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TRACE THEOREM ON THE HEISENBERG GROUP

by Hajer BAHOURI, Jean-Yves CHEMIN & Chao-Jiang XU

ABSTRACT. — We prove in this work the trace and trace lifting theorem for
Sobolev spaces on the Heisenberg groups for hypersurfaces with characteristics
submanifolds.

RESUME. Dans ce travail, nous démontrons des théoremes de trace et de
relevement pour les espaces de Sobolev sur le groupe de Heisenberg pour des hy-
persurfaces dont I’ensemble caractéristique est une sous-variété.

1. Introduction

In this work, we continue the study of the problem of restriction of func-
tions that belong to Sobolev spaces associated to left invariant vector fields
for the Heisenberg group H? initiated in [2]. As observed in [2], the case
when d = 1 is not very different from the case when d > 2, but the state-
ment in this particular case are less pleasant. Thus, for the sake of simplic-
ity, we shall assume that d > 2. Let us recall that the Heisenberg group is
the space R2%*! of the (non commutative) law of product

ww' = (z,y,8) (@, y,s)=(@+2,y+v,s+s + (ylz") - (]z)).
The left invariant vector fields are
1
Xj =0z, +yj0s, Y; =0y, —x;0s, j=1,...,dand S = 0, = §[Yj’Xj]'

In all that follows, we shall denote by Z = (Zy)1<s<24 defined by Z; = X;
and Z;q4 =Y for jin {1,...,d} and by Z the modulus of smooth vector
fields generated by Z. Moreover, for any C' function f, we shall state
def
va :e (Zl'f7"'aZQd'f)'

Keywords: Trace and trace lifting, Heisenberg group, Hérmander condition, Hardy’s
inequality.
Math. classification: 35Axx, 35Hxx, 35Sxx.
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The key point is that Z satisfies Hormander’s condition at order 2, which
means that the family (Zy,..., Za4, [Z1, Za+1]) spans the whole tangent
space TR24+1,

For k € N and V an open subset of H?, we define the associated Sobolev
space as following

H*HLV) = {f € L2(R¥+1) | Supp f C V

and Va | o] <k, Z°f € L2(R2d+1)},
where if o € {1,...,2d}", |af df 3 and ze Zay Lo, As in the
classical case, when s is any real number, we can define the function
space H*®(H?) through duality and complex interpolation, Littlewood-Paley
theory on the Heisenberg group (see [4]), or Weyl-Hérmander calculus
(see [7], [8] and [9]).
It turns out that these spaces have properties which look very much like
the ones of usual Sobolev spaces, see [2] and their references.
The purpose of this paper is the study of the problems of trace and trace

def

lifting on a smooth hypersurface of H in the frame of Sobolev spaces. Let
us point out that the problem of existence of trace appears only when s is
less than or equal to 1. Indeed, under the sub-ellipticity of system Z, the
space H*(H?) is included locally in H2(R24+1). So if s is strictly larger
than 1, this implies that the trace on any smooth hypersurface exists and
belongs locally to the usual Sobolev space H 5=3% of the hypersurface. Thus
the case when s = 1 appears as the critical one. It is the case we study here.

1.1. Statement of the results

Two very different cases then appear: the one when the hypersurface
is non characteristic, which means that any point wg of the hypersurface
¥ is such that 2, ¢ Tu,%, and the one when some point wg of the
hypersurface ¥ is characteristic, which means that Z,,, C T, 2.

The non characteristic case is now well understood. In [2], we give a
full account of trace and trace lifting results on smooth non characteristic
hypersurfaces for s > % This result generalize various previous results (see
among others [6], [10] and [12]).

Let us recall this theorem in the case of H' (see [2] for the details). If
wy is any non characteristic point of 3, then there exists at last one of the
vector fields Z1, ..., Zoq which is transverse to X at wg. We define §2 by
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TRACE THEOREM ON THE HEISENBERG GROUP 493

22\w =TyXN ég‘w (for w in X). Tt is easily checked that, if g is a local
defining function of ¥, the family Ry

def
Rjw = (Zj 9) 2~ (Zi 9)Z;
generates Zs and that it satisfies the Hérmander condition at order 2 (see
for instance Lemma 4.1 of [2]). We define, for an open subset W of X,

H¥(Rs, W) = {f € L*(W) |V(j,k), Rjruec L*(W)}.
We have proved the following trace and trace lifting theorem in [2]:

THEOREM 1.1. — Let us suppose that ¥ is non characteristic on an
open subset V of H?, then the trace operator on ¥ denoted by 7, is an
onto continuous map from H'(H? V') onto

H'(Rs, VN, L2(V N 2)} LTHI(Rs,VNE).

Remark. — As the system Ry satisfies the Hormander’s condition at
order 2, Theorem 1.1 implies in particular that v, maps H'(H% V) into
the classical Sobolev space H%(V nx).

We shall now consider the characteristic case. The set of characteristic
points of ¥

%, = {w€E|Z|w cTwz},

may have a complicated structure. Let us introduce the following definition.

DEFINITION 1.1. — A characteristic point wqy of a hypersurface ¥ is a
regular point of order r if and only if

i) for any 1-form 6 € T*R?¥*! that vanishes on TY. and such that
0(wo) # 0, the system (Lz,;0|r,, w)1<j<2d is of rank r;

ii) near wy, the characteristic set ¥ is a submanifold of ¥ of codimen-
sion r in X.

