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APPROXIMATE ROOTS OF PSEUDO-ANOSOV
DIFFEOMORPHISMS

by T.M. GENDRON

ABSTRACT. — The Root Conjecture predicts that every pseudo-Anosov diffeomorphism of
a closed surface has Teichmüller approximate nth roots for all n > 2. In this paper, we replace
the Teichmüller topology by the heights-widths topology – that is induced by convergence of
tangent quadratic differentials with respect to both the heights and widths functionals – and show
that every pseudo-Anosov diffeomorphism of a closed surface has heights-widths approximate
nth roots for all n > 2.

RÉSUMÉ. — La Conjecture de la Racine prévoit que chaque difféomorphisme pseudo-
Anosov d’une surface fermée a une racine nième approximative de Teichmüller pour tout n > 2.
Dans cet article, on remplace la topologie de Teichmüller par la topologie hauteur-longueur
– celle qui est induite par la convergence des différentielles quadratiques tangentes relative-
ment aux fonctionnelles hauteurs et longueurs simultanément – et on prouve que chaque dif-
féomorphisme pseudo-Anosov d’une surface fermée a une racine nième approximative hauteur-
longueur pour tout n > 2.

1. Introduction

Let Z be a closed surface of genus > 2 and let Φ : Z → Z be a pseudo Anosov
diffeomorphism. The induced map Φ∗ on the Teichmüller space T (Z) is an isom-
etry which fixes a Teichmüller geodesic A (the axis of Φ), along which Φ∗ acts by
a translation of logλ for some λ > 1 (the entropy of Φ).

Fix a surface Σ of genus 2 and denote by T the (isometric) direct limit of
the Teichmüller spaces T (Z) of all closed surfaces Z of genus > 2, where the
system maps are isometric inclusions induced by unramified coverings, and where
each isomorphism class of cover Z → Σ appears exactly once. Thus T is the
universal Teichmüller space parametrizing all marked Riemann surfaces of closed
and hyperbolic type.

Keywords: Teichmuller space, pseudo-Anosov diffeomorphism, root conjecture.
Math. classification: 30F60, 32G15.



1414 T.M. GENDRON

Consider a sequence of pseudo Anosov diffeomorphisms {Ψi} of closed sur-
faces Zi of genus > 2. We call such a sequence an approximate nth root of Φ if
the entropies λi of Ψi converge to n√

λ and if the axes Ai of Ψi converge uniformly
on compacta to A in T .

ROOT CONJECTURE. — Every pseudo Anosov diffeomorphism of a closed
surface of genus > 2 has an approximate nth root for every natural number n > 2.

The Root Conjecture affirmed would imply that the universal commensurator
mapping class group acts minimally on T : the latter is known as the Ehrenpreis
Conjecture [4], [9]. It may also be useful in the search for genuine roots of pseudo
Anosov diffeomorphisms, which have been the subject of several recent studies
e.g. [2], [6]. In this article, we shall prove an analogue of the Root Conjecture in
which the Teichmüller topology on T is replaced by the heights-widths topology.

The heights-widths topology may be described as follows. Let Q be the asso-
ciated direct limit of the cotangent bundles of quadratic differentials and denote
by C the collection of all simple closed curves in surfaces appearing in the system
defining T . Given c ∈ C, we define its q-height and q-width by pulling back q
and c to a common surface Z and measuring c with respect to the horizontal and
vertical line fields of q, scaled by (g−1)−1 where g is the genus of Z. The result is
independent of the choice of Z, and the heights-widths topology on Q is defined
by declaring qi → q if both of the corresponding functionals converge. See §5 for
more details.

The notion of a heights-widths approximate nth root is obtained by replacing
the requirement of Teichmüller convergence of axes by heights-widths conver-
gence of tangent quadratic differentials along the axes. The goal of this paper is
to prove the following:

MAIN THEOREM. — Every pseudo Anosov diffeomorphism of a closed sur-
face of genus > 2 has an approximate heights-widths nth root for every natural
number n > 2.

The Main Theorem is proved by construction, making use of an unramified ver-
sion of the covers considered in [17] to produce small entropy pseudo Anosov dif-
feomorphisms. One first considers pseudo Anosov diffeomorphisms of the form

(1) Φ = G−4N ◦F4N : Z −→ Z

where F and G are right Dehn twists about a pair of filling simple closed curves
c,d which interlace, see §§6,8. The latter means that there exist disjoint non-
separating curves α , β so that if one takes 2k copies of Z − (α ∪ β ) and glues
them together in a circular pattern to form a covering surface Zk, then there are k
lifts of each of c and d, each mapping back onto their ancestor with degree 2, and

ANNALES DE L’INSTITUT FOURIER



APPROXIMATE ROOTS 1415

interlacing to form a necklace as indicated in Figure 6. For k = mn, Φ as in (1)
lifts to the necklace as

Φ̃ = G−2N
mn ◦ · · · ◦G−2N

1 ◦F2N
mn ◦ · · · ◦F2N

1 ,

where Fi,Gi, i = 1, . . . ,mn, are the right Dehn twists about the mn lifts of c, d. If
one denotes by χ the clockwise rotation of the necklace by an angle of 2π/n, then
the necklace root is defined as the sequence

n√
Φm = χ ◦G−2N

m ◦ · · · ◦G−2N
1 ◦F2N

m ◦ · · · ◦F2N
1

where m = 2,3, . . . . See §9 for more detail.
From the necklace root we consider the related sequence

Ψm =
( nm√

Φm
)m

which, despite appearances, is not the same as the necklace root, and which enjoys
better convergence properties than the latter. Examination of the carrying matrices
of Φ and Ψm (see §§7,9) reveals convergence of intersection pairings

I(fu
m,γ)−→ I(fu,γ) and I(fs

m,γ)−→ I(fs,γ).

where fu
m, fu (where fs

m, fs) are the unstable laminations (the stable laminations) of
Ψm, Φ, and where γ is any test simple closed curve in Z. The proof of the latter
is given in §10. Using the fact that the axes of pseudo Anosov diffeomorphisms
of the form (1) are directionally dense (see §8), we approximate the axis A of
an arbitrary pseudo Anosov Φ by a sequence of axes Ai of such pseudo Anosovs
Φi : Zi → Zi, and extracting a suitable diagonal subsequence of necklace roots of
the latter provides the desired lengths-widths root of Φ.

We note that an analogous result for the Weil-Petersson topology has recently
been announced by J. Kahn and V. Markovic [12].

Acknowledgements : This work benefited greatly from conversations with Den-
nis Sullivan and Yair Minksy. I would also like to thank the referee for comments
that have substantially improved this paper.

