
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Shuji MORIKAWA & Hiroshi UMEMURA

On a general difference Galois theory II
Tome 59, no 7 (2009), p. 2733-2771.

<http://aif.cedram.org/item?id=AIF_2009__59_7_2733_0>

© Association des Annales de l’institut Fourier, 2009, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2009__59_7_2733_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
59, 7 (2009) 2733-2771

ON A GENERAL DIFFERENCE GALOIS THEORY II

by Shuji MORIKAWA & Hiroshi UMEMURA

Abstract. — We apply the General Galois Theory of difference equations in-
troduced in the first part to concrete examples. The General Galois Theory allows
us to define a discrete dynamical system being infinitesimally solvable, which is
a finer notion than being integrable. We determine all the infinitesimally solvable
discrete dynamical systems on the compact Riemann surfaces.

Résumé. — Nous appliquons à des exemples concrets la théorie de Galois gé-
nérale, pour les équations aux différences introduite, dans la première partie. La
théorie de Galois générale nous permet de définir la notion, plus fine que l’intégrabi-
lité, de résolubilité infinitésimale d’un système dynamique discret. Nous présentons
la liste complète des systèmes dynamiques discrets, infinitésimalement résolubles
sur les surfaces de Riemann compactes.

1. Introduction

Our Galois theory for difference equations is algebraic and is a realization
of the idea of the second author sketched in section 7, [11]. We briefly
explain how, not only in the differential case but also in the discrete case,
our theory is related to Malgrange’s idea [7], when nicely applied to the
discrete case by Casale (cf. [1], [2], [14], [13]). We delightfully celebrate
Professor Malgrange’s 80th birthday showing how wonderful his idea is.

In this second part, we apply our general difference Galois theory to
the question of integrability of discrete dynamical systems on algebraic
varieties.

In theory of dynamical systems, we believe in general what is integrable,
in any sense, is abelian. So far according to Poincaré, we observed inte-
grability of dynamical system through its linearization along a carefully

Keywords: General difference Galois theory, dynamical system, integrable dynamical
system, Galois groupoid.
Math. classification: 12Hxx, 37Fxx, 58Hxx, 14Hxx.



2734 Shuji MORIKAWA & Hiroshi UMEMURA

chosen particular solution, which brought us fruitful results that certain
Hamiltonian systems are not integrable. General difference Galois theory
offers us a more authentic invariant, Galois group, that allows us to mea-
sure, in a canonical way, the degree of integrability of dynamical systems.
So the more abelian the Galois group is, the more integrable the dynamical
system is.

We study in detail discrete dynamical systems (X,ϕ) of iteration of a
rational map ϕ : X → X on an algebraic curve X defined over a field C

of characteristic 0 and so in particular on a compact Riemann surface X
if C = C. We determine, under the assumption that the base field is C,
all the dynamical sysytems (X,ϕ) over an algebraic curve X such that the
Lie algebra of their Galois group is finite dimensional (Theorems 5.16 and
6.5). The Theorem 6.5 is due to Casale [2]. We improved his original proof
in several points.

For these dynamical systems, the Lie algebra is not only finite dimen-
sional but also solvable. So we propose to call them infinitesimally solvable.

Thus we may regard that the classification yields us also the list of in-
finitesimally solvable discrete dynamical systems on a Riemann surface. We
owe for this result much the precedent works [2], [9], [15]. We work in our
algebraic framework trying to make the results and proofs accessible for
wider public.

Several natural question arise.
(1) Prove Theorem 6.5 over an arbitrary field C of characteristic 0.
(2) Explore a similar result for a relative case or for a family of algebraic

curves.
(3) Study an analogue of Theorem 6.5 in the positive characteristic

case.
The first seems manageable. The third requires a differential or difference
Galois theory in characteristic p > 0 that we suggested in [11], [12]. We
hope, however, that it is also realizable without great difficulties.

Throughout the second part C denotes a field of characteristic 0. We
study difference field extension (L, φ)/(C, IdC) or C ⊂ CL such that the
field L is finitely generated over the field C.

Theorem with asterisk, Theorem*, is not proved. So it is not a Theorem
in a strict sense of words. We can, however, sketch a proof. We do not use
it and we want to prove it in a general and natural setting in future.
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2. Groupoid

In the first part, our setting is algebraic. Our theory has, however, also
geometric back ground. It is more naturally understood using groupoid.

Let (L, φ)/C) be a difference field extension such that the field L is
finitely generated over the field C and such that the restriction φ|C is the
identity map IdC on C. According to our Definition 2.18 in the first part [8],
our Galois group is a group functor Inf-gal on the category of L\-algebras.

Let us assume that there exists a model V of the function field C(V )
such that the difference operator φ arises from a regular endomorphism
ϕ : V → V of the model V . Then we can argue as we explained in [14] and
[13] for the differential case, and we get a D-groupoid on V × V as Galois
group of the extension L/C. The functor Inf-gal is a formal group over L\.
It describes the Lie algebra of the Galois groupoid over V × V . We are
going to determine the Lie algebra of the group functor Inf-gal.

Let us briefly recall the definition. See [14], Section 3. From now on, in
this section, we assume C = C but as we see below, it works over any field
C of characteristic 0.

Definition 2.1. — A groupoid is a small category C in which all mor-
phisms are isomorphisms. An object of C is called a vertex and a morphism
in C is called an element of G.

One of the most important example of groupoids is a group operation
on a set.

Example 2.2. — A group operation (G,X) of a group G on a set X
yields a groupoid in the following manner. The set ob C of the groupoid C
is the set X. For x, y ∈ X = ob C, we set Hom(x, y) = {g ∈ G|gx = y}. If
g ∈ Hom(x, y) and h ∈ Hom(y, z), then gx = y and hy = z by definition
so that z = hy = h(gx) = (hg)x and consequently hg ∈ Hom(x, z). So we
can compose two morphisms. If gx = y, then hy = x, h being g−1 so that
every morphism is an isomorphism.

Now let C be a groupoid . We set

Y := {morphisms in the category C}

and
X := ob C.

Let ϕ ∈ Y so that ϕ ∈ Hom(A,B) for some A,B ∈ ob C. Let us denote
the source A of ϕ by s(ϕ) and the target B of ϕ by t(ϕ). So we get two

TOME 59 (2009), FASCICULE 7



2736 Shuji MORIKAWA & Hiroshi UMEMURA

maps s : Y → X and t : Y → X. Let (Y, t)× (Y, s) be the fiber product of
t : Y → X and s : Y → X so that

(Y, t)× (Y, s) = {(ϕ,ψ) ∈ Y × Y |s(ϕ) = t(ψ)}.

The composition of morphisms defines a map

Φ : (Y, t)× (Y, s)→ Y, (ϕ,ψ) 7→ ψ ◦ ϕ.

The associativity of the composition is described by a commutative diagram
that we do not make precise. See [4]. The existence of the identity map IdA
for every A ∈ ob C as well as the property called symmetry that every
morphism is an isomorphism is also characterized in terms of maps and
commutative diagrams.

Here is a summary of the above observation. Groupoid is described by
two sets Y and X, two maps s : Y → X and t : Y → X and the composition
maps

Φ : (Y, t)× (Y, s)→ Y, (ϕ,ψ) 7→ ψ ◦ ϕ.
that satisfy certain commutative diagrams.

This allows us to generalize the notion of groupoid in a category in
which the fiber product of arbitrary two objects exists. This is exactly by
the same way as we define an algebraic group G requiring that, of all, G
is an algebraic variety, the composition law G × G → G is a morphism of
algebraic varieties and so on.

Remark 2.3. — We have shown in example 2.2 that a groupoid is born
from a group operation. We might as well think that groupoid generalizes
group operation. This is false, however, in the following sense.

Let G1 be the non-cyclic abelian group of order 4 and let G2 be the cyclic
group of order 4. Both G1 and G2 operate on the set X consisting of just
4 elements x1, x2, x3 and x4 in such a way that (G1, X) and G2, X) are
principal homogeneous spaces. It suffices to consider the left operation of
each group on itself. The operaions (G1, X) and (G2, X) are not isomorphic
but the groupoid Gpd(G1, X) and Gpd(G2, X) are the same category C of
which the set ob C of objects is {x1, x2, x3, x4} and Hom(xi, xj) consists of
just one element for every 1 6 i, j 6 4. If we pass from group operation
to the groupoid it defines some informations are lost. In oter words the
functor (G,X)→ Gpd(G,X) is not faithful.

Definition 2.4. — Let C be a category in which fiber product exists.
A groupoid in the category C consists of two objects Y,X ∈ ob C, two
morphisms s : Y → X and t : Y → X and a morphism

Φ : (Y, t)× (Y, s)→ Y

ANNALES DE L’INSTITUT FOURIER
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etc, satisfying the above conditions (cf. Grothendieck [4]).

Example 2.5. — Let C be the category of algebraic varieties defined
over a field k and let (G,V ) be an operation of an algebraic group on an
algebraic variety V defined over k. We have two morphisms p, h from G×V
to V , namely the second projection p and the group operation h(g, v) = gv.
Then Y = G×X, X = V , s = p and t = h is a groupoid in the category C
of algebraic varieties defined over k. Compare to Example 2.2.

For a complex manifold V , we can attach the space of its invertible jets
J∗(V ×V ) that is a groupoid over V ×V in the category of analytic spaces.
We recall the definition for V = C. The jet space J(C×C) is an infinite di-
mensional analytic space C×CN with coordinate system (x, , y0, y1, y2, · · · ).
We have two morphisms s : J(C×C)→ C and t : J(C×C)→ C given by

s((x, y0, y1, y2, · · · )) = x and t((x, , y0, y1, y2, · · · )) = y0.

