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ON THE EXTENDABILITY OF ELLIPTIC SURFACES
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† Dedicated to the memory of Giulia Semproni

Abstract. — We study threefolds X ⊂ Pr having as hyperplane section a
smooth surface with an elliptic fibration. We first give a general theorem about
the possible embeddings of such surfaces with Picard number two. More precise
results are then proved for Weierstrass fibrations, both of rank two and higher. In
particular we prove that a Weierstrass fibration of rank two that is not a K3 surface
is not hyperplane section of a locally complete intersection threefold and we give
some conditions, for many embeddings of Weierstrass fibrations of any rank, under
which every such threefold must be a cone.

Résumé. — On étudie les variétés de dimension trois X ⊂ Pr qui ont comme
section hyperplane une surface lisse avec une fibration elliptique. On prouve d’abord
un théorème général sur les plongements possibles de ces surfaces de nombre de
Picard égal à deux. Dans un deuxième temps, on prouve des résultats plus précis
pour les fibrations de Weierstrass de rang supérieur ou égal à deux. En particulier,
on prouve qu’une fibration de Weierstrass de rang deux qui n’est pas une surface K3
n’est pas une section hyperplane d’une variété de dimension trois localement inter-
section complète. On donne, de plus, des conditions sous lesquelles, pour beaucoup
des plongements de fibrations de Weierstrass de rang quelconque, toute variété de
dimension trois comme ci-dessus est un cône.
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1. Introduction

The minimal model program has highlighted the importance, among the
basic building blocks in the study of birational equivalence classes of alge-
braic varieties, of Mori fiber spaces, that is morphisms f : X → Y with
connected fibers such that X is normal projective with Q-factorial terminal
singularities, Y is normal projective, dimY < dimX, −KX f -ample and
ρ(X) − ρ(Y ) = 1. In dimension 3, where the minimal model program has
been accomplished, a lot of work has been dedicated to the study of the
case when Y is a point, that is when X is a Fano variety ([22, 23, 42, 46]).
Perhaps the next interesting case is when Y is a curve and here also several
papers have appeared (see [7] and references therein).

In the present article we also study the latter case, but from a different
point of view, that we wish to outline here. Given a Mori fiber space f :
X → Y with Y a curve and general fiber F , in many cases we can take
a projective embedding X ⊂ Pr with OX(1) ∼= OX(−KX + hF ), h >> 0.
Now a general hyperplane section S = X ∩H inherits an elliptic fibration
and will often have ρ(S) = ρ(X) = 2 (the latter happens, for example when
X is smooth, h2(OX) = 0 and pg(S) > 0, by a theorem of Moishezon [40,
Thm.7.5]).

Reversing this scenery it seems therefore interesting to take a projective
embedding S ⊂ PN of an elliptic surface S, for example with Picard number
two, and study which threefolds X ⊂ PN+1 can have S as hyperplane sec-
tion. In the literature there is also a lot of work performed in this direction,
mostly based on the following two techniques. The first one is adjunction
theory (see [5]), that, to say in a few words in the specific cases we are
describing, aims first at extending the fibration to the threefold and then
to study the properties of the threefold using the extended fibration. A nice
example of this is the result of Badescu ([3, Thm.7]), that classifies pairs
(X,L) with X a normal projective variety, L an ample line bundle on X

such that there exists S ∈ |L| that is a Ps-bundle over a curve. The second
technique is more recent and is based on a theorem of Zak [50, page 277]
and on the theory of Gaussian maps [49]. For this point of view we mention
here the study of smooth Fano threefolds and Mukai varieties [9, 10], and,
more recently, of Enriques-Fano threefolds and threefolds with hyperplane
sections pluricanonical surfaces of general type [29].

To explain the results proved in this article, employing both techniques
above, we start with a few definitions.