2. The Fundamental System

All surfaces in this paper are assumed closed and of genus at least 2. Let Σ be
such surface, to be fixed throughout, and which for convenience we take to be
genus 2. For each finite index subgroup H of π1Σ, choose a cover ρH : ZH → Σ

for which
(ρH)∗π1ZH = H.

TOME 59 (2009), FASCICULE 4



1416 T.M. GENDRON

By covering space theory, whenever H < H ′ there is a unique cover

σH,H ′ : ZH → ZH ′

for which ρH = ρH ′ ◦ σH,H ′ . In this way we obtain an inverse system of finite
covering maps indexed by the partially ordered latice of finite index subgroups
of π1Σ. We call this the fundamental system and denote it S = SΣ. We will
apply various contravariant functors to S (Teichmüller space, space of measured
laminations, space of quadratic differentials) to obtain by direct limit universal
spaces which organize in a genus independent fashion spaces which normally
depend on a particular topological surface. It will be clear that these constructions
do not depend on the choice of covers ρH in their isomorphism classes nor on the
choice of base surface Σ. Making use of these genus-independent objects has the
advantage of simplifying many statements, and although it is true that everything
that we will discuss could be formulated without recourse to them, it can also
be said that the Main Theorem is really about them. See [9] for more on this
perspective.

3. Measured Laminations

Much of the material here is standard [20], [3], [5], and is reviewed to fix ideas
and notation. Let Z be a surface of genus g. A measured lamination f on Z is a
closed 1-dimensional lamination smoothly embedded in Z and possessing a trans-
verse invariant measure mf. Two measured laminations are equivalent if they are
isotopic through an isotopy taking one measure to the other or if their measures are
identically 0. We shall also denote by f the equivalence class defined by f. The set
of equivalence classes of measured laminations is denoted ML(Z). We topologize
this set by declaring that a sequence {fi} converges to f if there exist representa-
tive measured laminations for which the measures converge with respect to test
transversals.

Let C(Z) denote the set of isotopy classes of simple closed curves in Z. Note
that given c ∈ C(Z) and any positive real number r, we may define an element
rc∈ML(Z) which asigns the measure r to any segment intersecting c transversally
in a point. In particular we may view C(Z)⊂ML(Z) by taking r = 1.

Given f ∈ML(Z) and c ∈ C(Z), the intersection pairing is defined

IZ(f,c) = inf
∫

f∩c
dmf,

where the infimum is taken over representatives of the classes of f and c. The
intersection topology on ML(Z) is the weak topology defined by the intersection
pairing, and it coincides with the topology defined above.

ANNALES DE L’INSTITUT FOURIER
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There is a natural action of R+ on ML(Z) defined by scaling the measure. The
space of projective classes of measured laminations is denoted PL(Z), and by a
theorem of Thurston [21], [5], is homeomorphic to a sphere of dimension 6g−7.
We have C(Z) ⊂ PL(Z) with dense image. The intersection pairing extends to a
pairing ML(Z)×ML(Z)→ [0,∞) via the formula [13]

IZ(f,g) = inf
∫

f∩g
dmf⊗dmg.

A word is in order here regarding the allied concept of a measured foliation, a
singular foliation f of Z equipped with a transverse invariant measure: these typi-
cally arise as trajectories of quadratic differentials [19]. Two measured foliations
are equivalent if after a finite number of Whitehead moves are applied to their
singular leaves, they are isotopic through an isotopy taking one measure to the
other. There is a bijective correpondence between classes of measured foliations
and classes of measured laminations [10]. For example, to obtain a measured lam-
ination starting with a measured foliation f, one chooses a nonsingular leaf from
each minimal component of f, replacing each such leaf with a geodesic repre-
sentative (with respect to, say, a hyperbolic metric) and completes the resulting
space. Our default will be to work with measured laminations, and whenever a
measured foliation happens to arise, we will assume it has been converted into its
associated measured lamination.

The association Z 7→ ML(Z) is a contravariant functor in the category of sur-
faces and finite covers, associating to a cover an inclusion of spaces of measured
laminations. Applying this functor to S and taking direct limits, we obtain a
space ML. We denote by C ⊂ ML the union of the images of the C(Z) for all Z
occurring in the system S .

We may define an intersection pairing on ML by scaling the intersection pair-
ings occurring on the surfaces Z in S . Namely, if Z is of genus g and f, g∈ML(Z),
write

I(f,g) =
1

g−1
IZ(f,g).

Then if ρ : W → Z is a finite cover and ρ∗f,ρ∗g ∈ ML(W ) are the pull-back
laminations we have I(f,g) = I(ρ∗f,ρ∗g). In this way we obtain a well-defined
functional

I : ML×ML→ [0,∞).

4. Tracks

We recall here facts about train tracks and bigon tracks, see [20], [18]. Let
τ ⊂ Z be a smooth 1-dimensional branched manifold: thus τ is a 1-dimensional
CW-complex in which the interiors of edges are smooth curves, and the field of

TOME 59 (2009), FASCICULE 4



1418 T.M. GENDRON

tangent lines Txτ , x ∈ τ \ {vertices}, extends to a continuous line field on τ . We
say that τ is a train track if it satisfies the following additional properties:

1. The valency of any vertex is at least 3, except for simple closed curve
components, which have a single vertex of valence 2.

2. If D(S) is the double of a component S ⊂ Z \ τ , then the Euler character-
istic of D(S) is negative.

The vertices of a train track are called switches.
A bigon track is a smooth 1-dimensional branched manifold τ ⊂ Z satisfy-

ing item 1. and which satisfies 2. after collapsing bigon complementary regions
to curves. In this paper, bigon tracks will typically arise as follows. Let C =
{c1, . . . ,ck}, D = {d1, . . . ,dl} be two collections of pair-wise disjoint and homo-
topically distinct simple closed curves, which have the property that every element
of C has non-trivial intersection with at least one element of D , and vice verca,
and that the complement of C ∪D in Z is a union of topological discs. We call C ,
D a filling pair of multi curves. By turning each intersection of a C -curve with a
D-curve into a 4-valent vertex as in Figure 1, we obtain a bigon track. Since such
bigon tracks will be the only ones appearing in this article, we will assume from
now on that all switches in bigon tracks have valency no more than four.

c
d

Figure 1. Creating a bigon track from a filling pair of curves.