Let us make some comments about this definition. A regular charac-
teristic point of order 2d is exactly the familiar notion of non degenerate
characteristic point. This notion of non degenerate characteristic point have
been used in our preceding work [2] to study this problem of trace.

As we shall prove in forthcoming Proposition 2.2, if g is a local defining
function of X, the condition i) means exactly that the matrix
(Zi+Z;- g)1<i,j<2a is of rank r at wg. Let us notice that, because, if
1€{l,...,d} and j #i+d,

(Zi+ Zivar 9)(wo) — (Zivar Zi 9)(wo) = —2059(wo) # 0

TOME 59 (2009), FASCICULE 2
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and
(Zi- Zj-9) = (Zj- Zi- 9),
the rank of the matrix (Zl ZJ‘- g)lgi,j<2d is at least d at wy.

Let us give some examples. First let us consider the case when the hy-
persurface ¥ is given by an equation of the type s — P(z,y) where P is a
homogeneous polynomial of degree 2 on R??. Let us observe that this equa-
tion is homogeneous of order 2 with respect to the dilations of Heisenberg
group dy(z,y, ) def (Az, Ay, A?s). In this case wo = (0,0,0) is always a
regular characteristic point. Indeed the family (Z;- g)1<j<2q4 is a family of
linear forms on R??. As X lwo = 0y, and Y} lwo = 0y, , the rank of the family
is exactly the rank of the matrix (Z;- Z;- 9)1<s,j<24 at the point wg. Thus
Y. is obviously a linear submanifold of codimension 7 of ¥. This particular
case is treated in [3].

Now let us exhibit an example of non regular characteristic point. In the
case when d = 2, let us define, for a in R,

Yo = {(xlvylax%y%S) eR® | s =z -Hl(fﬂzf +y:f’)}

If @ = 0, as observed above, the origin is a regular characteristic point. A
very easy computation shows that the rank of the matrix (Z;- Z;- g)1<i j<a
is three. But the characteristic set ¥, . is the set of points of ¥, such that

3aa:% = —2x1 + Sayf =1ys =x2 =0.

If a # 0, the characteristic set ¥, . reduces to the origin.
Let us introduce some rings of functions adapted to our situation.

DEFINITION 1.2. — Let W be any open subset of ¥ and F a closed
subset of W. Let us denote by C%° (W) the set of smooth functions a on
W N~ F such that for any multi-index «, a constant C,, exists such that

Vo€ N |0%(2)| < Cod(z, F)~1o,
where d denotes the distance on Y. induced by the euclian distance on R24+1

Now let us define the vector fields on ¥ which will describe the regularity
on .

DEFINITION 1.3. — Let wq a characteristic point of a hypersurface X.
Let W be a neighbourhood of wg. We denote by Zs. the Cg® (W) modulus
spanned by the set vector fields of Z N TYy, that vanish on 3.

As we shall see in Proposition 3.1, the modulus Zy; is of finite type (of
course as a O’ (W) modulus) if wy is a regular characteristic point and W
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is chosen sufficiently small. If g is a local defining function of ¥, a generating
system is given by

(1.1) Riw (2 9) 21— (Zig)Z; for 1<j<Fk<2d.

Now we are ready to introduce the space of traces.

DEFINITION 1.4. — Let wg a regular characteristic point of a hypersur-
face . Let W be a sufficiently small neighbourhood of wy. We denote by
HY(Zs,W) the space of functions v of L*>(W) such that

def
[0l 2oy = 072wy + Z IR k0122 < 00,
1<j,k<2d
where the family (Rj ;)1<jk<2d 1S given by (1.1). If s € [0,1], we define
H*(Zx,V) by complex interpolation.

Our theorem is the following.

THEOREM 1.2. — Let wy a regular characteristic point of a hypersurface
3. Let V be a sufficiently small neighbourhood of wy. Then the restriction
map 7y, is an onto continuous map from H'(H?, V) onto Hz (Zx,V NY).

Let us remark that, if wg is a non degenerate characteristic point (i.e. a
regular characteristic point of order 2d) this theorem is Theorem 1.8 of [2].

1.2. Structure of the proof

In our paper [2], we use a blow up of the point wy (which is 3. in
the case when the characteristic point wy is of order 2d). Here we shall
blow up the submanifold .. In order to do it, let us introduce a function
© € D(Ry ~ {0}) such that

(1.2) vt e [-1,1] ~ {0}, i(p(%)t) =1
p=0

1
Let us define the function p. by pc def (92 + |VH9\4) *. Now writing that

for any function u in L?(p. < 1),

o0
(1.3) u= Z ppu with ¢, (w) Cl:e£<p(2ppc(w)),

p=0
we apply Theorem 1.1 of trace and trace lifting to each piece ¢,u which
is supported in a domain where ¥ is non characteristic because p. ~ 27P
in this domain. This decomposition leads immediately to the problem of

TOME 59 (2009), FASCICULE 2
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estimating the norm H'(HY) of each piece @,u. Leibnitz formula and the
chain rule tell us that

Vi(ppu) = ©pVu + 2P¢' (2P pe)uVape.
Let us observe that, as
2d
Zipt =29Z;- g +AVugl* > (Zi9)Z; (Zi g),
k=1
we have, for any real number s, |Vppi| < Cspi~!. As the support of
¢'(27p,.) included in p. ~ 277, the supports of ¢/(2Pp.) and ¢/ (2" p,) are
disjoint if |[p — p'| = Ny for some Ny. Thus, we get that

> 2
> 2! @ puapdlt < L[

p=0

u
Pe
This leads to the proof of the following Hardy type inequality.