So we have a morphism (s, t) : J(C × C) → C × C that makes J(C × C)
an infinite dimensional affine space over C × C. The invertible jet space
J∗(C× C) is, by definition, the Zarisiki open set of J(C× C). Namely,

J∗(C× C) := {(x, y0, y1, y2, · · · ) ∈ J(C× C)|y1 6= 0}.

We simply denote J∗(C × C) by J∗ and we write the restrictions of the
morphisms s, t to the Zariski open set J∗ by the same letters. Now we
explain J∗ with two morphisms s : J∗ → C and t : J∗ → C is a groupoid. To
this end we must define the composite morphism Φ : (J∗, t)× (J∗, s)→ J∗.
Let

ϕ = (x, y0, y1, · · · ), ψ = (u, v0, v1, · · · ),

be points of J∗ such that y0 = t(ϕ) = s(ψ) = u, i.e., (ϕ,ψ) is a point of
(J∗, t)× (J∗, s). Then we set

(2.1) Φ(ψ,ϕ) := (x, v0, y1v1, y2v1 + y2
1v2, · · · ).

The n-th component of Φ(ψ,ϕ) is given by the following rule. Imagine
formally that ϕ were a function of x taking the value y0 at x, or ϕ(x) = y0,
with ϕ′(x) = y1, ϕ

′′(x) = y2 . . . .
Similarly consider as if ψ were a function of u with ψ(u) = v0, ψ

′(u) =
v1, ψ

′′(u) = v2, . . . . Then Φ(ψ,ϕ) is the composite function ψ ◦ϕ, which is
a function of x, so that its n-th component is the value of dnψ ◦ ϕ/dxn at
x. For example,

d(ψ◦ϕ)/dx=ψuϕx=y1v1, d
2(ψ◦ϕ)/dx2 =ϕxxψu+ϕ2

xψuu = y2v1+y2
1u2, · · ·

TOME 59 (2009), FASCICULE 7



2738 Shuji MORIKAWA & Hiroshi UMEMURA

One can check this composition law is associative and the inverse of

ϕ = (x, y0, y1, · · · )

is given by the inverse function x(y0) and its derivatives dnx(y0)/dyn0 for
n ∈ N, namely by

(y0, x, 1/y1,−y2/y
3
1 , · · · ).

We can very naturally extend this construction over a complex manifold of
any dimension. Namely for an analytic manifold V , we construct pieces of
jet spaces locally and glue them together. Locally for polydiscs U,W in Cn,
the space J(U ×W ) of jets over U ×W is the infinite dimensional affine
space over U ×W with coordinate system

u1, u2, . . . , un, w1, w2, . . . , wn

and formal higher derivatives

∂|ν|wj
∂uν1

1 ∂u
ν2
2 , . . . ∂u

νn
n
,

where 1 6 j 6 n and

0 6= ν = (ν1, ν2, . . . , νn) ∈ Nn

with usual notation

|ν| =
n∑
i=1

νi.

The subspace of invertible jets J∗(U ×W ) is the Zariski open subset of
J(U ×W ) on which the Jacobian

D(w1, w2, . . . , wn)
D(u1, u2, . . . , un)

= det
(
∂wj
∂ui

)
16i,j6n

6= 0.

We define in J∗(V × V ) the composition law of groupoid structure by the
law of calculating derivatives of composite functions, as well as inverse, just
as in the 1-variable case.

The above construction of Lie groupoids, in the category of analytic
spaces, also works in the category of algebraic varieties, or to be more cor-
rect in the category of schemes over a field C. The most important ingre-
dient in the algebraic construction is the universal extension of derivations
[13]. We do not go into the detail because it is technical and will be pub-
lished elsewhere. So for a non-singular algebraic variety V defined over the
field C of characteristic 0, we can define its invertible jet space J∗(V × V )
that is an algebraic variety of infinite dimension, i.e., an affine scheme over
V × V .

ANNALES DE L’INSTITUT FOURIER
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Definition 2.6. — Let V be an algebraic variety defined over a field of
characteristic 0. An algebraic D-groupoid is a sub-groupoid of J∗(V × V )
defined by a differential ideal.

Let (G,V ) be an operation of an algebraic group on an algebraic vari-
ety V defined over a field C. So the operation (G,V ) defines a groupoid
Gpd(G,V ) in the category of schemes. Then there exists a natural mor-
phism

(2.2) Gpd(G,V )→ J∗(V × V )

of groupoids in the category of schemes.

Theorem* 2.7. — The image of the morphism 2.2 is an algebraic D-
groupoid.

When G is a finite group, we can prove the assertion of Theorem* 2.7 in
a trivial way. So we may use it for a finite group.

3. Geometric Principle of Malgrange

We explain, geometrically, general difference Galois theory depends on a
very simple principle. The geometric principle was discovered by Malgrange
[7] in the differential case and Casale applied it successfully to the difference
case ([1], [2]).

3.1. Let us assume that the dynamical system on an algebraic variety
arises from a operation of algebraic group.

Let us consider an effective operation (G,V ) of an algebraic group G on
an algebraic variety V defined over a field C of characteristic 0. Namely,
for an element g ∈ G if gx = x for every point x ∈ V , then g = 1. An
element g ∈ G, to be more precise a C-valued point g ∈ G(C), defines an
automorphism

ϕg : V → V x 7→ gx

of the algebraic variery V over C and hence dually a C-automorphism

ϕ∗g : C(V )→ C(V )

of the field C(V ) of rational functions on V . The algebraic counterpart of
the dynamical system (V, ϕg) on the algebraic variety V of iteration of the
automorpphism ϕg : V → V is the difference field (C(V ), ϕ∗g).

TOME 59 (2009), FASCICULE 7



2740 Shuji MORIKAWA & Hiroshi UMEMURA

Geometric Principle 1. — The Malgrange Galois groupoid

MGal-gpd(V, ϕg)

of the dynamical system (V, ϕg) or equivalently the Galois groupoid

MGal-gpd(C(V ), ϕ∗g)/(C, IdC))

of the difference field extension (C(V ), ϕ∗g/(C, IdC) should be the algebraic
D-groupoid of the algebraic operation (< g >, V ), where < g > denotes the
Zariski closure of the sub-group < g > of G generated by g or the smallest
closed subgroup of G containing the element g. In particular the Galois
groupoid is abelian.

We can show in this case that our Galois group Inf-gal(C(V )/C) of the
difference field extension (C(V ), ϕ∗g)/(C, IdC)) defined in the first part,
which is a formal group over the field L\ or an L\-Lie algebra, is isomorphic
to the Lie algebra

L\⊗C (Lie algebra of the vector fields of the operation of the algebraic
group < g >onV )

that is isomorphic to
L\ ⊗C Lie< g >.

Let us understand Geometric Principle 1 by examples.

Example 3.1. — Let us apply the above observation to the simplest case
(PGL2C ,P1

C). If we assume for simplicity that the field C is algebraically
closed, then by Jordan’s reduction theorem an element g of PGL2(C) is
conjugate to either

(1)
(
a 0
o d

)
, or (2)

(
1 b

o 1

)
according as (1) g is semi-simple or (2) unipotent. So we have

< g > is


a finite group if g is of finite order,

isomorphic to Gm if g is semi-simple and not of finite
order,

isomorphic to Ga if g is unipotent and g 6= I2.

Therefore we could conclude that the Malgrange Galois groupoid

MGal-gpd(P1
C , ϕg).

ANNALES DE L’INSTITUT FOURIER
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is an algebraic D-groupoid equivalent to the operation on P1
C of

a finite group if g is of finite order,
Gm if g is semi-simple and not of finite order,
Ga if g is unipotent and g 6= I2.

Since Inf-gal is the Lie algebra of MGal-gpd, we would get

Inf-gal(P1
C , ϕg) ∼=

{
0 if g is of finite order,

1-dimensional Lie algebra if g is not of finite order.

3.2. What do we do if the dynamical system on the algebraic variety
does not come from an algebraic group operation? Let (L, φ)/(C, IdC) be a
difference field extension such that the field L is finite algebraic over φ(L).
Let (V, ϕ) be a model of a differentia field extension L/C so that C(V ) ' L
and ϕ : V · · · → V is a rational map. It follows from the assumption that L
is finite algebraic over φ(L), the rational map ϕ : V · · · → V is generically
surjective. Therefore we can find a non-empty Zariski open susets U1 and
U2 of V such that the rational map ϕ restricted on U1, the rational map
ϕ|U1 : U1 → U2 is regular and étale.

Geometric Principle 2. — Replace group action by the groupoid
J∗(V × V ) of invertible jets that is canonically attached to the variety V .
The Galois groupoid

MGal-gpd(V, ϕ)
of the dynamical system (V, ϕg) or equivalently the Galois groupoid

MGal-gpd(C(V ), ϕ∗)/(C, IdC))

of the difference field extension (C(V ), ϕ∗)/(C, IdC) is the smallest alge-
braic D-groupoid G on V such that the differential ideal defining the alge-
braic D-groupoid G kills ϕ on U1 × U2.

Definition 3.2. — We adopt, according as Malgrange and Casale, Ge-
ometric Principle 2 as the definition of the Malgrange Galois groupoid

MGal-gpd(V, ϕ)

of the dynamical system (V, ϕ) or equivalently the Galois groupoid

MGal−Gpd (L/C)

of the difference field extension L/C (cf. [2]).

The definition needs precision of the statement and existence of the small-
est one.