In the sequel all varieties are over the complex numbers.
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Definition 1.1. — A subvariety Y ⊂ PN is called extendable if there
exists a subvariety X ⊂ PN+1 and a hyperplane H = PN ⊂ PN+1 such
that Y = X∩H, X is different from a cone over Y and dimX = dimY +1.
Such an X is called an extension of Y .

If Y is extendable to a variety X as above with locally complete inter-
section singularities, we will say that Y is l.c.i. extendable. Similarly we
can define smoothly extendable if X is smooth, or normally extend-
able if X is normal, l.c.i.-terminal extendable if X has terminal locally
complete intersection singularities, l.c.i.r.s. extendable if X is locally
complete intersection with rational singularities.

We will study extensions of elliptic surfaces, as in the ensuing

Definition 1.2. — Let S be a smooth irreducible projective surface and
let B be a smooth irreducible curve. We will denote by d(B) the minimum
degree of a very ample line bundle on B. An elliptic fibration π : S → B

is a surjective morphism whose general fiber is a smooth connected curve
of genus one. If a smooth surface S has an elliptic fibration we will call S
an elliptic surface.

A simple but important point for us is that, in many cases (see Proposi-
tion 4.7), extensions of elliptic surfaces are in fact Mori fiber spaces.

Our first result, which, together with Theorem 4.8 below, can be con-
sidered a more precise version of [41, 3.5.2], studies which embeddings can
occur for some extendable elliptic surfaces S ⊂ PN with Picard number
two.

Theorem 1.3. — Let S ⊂ PN be a smooth surface having an elliptic
fibration π : S → B with general fiber f . Suppose that N1(S) ∼= Z[C]⊕Z[f ]
for some divisor C and that the hyperplane bundle of S is HS ≡ aC + bf ,
so that we can also suppose, without loss of generality, that C.f > 1. Let
X ⊂ PN+1 be any l.c.i. extension of S and suppose furthermore that one
of the following holds:

(i) X has rational singularities and g(B) > 0;
(ii) X has Q-factorial terminal singularities, B ∼= P1 and κ(S) = 1;
(iii) κ(S) = 1 and H1(S,KS +HS − f1 − . . .− fd(B)) = 0 for every set

of smooth distinct fibers fi’s.
Then

(a,C.f) ∈ {(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 4), (3, 3)}.

Moreover if, in addition, X is locally factorial, then (a,C.f) 6∈ {(1, 7), (1, 8),
(1, 9)}.
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The vanishing condition in (iii) above is satisfied in many cases, see
for example Remark 4.3. Moreover we observe that there are examples
of smoothly extendable smooth elliptic surfaces with κ(S) = 1, N1(S) ∼=
Z[C]⊕ Z[f ], HS ≡ aC + bf and (a,C.f) ∈ {(1, 3), (1, 4), (1, 5), (1, 6), (2, 4),
(3, 3)} (see examples 6.1-6.6).

Our results can be made a lot more precise if we assume a little bit more
on the fibration: In case S has a Weierstrass fibration (see Definition 3.1)
and ρ(S) = 2, then S is often non l.c.i. extendable (but it can be extendable
in higher rank, see Example 6.7).

Corollary 1.4. — Let S ⊂ PN be a smooth surface having a Weier-
strass fibration π : S → B with general fiber f and section C. Set n =
−C2, g = g(B) and suppose that ρ(S) = 2, n > 1 and (g, n) 6= (0, 1).

(i) If (g, n) 6= (0, 2) then S is not l.c.i. extendable.
(ii) If (g, n) = (0, 2) then any possible l.c.i. extension X ⊂ PN+1 of S

is an anticanonically embedded Fano threefold with ρ(X) = 1 and
h1(OX) = h2(OX) = 0.

In the case (ii), which turns out to be exactly the K3-Weierstrass case
(see Proposition 3.6(iii)), we can be a little bit more precise.