THEOREM 1.3. — If wq is a regular characteristic point of 3, a neigh-
bourhood V of wq exists such that, for any u in the space H'(H¢,V) of
H'(H%) functions supported in V,

’LL2 i 1
/ Pdw < C||Vuul|72 with p. = (¢ + |Vmg|*)* .
He Pe
This theorem implies that, for any « in H*(H?, V),

(1.4) > IValppu)llie < Ol Vaullie.
p=0

The proof of this theorem, which is the core of this work, is the purpose
of the second section.

In the third section, we first straighten the submanifolds ¥ and ., and
after dilation, we apply Theorem 1.1. This gives a rather unpleasant de-
scription of the trace space. Then, we prove an interpolation result which
allows to conclude the proof of Theorem 1.2.

2. A Hardy type inequality

2.1. The classical Hardy inequality

As a warm up, let us recall briefly the usual proof of the classical Hardy
inequality )

(1) For a different approach based on Fourier analysis, see [1].
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'LL2 A 1
@1 [ o <CIVaulis with plw) = (2 + (o +)*
H,

As D(H? . {0}) is dense in H'(HY), we restrict ourselves to functions u
in D(H? \. {0}). Then the proof mainly consists in an integration by parts
with respect to the radial vector field Ry adapted to the structure of HY,
namely

d d
def
R = 250, + ) (2500, +y;0y,) = s[Yi, Xa] + Y (X +;Y5)
j=1 j=1
once noticed that Ry-p~2 = —2p~2 and div Ry = 2d + 2. More precisely,
this gives

u? LT Y
—d/—dw:/ f(—JX'—&——]Y')udw
p? ;p p 7l p?

—/(}q%)u(Xlu)dw+/(X1%)U(Y1U)dw~

As we have ‘Zj( i )‘ < Op~ 1, Cauchy-Schwarz inequality gives (2.1).

02
2.2. Reduction to the construction of substitute of p and Ry

The proof of Theorem 1.3 is based on the following proposition that we
admit for the time being.

PROPOSITION 2.1. — There is a couple of vector fields (Zy, Zg) in
(T¥N 2Z) x Z such that

D(Zy- g)(wo) # 0 and [Zo, Zo) — 20, € Z.

Moreover, a smooth function (8 exists such that, if

def - def — 1
Ry = 290 + B(Zo 9)Zo and po = (9° + (Zo- )17,
then, we have
Ripg = 4py and (div Ry)(wo) = 3.

With this proposition, we shall prove that a neighbourhood V of wy
exists such that, for any u in Hl(]HId, V),

2
(2.2) /Z—zdw < O Vit
0

TOME 59 (2009), FASCICULE 2
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It is obvious that this inequality implies Theorem 1.3. Surprisingly, we are
not able to prove directly the inequality of Theorem 1.3.

In order to prove the inequality (2.2), let us first reduce to the case of
smooth functions compactly supported outside pg 1(0). Indeed, Proposi-
tion 2.1 implies that, near wg, the set pal(O) is a submanifold of H? of
codimension 2. The following lemma will allow us to assume all along the
proof that u belongs to D(V ~ py *(0)).

LEMMA 2.1. — Let V be a bounded domain of H and I' a submanifold
of codimension > 2. Then D(V \ T) is dense in the space Hi(H?, V) of
functions of H}(HY) supported in V equipped with the norm

(lull7e + I VaulZ2) >

Proof of Lemma 2.1. — As H}(H?, V) is a Hilbert space, it is enough
to prove that the orthogonal of D(V \T') is {0}. Let u be in this space. For
any v in D(V \T'), we have

(ulv)pz + (Vgu|Vgov)rz = 0.
By integration by parts, this implies that
Yo e D(V\T), (u— Agu,v) =0.

Thus the support of u — Agu is included in I'. As Zju belongs to L2,
then Z?u belongs to H~*(R*¥*1) (the classical Sobolev space). And except
0, no distribution of H~!(R?¥*1) can be supported in a submanifold of
codimension greater than 1. Thus u — Agu = 0. Taking the L? scalar
product with u implies that u = 0. g

Thanks to Proposition 2.1, we have

I
(2.3) P’ =—5R1py

Thus by integration by parts, we have, using Proposition 2.1,

2 3 2 2
/u—zdw:f/%dw—k/Hu—zdw—i—I
Po 2. 1o Po

with 1 % / %(Rl- u)dw and 6 def giv Ry - 3.
0

As the function # vanishes at the point wg, we can assume that V' is suffi-
ciently small such that ||0]| () < ;. This gives

u2
(2.4) /—zdw < A4|).
Po

ANNALES DE L’INSTITUT FOURIER
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In order to estimate I, which contains terms of the type gdsu, we have
to compute the vector field Ry in term of elements of Z. Proposition 2.1
claims that there are two families (8x)1<k<2d and (x)i<k<24 of smooth

functions such that
2d

(2.5) Ry = 29[Z0, Zo] + Y (Brg + 1(Zo- 9)) Zx.
k=1

We deduce that
(Z
I=J1+J; with J; defZ/ Y M(Zk-u)dw

and J, & / =-91Z0, Zo)- udw.
%

As V is supposed bounded, we have that the functions

Brg +1(Zo' 9)
Po
are bounded on V. Cauchy-Schwarz inequality yields

(2.6) FARS ch

| IVaullze.