TOME 59 (2009), FASCICULE 7
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(1) of all, we identify a D-groupoid on a Zariski open set of V with its
restriction to a smaller Zariski open set. In other words, we work at the
generic point of the variety V or over SpecC(V ). We look for the small-
est algebraic D-groupoid GC(V ) over SpecC(V )× SpecC(V )), the defining
differential ideal of which kills the rational map ϕ.

(2) The assumption of being minimum implies that the algebraic D-
groupoid GC(V ) is reduced. Hence the finite basis theorem of Ritt, for exam-
ple in [5], implies that the defining differential ideal of the smallest groupoid
GC(V ) over SpecC(V )× SpecC(V ) is differentially finitely generated.

(3) Since the number of coefficients of the differential generators of the
defining ideal is finite, the algebraic D-groupoid GC(V ) extends to an alge-
braic D-groupoid over a Zariski open set of V .

As in the differential case, the advantage of our method in the first part
is that it also gives us an explicit construction of MGal-gpd(L/C). See
Section 4 below.

Remarks 3.3. — We have to notice that Geometric Principles 1 and
2 are compatible. There are two points to check.

(i) For an effective algebraic group operation (G,V ), the groupoid
Gpd(G,V ) is an algebraic D-groupoid on V × V .

(ii) For a algebraic D-sub-groupoid G′ of the D-groupoid Gpd(G,V ),
there exists a closed subgroup H of G such that G′ = Gpd(H,V ).

3.3. We do not prove the assertions (i) and (ii) in this note and so we
are not allowed to use Geometric Principle 1. For, the proof that we
can sketch, involves subtle points. In general, a fundamental fact such as
(i) and (ii) should be stated and proved in a transparent way depending
on few simple principles.

For example, the following assertion is not trivial. Let G1 and G2 be
algebraic subgroups in the group of birational automorphism group Bir(V )
of an algebraic variety V . Then the intersection G1 ∩ G2 is an algebraic
subgroup of Bir(V ). Not only the proof but also the statement itself of this
assertion requires a scheme theoretic definitions (cf. [3]).

4. Our Theory and Geometric Principle

We defined, in the part 1, the Galois group Inf-gal(L/K) that is a formal
group or a Lie algebra over the field L\, for a general difference field exten-
sion L/K. We explained in the differential case that how our theory [10] is

ANNALES DE L’INSTITUT FOURIER
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related with Malgrange Theory. The method of [14] and [13] allows us to
illustrate us that algebraic D-groupoid is also involved in our theory. Let
((L,ϕ)/C) be a difference field extension such that the field L is finitely
generated over C, the field L is algebraic over ϕ(L) and every element of
C is fixed.

Proposition 4.1. — Let L be the difference differential subring gener-
ated by ι(L) and L] of F (N, L]). So the ring L][ι(L)] is a subring of L. The
inclusion defines a morphism

Φ : SpecL → SpecL×C SpecL.

SpecL has a structure of algebraic D-groupoid over SpecL×C SpecL.

The ring L is a subring of the ring F (N, L) of functions that is reduced,
and hence L is reduced. So that there exists a model V of the field L/C

such that the algebraic D-groupoid L is defined over V × V (cf. (2) after
Definition 3.2). Namely there exists an algebraic D-groupoid Gal-gpd(L/C)
defined over V × V such that We have an isomorphism

L ' Gal-gpd(L/C)×V×V L⊗ L

of algebraic D-groupoids defined over L ⊗C L. The algebraic D-groupoid
Gal-gpd(L/C) is determined up to birational equivalence.

Definition 4.2. — The algebraic D-groupoid Gal-gpd(L/C) is the Ga-
lois groupoid of the difference field extension L/C.

Now we can speak of the Lie algebra Lie(Gal-gpd(L/C)) of the algebraic
D-groupoid Gal-gpd(L/C), which is a C-Lie algebra of regular vector fields
over the variety V .

Theorem 4.3. — For a difference field extension L/C, the L\-Lie alge-
bra Inf-gal(L/C) is canonically isomorphic to the L\-Lie algebra

L\ ⊗C Lie(Gal-gpd(L/C)).

We can argue as in the differential case ([14], [13]).

5. Examples and a general conclusion
that follows from their observation

In this section, we apply our construction of the first part to various ex-
amples. On the way of calculation, we examine Geometric Principle 1.

TOME 59 (2009), FASCICULE 7
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We use the notation of the first part [8]. Namely, we start from a differ-
ence field extension L/K. We embed the difference field L into the difference
ring F (N, L) of functions on the set N taking values in the field L by the
universal Euler morphism

ι : L→ F (N, L),

which is a morphism of difference algebras. Here the difference operator of
the ring F (N, L) is the shift operator Φ. Then we take a mutually commuta-
tive basis {D1, D2, . . . Dd} of the L-vector space Der(L/K) of derivations.
The differential field consisting of the field L with the commutative deriva-
tions {D1, D2, . . . Dd} is denoted by L]. So the ring F (N, L) of functions
on N is a difference differential ring with respect to the shift operator Φ
and the differential operators D1, D2, . . . Dd. We introduce a difference dif-
ferential sub-algrbra L of F (N, L]) that is generated by ι(L) and the field
L] of constant functions on N. Similarly we define difference differential
sub-algebra K of F (N, L) generated by ι(K) and L] so that we have an
inclusion

K ⊂ L ⊂ F (N, L])
of difference differential algebras. Our Galois group is a group functor Inf-
gal of infinitesimal automorphisms of difference differential algebra exten-
sion L/K. To see the infinitesimal deformations, we embed the difference
differential algebra F (N, L]) in F (N, L\[[W ]]) by the formal Taylor expan-
sion

(5.1) i : L] → L\[[W ]], a 7→
∑
ν∈Nd

1
ν!
Dν(a)W ν

called the universal Taylor expansion, where

ν! = ν1!ν2! · · · νd!, Dnu = Dν1
1 Dν2

2 · · ·Dνd W ν = W ν1
1 W ν2

2 · · ·W
νd
d

for ν = (ν1, ν2, · · · , νd) ∈ Nd and the Wi’s are variables for 1 6 i 6 d.
The universal Taylor expansion morphism is injective and is a differential
mophism or it is compatible with derivations Di and ∂/∂Wi for 1 6 i 6 d.
So we have inclusions

(5.2) K ⊂ L ⊂ F (N, L]) ⊂ F (N, L\[[W ]])

of difference differential algebra with the shift operator Φ and the partial
derivations ∂/∂Wi for 1 6 i 6 d.

According to our definition in the first part, our Galois group is a group
functor Inf-gal(L/K) on the category of L\-algebras. Let us now assume
K = C ⊂ CL = {a ∈ L| φ(a) = a}. We argue carefully choosing a model V
of the difference field L/C. Then as we explained for the differential case in
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[14] and [13], we get a D-groupoid on V ×V as Galois group of the extension
L/C. The functor Inf-gal is a formal group over L\. It describes the Lie
algebra of the Galois groupoid over V × V . We are going to determine the
Lie algebra of the group functor Inf-gal.

Let us understand this procedure by Examples. Let us recall a notation.
We denote an element f ∈ F (N, A) that is a function on N with values in
the ring A by

f =
[

0 1 2 · · · n · · ·
f(0) f(1) f(2) · · · f(n) · · ·

]
.

When we use this notation, we denote the constant function f ∈ F (N, A)
taking the value a by a. Namely

a =
[

0 1 2 · · · n · · ·
a a a · · · a · · ·

]
.

Example 5.1. — The simplest and intriguing example is Example 5.2 of
the first part, diagonalizable autoumorphisms of P1

C . Namely, let K = C

and L = C(x), x being a variable over C. Let a 6= 0 ∈ C and we considered
a C-automorphism

φ : L→ L, x 7→ ax

of the rational function field L = C(x). So (L, φ) is a difference field and
L/C is a difference field extension. Geometrically, we are interested in the
discrete dynamical system on the affine line A1

C or on the projective line
P1
C of iteration of the rational map

A1
C → A1

C , z 7→ az.

We showed the Lie algebra of Inf-gal(L/K) is 1-dimensional, or the formal
group Inf-gal(L/K) is isomorphic to the formal completion Ĝm,L\ if a is not
a root of unity. We can also conclude this by general Picard-Vessiot theory
(cf. section 5 of the first part [8]). If there exists a non-zero integer l, such
that al = 1 then Inf-gal(L/K) = 0. We observe here that the conclusion is
compatible with the Geometric Principle 1 in § 3.

Example 5.2. — Translations on P1
C . Let K and L be as in the previous

example and let 0 6= u ∈ C. We consider a C-automorphism of the rational
function field C(x)

C(x)→ C(x), x 7→ x+ u.

So geometrically we study the dynamical system on the affine line A1C
sending a point z of the affine line to z + u. We can apply Picard-Vessiot
theory of linear difference equations to study this dynamical system. We
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calculate Galois group according to our definition. It follows from the def-
inition

ι(x) =
[

0 1 2 · · ·
x x+ u x+ 2u · · ·

]
= x+ Nu,(5.3)

where we set

Nu =
[

0 1 2 · · ·
0 u 2u · · ·

]
.

We take derivation d/dx as a basis of the L-vector space Der(L/K). So
the difference differential sub-algebra L of F (N, L]) that is generated by
L] and ι(x) invariant under the derivation d/dx and the shift operator Φ
coincides with L][Nu]. The element Nu satisfies the following the difference
and differential equations

(5.4) Φ(Nu) = u+ Nu,
dNu
dx

= 0.