Denote by E = Eτ the set of edges of the bigon track τ . In a small disk neigh-
borhood of a switch v, the ends of edges incident to v may be divided into two
classes, which for convenience we refer to as "incoming" and "outgoing": each
class consists of ends that are asymptotic to one another, and the decision of nam-
ing one class incoming, the other outgoing, is arbitrary. We write e ∈ in(v) or
e ∈ out(v) if the edge e has an end belonging to the appropriate class. (Note: it
can happen that e belongs to both in(v) and out(v).) A switch-additive measure
on τ is a function υ : E → R+ for which

∑
e∈in(v)

υ(e) = ∑
e∈out(v)

υ(e)

for all switches v. The set of all switch-additive measures forms a linear cone Cτ

in RE
+.
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Let N(τ) be a tubular neighborhood of τ equipped with a (singular) foliation by
line segments transverse to τ . A measured lamination f ⊂ Z is said to be carried
by τ if it may by isotoped into N(τ) transverse to its foliation. We write in this
case f < τ , and note that the measure of f induces a switch-addititive measure on
τ . The subspace of isotopy classes of measured laminations ML(Z) carried by τ

is denoted MLτ(Z). There is an open surjection

(2) Cτ −→MLτ(Z)

which is a homeomorphism if τ is a train track. We refer to the switch additive
measure υ as a track coordinate for f with respect to τ if it maps onto f via (2).

Let τ,κ be bigon tracks in Z that intersect transversally and minimally with
edge sets Eτ and Eκ ; let f,g be measured laminations carried by them, parametrized
by switch-additive measures υ ,ω . Then the intersection pairing may be calculated
by the following formula:

(3) IZ(f,g) = ∑
e∈Eτ

∑
e′∈Eκ

υ(e)ω(e′)|e∩ e′|.

It is useful to re-express (3) as a sum over edges in Eτ only. Thus if we write

ω(e) = ∑
e′∈Eκ

ω(e′)|e∩ e′|

then

(4) IZ(f,g) = ∑
e∈Eτ

υ(e)ω(e).

5. Teichmüller Space

References for material in this section are [1], [8], [9]. For any surface Z let
T (Z) denote its Teichmüller space. A finite covering map ρ : W → Z is amenable,
hence induces an isometric inclusion ρ∗ : T (Z) ↪→ T (W ) [15]. The system S

induces thus a direct limit of Teichmüller spaces by isometric inclusions,

T = lim
−→

T (Z),

which we equip with the direct limit metric.
Given Z a surface occurring in the system S , let µ ∈ T (Z) be represented by

a marked surface Z → Zµ . Denote by Qµ(Z) the space of holomorphic quadratic
differentials on Zµ , which may be identified with the cotangent space to T (Z)
at µ; write the associated contangent bundle Q(Z) =

⋃
Qµ(Z). There is then an

induced direct limit of bundles of holomorphic quadratic differentials

Q := lim
−→

Q(Z).

TOME 59 (2009), FASCICULE 4



1420 T.M. GENDRON

To any quadratic diferential q ∈ Q one associates two transverse, measured
laminations fh and fv ∈ ML: those that correspond to the horizontal and vertical
trajectories of q. We have the following version of the theorem of Hubbard and
Masur [11]:

THEOREM 5.1. — Any transverse pair of measured laminations f,g ∈ML de-
termines a unique quadratic differential q ∈Q.

Proof. — This follows immediately from the classical result, since f,g may be
viewed as lifts of measured laminations coming from a single surface Z in S . �

Let q,qi ∈Q, i = 1,2, . . . , be quadratic differentials. The heights-widths topol-
ogy on Q is defined by declaring that qi → q if

fh
i → fh and fv

i → fv

in the intersection topology. The heights-widths topology in turn induces a topol-
ogy on T , where µi → µ if there exist contangent vectors qi,q based at µi,µ for
which qi → q in the heights-widths topology.

6. Pseudo Anosov Diffeomorphisms

A (homotopy class of) diffeomorphism Φ : Z → Z induces a homeomorphism
of ML(Z) via pullback of measures, in particular inducing a homeomorphism of
PL(Z). According to Thurston’s classification of surface diffeomorphisms, [21],
[5], [3], Φ is called pseudo Anosov if its induced action on PL(Z) fixes precisely
two classes [fu] and [fs]. If λ is the entropy of Φ, then λ > 1; and if fu ∈ [fu] and
fs ∈ [fs] are representative laminations in ML(Z), then there is a representative
diffeomorphism in the homotopy class of Φ (also denoted Φ) such that Φ(fu) =
λ fu and Φ(fs) = λ−1fs. The (projective classes of the) laminations fu, fs are called
respectively the unstable lamination and the stable lamination of Φ.

Using Theorem 5.1, it follows that fu, fs determine a Teichmüller geodesic
A⊂T (Z) whose tangent quadratic differentials are determined by horizontal and
vertical laminations that are positive multiples of fu and fs. Along A, the induced
map on Teichmüller space Φ∗ is a translation by logλ .

In this paper, we will be interested in the following class of pseudo Anosov
diffeomorphisms. Let C = {c1, . . . ,ck}, D = {d1, . . . ,dl} be a filling pair of mul-
ticurves (see §4 for the definition). For c ∈ C , d ∈ D , let Fc resp. Gd denote the
right Dehn twist about c resp. d. If c = {cα1 , . . . ,cαi}⊂C , d = {dβ1 , . . . ,dβ j}⊂D

are submulticurves, and if M = (M1, . . . ,Mi) > 0, N = (N1, . . . ,N j) > 0 are vectors
of positive integers, we denote

FM
c = FMi

cαi
◦ · · · ◦FM1

cα1
and G−N

d = G
−N j
dβ j

◦ · · · ◦G−N1
dβ1

ANNALES DE L’INSTITUT FOURIER
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Then if c1∪·· ·∪ cs = C and d1∪·· ·∪ds = D , a diffeomorphism of the form

(5) Φ = Φs ◦ · · · ◦Φ1,

where
Φi = G−Ni

di
◦FMi

ci

and where the exponents are positive integer vectors, is pseudo Anosov, [20], [16].
(Here we are allowing the possibility that c1 = /0, ds = /0.) We call these pseudo
Anosov diffeomorphisms of Thurston-Penner type.

7. Carrying Matrices

We now describe linear models of pseudo Anosov diffeomorphisms. Let Φ :
Z → Z be pseudo Anosov and let τ be a bigon track in Z equipped with a foliated
tubular neighborhood N(τ) as in §4. We say that Φ acts on τ if Φ(τ) may be
isotoped into N(τ) transverse to its foliation. We write then Φ(τ) < τ . Fix a leaf
ti ⊂ N(τ) through each edge ei of τ . The carrying matrix of Φ is by definition
MΦ = (ai j) where

ai j = |ti∩Φ(e j)|.
MΦ induces an inclusion CΦ(τ) ↪→ Cτ which when precomposed with the pushfor-
ward map Cτ → CΦ(τ) defines a linear map

MΦ : Cτ −→ Cτ .