Corollary 1.5. — Let S ⊂ PN be a smooth surface having a Weier-
strass fibration π : S → P1 with general fiber f and section C such that
C2 = −2. Suppose that ρ(S) = 2. Let HS ∼ aC + bf be the hyperplane
bundle of S and let g(S) be the sectional genus of S. We have:

(i) S is not l.c.i.-terminal extendable.
(ii) If (a, b, g(S)) 6∈ {(3, 7, 13), (3, 8, 16), (3, 10, 22), (3, 11, 25), (3, 13, 31),

(3, 14, 34), (4, 9, 21), (4, 11, 29),(4, 13, 37),(5, 11, 31),(5, 12, 36)}, then
S is not l.c.i. extendable.

(iii) If (a, b, g(S)) 6∈ {(3, 7, 13), (3, 8, 16), (3, 9, 19), (3, 10, 22), (3, 11, 25),
(3, 12, 28), (3, 13, 31), (3, 14, 34), (3, 15, 37), (4, 9, 21), (4, 10, 25), (4,
11, 29), (4, 12, 33), (4, 13, 37), (5, 11, 31), (5, 12, 36)}, then S is not
normally extendable.

We end this introduction with a non extendability result (regardless of
the singularities of the extension) for Weierstrass fibrations with more spe-
cial assumptions on the embedding line bundle, but with no assumption on
the rank on the Picard group.

Theorem 1.6. — Let S ⊂ PN be a smooth surface having a Weierstrass
fibration π : S → B with general fiber f and section C. Set n = −C2 and
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g = g(B). Suppose that the hyperplane bundle of S is of type HS ≡ aC+bf
and that n > 1.

Then S is not extendable if any of the following conditions is satisfied:
(i) g = 0 and a > 6 with (a, b, n) 6= (6, 7, 1), or
(ii) g > 1 and a ≡ 0 (mod 3), a > 6, or
(iii) g > 1, S is linearly normal and either a > 7, b > an + 5g − 1 or

a = 5, b > 6n+ 7g − 3.

Acknowledgments. The authors wish to thank Mike Roth for several
helpful discussions.

2. Background material

We recall in this section, for the reader’s convenience, some results of
adjunction theory that will be used in the sequel.

Throughout this section we will denote by X an irreducible normal n-
dimensional projective variety with terminal singularities, n > 2, by A an
ample line bundle on X and by r the index of singularities of X, that is
the smallest positive integer r such that rKX is a Cartier divisor.

Definition 2.1. — [5, Def.1.5.3] The nefvalue of (X,A) is

τ(X,A) = min{t ∈ R : KX + tA is nef }.

By Kawamata’s rationality theorem [24, Thm.4.1.1], if KX is not nef, the
nefvalue is a rational number and we can write rτ = u

v for some u, v ∈ N.
By the Kawamata-Shokurov base-point free theorem [30, Thm.3.3], the
linear system |m(vrKX + uA)| is base-point free for m >> 0 and using
the Stein factorization of the morphism defined by this linear system one
gets a morphism φ(X,A) : X → Y with connected fibers onto a normal
projective variety Y . This morphism depends only on the pair (X,A) and
is called the nefvalue morphism of (X,A).

We mention here several useful results of general adjunction theory re-
lated to the nefvalue.

Proposition 2.2. — [5, Prop.7.2.2] Let τ be nefvalue of (X,A). Then
either

(i) τ = n+ 1 and (X,A) ∼= (Pn,OPn(1)); or
(ii) τ = n and (X,A) ∼= (Q,OQ(1)), Q ⊂ Pn+1 a quadric; or
(iii) τ = n and (X,A) is a (Pn−1,OPn−1(1))-bundle over a smooth curve

under φ(X,A); or

TOME 59 (2009), FASCICULE 1
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(iv) τ 6 n and KX + nA is nef and big.

In the range n− 1 < τ < n we have

Theorem 2.3. — [5, Thms.7.2.3 and 7.2.4] Assume that X is Q-facto-
rial and suppose that KX + nA is nef and big. Then KX + nA is ample
and if τ is the nefvalue of (X,A) we have τ 6 n− 1 unless τ = n− 1

2 and
(X,A) is a generalized cone over (P2,OP2(2)).