Now let us calculate the Lie algebra of the functor Inf-gal(L/K) over L\.
Let us take L\-algebra A := L\[ε] with ε2 = 0 and consider an infinitesimal
deformation σ ∈ F (L/K) of the inclusion (5.2) that we denote by i so that

i : L → F (N, L\[[W ]]) ⊂ F (N, A[[W ]]).

and
σ : L → F (N, A[[W ]])

is a difference differential morphism satisfying

σ = i mod ε and σ|K = i|K.

Since u 6= 0, the element uN ∈ F (N, L]) ⊂ F (N, L\) is transcendental over
K. It follows from (5.4)

(5.5) σ(Nu) = Nu+ aε

with a ∈ L\. Conversely we can take any element a ∈ L\ and define a
difference differential morphism σ. So the Lie algebra of the group func-
tor Inf-gal(L/K) is one dimensional and the formal group Inf-gal(L/K)
is isomorphic to the formal completion Ĝa. This example is also treated
by Picard-Vessiot theory and compatible with the Geometric Principle
of § 3.

Example 5.3. — Monomials. Let K, L and u be as in example 5.1. Let
l be a non-zero integer different form ±1. We consider the field morphism

φ : C(x)→ C(x) x 7→ uxl.
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We calculate Inf-gal((L, φ)/K). Geometrically speaking, we are interested
in the Galois group of the dynamical system

A1
C → A1

C z 7→ uzl.

As we can argue similarly, we may assume u = 1 and l = 2. (If the
field C is algebraically closed, the dynamical system for an arbitrary u is
equivalent to the case u = 1.) It follows from Definition 2.6 in the first
part [8],

ι(x) =
[

0 1 2 · · ·
x x2 x4 · · ·

]
(5.6)

and so that we have

(5.7) Φ(ι(x)) = ι(X)2

and

x
d

dx
ι(x) =

[
0 1 2 · · ·
x 2x2 3x3 · · ·

]
.

Therefore

ι(x−1)x d

dx
ι(x) =

[
0 1 2 · · ·

x−1 x−2 x−3 · · ·

]
×
[

0 1 2 · · ·
x 2x2 4x4 · · ·

]
=

[
0 1 2 · · ·
1 2 4 · · ·

]
= 2N.(5.8)

So

(5.9) d

dx

(
ι(x−1)x d

dx
ι(x)

)
= 0

It follows from (5.8)

(5.10) L = L][ι(x), 2N] and K = L].

Let us determine the Lie algebra of the group functor Inf-gal(L/K). To
this end let us take L\-algebra A := L\[ε] with ε2 = 0. Let σ ∈ F (L/K)(A)
so that σ is an infinitesimal deformation of the inclusion that we denote by
i so that

i : L → F (N, L\[[W ]]) ⊂ F (N, A[[W ]])
and so the infinitesimal deformation

σ : L → F (N, A[[W ]])

is a difference differential morphism satisfying

σ = i mod ε and σ|K = i|K.
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Therefore the difference differential morphism σ is determined by the image
σ(ι(x)) ∈ F (N, L\[[W ]]). We writing ι(x) by X̃, σ(X̃) should satisfy

(5.11) Φ(σ(X̃)) = Φ(X̃)2 and d

dW

(
σ(X̃)−1(x+W ) d

dW
σ(X̃)

)
= 0

by (5.7) and (5.9). Conversely if an element σ(X̃) ∈ F (N, , L\[[W ]]) satisfies
two equations (5.11), since 2N is transcendental over K = L], we there
exists a unique difference differential infinitesimal deformation morphism
L → F (N, A[[W ]]) that sends X̃ to σ(X̃). Consequently there exists an
element a ∈ A[[W ]] such that

(5.12) σ(X̃) =
[

0 1 2 · · ·
x+W + aε (x+W + aε)2 (x+W + aε)4 · · ·

]
satisfying

(5.13) d

dW

(
σ(X̃)−1(x+W ) d

dW
σ(X̃)

)
= 0.

The latter is equivalent to the linear differential equation

(5.14)
(

(x+W )2 d2

dW 2 − (x+W ) d

dW
+ 1
)
a = 0.

Elements

x+W, (x+W ) log
(

1 + W

x

)
= W

x
− 1

2

(
W

x

)2
+ 1

3

(
W

x

)3
− · · ·

of L\[[W ]] are two linearly independent solutions of linear defferential equa-
tion (5.14). So there exist c1, c2 ∈ L\ such that

a = c1(x+W ) + c2(x+W ) log
(

1 + W

x

)
.

The image σa(X̃) is explicitly given by

σa(X̃) =
[

0 1 2 · · ·
x+W + aε (x+W + aε)2 (x+W + aε)4 · · ·

]
=

[
0 1 2 · · ·
x+W (x+W )2 (x+W )4 · · ·

]
+
[

0 1 2 · · ·
aε 2(x+W )aε 4(x+W )3aε · · ·

]
= X̃

(
1 + 2Naε

x+W

)
.(5.15)
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Since the infinitesimal deformation σ depends only on aε ∈ A[[W ]] =
C[ε][[W ]], let us denote σ by σa so that

σa ∈ F (L/K)(A).

The corresponding difference differential infinitesimal automorphism of

L⊗̂L]A[[W ]]/K⊗̂L]A[[W ]]

is evidently given by

L⊗̂L]A[[W ]]→ L⊗̂L]A[[W ]], X̃ 7→ X̃

(
1 + 2Naε

x+W

)
.

Since log
(
1 + W

x

)
is an element of L\[[W ]] but is not in L, it is inevitable

to introduce the completion L⊗̂L]L\[[W ]]. In other words, this shows the-
oretical necessity of considering the completion.

Hence in particular the dimension of the L\-Lie algebra of the formal
group Inf-gal(L/K) is 2. What is the group structure of the group of infin-
itesimal automorphisms? To this end we have to know the image σaε(2N)
of 2N under σaε.

Lemma 5.4.

(5.16) σaε(2N) = 2N
(

1 + 1
x+W

(
da

dW
− a
)
ε

)
.

We taking the logarithmic derivative of (5.15) with respect to d/dW , the
Lemma follows from (5.8) and (5.15).

Lemma 5.5. — Let us consider the L\-algebra B := L\[ε, ε′] such that
ε2 =ε′2 =0. Let σaε, σbε′ be infinitesimal difference differential K⊗̂L]B[[W ]]-
automorphisms of L⊗̂L]B[[W ]] corresponding to the solutions a = a(W ),
b = b(W ) ∈ L\[[W ]] of linear differential equation (5.14). Namely

(5.17) σ1(X̃) = X̃

(
1 + 2Naε

x+W

)
, σ2(X̃) = X̃

(
1 + 2Nbε′

x+W

)
.

The commutation relation of the automorphisms σaε and σbε′ is

(5.18) σ−1
aε σ

−1
bε′ σaεσbε′ = σcεε′ ,

where
c =

(
a
db

dW
− da

dW
b

)
εε′.

It is sufficient to check that the images of the generator X̃ by the both
automorphisms in the left and right of (5.18) coincide. This follows from
lemma 5.4 and (5.17).
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Definition 5.6. — We denote by AF1(R) the group of affine transfor-
mations of dimension 1 with coefficients in a ring R. So

AF1(R) = {(ai,j)16i,j62 ∈ GL2(R)|a21 = 0, a22 = 1} .

The Lie algebra of the R-algebraic group AF1R is denoted by af1R.

The Lie algebra af1(R) is a 2-dimensional Lie algebra of gl2(R) of 2× 2
matrices with entries in R spanned by

e =
[

1 0
0 0

]
f =

[
0 1
0 0

]
∈ gl2(R)

satisfying

(5.19) [e, f ] = f.

Corollary 5.7. — The Lie algebra of the formal group Inf-gal(L/K)
is isomorphic to the Lie algebra af1L\ . The group functor Inf-gal(L/K) is
isomorphic to the formal group ÂF1L\ .

It is sufficient to show the assertion. The L\-vector space of solutions
in L\[[W ]] of the linear differential equation (5.14) is 2-dimensional and
spanned by

x+W, (x+W ) log
(

1 + W

X

)
.

Corollary now follows from (5.19) if we notice[
(x+W ) d

dW
, (x+W ) log

(
1 + W

X

)]
= (x+W ) d

dW
.

Remarks 5.8. — Examples 5.1, 5.2 and 5.3 are all of the same type.
They are dynamical systems on an algebraic group G defined over C and
arises in the following way. Let b be a C-valued point of the algebraic group
G and let h : G → G be a C-endomorphism of the algebraic group G. We
introduce the endomorphism

(5.20) ϕ : G→ G, z 7→ h(z)b

of algebraic variety G so that we can consider the dynamical system (G,ϕ).
The group G = GaC for Examples 5.1, 5.2, and G = GmC for Example 5.3.
We treat the elliptic curve case in Example 5.11 below (See also [9]).
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4.2. Here is the geometric interpretation of the Example 5.3. We work
on the projective line P1

C , or rather over the algebraic group GmC . We
consider

φ : GmC → GmC , x 7→ x2.

It is natural to consider the invariant 1-form dx/x on the algebraic group
GmC . The endomorphism φ transforms

φ∗
(
dx

x

)
= 2dx

x
.

It follows from (5.9)

(5.21) dX̃

X̃
= 2G dx

x
.

The function ι(x) = X̃ ∈ F (N, L) on N is a solution to the difference
equation

Φ(X̃) = X̃2

with initial condition X̃(0) = x. Namely, we are interested in the dynamical
system

x 7→ X̃.