Note that the carrying matrix MΦ is non-negative and irreducible. Such a matrix
has a unique eigenvalue of greatest modulus, which is positive-real and simple
[7]. This eigenvalue is called the Perron root. A corresponding eigenvector may
be taken positive in its projective class, and is called a Perron vector. For MΦ, the
Perron root coincides with the entropy λ of Φ, and the Perron vector parametrizes
in track coordinates an unstable measured lamination fu of Φ. Note also that the
carrying matrix of the inverse Φ−1 is MT

Φ
. See [18] for more discussion of this.

When Φ is a pseudo Anosov of Thurston-Penner type, we may calculate the
carrying matrix using the bigon track defined in §4. When performing a Dehn
twist about a curve c, we choose a cylindrical neighborhood C whose core is c.
Denoting ∂C = ∂ 0 t ∂ 1 the two boundary components, the twist will act as the
identity on ∂ 0, by a rotation of 2π about ∂ 1, and by a rotation of an intermediate
angle about c. If c has an even number r of edges, we may assume that they have
been ordered cyclically, so that the first r/2 map to the last r/2 and vice verca.
Thus if e is an edge belonging to a D-curve which has an end on c, this end will
be dragged along a string of r/2 consecutive edges. The column corresponding to
e will receive a 1 in the row indexed by a c-edge e′ whenever one of its two ends

TOME 59 (2009), FASCICULE 4



1422 T.M. GENDRON

has been dragged along e′. In particular, each twist of c will contribute a value of
0,1 or 2 in the e′th row of the eth column. See Figure 2 where both ends of the
edge e meet at the same vertex of c: each end is dragged along one of the two
edges of c, so that the subvector of the e-column indexed by the rows labeled by
c-edges is [1,1]T . In Figure 3, it is not hard to see that there exists a d-edge e both
of whose ends get dragged along some of the same edges of c when a single Dehn
twist along c is performed. Such an edge will index a column vector having c-row
entries containing all three of the values 0,1 and 2.

0

1
C

c
e

Figure 2. Action of a single Dehn twist

These calculations simplify greatly when one works with even powers of Dehn
twists about c, for then an end e meeting c is dragged along the entirety of c. For
example, if we twist about c twice, the subvector of the column indexed by e that
corresponds to edges contained in c will be of the form a

...
a


where a = 0,1,2 depending on whether e has 0, 1 or 2 ends meeting c.

Example 7.1. — Let C = {c}, D = {d} (e.g. see Figure 3) with |c∩ d| = r,
and let Φ = G−2N

d ◦F2N
c . Let 1r be the r× r matrix all of whose entries are 1, and

let Ir be the r× r identity matrix. Then we claim that

(6) MΦ =
(

Ir 2N ·1r

2N ·1r r(2N)2 ·1r + Ir

)
.

To see this, we calculate the carrying matrices Mc, Md of F2N
c , G−2N

d and use the
fact that

(7) MΦ = Md ·Mc.

ANNALES DE L’INSTITUT FOURIER
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By the discussion of the previous paragraphs and the fact that both ends of any
edge must enter the same curve, we have

Mc =
(

Ir 2N ·1r

0r Ir

)
and Md =

(
Ir 0r

2N ·1r Ir

)
where 0r is the r× r zero matrix. Performing the product in (7) and noting that
1r ·1r = r1r yields (6).

Notice that in this case the Perron data of MΦ is completely determined by that
of the “curve matrix”

CΦ =
(

1 r2N
r2N (r2N)2 +1

)
,

so-called because it records only the action of Φ on the curves c, d. Indeed, if λ

is the Perron root of CΦ and (a,b)T is a Perron vector, than λ is also the Perron
root of MΦ with the 2r×1 Perron vector (a, . . . ,a,b, . . . ,b)T .

8. Directional Density

A family P(Z) of pseudo Anosov diffeomorphisms of Z is said to be direction-
ally dense (in Q(Z)) if the set of quadratic differentials tangent to axes of elements
of P(Z) is Teichmüller dense in Q(Z). By [14], the family of all pseudo Anosov
maps of Z is directionally dense.

Let P(Z) be the family of pseudo Anosovs Φ of the shape

Φ = G−4N ◦F4N : Z → Z,

where

- F , G are right Dehn twists about simple closed curves c,d in Z,
- (c,d) is a filling pair,
- c is non-separating.

LEMMA 8.1. — P(Z) is directionally dense.

Proof. — Given (c,d) a filling pair of simple closed curves in Z, denote by `c,d

the Teichmüller geodesic determined by the pair. In Masur’s original argument
(see Proposition 3.2 in [14]), it is shown that the family of pseudo Anosov dif-
feomorphisms of the type ΦN = G−N

d ◦FN
c is directionally dense in Q(Z). This is

done by showing that

1. the axis AN of ΦN converges to the Teichmüller geodesic `c,d defined by
the pair (c,d) as N → ∞.

2. The collection of `c,d for (c,d) filling is directionally dense.

TOME 59 (2009), FASCICULE 4



1424 T.M. GENDRON

It is clear then that we may replace N by 4N without losing directionally density.
By Corollary 2.6 in [14], the subfamily obtained by demanding that c is nonsepa-
rating is also directionally dense. �

Now given a nonseparating simple closed curve γ ⊂ Z, let ργ : Zγ → Z be the
degree 2 cover obtained by cutting two copies of Z along γ and gluing ends. We
say that a pair (c,d) of filling, simple closed curves is interlacing if there exists
a pair of disjoint, nonseparating simple closed curves α,β such that ρ−1

α (c) is
connected whereas ρ−1

α (d) is not and ρ
−1
β

(d) is connected whereas ρ
−1
β

(c) is not.
See Figure 3.

c d

b
a

Figure 3. A filling pair c,d and a pair α,β interlacing them.

Let Pint(Z) be the subfamily of the family P(Z) of Lemma 8.1 consisting of
pseudo Anosov diffeomorphisms for which (c,d) is an interlacing pair.

LEMMA 8.2. — Pint(Z) is directionally dense.

Proof. — We recall that Lemma 8.1 states that the set of Teichmüller geodesics
`c,d defined by pairs (c,d) of filling, simple closed curves in Z for which c non-
separating, is directionally dense in Q(Z). Pick one such pair (c,d) and let F , G
be the right Dehn twists about c, d. If (c,d) is interlacing, we are done. If (c,d)
is not an interlacing pair, there exists a simple closed curve δ for which the pair
(c,δ ) is interlacing, though not necessarily filling. Indeed, one may assume after
a homeomorphism that c is the curve appearing in Figure 4; then taking δ ,α,β

as indicated there, (c,δ ) is interlacing with respect to the pair (α , β ). Note that
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since |c∩δ |= 0 we must have that |d∩δ |> 0, since (c,d) is a filling pair. Now
for j large, δ j = G j(δ ) is close to d (in the topology of PL(Z)), hence (c,δ j) is
eventually filling. If j is in addition even, G j lifts to the total space of any degree
2 cover of Z, thus the pair (c,δ j) is interlacing with respect to (α,β ), the same
curves interlacing (c,δ ). Indeed, if for example the cover ρα satisfies ρ−1

α (δ ) is
(dis)connected, the same is true of ρ−1

α (δ j) since

ρ
−1
α (δ j) = ρ

−1
α (G j(δ )) = G̃ j(ρ−1

α (δ ))

where G̃ j is the lift of G j to the total space of ρα . For N large, the pseudo Anosov
Φ j = G−4N

δ j
◦F4N has axis close to the Teichmüller geodesic `c,δ j , but this is close

to `c,d by choice of j. This proves the lemma. �

c
d

a
b

Figure 4. Every nonseparating c is a member of a (not necessarily filling)
interlacing pair.