The estimate about Js is a little bit more difficult to obtain. Let us write
that J2 = K - K2 with

K, d_ef/pQQZO (Zo-u)dw and K, d_ef/pggZo (Zo-u)dw.

By integration by parts, we have K1 = —K77; — K15 with
K11 def / %(Zo- u)(Zo-u)dw and
Po

Ko C‘_ef/fﬁ(io-u)dw with £ % (div Zo) L + po (ZO- %)
P0 Po Po

By definition of py, it is obvious that
(2.7) |K11| < C||Vizul|7.
As we can assume that V is included in py'([0,1]), we have that
p51g| div Zy| < C on V. Moreover using that Zy-g = 0, we get
cd <&
0 Po
This ensures that f is bounded on V and thus by Cauchy-Schwarz inequal-
ity,

| Zo: —]— ¢ |20 (Zo9)| 704" <

[LSEIES

I2 ||V]H[UHL2-

TOME 59 (2009), FASCICULE 2
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Together with (2.7), this proves that

(25) K| < C(H;‘Oi

4 ||vHuL2) Va2
L2

In order to estimate K3, let us write that, by integration by parts,

_ — u
Ky = —/%(zo-u)(zo-u)dw— /pO(ZO-%)—(ZO-u)dw.
Po Po’ Po
Using that
Zy: Pé = 29(70' g) +4 (70' (70'9)) (70'9)37
we immediately get that the function pg (70- %) is bounded on V' and we
0
deduce that
u
gl < ([ 2], + 19l ) 9l
po L2

Together with (2.4), (2.6) and (2.8), we infer that

2 U
<O([[ 2], + 17aulee ) ¥sulz
L2 pO L2

u
H Po
which concludes the proof of the inequality 2.2 (and thus Theorem 1.3)
provided of course we prove Proposition 2.1

2.3. Construction of substitute of p and Ry

Let us start with some remarks about the relations between ¥, and the
vector fields Z; in the case when wy is a regular characteristic point.

PROPOSITION 2.2. — The condition i) of Definition 1.1 is equivalent
to the fact that, for any defining function g of 3, the rank of the matrix
(Zi- Zj- 9(wo))1<i,j<d 15 7

Proof of Proposition 2.2. — Let g be a local defining function of X.
Of course, Dg vanishes on TY. As Z;(wy) belongs to T,,3, we have
Lz,(Dg)(wo) = D(Z;- g)(wo). By definition of Z, we infer that

24
D(Z;-g)(wo) = > (Zi- Z;- g)(wo)dz.

i=1
Thus the rank of matrix (Z;- Z;- 9)1<s,j<24 is the rank of Lz, (Dg)(wo).
Conversely, let 0 be a 1-form that vanishes on T'Y and such that 6(wg) # 0
and g a local defining function of 3. A function a that does not vanish at wg
exists such that § = aDg. Thanks to Leibnitz formula, £z, (6)(wo)r,, = =

ANNALES DE L’INSTITUT FOURIER
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a(wo)D(Z;- g)(wo))1,, s The fact that the function a does not vanish at
point wg implies the proposition. O

In all that follows, g will denote a defining function of ¥ of the form
g(x,y,s) = s+f(x,y) (this is allowed by the implicit function theorem) near
wo, assumed to be the origin of H¢ which is assumed to be a characteristic
regular point of order r < 2d.

As the matrix (Z;- Z;- g9)1<ij<ea 18 of rank r in wy, and as Zjj,,, =
0., a family (jr)i1<e<r exists in {1,...,2d}" such that the linear forms
(D(Z;,- 9))1<e<r are linearly independent near wg. Moreover, the function
Z;-g are independent of s and Dg(wg) = (ds,0,0). Thus the family of

functions

(2'9) (97 (Zjl'g)v""(Zj g))

is a family of r 4+ 1 independent functions. They vanish on the submanifold
Y. which is by hypothesis a submanifold of H? of codimension r + 1. This
implies that, near wg,

(2.10) Ye={wlg(w) = (Z, 9)(w) == (Z;.-g)(w) = 0}.

We shall keep these notations all along this text.
The definition of substitute to p and Ry relies on the following two

lemmas.
LEMMA 2.2. — A couple of vector fields (Zy,Zo) exists in
(Z2~1{Zj,,...,Z;.}) x (£2) such that

[20,70] = 265 and D(7O g)(wo) 7& 0.

Proof of Lemma 2.2. — Let us consider Zy € Z~{Z;,,...,Z; } and Z,
in +Z such that [Z, Z,] = 20s. If 2, belongs to {Z;,,....Z }, then (2.9)
implies that D(Z,- g)(wp) is different from 0 and then Z, = Z, fits. If +Z,
isnot in {Z,,...,Z;.}, as

(Zo (Zo-9)) (wo) = (Zy: (Zo- 9)) (wo) =2,
cither D(Zy- g)(wy) or D(Zy- g)(wo) is different from 0. Thus if
D(Zy-g)(wo) = 0,
we get the lemma interchanging the role of Z, and ZO.