Moreover X̃ satisfies the differential equation (5.21). Let us observe that
the vector fields

(5.22) x
d

dx
and x log x d

dx

are a basis of C-vector space of vector fields that leave the differential form
dx/x semi-invariant. In fact, let θ1 = xd/dx. For ε with ε2 = 0, we have

d(x+ εx)
x+ εx

= 1 + ε

1 + ε

dx

x
= dx

x
.

For θ2 = (x log x)d/dx,

d(x+ εx log x)
x+ εx log x

= (1 + ε log x+ 1)dx
x(1 + ε log x)

= (1 + (log x+ 1))(1− ε log x)dx
x

= (1 + ε)dx
x
.
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4.3. If the base field C = C, we have an analytic covering morphism

(5.23) π : C→ C∗, u 7→ x = expu

so that u = log x. We can use the covering morphsim π to understand vector
fields (5.22) better. The invariant vector field dx/x on the Lie group C∗ is
transformed to the invariant 1-form dx on the additive group C. π∗(dx/x) =
du. More generally we have the following table. The corresponding vector
fields in a law are compatible through the morphism (5.23).

On the group C∗ On the group C
Invariant 1-form ω dx/x π∗d/dx = du
Vector field leaving ω invariant xd/dx d/du
Vector field leaving ω semi-invariant (x log x)d/dx ud/du

Example 5.9. — Chebyshev polynomials. Let us recall the definitio of
the Chebyshev polynomials. Let us consider the automorphism

φ+ : GmC → GmC , z 7→ z−1

of the multiplicative group GmC . So

Γ = {IdGmC , φ+}

is a subgroup of the automorphism group of Gm,C . For a positive integer d,

φ̃d : GmC → GmC , z 7→ zd

is an endomorphism of GmC commuting with the elements of the group Γ.
Therefore the morphism φ̃d induces an endomorphism

φd : GmC/Γ→ GmC/Γ

of the quotient space GmC/Γ making the following diagram commutative.

(5.24)
GmC

φ̃d−−−−→ GmCy y
GmC/Γ −−−−→

φd
GmC/Γ,

where the vertical morphism is the quotient morpism.

The morpism φd is the geometric interpretation of the Chebyshev polyno-
mial of degree d. To get the usual concrete form of Chebyshef polynomials,
we choose the coordinate system z on the multiplicative group GmC such
that GmC = SpecC[z, z−1]. So GmC/Γ = Spec[z + z−1] ' A1

C . We writing
y := z+ z−1, the polynomial fd(y) := φ∗d(y) ∈ C[y] is the Chebyshev poly-
nomial of degree d, where φ∗d : C[y]→ C[y] is the C-algebra morphism dual
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to the scheme morphism φd : SpecC[y] → SpecC[y]. For example d = 2,
we get

f2(y) = φ∗2(y + y−1) = φ̃2
∗(z + z−1) = z2 + z−2 = y2 − 2

so that the Chebyshev polynomial of the second degree f2(y) = y2 − 2.
Similary

f3(y) = y3 − 3y, f4(y) = y4 − 4y2 + 2, . . . .

Conclusion. The Lie algebra Inf-gal((C(y), fd(y))/C) is isomorphic to
al1(L) for every integer d > 2.

This follows from the argument of Example 5.3 and the commutative
diagram (5.24). Let us have a closer look for d = 2. We keep in mind the
commutative diagram (5.24). We set L := C(y) and L̃ := C(z) so that L̃/L
is an algebraic extension of degree 2. We study the dynamical system or
the difference field (L, φ∗2) by using the covering (L̃, φ̃∗2). We consider the
morphism ι : L → F (N, L̃\) as well as the morphism ι : L̃ → F (N, L̃\). So
the latter is the extension of of the former. Let us denote ι(z) by Z̃ and
ι(y) by Ỹ . As we have seen in Example 5.3,

(5.25) dZ̃

dz
= 2N Z̃

z
.

Since ι is an algebra morphsim, it follows from

(5.26) y = z + z−1

that

(5.27) Ỹ = Z̃ + Z̃−1.

Now the equations (5.25), (5.21) and (2.1) give

(5.28)
(
dW̃

dw

)2

=
(

2N W̃
2 − 4

w2 − 4

)2

so that

(5.29) dW̃

dw
= ±2N W̃

2 − 4
w2 − 4

.

Now we arrive at the conclusion by the equality (5.29) and the argument
of Example 5.3.

Example 5.10 (Curves of genus 1). — Let E be a non-singular projective
algebraic curve of genus 1 defined over a field C of characteristic 0.
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We know that the curve E is isomorphic to a cubic curve in P2 defined
by

(5.30) y0y
2
2 = 4y3

1 − g2y
2
0y1 − g3y

3
0 , g2, g3 ∈ C,

with 4g23 + 27g2
3 6= 0. So the rational function field of the curve C(E) =

C(y, z) with y = y1/y0 and z = y2/y0. So we have

(5.31) z2 = 4y3 − g2y − g3.

See [9], 6.3. We call (5.31) Weierstrass form of the elliptic curve E so that
we have C(E) ' C(y, z), y, z satisfying (5.31).

Let now ϕ : E → E be an endomorphism of a non-singular projective
curve E of genus 1 defined over C. We assume that ϕ is dominant so that
we can speak of the discrete dynamical system of iteration of ϕ on the
curve E or the difference field (C(E), ϕ∗), where

ϕ∗ : C(E)→ C(E)

is an endomorphism of the rational function field C(E) sending a rational
function f ∈ C(E) to f ◦ ϕ.

We know that the curve E has C-rational points and if we take a C-
rational point e of E, then the curve E has a unique commutative algebraic
group structure such that e is the 0 of the group. When we consider not
only the curve C but also the group structure on E we denote the algebraic
group by (E, e).

We also know that, given an endomorphism ϕ of the genus 1 curve E,
then ϕ is an endomorphism of the algebraic group (E, e) if and only if
ϕ(e) = e. Furthermore when an endomorphism ϕ of the curve E is given,
we have either

(1) ϕ is an endomorphism of the algebraic group (E, e), or
(2) there exist a C-rational point a ∈ E and the endomorpshism ψ :

(E, e)→ (E, e) of the algebraic group such that

ϕ(q) = ψ(q) + a

for every point q ∈ E.

(5.10.1) If ϕ : E → E is an automorphism of finite order, then the Lie
algebra of Inf-gal(L/C) = 0.

(5.10.2) If ϕ : E → E is an automorphism of the curve E and if it is not
of finite order, then the Lie algebra of Inf-gal(L/C) is the 1-dimensional
L\-Lie algebra.

(5.10.3) If ϕ : E → E is an endomorphism of the elliptic curve E and if
degϕ > 2, then the Lie algebra Inf-gal(L/C) is isomorphic to af1(L).
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As we noticed in § 3, (5.10.1) is a particular instance of Geometric
Principle 1 that we can prove directly in this case. (5.10.2) is examined
as Examples 5.1 and 5.2. Let us prove (5.10.3). In fact, the endomorphisme
ring R of the elliptic curve (E, e) is well-known (cf. [9], Proposition 6.25).
The important fact is the endomorphism ring R is commutative algebra
integral over Z. As other endomorphisms are treated in a similar way. Let
us study a particular endomorphism ϕl(q) = lq for every point q of E, l
being an integer not equal to ±1.

We use the Weierstrass form (5.31) so that we identify C(E) = C(y, z),
which we denote by L. Let us consider ι : L → F (N, L\). We denote ι(y)
by Ỹ and ιz by Z̃. So we have

Z̃2 = 4Ỹ 3 − g2Ỹ − g3.

The derivation d/dy of the field C(y) of rational functions of 1-variable
is extended to a unique derivation of the field C(E) = C(y, z) which we
denote also by d/dy. We know that zd/dy is translation invariant regular
vector field on the elliptic curve E and its dual 1-form (1/z)dy is also
translation invariant. We take as a basis of the L\ vector space Der(L/C),
the derivation zd/dy ∈ Der(L/C).

We know that ϕ∗l (1/z)dy = l(1/z)dy. So for every f ∈ C(E), we have

(5.32) z
dϕ∗l (f)
dy

= lz
df

dy
.

Now the argument of Example 4.3 gives us the result.

Example 5.11. — Lattès discovered, in 1918, discrete dynamical systems
of iteration of a rational map on P1

C of which the Fatou set is empty. So
they are considered to be quite chaotic. They are, however, not so wild. In
fact their Galois group Inf-gal is isomorphic to the solvable Lie algebra af1.
These dynamical systems are related with the elliptic curves. They come
from an ellipic curve E over the field C of characteristic 0 in the following
manner. We choose once for all a point e of E. So the group structure (E, e)
on E is fixed.

Let Γ 6= 1 be a group of automorphisms of the elliptic curve (E, e). We
know the group Γ is necessarily finite. We explained above the three types of
endomorphism ring R in the proof of (5.10.3). So the group Γ is a subgroup
of the finite group of units of the above listed rings R. We can show that if
Γ is not trivial, the quotient E/Γ is isomorphic to the projective line P1

C .
Let now ϕ1 : E → E be an endomorphism of the elliptic curve E. So we

can find an endomorphism ϕ1 : (E, e)→ (E, e) of the algebraic group and
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a point t ∈ E such that

ϕ0(q) = ϕ1(q) + t.

Now we assume that the map ϕ0 : E → E commutes with every element
of the group Γ ⊂ Aut(E, e). The condition is satisfied if and only if 2t = 0,
if we recall the fact that the ring R = End(E, e) is a commutative ring. So
we get a commutative diagram

(5.33)
E

ϕ0−−−−→ Ey y
E/Γ ' P1

C −−−−→
ϕ

E/Γ ' P1
C ,

where the vertical morphisms are the quotient morpism.