When τ 6 n− 1 we have

Theorem 2.4. — [5, Thm.7.3.2] Suppose that τ(X,A) 6 n − 1. Then
KX + (n− 1)A is ample unless τ(X,A) = n− 1 and either

(i) rKX ∼ −r(n− 1)A; or
(ii) (X,A) is a quadric fibration over a smooth curve under φ(X,A); or
(iii) (X,A) is a scroll over a normal surface under φ(X,A); or
(iv) φ = φ(X,A) : X → Y is birational. Moreover if X is factorial then

φ(X,A) is the simultaneous contraction to distinct smooth points of
divisors Ei

∼= Pn−1 such that Ei ⊂ Reg(X), OEi(Ei) ∼= OPn−1(−1)
and A|Ei

∼= OPn−1(1). Also L := (φ∗(A))∗∗ and KY + (n− 1)L are
ample and KX + (n− 1)A ∼= φ∗(KY + (n− 1)L).

When KX + (n− 1)A is nef and big we can define the first reduction of
(X,A). By the Kawamata-Shokurov base-point free theorem [30, Thm.3.3]
we have a birational morphism π : X → X ′ with connected fibers and
normal image associated to the linear system |mr(KX+(n−1)A)| for m >>

0. Set A′ := (π∗(A))∗∗. The pair (X ′, A′) is called the first reduction of
(X,A). Then we have

Theorem 2.5. — [5, Thm.7.3.4] Assume that X is factorial and that
n > 3 and let (X ′, A′) be the first reduction of (X,A). Suppose that n−2 <
τ(X ′, A′) < n− 1. Then either

(i) n = 4, τ(X ′, A′) = 5
2 and (X ′, A′) ∼= (P4,OP4(2)); or

(ii) n = 3, τ(X ′, A′) = 3
2 and (X ′, A′) ∼= (Q,OQ(2)), Q ⊂ P4 a quadric;

or
(iii) n = 3, τ(X ′, A′) = 4

3 and (X ′, A′) ∼= (P3,OP3(3)); or
(iv) n = 3, τ(X ′, A′) = 3

2 , φ(X,A) has a smooth curve as image and
(F,A′|F ) ∼= (P2,OP2(2)) for a general fiber F of φ(X,A).

3. Weierstrass fibrations

We collect in this section some notation and facts about Weierstrass
fibrations that will be used in the sequel.

ANNALES DE L’INSTITUT FOURIER
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Let π : S → B be a minimal elliptic surface, that is there are no (−1)-
curves in the fibers of π. Suppose moreover that π has a section s : B → S.
On each reducible fiber contract any irreducible component not meeting
s(B). Hence we obtain a new (singular) elliptic surface π′ : S′ → B with a
section and whose fibers are all both reduced and irreducible. In this con-
text a global Weierstrass equation can be given and the following concept
appears (see [39]).

Definition 3.1. — Let S be a surface and let B be a smooth curve.
A Weierstrass fibration π : S → B is a flat and proper map such that
every geometric fiber has arithmetic genus one (so that it is either a smooth
genus one curve, or a rational curve with a node, or a rational curve with
a cusp), with general fiber smooth and such that there is given a section of
π not passing through the singular point of any fiber.

We will say that a Weierstrass fibration π : S → B is smooth if S is
smooth.

Remark 3.2. — By the above discussion the notions of Weierstrass
fibration and elliptic surface with section can be freely interchanged
when S is smooth and ρ(S) = 2.

We recall from [39] some well-known facts about Weierstrass fibrations
(see also [38]).

Definition 3.3. — Let π : S → B be a Weierstrass fibration with
section C ⊂ S. We define the fundamental line bundle L of π as the
dual line bundle of π∗NC/S on B. We will set n = degL.