If P is any family of pseudo Anosov diffeomorphisms of closed surfaces, then
we say that P is directionally dense in Q if the set of quadratic differentials
tangent to axes of elements of P is Teichmüller dense in Q. We have immediately

COROLLARY 8.3. — The family Pint =
⋃

Pint(Z), where the union is taken
over all surfaces Z occurring in the system S , is directionally dense in Q.

9. Necklace Roots

Fix n ∈ N and let Φ ∈Pint(Z), the family appearing in Lemma 8.2, so that in
particular Φ is a pseudo Anosov of the form Φ = G−4N ◦F4N : Z → Z. Let

ρmn : Zmn → Z

be the cover obtained by cutting 2mn copies of Z along a pair α,β interlacing
c,d and gluing in a circular fashion. We call ρmn the necklace cover associated
to (c,d). In Figure 5, we illustrate the construction of the necklace Zmn and the
formation of the lifts of the curve c. In Figure 6 we display the finished necklace.
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c1

c2
cmn

Figure 5. Making the necklace.

There are mn lifts c1, . . . ,cmn and d1, . . . ,dmn of c and d, each mapping with
degree two onto their ancestor. On Zmn, Φ lifts to

Φ̃ = G−2N
mn ◦ · · · ◦G−2N

1 ◦F2N
mn ◦ · · · ◦F2N

1

where Fi, Gi is the right Dehn twist about ci, di. Let χ denote the clockwise ro-
tation of Zmn by an angle of 2π/n, so that the pair ci, di is taken to ci+m, di+m

(indices taken mod mn). We define the necklace nth root to be the sequence of
diffeomorphisms { n

√
Φm} where

n√
Φm = χ ◦G−2N

m ◦ · · · ◦G−2N
1 ◦F2N

m ◦ · · · ◦F2N
1 ,

m = 2,3, . . . . The necklace nth root is the basic contruction used in the formation
of heights-widths approximate roots. The construction of n

√
Φm is a variation of

one that first appeared in [17], where branched rather than unbranched covers
were used. Although the construction of the cover ρmn (and hence n

√
Φm) formally

depends on the choice of the pair (α,β ), it will be clear in the arguments that
follow that the latter plays no role, and so we shall not mention the pair (α,β )
again.
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Z

c

c

c

d
d

dd

c

c

c

1

1

2

mn

mn

j

j

j-1

j-1

j+1

mn

Figure 6. The finished necklace.

LEMMA 9.1. — n
√

Φm is pseudo Anosov for all m.

Proof. — For i = 1, . . . ,n, let

Ti = G−2N
im ◦ · · · ◦G−2N

(i−1)m+1 ◦F2N
im ◦ · · · ◦F2N

(i−1)m+1.

Then

Ti = χ
i−2 ◦ n√

Φm ◦χ
−(i−1)

and therefore

( n√
Φm)n = T2 ◦ · · · ◦Tn ◦T1.

The latter is of Thurston-Penner type, hence [16] ( n
√

Φm)n is pseudo Anosov, im-
plying n

√
Φm is pseudo Anosov as well. �

For each m = 2,3, . . . let mn
√

Φm denote the mth element in the mnth necklace
root of Φ. Thus mn

√
Φm is a diffeomorphism defined on Zm2n. Define the sequence
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of pseudo Anosov diffeomorphisms {Ψm} by

Ψm =
( mn√

Φm
)m

.

Observe that the stable and unstable laminations of Ψm and nm
√

Φm are equal.

Note 9.2. — Ψm is not the same as n
√

Φm. In fact, if we lift n
√

Φm to Zm2n –
where Ψm is defined – we see that this lift twists along m disjoint “blocks” of
curves, each block consisting of a succession of m lifts of c and d. On the other
hand, Ψm consists of twists along one block consisting of a succession of m2 lifts
of c and d. As it happens, the stable and unstable laminations of the family {Ψm}
have better convergence properties than those of { n

√
Φm}.

We now describe the carrying matrices of Φ, its lift Φ̃ to Zm2n and that of Ψm.
Let r = |c∩d|. Recall (see Example 7.1 of §7) that the carrying matrix of Φ is

MΦ =
(

Ir 4N ·1r

4N ·1r r(4N)2 ·1r + Ir

)
.

Let Zm2n be the surface where Ψm is defined. Since the exponents in the definition
of Φ are even, it follows that Φ lifts to a pseudo Anosov diffeomorphism Φ̃ of
Zm2n. The curve families C = {c1, . . . ,cm2n}, D = {d1, . . .dm2n} are filling, and
each curve intersects r times each of its neighbors e.g. |ci ∩ di| = |ci ∩ di−1| = r
(indices taken modulo m2n). Thus the corresponding bigon track will contain 2r
edges along each curve.

For each i, let us refer to di−1 as the preceding neighbor of ci and to di as
the successive neighbor of ci; similarly, the preceding neighbor of di is ci and its
successive neighbor is ci+1. Notice that in a given curve, some edges will join
only the preceding neighbor, some only the successive neighbor and some both.
We order the c edges so that the first x edges are effected only by twists along the
preceding neighbor, the next y are effected by twists along both neighbours, and
the last z edges are only twisted by the successive neighbor. Similarly, we order
the d edges so that the first s edges are effected only by twists along the preceding
neighbor, the next t are effected by twists along both neighbours, and the last u
edges are only twisted by the successive neighbor. By construction of the cover,
the triples (x,y,z), (s, t,u) depend only on c, d (and not any particular lift ci, di),
and we have x+ y+ z = 2r = s+ t +u.