Definition 5.12. — A Lattès map associated with the elliptic curve E
and the morphism ϕ0 : E → E is the induced map ϕ : P1

C → P1
C .

Therefore, we get a dynamical system

(P1
C , ϕ)

or equivalently the difference field

(C(P1
C), ϕ∗).

The argument of studying the dynamical system of the Chebyshev poly-
nomials allows us to conclude the following

Proposition 5.13. — If the endomorphism ϕ0 is not an isomorphism,
the Lie algebra of Galois group Inf-gal(C(P1

C), ϕ∗) of a dynamical system
of Lattès is isomorphic to af1.

We analyzed concrete examples. We summarize the arguments in a form
of Theorem. To this end, we need a definition.

Definition 5.14. — Let G be an algebraic group defined over C and
let Γ be a finite group of automorphisms of the algebraic group G. Let
ϕ1 : G → G be an endomorphism of the algebraic group G and t be a C-
rational point of G. We call the map ϕ0 : G→ G such that ϕ0(z) = ϕ1(z).t
for every point z ∈ G, an End-translation map.

Let ϕ0 be an End-translation map commuting with every element of the
automorphism group Γ. So ϕ0 induces a map ϕ : G/Γ → G/Γ, which we
call a generalized Chebyshef-Lattès map. More generally, it is convenient to
call a map birationally equivalent to a generalized Chebyshef-Lattès map,
of generalized Chebyshef-Lattès type.
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Remarks 5.15. — (1) For a logical simplicity, we do not exclude the case
Γ = 1. Hence in all the examples we have so far examined, the morphism
ϕ : V → V of the dynamical system is either automorphism of finite order
or of generalized Chebyshev-Lattès type.

(2) For the multiplcative group Gm, the automorphism Γ = {±1} of Gm
and an integer |l| > 2, the map

ϕ0 : Gm → Gm, x 7→ −xl

engenders a polynomial generalizing the Chebyshev polynomials but it is
equivalent to the Chebyshev polynomial if we can solve the algebraic equa-
tion ξl−1 = −1 in C.

Theorem 5.16. — Let ϕ : V → V be a dominant endomorphism of
an algebraic curve defined over a field C of characteristic 0. Then the Lie
algebra of Inf-gal((C(V )ϕ)/(C, IdC)) is at most af1, more precisely either
of dimension 6 1 or isomorphic to af1 for the following 2 types of dynam-
ical systems. In particular, the dynamical system is finite dimensional and
infinitesimally solvable according to Definition 6.2 below.

(1) ϕ : V → V is an automorphism of finite order.
(2) The dynamical systems of generalized Chebyshev-Lattès type map.

Remark 5.17. — We can make statements of the Theorem more precise.
Let (V, ϕ) be a dynamical system in the list.

(1) If ϕ is finite order, then Inf-gal(C(V )/C) is 0.
(2) If ϕ is an automorphism of infinite order, then Inf-gal(C(V )/C) is

1-dimensional.
(3) If the degree of the map ϕ is > 2, then the Lie algebra of Inf-gal

(C(V )/C) is isomorphic to af1.

6. Solvable dynamical systems
on an algebraic curve defined over C

There are extensive works on the integrability of discrete dynamical sys-
tems (Theorem 6.1 below, [15]). One of the definitions of integrability is
the existence of independent commutative rational maps.

Theorem 6.1 (Julia, Fatou, Ritt and Erëmenko). — Let ϕ,ψ ∈ C(z)
be rational maps of degree > 2 with coefficients in C such that

ϕ ◦ ψ = ψ ◦ ϕ.
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Then either (1) there exist integers m,n such that ϕ◦m = ψ◦n, or (2) the
rational maps ϕ and ψ are birationally equivalent to monomials, Chebyshev
polynomials or Lattès maps.

See [9], 6.8 Theorem 6.79.
Theorem 6.1 says if we adopt as a definition of integrabillity the existence

of independent commuting rational maps, the integrable discrete dynamical
system of iteration of a rational map ϕ : P1

C → P1
C with degϕ > 2 are

exhausted by monomials, Chebyshev polynomials or Lattès maps.
General difference Galois theory also allows us to measure integrability.

We propose the following

Definition 6.2. — Let V be an algebraic variety defined over a field C
of characteristec 0 and ϕ : V → V be a dominant rational map also defined
over C. We say that the dynamical system (V, ϕ) is infinitesimally abelian,
respectively solvable or semi-simple if the Lie algebra of he Galois group
Inf-gal(C(V ), ϕ) is abelian, respectively solvable or semi-simple.

We recall several results that we use in the proof of Theorem 6.5 below.
From now on, we work over the field C of complex numbers and we prove

the converse of Theorem 5.16.
We have to consider algebraic D-groupoid defined on an open algebraic

curve. Let us fix notations. Let us work over the affine line A1
C. The coordi-

nate ring of the space of invertible jets is, by definition, C[x][y, y1, y2, · · · ,
y−1

1 ] with derivation
∂

∂x
+
∞∑
i=0

yi+1
∂

∂yi
,

where the yi’s are variables for i ∈ N (y0 being y). When we consider a
D-groupoid over an open set Spec (R) of the affine line, we replace the
coordinate ring C[x] of A1

C by R. So if we are interested in a local definition
of D-groupoid on a rational curve, we replace the coordinate ring C[x] by
the field C(x).

Proposition 6.3. — An algebraic D-groupoid of finite dimension over
a rational curve that is a Zariski open set of Spec C[x] is a sub-groupoid of
the groupoid defined by a differential ideal of C(x)[y, y1, y2, · · · y−1

1 ] gener-
ated by

G3(ν) := ν(y)y2
1 + 2y3

y1
− 3

(
y2

y1

)2
− ν(x),

where ν(x) ∈ C(x).
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See Casale [2], Proposition 9.
We can not avoid transcendental method. So we have to know the be-

havior of the D-groupoid in Definition 6.3 under the inverse image. Let us
now assume that we are in analytic situation so that the function ν(x) is
a holomorphic function defined on a open set U of C. So G3(ν) defines
an analytic D-groupoid over U × U in the category of analytic spaces and
ϕ : W → U a holomorphic map of an open set W of C. Then we have

Proposition 6.4.
ϕ∗G3(ν) = G3(ν ◦ ϕϕ′2 + S(ϕ)),

where S(ϕ) is the Schwarzian derivative of the map ϕ with respect to the
coordinate system on W .

See Casale [2], Proposition 8.
We determine infinitesimally solvable dynamical systems over curves. In

other words, we prove the converse of Theorem 5.16, when the base field
is C.

Theorem 6.5 (Casale). — Let (V, ϕ) be a discrete dynamical system
over an algebraic curve V defined over the complex number field C so that

ϕ : V → V

is a dominant C-rational map. Then the following three conditions 1, 2 and
3 for the dynamical system (V, ϕ) are equivalent.

(1) The dimension of the Galois group

Inf-gal((C(V ), ϕ∗)/(C, IdC))

is finite.
(2) The dynamical system (V, ϕ) is birationally equivalent to one of the

following dynamical systems.
(a) The endomorphism ϕ : V → V is an automorphism of finite

order.
(b) The dynamical systems of generalized Chebyshev-Lattès type.

(3) The dynamical system (V, ϕ) is infinitesimally solvable.

Remark 6.6. — Here is the list of concrete dynamical systems of 2 in
the Theorem.

(1) The morhism ϕ is an automorphism of finite order.
(2) The curve V is the projective line P1

C and the morphism ϕ is an
automorphism.
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(3) The curve V is the projective line P1
C and there exists an integer n 6=

0 such that the morphism ϕ(x) = xn, where x is an inhomogeneous
coordinate system on the projective line.

(4) The curve V is the projective line P1
C and the map ϕ is a Chebyshev

polynomial.
(5) V is an elliptic curve and ϕ is an endomorphism of the elliptic

curve V .
(6) Examples of Lattès in Example 5.11.

We have shown that the condition 2 implies the condition 3 in Theo-
rem 5.16.

The condition 1 is an evident consequence of the condition 3 if we recall
the well-known fact that a Lie algebra g of holomorphic vector fields on an
open disc on C is not solvable if dim g > 3.

So we have to show that the condition 1 implies the condition 2. As
we noticed in § 4, the Galois group is 0 if ϕ is a birational map of finite
order. In particular, we may assume the genus g of the curve V is 6 1.
In fact, if g > 2, then the endomorphsm ϕ is birational by the Hurwitz’s
formula. Further more by a theorem of Hurwitz, the group of birational
automophisms of V is finite. We replacing V by its non-singular model if
necessary, ϕ is an automorphism of finite order of V .

If g = 1, then, taking the non-singular model, we may assume that
the ϕ is either the translation by a point of the elliptic curve V or an
endomorphism of the elliptic curve. In both cases, we examined that the
dimension of the Galois group is of at most 2. Namely if either ϕ is an
automorphism or V is a curve of genus > 1, the dynamical system (V, ϕ)
satisfies all the conditions of the Theorem.