For the reader’s convenience, we recall the proof given in [3] in the case
when g = s — P(x,y) where P is a homogeneous polynomial of degree 2. In

TOME 59 (2009), FASCICULE 2
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this case, the functions Z;- g are linear forms on R??. Thus, by hypothesis,
there is a family of real numbers (cy)1<e<r such that

T
Zy-g = Z o, g.
(=1

Now let us define

211)  Zy ¥ Z, - Zoqzjw Ry ©oga, + - (Zo 97

ENE

and o © (° + (Zo 9)*) "
As Zy and the Z;, commute, we have
[Zo, Zo) = 205, Zo-g =0 and Zy- Zg-g = 2.
This implies that
Ri-g=2, Ri-Zy-g=1 and divR; = 20,9 + %Zo-z(yg =3.

We immediately infer that Ry- ps = 4pg. Proposition 2.1 is proved in that
case.

Let us treat now the general case. Noticing that the functions Z;- g do not
depend on s, the set of the zeros of the functions Zj,.4 is a submanifold of
R4, the standard division theorem implies the existence (on a sufficiently
small neighbourhood V' of wy) of a family (ay)1<e<, of functions of C*°(V)

such that
Zog=>>_ auZ,g).
=1
As in (2.11), let us define

def def
Zy = Zo—Zae je B = 290, + B(Zo: 9) 20

and et
e
(9°

9>+ (Zo g))

where [ is a function determined later on. By definition of the function pg,

£0

we have

Ry po = 29(Ru1- 9) +4(Zo- 9)* (R1- (Zo- ) -
By definition of Zy, it is tangent to X. Using that dsg = 1, this implies that
Ri-g = 2g. Let us compute Ri-(Zy-g). As 0s(Z¢-g) = 0, we have

Ri-(Zo-g) = B(Zo- 9) (%0 (Zo- 9)) -

ANNALES DE L’INSTITUT FOURIER
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Let us notice that Zy does not belong to the family (Z;,)1<e<,. Thus Zo
commutes with the vector fields Z;,. By definition of Z,, we infer
(Zo, Zo| = [Z0, Zo] — Z[aészZO]

(2.12) =t

=20, + Y (Zo o) Zj,.
=1
By definition of Zy, we have Zy- g = 0. Thus we get

Zo-(Zo- 9) = Zo- (Zo- g) + 2059 + 2(70' ae)(Zj,- 9)
(2.13) =t

—2460 with 5d=‘5f2(7o-04z)(zje'9)«

{=1

It turns out that Ry- p = 4¢% +4(Zo- g)*3(2+0). Choosing 3 def (2+0)!
ensures that R;- p¢ = p3. Now, let us compute div R;. We have

div Rl = 2839 + ﬁZ(y (70'g) + (70-9)(div Zo + Zoﬁ)
Using that 9,9 = 1 and (2.13), we get

divRy =24 B2+ 0) + (Zo- 9)(div Zo + Zo- 5)
=3+ (Zo'g)(di\/' Zo + Z()ﬂ)

This proves the lemma with 6 def (Zo- 9)(div Zo + Zo- B). O

3. The proof of the trace and trace lifting theorem
3.1. Some preliminary properties

PrOPOSITION 3.1. — A neighbourhood W of wy exists such that the
Cs. (W) modulus Zs, spanned by the vector fields of ZNT'Yy, which vanish
on the characteristic submanifold ¥, is of finite type and generated by

def
Rjw = (Zj9)Zk — (Zk 9)Z;.

Proof of Proposition 3.1. — 1t is enough to prove that any element L of
ZNTX which vanish on Y. is a combinaison (with coefficients in C%° (W))
of the R; ;. By definition

2d 2d
L=Ya;Z; with ajz =0and Y a;(Z;g) = 0.
i=1 J=1
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Let us introduce a partition of unity (1;)1<;<2q of the sphere 24~ such
that the support of v; is included in the set of ¢ of S?*=! such that |(;| >

(4d)~1. Let us state
def ~ ( VHg
5 (2
! "\ Vgl
It is an exercise left to the reader to check that 1; belongs to C'g* (W). On
¥\ 3., we have, for any j in {1,...,2d},

2d
Vi(L-g) = ijak(zk' g9) =0.
k=1
By definition of ¢;, (Z;- g) does not vanish on the support of ;. Thus we

have
1
Oéjl/fj = *W ;¢jak(zk'g)~

J

From this, we deduce that

_ } .
whe ;j%ak <Zk (Zj-9) ZJ)

=> (?(,1;) ((Zj9)Zk — (Zk- 9)Z;).
k#j

Now the facts that aj, € CF and that (Z;-g) does not vanish on the
support of 1; ensure that

def j VL o
ok = é?g) € G
So we have
L= Y ax((Z-9)2 — (Z9)Z;)
1<j<k<2d
and the proposition is proved. O

The blow up procedure requires to straighten the submanifolds ¥ and X..
LEMMA 3.1. — A neighbourhood V' of wg and a diffeomorphism x from
V onto x (V) exist which satisfy the following properties.
e [t straighten the submanifolds ¥ and ¥., namely
X(ENV)={w|s=0}nx(V)
and
XE.NV)={w|s=2z=-2z.=0}Nx(V).
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e The transported vector fields are of the form

X* (as) = as
and

ZD defX*( ae (Za Zg)@ +h (Z 0, )
J

where (e;)1<j<2q i a basis of R??, the (a}) are smooth bounded
functions on V such that, for j € {1,...,r}, o = 65 and (hj)1<j<2d
is a family of smooth vector fields which vanish at z = 0.