The carrying matrix M
Φ̃

of Φ̃ is obtained in the same way as that of Φ: that is,
one can calculate the carrying matrices of each of the compositions F2N

m2n ◦ · · · ◦
F2N

1 , G−2N
m2n ◦ · · · ◦G−2N

1 and multiply them as in Example 7.1. We have indicated
the result in Figure 7, where we have grouped edges according to which curve
they belong to: thus, for example, the column label c1 indexes the 2r columns
corresponding to the edges belonging to c1: the first x of which will be twisted by
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dm2n, the last z of which are twisted by d1 and the middle y of which are twisted
by both dm2n and d1. The boxed matrix labeled I is the 2rm2n× 2rm2n identity
matrix. The values of the other boxed matrices are indicated in Figures 8 and 9,
where a rectangle containing a value a indicates a matrix all of whose entries are
a. For example, the rectangle containing 2 in the definition of the boxed matrix
B1 signifies a 2r× s matrix all of whose entries are 2. The matrix I occurring in
the description of the boxed matrix D2 is the 2r×2r identity matrix.

(To verify this result, one notes that the carrying matrix of F2N
m2n ◦ · · · ◦F2N

1 is of
the form

Mc =
(

I B
0 I

)
where B is the content of the upper right hand quadrant in Figure 7, containing
the pattern of “B”-matrices. Similarly, the carrying matrix of G−2N

m2n ◦ · · · ◦G−2N
1 is

of the form

Md =
(

I 0
C I

)
where C is the content of the lower left hand quadrant in Figure 7, containing the
pattern of “C”-matrices. The product Md ·Mc is the matrix shown in Figure 7.)

Note that the Perron data of M
Φ̃

is completely determined by that of Φ. Namely,
if λ is the Perron root and υ = (a, ....,a,b, ...b)T the 2r×1 Perron vector for MΦ,
then λ is also the Perron root of M

Φ̃
with a 4rm2n×1 Perron vector of the shape

υ̃ = (a, . . . ,a,b, . . . ,b)T . Indeed, the result of multiplying υ̃ by a c-row is

a+N(2s+ t + t +2u)b = a+ r4Nb = λa

and the result of multiplying υ̃ by a d-row is

(r4N)a +
{

N2 ((2x+ y)(2s+ t)+(y+2z)(t +2u))+

2N2 ((y+2z)s+(x+ y+ z)t +(2x+ y)u)+1
}

b

Collecting terms and using the fact that s+ t +u = x+ y+ z = 2r gives

(r4N)a+
{

N2(4(x+ y+ z)(s+ t +u))+1
}

b = (r4N)a+((4rN)2 +1)b = λb

as claimed.
To calculate the carrying matrix of (Ψm)n = ( mn

√
Φm)mn, we use the formula

( mn√
Φm)mn = (T2 ◦ · · · ◦Tmn)◦T1

where Ti is as in Lemma 9.1: that is, we calculate the carrying matrix of (Ψm)n as
the product

M(Ψm)n = MT2◦···◦Tmn ·MT1 .
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c dc d1 1

c1

d1

m  n2m  n2

dm  n2

cm  n2

B1

B2 B1

B2

B1

B2 B1

B2

I
C2

C1

C1

C2

C1

C2

D2

D3 D2

D1

D3

D2

D1

D3 D2

D1

D3

D1

Figure 7. The Carrying Matrix for Φ̃.

( (

B1 2 1 0

s t u{ { {

s t u+ + = 2r

=

x y z+ + = 2r

N . ( (

C1 2 1 0

x y z{ { {

= N .

( (

B2 0 1 2

s t u{ { {

= N . ( (

C2 0 1 2

x y z{ { {

= N .

Figure 8. Values of the B and C Boxed Matrices
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(( {{{s t u

I

2x  + yy  + 2z
x + y + z

2r

=

( (

D1 2 1 0

s t u{ { {

= .N 2 (2x  + y)C1 B1
. =

( (

D3 0 1 2

s t u{ { {

= .N 2C2 B2
.

D2 =

=

C2 B1
. C1 B2

.

= (y  + 2z)

+ +

I+N2 2 .

Figure 9. Values of the D Boxed Matrices

The carrying matrix of T1 is indicated in Figure 10 and that of T2 ◦ · · · ◦ Tmn in
Figure 11, where the black boxed matrix D2 is shown in Figure 12 and a boxed
matrix labeled “I” indicates an identity matrix of the appropriate dimension. Their
product, the carrying matrix of (Ψm)n, is displayed in Figure 13 where the content
of the black boxed matrices are displayed successively in Figures 14, 15, 16 and
17. Note that the black boxed matrices are non-negative and independent of m,n.
Figure 18 contains the carrying matrix of mn

√
Φm: we note that the latter may be

obtained as the product of the permutation matrix corresponding to χ with the
carrying matrix MT1 .

Let λm be the Perron root of MΨm and let υm be its Perron vector, normalized
so that its L1 norm (sum of its entries) is equal to 2m2n = deg(ρm2n). We shall
abbreviate (following our convention for carrying matrices)

υm = (a1, . . . ,am2n,b1, . . . ,bm2n)
T

where ai (where bi) is a 2r×1 column vector which contains the entries of υm that
correspond to edges belonging to the curve ci (the curve di). Let us assume that
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c dc d1 cm+1 1

c1

d1

dm m  n2m  n2

dm  n2

cm  n2

B1

B2 B1

B2 B1

B2 B1

B2

I
C2 C1

C2

C1

C2

D2

D3 D2

D1

D3
D2

D1

D3

D1

D3

cm

dm C1 D2

I
Figure 10. The Carrying Matrix for T1

the Perron vector υ̃ of the carrying matrix of Φ̃ has been scaled to have L1 norm
2m2n as well. We recall that this spectral data has the following interpretation:

- The Perron roots λm, λ are equal to the entropies of Ψm, Φ.
- Let τm be the bigon track formed from the curve families C , D . The

measures formed from the Perron vectors υm, υ̃ parametrize the unstable
laminations fu

m, f̃u in the cone Cτm .

Note that the column sums of M(Ψm)n have uniform upper and lower bounds
L > l > 1. We thus obtain the bound [7]

1 < l < (λm)n < L.

We may then assume, after passing to a subsequence if necessary, that the λm

converge to some value λ∗ > 1.
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c dc d1 cm+1 1

c1

d1

dm m  n2m  n2

dm  n2

cm  n2

B1

B2 B1

B2 B1

B2 B1

B2I

C2 C1

C2

C1

C2

D2

D3 D2

D1

D3
D2

D1

D3

D1

D3

cm+1

dm+1

C1 D2

I

Figure 11. The Carrying Matrix for T2 ◦ · · · ◦Tmn.

D2 = C2 B1 =. I+ ( (

2 1 0

s t u{ { {

.N 2 (y  + 2z) I+

Figure 12. The Black Boxed Matrix D2

We shall need to control the vector entries am,am+1,bm−1,bm,bm+1 of υm,
which correspond to the “clasp” of the necklace:

LEMMA 9.3. — Let xm be any entry belonging to one of the vectors am,am+1,
bm−1,bm,bm+1. Then xm = o(2m2n).