So we may assume that the curve V is the projective line P1
C and we have

to show condition 1 implies 2. Since every automorphism of P1
C satisfies con-

dition 2, we may further assume that degϕ > 2. The condition 1 says that
the transcendence degree of the algebra L over L\ is finite. Equivalently,
the algebraic D-groupoid SpecL over SpecL\ is finite dimensional. In other
words, there exists an algebraic D-groupoid G of finite dimension, which is
a model of SpecL, defined over a Zariski open set of P1

C such that ϕ◦n is
a solution to G or solution to the defining differential ideal of G. Now, it
follows from Proposition 6.3 that there exists a rational function ν(x) such
that y = ϕ◦n satisfies the differential equation G3(ν) = 0 for every n ∈ N,
x being an appropriate inhomogeneous coordinate system on P1

C. We prove
for sufficiently big n, the iteration ϕ◦n is one of the maps of the condition 2.
Since we assume degϕ > 2, it follows from Theorems 1.29 and 1.35 of [9]
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that there are many repelling periodic points of ϕ. In fact, we can find an
integer n such that there exists a point p ∈ P1

C such that p is a repelling
fixed point of ϕ◦n and such that the rational function ν(x) defining G3(ν)
is regular at p. Therefore, we have |λ| > 1, λ being (ϕ◦n)′(p) = dϕ◦n(p)/dx.

It follows from a Theorem of Kœnigs that we can linearize the dynamical
system locally around the point p. In other words, we can find a holomor-
phic map F : W → P1

C form an open neighborhood W of the origin 0 ∈ C
such that F ′(0) = 1 and such that F is locally equivariant, namely

(6.1) F (λw) = ϕ◦n(F (w)) for every point w in a neighborhood of 0 ∈ C.

Thanks to equation (6.1), since |λ| > 1, we can extend the holomorphic map
F over the whole complex plain F : C → P1

C. We denote this extension of
F also by F so that we have a holomorphic map F : C → P1

C equivariant
with respect to the multiplication by λ and the morphism ϕ◦n.

(6.2) F (λw) = ϕ◦n(F (w)) for every point w ∈ C .

So the multiplication by λ on C sending w 7→ λw is a solution to the
inverse image G3(ν) of G3(ν). Therefore

(6.3) ν(λw)λ2 = ν(w).

Since ν is holomorphic at w = 0 and hence expanded into a power series
in w, consequently by equation (6.3) we conclude ν = 0. It is convenient to
introduce a few notations.

Notation. — Let t be a point of C such that the holomorphic map F

is unramified at the point t. We denote by Ft the restriction of F in a
neighborhood of t. So Ft is a local isomorphism and hence we can speak of
its local inverse F−1

t .
Let r, s be two points of C such that the holomorphic map F : C → P1

C
is unramified at r and s. We set

Fsr := F−1
s ◦ Fr

that is a local holomorhic isomorphism of a neighborhood of r to a neigh-
borhood of s.

So it follows from the definition of Fsrthat we have

(6.4) F = F ◦ Fsr

in a neighborhood of the point r. Consequently equation (6.4) implies

(6.5) G3(0) = F ∗G3(ν) = F ∗sr ◦ F ∗G3(ν) = F ∗srG3(0).
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This shows that S(Fsr) = 0 by Proposition 6.4. In other words, Fsr is
a Möbius transformation of C and in particular it can be extended to a
rational map Fsr : C→ C. Now it follows from (6.4) that we have globally

(6.6) F = F ◦ Fsr.

This is an identity between meromorphic functions on C.

Case I. — There exist points r, s ∈ C such that F is unramified at r, s
and such that the Möbius transformation Fsr has a pole on C.

There exists a point t ∈ C such that the transformation Fsr maps the
point t ∈ C to the infinity. Now it follows from (6.6) that F can be holo-
morphically extended over P1

C so that we have

(6.7) F : P1
C → P1

C.

Let Γ ⊂ PGL2(C) be the subgroup of PGL2(C) generated by the subset

{Fsr ∈ PGL2(C)| F is unramified at r, s ∈ C with F (r) = F (s)}.

Lemma 6.7. — Γ is a finite group.

Proof of Lemma. — If Γ were a infinite group, we could find infinitely
many distinct points p0, p1, p2, . . . on P1

C such that for every i ∈ N, the
points pi are on the Γ-orbit Γp0 of the point p0 and such that the limit
p of the points pi, for the usual topology, exists on the projective line P1

C.
So by (6.6), (6.7), F (p0) = F (p1) = F (p2) = · · · = F (p) and hence F is a
constant function, which is a contradiction. �

Lemma 6.8. — The map F : P1
C → P1

C factors through the quotient
π; P1

C → P1
C/Γ and induces an isomorphism F : P1

C/Γ→̃P1
C so that we have

F ◦ π = F.

In other words, F : P1
C → P1

C is the quotient morphism of P1
C with respect

to the action of the group Γ.

Proof of Lemma. — In fact, the map F factors through the quotient
map π by (6.6) inducing the map F : P1

C/Γ→P1
C. We have to show that

F is an isomorphism. This follows from the following observation. Let us
take a small disk D on P1

C such that the map F is unramified on F−1(D).
So the inverse image F−1(D) is a disjoint union of connected open sets
mapped isomorphically to D by F . If we take two points r, s ∈ F−1(D)
such that F (r) = F (s), then Fsr interchanges the connected components of
F−1(D) sending the point r to s. So elements of the group Γ interchanges
transitively the connective components of F−1(D). Therefore the degree of
the map F is 1. �
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Now we have the following commutative diagram.

(6.8)
P1

C
Λ−−−−→ P1

CyF yF
P1

C/Γ = P1
C −−−−→

ϕ◦n
P1

C/Γ = P1
C.

Lemma 6.9. — Denoting by Λ : C→ C the affine transformation of the
multiplication by λ, we have in the group PGL2(C)

ΛΓΛ−1 ⊂ Γ.

This follows from Lemma 6.8 and diagram (6.8)

Corollary 6.10. — ΛΓΛ−1 = Γ.

This follows from the Lemmas 6.7 and 6.9.
We conclude now from commutative diagram 6.8 and Corolary 6.10 that

ϕ◦n : P1
C → P1

C is an automorphism of P1
C. So ϕ itself is an automorphism

of P1
C.

Now we pass to

Case II. — For every r, s ∈ P1
C such that F is unramified at r and s

with F (r) = F (s), the Möbius transformation Fsr is regular on C so that
Fsr is an affine transformation of C.

Let us define the subgroup Γ ⊂ PGL2(C) as in Case I. Then Γ is a
subgroup of AF1(C) of affine transformations. So the group Γ operates on
C and the function F : C → P1

C is Γ-invariant. It is convenient to use the
matrix representation of the affine transformation group AF1(C). Namely
to an affine transformation

w 7→ aw + b, 0 6= a, b ∈ C

corresponds the matrix [
a b

0 1

]
.

In other words, we identify the affine transformation group AF∗1(C) with
the group of matrices of the above form. Let U be the unipotent radical of
AF1(C) so that

U =
{[ 1 b

0 1

]
|b ∈ C

}
.

We have an exact sequence

1→ U → AF1 → C∗ → 1.
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which induces an exact sequence

(6.9) 1→ U ∩ Γ→ Γ→ Γ/(U ∩ Γ)→ 1.

Lemma 6.11. — The rank of the torsion free abelian group U0 := U ∩Γ
is at most 2.

Since Γ-invariant meromorphic function F is U0-invariant, the assertion
is well-known in theory of elliptic functions and easy to prove.

Now we study case by case quickly.

Sub-case II.1. — U0 = 0.

In this case, the group Γ is isomorphic to Γ/U0 that is a subgroup of
C∗. So the group Γ is abelian and consists of only semi-simple elements.
So we can simultaneously diagonalize all the elements of the subgroup Γ.
Namely, choosing an appropriate affine coordinate of the line C, we may
assume that

Γ ⊂ C∗ =
{[

a 0
0 1

]
|0 6= a ∈ C

}
⊂ AF1(C).

The argument of Lemma 6.7 allows us to show that Γ is a finite group
and then we can appy the method of the proof of Lemmas 6.8 and 6.9 to
this case to conclude that the rational map ϕ◦n : P1

C → P1
C defining the

dynamical system is an automorphism of the projective line P1
C. So ϕ itself

is an automorphism of P1
C.

The next case to examine is

Case II.2. — Rank U0 = 1.

We may assume that the group U0 ⊂ AF1(C) is the subgroup of all the
translations by integers. i.e.,

U0 =
{[

1 n

0 1

]
|n ∈ N

}
.

So C/Γ0 is isomorphic to the group C∗ and the map F : C → P1
C factors

through the quotient π : C → P1
C giving a map F : C∗ → P1

C so that
F = F ◦ π.

Lemma 6.12. — Replacing Γ by an inner automorphism of AF1(C), we
may assume that we have either

Γ = U0, or Γ = < U0,

[
−1 0
0 1

]
> .
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Proof of Lemma. — Let us assume U0 6= Γ. We take an element R ∈
Γ \ U0 so that

R =
[
a b

0 1

]
with 0 6= a, b ∈ C.

As R is not an element of U0, we have a 6= 1. Since U0 is a normal subgroup
of the group Γ, the element R ∈ Γ normalizes the group U0. So for any
integer n [

a b

0 1

] [
1 n

0 1

] [
a b

0 1

]−1

=
[

1 an

0 1

]
∈ U0.

Hence an ∈ Z for every integer n and consequently a = ±1. As we assume
R /∈ U0, a = −1. Namely

R =
[
−1 b

0 1

]
.

Now let us denote by B the unipotent matrix[
1 − b2
0 1

]
.

By an easy calculation,

BRB−1 =
[
−1 0
0 1

]
.

So if we consider the inner automorphism

Ad(B) : AF1(C)→ AF1(C), X 7→ BXB−1,

then the automorphism Ad(B) of the group AF1(C) leaves the subgroup
U0 invariant and transforms R to[

−1 0
0 1

]
.