Proof of Lemma 3.1. — Let (Lg)ry1<k<2d be a family of linear forms
on R?? such that

(D(Zj,- 9)(w0))1<ocr » (L) r1<h<2d

is a basis of the dual space of R??. It is easily checked that the map de-
fined by

9(@,y,s) = s+ f(z,y)
x(x,y,s) = e = (Zj, 9)(xy) if k<r
2k = (Lg, (x,y)) if k>r
is a local diffeomorphism which satisfies the property of the lemma. |

From now on, we shall work only in the straighten situation and to avoid
excessive heaviness of notations, we shall still denote ZjD by Z;.

3.2. The blow up procedure

Let us write that, for any function u, we can write (at least in L?) that

o0
u= Z opu with p,(z, s) def @(2”(52 + |z’|4)i>
p=0

where ¢ is the function introduced in (1.2) and if z = (2;)1<j<24; 2’ def

(#1,.-+,2r,0,...,0). Let us define the space of trace in this straightened
situation.

DEFINITION 3.1. — Let us denote by [A, Blp the complex interpolation
between A and B and by H*(R,W) the space of functions of H*(R) sup-
ported in W. The space T? is the space of functions v € L2(|z'| < 1) such
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that
2 def Zul2
o2, Zn oy <o
with H*(R,) %' [L2(277Cs), H'(R,277Cx)] |

where Cz {c 2’| < C} and @3 (z) d§f<pp(z,0) = p(27|2']).
We shall prove the following theorem.

THEOREM 3.1. — The restriction map to the hypersurface (s = 0) can
be extended in a continuous onto map from H*(Z;{p. < 1}) onto Tz.

Proof of Theorem 3.1. — Once noticed that the Hardy inequality given
by Theorem 1.3 becomes

’LL2 z,S8
(3.1) /((dzds CZIIZ ullZe,

24 12]Y)2

we get, by computations very similar to the ones done at the beginning of
Subsection 1.2, an analogous of (1.4), namely

oo 2d 2d
(3-2) > 1Zilepw)lie < C Y l1Zjullze.
p=0j=1 j=1

Let us notice that outside X, = {(z,s) | s =0, 2’ = 0}, thus in particular
in the support of ¢, the hypersurface ¥ is non characteristic for Z. Thus
locally we can apply Theorem 1.1 to each piece ¢,u. The key point is the
control of the constant when p tends to co. In order to do so, it is convenient

to use the quasi-homogeneous dilations d,(z, s) def (2P2,2%75). Let us define

up(z, s) def wo(z, s)u(2Pz,2%Ps)

and

Zjp def 8(; —l—Za 27P2)2005 + h;(2772,0,).
It is obvious that a one to one map o of {1,...,2d} exists such that
(3.3) (Zj.) Zk.p) = 201,05 Os-

Moreover, as [u,||2. = 227+ o ul 12, we have, thanks to Hardy’s in-
equality (3.1),

[e'S) 2d
Y27 uyll7: < C Y N1 ZullZe
p=0 7j=1
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Applying (3.2), we infer

[e%) 2d 2d
(3.4) Zr?pd(nup&z 'y ||Zj,pup||;) <Y |1zl
p=0 j=1 j=1

On the support of ¢g, the hypersurface (s = 0) is non characteristic with
respect to the family (Z; ,)1<; <24 because, for j between 1 and r,

0
Let us notice that the transverse component of Z;, does not depend on p.
Thus we can apply Theorem 4.6 of [2] together with a result of interpolation
between Sobolev spaces (see Remark 4.2 page 89 in [7]) to each wu,. Using
that [[up|l g1 (z,) = 2%P%(|¢pull i1 (z), this gives in particular that a constant
C exists (independent of p) such that

Zj,p = +hj(2_pz782) +zj85.

(35) ||7(up) H [L2(R24), H(R,,R2%)] < C(22pd||(10pu”H1(Z)

1
2

with ﬁp is the union of
Rp = (SZE(ZJ}I)' ) Zkp — @E(Zk,p' S)Zj7p)1gj,kg2d and ((1 - ‘Z(?)aj)lgjggd

where ¢ is a smooth function supported in Cs. such that $§ = 1 near the
support of ¢y .

At this point, let us recall the definition of complex interpolation. For
details of this theory, we refer in particular to [5] and [11].