Proof. — We must show that the corresponding vector entries of the proba-
bility vector 1

2m2n υm tend to the zero vector. We denote these entries also by
am,am+1,bm−1,bm,bm+1. Let ξm be the Perron root of M mn√

Φm
: thus (ξm)m = λm.

TOME 59 (2009), FASCICULE 4



1434 T.M. GENDRON

c1

d1

dm  n2

cm  n2

B1

B2

B2

B2 B1

B2

I
C2

C1

C1

C1

C2

D2

D3

D1

D3 D2

D1

D3

cm+1

c dc d1 cm+1cm 1 dm dm+1 m  n2m  n2

B2A1 A2

I

dm+1

dm C2

B2

B3

C2

C2

D3

D2D3

D3

D1

dm-1

0
D1D2

D1D2C3 D4

Figure 13. The Carrying Matrix for (Ψm)n.

A1 ( (

0 1 2

x y z{ { {

= N .= B2 C2
. 2 (t  + 2u)

A2 ( (

2 1 0

x y z{ { {

= N .= B2 C1
. 2 (t  + 2u)I+ I+

Figure 14. The Black Boxed Matrices A1 and A2
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B2 = D2B2
. = (( {{{s t u

+ 21RRN .

NR = 2 (t  + 2u)(y  + 2z)

2

B3 = D3B2
. = NR . ( (

0 1 2

s t u{ { {

Figure 15. The Black Boxed Matrices B2 and B3

C2 = =

=

(( {{{x y z

+ 21RRN . 2D3 C1 C2
.

C3 = D3 C2
.

+

NR . ( (
0 1 2

x y z{ { {

NR = 2 (t  + 2u)(y  + 2z)

Figure 16. The Black Boxed Matrices C2 and C3

D3 D2= =

{{{s t u

.D3
.

D4 = =D3 D3
.

NR = 2 (t  + 2u)(y  + 2z)

( (

0 1 2

s t u{ { {

.N 2 (y  + 2z)R

((
+ 21RR2N 2 (y  + 2z)

Figure 17. The Black Boxed Matrices D3 and D4
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I
I

c d1 1

d2m

cm+1

dm dm+1

c2m+1

cm  n2 dm  n2

c1

d1

cm

dm

dm+1

cm  n2

dm  n2

I

I

cm  n-m+cm  n-m 1 dd22 m  n-m2 m  n-m+12

B1

B2

B2

B2

C2 C1

C2 C1

D2

D3

D1

D2

D3

D1

D2

D3

cm+1

B1

d2m+1

Figure 18. The Carrying Matrix for mn
√

Φm.

Claim 9.4. — If one of the vectors am,am+1,bm−1,bm,bm+1 does not converge
to the zero vector, then none of them do.

Proof of Claim. — To prove the claim we consider the action of the matrix
M(Ψm)n on 1

2m2n υm. Recall that λm → λ∗ > 1 and (after passing to a further subse-
quence if necessary) we may assume that the vectors am,am+1,bm−1,bm and bm+1

converge (in R2r) to vectors denoted a∗,a∗+1,b∗−1,b∗ and b∗+1. It follows that we
have the limit eigen-equations displayed in Figure 19, where the vectors labeled
∗± k refer to limits of vectors labeled m± k. Note that all vector terms in these
equations are non-negative. We proceed case by case: suppose that
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• a∗+1 is not the zero vector. The black boxed matrix C2 is positive (all
entries positive) therefore its product with a∗+1 is a positive vector, hence
by the eigen-equation for b∗+1, b∗+1 is positive. Note also that this implies
that B1b∗+1 is positive and hence a∗+1 must also be positive. In addition,
C1a∗+1 is positive so that b∗ is positive. The latter gives the positivity of
a∗ and b∗−1.

• b∗+1 is not the zero vector. Then since the matrix D2 is positive, D2b∗+1 is
positive, thus by the eigen-equation for b∗+1, b∗+1 is positive. Since b∗+1

occurs in the eigen-equation of a∗+1, the latter is positive. By the previous
paragraph, the remaining vectors are positive as well.

• b∗ is not the zero vector. The black-boxed matrix B2 is positive, implying
that a∗+1 and hence the remaining vectors are positive.

• b∗−1 is not the zero vector. Since D2 is positive, the eigen-equation for
b∗−1 shows that the latter is positive. But b∗−1 appears in the eigen-
equation for a∗+1 so that a∗+1 and therefore all remaining vectors are
positive.

• a∗ is not the zero vector. If a∗ has a non zero entry amongst its first x-
entries, then C1a∗ is non zero hence b∗−1 is non zero and all remaining
vectors are non zero. If a∗ has no non zero entry amongst its first x-entries,
then there must be a non zero vector amongst the last y+ z entries, imply-
ing C2a∗ is non zero, that b∗ is non zero and hence all remaining vectors
are non zero.

�

l*

l*

l*

a +1*

+1*

a*

a*

=

=

=

+

+

+ +

+

+

+

+

+

+

+

+

A1 A2 B3 B2 B1

b b*

b* C2

a*

C1

C1

D3

C2C3 D3+ D4

D2 D1

a +1*

a +1*

a +1*

a +2*

-1*b

-1*b

b*

b*

+1*b

+1*b

l*a* a*= + +B2 B1-1*b b*

+2*b

D2

l* a*= + + +b* C2 C1 D3a* -2*b

-1*b

-1 -1 D2 -1*b + D1 *b

Figure 19. The Limiting Characteristic Equations
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Thus, let us suppose that xm ∈ bm does not converge to 0 so that say eventually
xm > δ > 0. Examination of the action of M mn√

Φm
on 1

2m2n υm (see Figure 18) then
shows that there is a component xm2n of bm2n with xm2n = ξmxm. Iterating this
observation gives

xm2n−im = ξ
i+1
m xm

for i = 1, . . .mn−2, where xm2n−im is a component of bm2n−im. However ξ i+1
m > 1

for all i, and since 1
2m2n υm is a probability vector, this would imply that (mn−

2)δ 6 (mn−2)xm < 1, impossible since m → ∞. This proves the lemma. �

10. Existence of Heights-Widths Roots

Let Φ : Z → Z be a pseudo Anosov diffeomorphism. Denote by λ its entropy
and by A its axis. Recall that we view A as a geodesic in T via the canonical
isometric inclusion T (Z) ↪→T .

DEFINITION 10.1. — Let n > 1 be a natural number. A heights-widths ap-
proximate nth root of Φ is a sequence {Ψm : Zm → Zm} of pseudo Anosov diffeo-
morphisms for which

α) If λm is the entropy of Ψm then limλm = n√
λ .

β ) If Am is the axis of Ψm then there exist tangent quadratic differentials qm

along Am and q along A such that qm converges to q in the heights-widths
topology.