Namely, we have shown that

< U0,

[
−1 0
0 1

]
> ⊂ Ad(B)(Γ).

We prove that this inclusion is the identity. To this end let S ∈ Γ and show
that

Ad(B)(S) ∈ < U0,

[
−1 0
0 1

]
> .

We may assume S /∈ U0. By the argument above, we have

S =
[
−1 c

0 1

]
with c ∈ C.
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Since the product

SR =
[
−1 c

0 1

] [
−1 b

0 1

]
=
[

1 c− b
0 1

]
of two elements of the group Γ is an element of Γ and unipotent so that it
is in U0. Hence c− b = n ∈ Z. It suffices to notice

S =
[
−1 b+ n

0 1

]
=
[
−1 b

0 1

] [
1 −n
0 1

]
which implies

AdB(S) = Ad(B)(R)Ad(B)

([
1 −n
0 1

])
=
[
−1 0
0 1

] [
1 −n
0 1

]
∈
[
−1 0
0 1

]
U0

showing

Ad(S) ∈ < U0,

[
−1 0
0 1

]
> .

We may assume by Lemma 6.12 that either

(1) Γ = U0, or (2) Γ = < U0,

[
−1 0
0 1

]
> .

In the case (1), the quotient C/Γ exists and isomorphic to C/Z = C∗.
The argument of Lemma 6.8 shows the map F : C → P1

C is he quotient
morphism π : C→ C∗. Letting

Λ =
[
−1 0
0 1

]
∈ AF1(C).

We show by the argument of Lemma 6.9

ΛU0Λ−1 ⊂ U0,

which implies 0 6= λ ∈ N and the map ϕ◦n : P1
C → P1

C is equivalent to the
map

C∗ → C∗, x 7→ xn

for the integer n. We are in the case of (3) of the Theorem. �

Remark 6.13. — We do not necessarily have ΛU0Λ−1 = U0.

In the second case (2)

Γ = < U0,

[
−1 0
0 1

]
>,
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the quotient C/Γ exists and the map F : C→ P1
C is the quotient morphism.

So ΛU0Λ−1 ⊂ U0. therefore λ = d ∈ Z and the map ϕ◦n : P1
C → P1

C defining
the dynamical system is the Chebyshev polynomial of degree |d|. We notice
here that d and −d give the same Chebyshev polynomial.

Subcase II.3. — Rank U0 = 2 .

Since the meromorphic function F : C → P1
C is Γ-invariant and hence

U0 = U ∩ Γ- invariant. So the quotient C/U0 is an elliptic curve. The
quotient group Γ/U0 operates on the elliptic curve as automorphisms of
the algebraic group if we choose appropriately the element e of the elliptic
curve. Since e is a fixed point of the Γ/U0, the point e is not the image of
the origin 0 of the complex plain C by the quotient map C → C/U0. In
other words, the multiplication by λ on C defines a isomorphism E → E

but this isomorphism is not an isomorphism of the algebraic group (E, e).
We know that Γ/U0 is a finite group and they are classified. Anyhow the
quotient C/Γ exists and we argue as in Subcase II. 2 to conclude that ϕ◦n
is one of the examples of Lattès.

We have so far shown that ϕ◦n is one of the maps of the condition 2. We
have to prove that ϕ itself is so. We may assume that ϕ is not of finite order
automorphism. Othe cases are treated in a similar way, we prove that if
ϕ◦n is a Lattès, then ϕ is itself a Lattès map. We may assume that we are
in the situation of Subcase II.3, We keep the notation there. There exists
a fixed point q ∈ P1

C of ϕ. We need a simple

Lemma 6.14. — Let U be a small open disc centered at the origin 0 of
the complex plane C and let g : U → U be a non constant holomorphic
map such that g(0) = 0. Let W be another open disc centered at a point
q in C and h : W → V be a non constant holomorphic map such that
h(q) = 0. Then there exists a holomorphic map g̃ : W ′ → W defined in a
neighborhood W ′ of the point q on W such that h̃(g) = q and such that
g ◦ h = h ◦ g̃. In other words, we can lift g : U → U over W locally around
the point q.

We may assume that W is also centered at 0 and there exists an integer
l > 1 such that h(s) = sl, s being the coordinate on W . Let t be the
coordinate on U so that we can write g(t) = tng1(t) for every t ∈ U , where
n is a positive integer and g1(t) is holomorhic in t with g1(0) 6= 0. So
we can find locally at the origin a holomorphic function g2(t) such that
g2(t)l = g1(t). It is sufficient to set g̃(s) = sng2(sl).

Let us come back to the proof. Since ϕ is of degree > 2, there exists
a fixed point q ∈ P1

C of ϕ so that ϕ(q) = q. Since ϕ◦n is a Lattès map,
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the quotient map F : C → P1
C is surjective. So we can find a point q′ ∈ C

such that F (q′) = q. We apply Lemma 6.14 to conclude that locally around
the point q′, there exists a holomorphic function ψ : W → C defined in a
neighborhood of q′ ∈ C such that ϕ ◦F = F ◦ψ on the neighborhood W of
q′. Since ϕ satisfies the differential equation G3(ν), ψ satisfies F ∗G3(ν) =
G3(0) so that the Schwarzian S(ψ) = 0. Namely we can extend ψ globally
as a Möbius transformation of C. We denote the extension of ψ by Λ1.

Lemma 6.15. — For an element γ ∈ Γ, there exists an element γ′ ∈ Γ
such that

(6.10) γ′ ◦ Λ1 = Λ1 ◦ γ.

Let w be a general point of C. We have F (w) = F (γw) so that

F (Λ(w)) = ϕF (w) = ϕF (γw) = F (Λγw).

Since F : C→ P1
C is the quotient map, this implies there exists an element

γ′ ∈ Γ such that γ ◦ Λ1 = γ′ ◦ Λ1.
Using the matrix representation, let

Λ1 =
[
a b

c d

]
∈ PGL2(C).

We show that c = 0 and hence Λ1 is an affine transformation. In fact, let us
suppose in Lemma 6.15 γ 6= I2 and consequently γ′ 6= I2, and write them
in the matrix form

γ =
[

1 u

0 1

]
γ′ =

[
1 u′

0 1

]
so that u, u′ 6= 0. Then the condition (6.10) implies c = 0. Now we can
follow all the arguments of Subcase II.3 replacing Λ by Λ1 to conclude that
ϕ is a Lattès map. This completes the proof of the Theorem.

Corollary 6.16. — Let ϕ(c, x) = x2 − c with c ∈ C be a family of
polynomials of degree 2. The following conditions on the complex number
c are equivalent.

(1) The dynamical system (P1
C, ϕ(c, x)) is solvable.

(2) The complex number c is equal to 0 or 2.

Proof. — In fact, it is sufficient to notice that a dynamical system P1
C →

P1
C defined by a polynomial f(x) of degree 2 is birationally equivalent to one

of the dynamical systems in 2, (b) of Theorem if and only if the polynomial
f(x) is birationally equivalent to either the monomial x2 or the Chebyshev
polynomial 2x2 − 1 of degree 2. �
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Remark 6.17. — For all the other values of c, the formal group Inf-gal
(P1

C, ϕ(c, x)) is isomorphic to Γ1L\ introduced in section 1 of the first part,
or isomorphic to the formal group of all the coordinate transformations
of 1-variable. So the Lie algebra of the formal group Inf-gal(P1

C, ϕ(c, x))
is infinite dimensional and simple L\-Lie algebra. In fact, it is well-known
since Lie [6] that a Lie-Ritt sub-functor F of Γ1L\ coincides with the whole
functor Γ1L\ if dimL\ F > 4.

Corollary 6.18 (Corollary to proof). — The following condition on a
rational map ϕ(x) is equivalent.

(1) There exists an integer n > 1 such that ϕ◦n is birationally equiv-
alent to a monomial (respectively a Chebyshef polynomial, or a
Lattès map).

(2) The rational map ϕ is birationally equivalent to a monomial (re-
spectively a Chebyshev polynomial or a Lattès map).

We proved this equivalence in the last part of the Proof of Theorem.
The monomial case is trivial and the Chebyshev case is known (cf. [9],
Theorem 6.9 (b)). The Lattès case seems new.

7. Concluding remarks

The proof of Theorem 6.5 is transcendental. So it is natural to expect an
algebraic proof.

Question 7.1. — Let (V, ϕ) be a discrete dynamical system over an
algebraic curve V defined over a field C of characteristic 0 so that

ϕ : V → V

is a dominant C-rational map. Then, are the following conditions 1, 2 and
3 for the dynamical system (V, ϕ) equivalent?

(1) The dimension of the Galois group

Inf-gal((C(V ), ϕ∗)/(C, IdC))

is finite.
(2) The dynamical system (V, ϕ) is birationally equivalent to one of the

following dynamical systems.
(a) The endomorphism ϕ : V → V is an automorphism of finite

order.
(b) The dynamical systems of generalized Chebyshev-Lattès type.
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(3) The dynamical system (V, ϕ) is infinitesimally solvable.

The question seems plausible under an additional assumption that the
field C is algebraically closed.

Problem. — It is challenging to explore a characteristic p > 0 version
of Theorem 6.5 according to the idea that we suggested in [11]. We have to
introduce the algebraic D-groupoid in characteristic p > 0 using iterative
higher derivations of Hasse-Schmidt. Then it seems that we need algebraic
D-semigroupoids more than D-groupoids. For, we can not invert a rational
map even locally for the étale topology due to inseparability of the rational
map.
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