DEFINITION 3.2. — Let (Hj, || [lj)jef0,1y be two Hilbert spaces such
that H; is densely included in Hg. Let F(Ho,H1) be the space of holomor-
phic functions f from the strip 0 < Re( < 1 into Hy such that f(j + it)
is continuous and vanishes at infinity in H;. Then, for 6 €]0, 1], the space

[Ho,Hl]g is
Mo, Halo & {v € L2 |37 € F(Ho, 1) | 1(0) = v}

equipped with the norm

def .
v o = inf max_su + it
Iolloegauo & ,_int - max sup £+ i0)

As the support of y(u,) is included in the support of ¢, let us con-
sider a smooth function 7 supported in the set where @3 has value 1
and such that o7 has value 1 near the support of 3. If f is a func-
tion in F(L?*(R??), H'(R,, R?%)) such that f(1/2) = v, then the function
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¢ — ¢1f(¢) belongs to F(L*(Cx), H(Rp,Cx)) and ¢1f(1/2) = v. As we
obviously have that H'(R,,Cs) = H'(R,,Cx), inequality (3.5) becomes

(3.6) H“Y(%)H[L2(cz),H1(Rp,cz)]% < C2%7Yppul g1 (z).-

Moreover, dilations on R?? of ratio 277 maps L?(Cx) (resp. H(R,,Cs))
into L2(27PCyx) (resp. H*(R,27PCyx)) with norm equal to 2774, Thus by
the functorial property of complex interpolation, inequality (3.6) becomes

(37) 17l 3 ., < Cllgpulincz):
Inequality (3.2) implies that v can be extended to a continuous linear map
from H'(Z) into T2.

In order to prove that  is onto, let us consider v € T' 3, By definition of
T%, and after dilation, we infer that

(3.8) ||(,0§U(2_p- )”[L?(Cg),Hl(Rp,Cz)]% < CdeCP”UHT% with ZCIQ’ =1.
p

As L%(Cs) (vesp. H'(R,,Cs)) is a subspace of L2(R2%) (resp. H'(R,; R2%)),
using Theorem 4.6 of [2] together with Remarque 4.2 of [7] and (3.8), we
claim the existence of a function @, in the space H 1(2,)) such that a con-
stant C' (independent of p) exists which satisfies, for any p,

(39) Tl 3, < C2eoll oy with 32 =1
p
where Zp is the union of the families
(PoZjp)i<sk<ads (1= $0)0;)1<j<2a and (1 — Go)0s.

Let us consider a smooth function ¢, supported in the domain where

@ has value 1 and such that ¢; = 1 near the support of ¢g. Defining

Up def 1y, we have, by definition of R, and by (3.9)

Up € H1(§p7cz) = Hl(Zp’CE) and ||UPHH1(RP) < C”ﬂpHHl(ﬁp,Cg)'

After dilation, this gives

D Nup ()i z) < Cllvl2, -
p

1
2

As an integer Ny exists such that
p—p| > No = u,(2%) Luy(2”-) in H(Z),

the series (u,(2F-)), converge in H'(Z) to a function u whose trace is
obviously v. This concludes the proof of Theorem 3.1. (|
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Remark. — The trace lifting theorem provides functions in H'(H%) sup-
ported in a set of the form s? < C(|z|> +|y|?)?. It obviously prevents, using
this method, to prove trace lifting theorem for very regular (for instance
continuous) functions.

3.3. The space of trace as an interpolation space

The description given by Theorem 3.1 is not totally satisfactory. We want
to describe this space of trace as an interpolation space to get Theorem 1.2.
In order to do so, let us define, for s € [0, 1], the space

def
2 S el r,) < o)
p

Let us start with the proof of the following lemma.

s def {11 e L2 |lv]

LEMMA 3.2. — The space T" is equal to H'(R) and the norm are equiv-
alents.

Proof of Lemma 3.2. — By definition of the norm on H'(R,), we have

1y )@ ),y = 1o o) 277 IEe + D IRk ((250)(277)) 117
.k
By definition of R;  ,, we have
272 Rynp (05 0)(277)) 172 = [R5 ) 7.
By Leibnitz formula and by definition of @E, we have
R; k(5 v)(2) = @y Ry v(2) + (Rjk- 0y )v(2)
= ¢y (2) (R v)(2) + 27 (Rjge |2']) ¢ (2712 o (2).

As the vector fields R; j vanishes at 0, we have

sup [|R; xpy || L < 0.
p:7,

This gives that
|Rj (2 0)(2) = oy Rjsv(2)| < C9 (2712 ])|o(2)]-

As, for some positive integer Ny, the support of the two functions ¢(27|z)
and (27'|2'|) are disjoint when |p — p/| > Ny, this gives the lemma. O

Now Theorem 1.2 will be an easy consequence of the following abstract
interpolation lemma.
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LEMMA 3.3. — Let us consider (Hj, |- ||;)je0,13 two Hilbert spaces such
that H; is densely included in Ho and a family (H; ) (jp)e{0,1} xv Such that,
for any p, 'H;,p, is a closed subset of H;.