We note that in “genus-dependent” language, β ) is equivalent to:

β ′) There exist tangent quadratic differentials q = (fu, fs) ∈ Q(Z), qm =
(fu

m, fs
m) ∈ Q(Zm) along A, Am such that for each W occurring in S and

γ ∈ C(W ), there exist a sequence of covers ρm : Wm → Z, σm : Wm → Zm,
ζm : Wm →W such that∣∣IWm(ρ∗m(fu),γm)− IWm(σ∗

m(fu
m),γm)

∣∣ = o(gm−1)

=
∣∣IWm(ρ∗m(fs),γm)− IWm(σ∗

m(fs
m),γm)

∣∣
where γm = ζ−1

m (γ) and gm is the genus of Wm.

Note 10.2. — The Teichmüller flow preserves the heights-widths convergence
required in item β ): that is, qm → q implies heights-widths convergence qm(t)→
q(t) of the time t Teichmüller flowed quadratic differentials (obtained by a uni-
form stretch). One can express this by saying that Am → A “uniformly on com-
pacta” in the heights-widths topology.
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In this section we show that Φ has a heights-widths approximate nth root for
any n > 1, thus proving the Main Theorem.

Assume first that Φ ∈ Pint(Z) and let {Ψm} be the family of pseudo Anosov
diffeomorphisms defined in the previous section. Denote by fu

m, fs
m the unstable

and stable laminations of Ψm, which we assume are parametrized by the L1 norm
2m2n = deg(ρm2n) Perron vectors of MΨm , M

Ψ
−1
m

. Denote by fu, fs the unstable and
stable laminations of Φ, corresponding to the probability Perron vectors of MΨ,
M

Ψ−1 . Recall that C(Z) denotes the isotopy classes of simple closed curves of Z,
which we view as belonging to C.

THEOREM 10.3. — For all γ ∈ C(Z),

I(fu
m,γ)−→ I(fu,γ) and I(fs

m,γ)−→ I(fs,γ).

Proof. — The proof will be through examination of carrying matrices. With-
out loss of generality, we may assume that the intersection functional has been
rescaled so that I = IZ on ML(Z). Let

υ
avg
m =

1
2m2n

(aavg
m ,bavg

m )

where aavg
m is the 1× r row vector indexed by edges e ∈ c, in which the entry

corresponding to e is the sum of the entries of υm indexed by edges lying over e.
The vector bavg

m is indexed by edges of d and is defined similarly. Since υm defines
a switch additive measure on the bigon track τm, the vector υ

avg
m determines a

switch additive probability measure on the bigon track τ formed from c,d. Let
f
avg
m denote the corresponding measured lamination.

In the case of Φ and its lift Φ̃, the Perron roots are identical and will be de-
noted λ . We choose the associated Perron vectors υ and υ̃ so that the former is a
probability vector and the latter has L1 norm 2m2n. Thus υ̃avg = υ , where υ̃avg is
defined as in the preceding paragraph.

Let us shorten notation, writing f = fu and fm = fu
m for the unstable foliations of

Φ and Ψm. Let γ ∈ C(Z). Then by (4) and the definition of I we have

I
(
fm,γ

)
=

1
deg(ρm2n)

· ∑
e∈τm

υm(e)|e∩ γ̃|,

where γ̃ is the lift of γ to the necklace total space Zm2n. Thus

I
(
fm,γ

)
= I

(
favg
m ,γ

)
.
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However examination of the matrices M
Φ̃

and M(Ψm)n yields

(λm)n
υ

avg
m = ((M(Ψm)nυm)avg

= MΦυ
avg
m +((M(Ψm)n −M

Φ̃
)υm)avg

:= MΦυ
avg
m + εm.

The entries of the vector εm are linear combinations of entries of υm that belong
to am,am+1, bm−1,bm,bm+1, scaled by 2m2n. However the coefficients of these
linear combinations are independent of m (in view of the fact that the non zero
entries of M(Ψm)n −M

Φ̃
are independent of m), hence by Lemma 9.3, εm converges

to the zero vector. We deduce that υ
avg
m converges to an eigenvector υ∗ of MΦ of

eigenvalue λ n
∗ (after having passed to a subsequence, if necessary).

Now the entries of υ∗ must be non-negative, being a limit of positive probability
vectors. In fact it is easy to see, examining the form of MΦ, that υ∗ is positive.
However such a matrix has only one positive probability eigenvector, the Perron
vector, so that υ

avg
m → υ and λ∗ = n√

λ . In particular,

(8) lim
m→∞

I
(
fm,γ

)
= lim

m→∞
I
(
favg
m ,γ

)
= I

(
f,γ

)
.

This takes care of the unstable part of the theorem; the stable part is handled by
repeating the above argument for Φ−1 and Ψ−1

m . �

Note 10.4. — The intersection convergence proved in Theorem 10.3 extends
to test laminations in ML(Z)− (R+ · f)⊃ C(Z), uniformly on compacta.

Proof of Main Theorem. — Choose a sequence of covers Z(α) → Z which
are cofinal in the fundamental system S . Since Pint is directionally dense, there
exists a sequence

{Φ(α) : Z(α)→ Z(α)} ⊂Pint,

whose axes A(α) → A = axis of Φ in the Teichmüller topology. Note that we
may assume that this convergence is also with respect to the heights-widths topol-
ogy. Indeed, let Ui(α) ⊂ ML(Z(α))− (R+ · f), i = 1,2, . . . be an exhaustion by
compacta, and let {Vj = Ui j(α j)} be a diagonal subsequence which gives an ex-
haustion of ML− (R+ · f) ⊃ C. Let ε j → 0. Then we may choose Φ(α j) so that
the heights and widths functionals associated to a quadratic differential q j tangent
to the axis A j of Φ(α j) are uniformly ε j close to those associated to a quadratic
differential q tangent to the axis A of Φ, when restricted to curves in Vj.

For each α , fix a natural number n(α) and let {Ψm(α)} be the sequence of
pseudo Anosovs constructed in §9 from the necklace n(α)th root. If we denote
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by λ (α) the Perron root of Φ(α), we may choose the n(α) so that there exists a
sequence of natural numbers N(α) for which

(λ (α))N(α)/n(α) → n√
λ .

Then by Theorem 10.3 and Note 10.4 we may obtain a lengths-widths nth root
{Ψm} of Φ by extracting a suitable diagonal subsequence of {(Ψm(α))N(α)}.

Indeed, let {Vj} be the exhaustion of ML− (R+ · f) defined in the first para-
graph. Then for α j fixed, pick m j large enough so that intersection pairings of any
γ ∈Vj with the unstable and stable laminations of Ψm j(α j) are uniformly ε j-close
to those with the unstable and stable laminations of Φ. Then the sequence{(

Ψm j(α j)
)N(α j)

}
is the desired heights-width root. �
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