apply, and
the cohomology of B with respect to the covering induced by V has one
dimension for every (nonsingular) Bohr-Sommerfeld leaf.

By Mayer-Vietoris, H∗V(M) ∼= H∗V(A) ⊕ H∗V(B) since A ∩ B is regular
and has no Bohr-Sommerfeld leaves.

Therefore, the cohomology of M calculated with respect to the covering
V is the same as that calculated with respect to the covering in §4.

Since every open covering U has a refinement of the form V, we have
computed the actual sheaf cohomology of M .
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