Let us assume that a family of (A,)pen of (unbounded) selfadjoints op-
erators on Hy ) exists such that H, , equals to the domain of A, and

(3.10) Vu € Hup, [lullr, ~ [[Apullg-

Let us assume in addition that a family of operators (Ap)pen exists such
that, for any (j,p) in {0,1} x N, the operator A, is continuous from H;
into ‘H;,, and

N
(3.11)  VoeH,, lm Hv - Z)%H =0 and [[v]}3, ~ " [A0]3, -
= p

Then,
def
€.
(o, Hals = {v € Ho | oll3 E3 14,008, }
p=0
. def
with H = [Hop, H1,p]s-
Proof of Lemma 3.3. — 1t is enough to prove that the two norms are

equivalent on the dense space of v such that

N
v= va with v, € Hyp.
p=0
Let us first estimate |lv|/jp,x,),- By definition of the norm on H,,, a
function f, exists in F(Ho,p, H1,p) such that

Jp(s) = Apv and  max sup || fp(j + it)|ln; <2/ Apvln, .,
J€{0,1} teRr

Now let us define
N
def (2_g2
Fn(¢) = e > £(0).
p=0

As the sum is finite, it is obvious that Fy belongs to F(Hp, H1). Because
of (3.11), we have, for j € {0,1},
N
IFn G+ i), < Cem™ D2 A0 + it
=0
2 pN
<Ce™ ) 1A, , < Cllol

p=0

2
Ts -
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Thus by definition of the complex interpolation norm, we deduce that

[0l peo 4020, < Cllvllre-

Now let us estimate ||v]
such that

7s. In order to do so, let us consider F' in F(Ho, H1)

F(s) =vand max sup|[F(j+it)|x, < 2”1)“[7.(077_(1]5.
j€{0,1} ¢

For a greater than 1, let us introduce
N a
def (2_g2
N0 2 75 [Ny (4, (0. A,F(O)
p=0"1
where p, is the spectral measure of A,. Then, by using (3.10) and (3.11),

INL(j +it)| < Ce™ "

/ NN gy (APF(]' +it), A F(j + it))‘
1
2 N a .
< Ce™t Z/ )\QJdup(ApF(j+it),ApF(j+it))
p=0"1

N
— 2 . -
<O Y NIAF( +it)l3,

p=0

< Ce ™ ||Fy(5 +it) I3,
< C||U||[2HO,H1]S~

Then using the Phragmen-Lindel6f principle, we get that
Na(S) < Sltlp ‘Na(it)|178|Na(1 + it)|5 < C||UH[2H0,Hl]S'
Thus a constant C' exists such that, for any a,
N ra
(3.12) 3 /1 X2 dpy(Ayv, Ay0) < CllollBy re,.-
p=0
By definition of H, , and using that

ol = / N2 dp (w0, w),
1

we infer by passing to the limit when a tends to infinity in (3.12) that

N
D 1Al < Cllvlitg p, -
p=0

This conclude the proof of Lemma 3.3. |
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3.4. Conclusion of the proof of Theorem 1.2

Theorem 1.2 follows, observing that the hypothesis of Lemma 3.3 are
satisfied with Ho = L?, H; = H'(R), H,,p is the set of v in H; supported
in 27PC and A, is the square root of Dirichlet realization on 277C of the
operator

def

Id+Ax with Az = Y RE Rk
7.k

To be able to apply Lemma 3.3, and then to conclude the proof of Theo-
rem 1.2, it is enough to prove the following proposition.

PrOPOSITION 3.2. — A neighbourhood V of wq exists such that the
operator Ay, is selfadjoint on L?(V') with domain

{u € LA(V) | V(i k,j' k) € {1,....2d}*, R, v e LA(V)
and R; Ry v € L(V) .

Proof of Proposition 3.2. — Up to an omitted regularization process, it
is enough to prove that, for any v € D(V),

(313) Y IRiwvlta+ Y I RwBywvlEe < C(I0lEe + [AsvlE. ).
j’k j7k7j/7k/
Let us start with the observation that
S IR xvll7: < C D (R xv|Rjpv) L2
gk Gk
(3.14) <O (R pRjpvlv) e
J.k
C(AEU"I))LZ

<
< Ol Agvl|p2[lv]l L2

In order to estimate |R; xR/ 1v| 2, we are going to proceed as in the
proof of Lemma 3.2. Let us write that

(3.15)  Rj iR i (0pv) — pRj e Ry v
= (Rjkep) (R iv) + (Rjr ke op) (Rjkv) + 0p(Ry k Ryr prv).
As the coeflicients of the vector fields R, vanish on ., we have
Sup 1B kppllioe + |1k Ry e ppllne < oo

p.J.k.3",
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Thus, using (3.14), we have

(3.16)  llepRynRy wrv — By kR g (0p0)l| L2 < Copl| Asol falvl Z2

oo
with Z cf) =1.
p=0

We have

Rj kR (pv) = Ry pRyr i p (000(27)).
Lemma 4.1 of [2] tells us that the systems (R x,p);  satisfy the Hormander
condition at order 2 uniformly with respect to p on C. Thus, the classical
maximal estimate tells us that

IR kp R pwl e < C<HZ R;7k7pRj,k,pwHL2 n |w||2Lz).
7.k

Applied with w = @gu(2P-), this gives
B17) Ry kR w (p0)| L2

< 02| By Ronmunt@ )], + (22122
7.k

< C([As(epv)llez + llepvllL2) -
Then (3.16) implies that

1 o i
18s(ep) — eprollie < CopllAsel bl with S 2 =1
p=0

Thus, by using (3.15) and (3.17) we infer that

lopRy iRy wvlle < Cop(||Asv] gz + [|v]|2) with Y ¢ = 1.
p=0

This proves (3.13) and thus Proposition 3.2. O
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