Remark 3.4. — As L = (R1π∗OS)∗, the fundamental line bundle L does
not depend on the given section C. Moreover n = −C2 > 0 and L ∼= OB if
and only if S is a product B ×F , with F an elliptic curve [39, (II.3.6) and
(III.1.4)].

Lemma 3.5. — [39, (II.3.5), (II.3.7) and (II.4.3)] Let π : S → B be a
Weierstrass fibration with section C and fundamental line bundle L. We
have:

(i) π∗OS
∼= π∗OS(C) ∼= OB , R1π∗OS(uC) = 0 for every u > 1.

(ii) π∗OS(mC) ∼= OB ⊕ L−2 ⊕ L−3 ⊕ . . .⊕ L−m for every m > 2.

The invariants and Kodaira type of a smooth Weierstrass fibration are
given as follows.

Proposition 3.6. — [39, (III.1.1), (III.4), (IV.1.1) and (VII.1.3)] Let
π : S → B be a smooth Weierstrass fibration with section C, general fiber

TOME 59 (2009), FASCICULE 1
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f and fundamental line bundle L with n = degL > 1 and g = g(B). We
have:

(i) KS ≡ (n+2g−2)f , q(S) = h1(OS) = g, pg(S) = h0(KS) = n−1+g
and h1,1(S) = 10n+ 2g.

(ii) κ(S) = −∞ if and only if S is a rational surface if and only if g = 0
and n = 1.

(iii) κ(S) = 0 if and only if S is a K3 surface if and only if g = 0 and
n = 2.

(iv) κ(S) = 1 if and only if (g, n) 6∈ {(0, 1), (0, 2)}.
(v) Let A ∈ PicS. Then A ≡ αC+βf if and only if A ∼= OS(αC)⊗π∗M ,

for some M ∈ Picβ B.

By the above Proposition, the rank of the Picard group of a smooth
Weierstrass fibration satisfies

2 6 ρ(S) 6 h1,1(S) = 10n+ 2g.

On the other hand, for surfaces with pg > 0 the Picard number ρ is in
general strictly less than h1,1 and by Hodge theory one expects at least
pg independent conditions for a given cycle to be algebraic. The typical
picture one conjectures is that the generic surface in its moduli space has
low Picard number (as it is for general surfaces in P3).

For Weierstrass fibrations over P1 this prediction turns out to be true. In
the latter case Miranda [38] constructed a moduli space for such fibrations
and Cox [11, MainThm.] (see also [26, Cor.1.2]) proved that a general (in
the countable Zariski topology) Weierstrass fibration π : S → P1 with
n > 2, satisfies ρ(S) = 2.

Remark 3.7. — It is likely that there exist smooth Weierstrass fibrations
π : S → B with ρ(S) = 2, where B is a smooth curve of genus g, for
every g > 1. According to a suggestion of R. Kloosterman they should be
constructed as follows. Let E be the elliptic curve with J-invariant zero and,
for any n > 1, let P1, . . . , P6n ∈ B and let C be a cyclic covering of degree
6 ramified at P1, . . . , P6n. If C does not have a nonconstant morphism to E
then ρ(S) = 2. To see this note that there is a line bundle L of degree n on
B such that L6 ∼= OB(P1 + . . .+P6n). We have therefore a nonzero section
s ∈ H0(L6) giving rise to the Weierstrass data (L, 0, s) on B and, by [39,
II.5], to a smooth Weierstrass fibration π : S → B. By “Tate’s algorithm"
[39, IV.3.1] all fibers of π are irreducible (the singular ones being cuspidal).
By Shioda-Tate’s formula [39, Cor.VII.2.4], we have that ρ(S) = 2 if the
Mordell-Weil group of sections of π has rank zero, that is if all sections are
of finite order. But a section of infinite order gives, as in [26, section 6],
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a nonconstant morphism from C to the elliptic curve E with J-invariant
zero.

The following remark will be useful.

Remark 3.8. — Let π : S → B be a smooth Weierstrass fibration with
section C and general fiber f . If ρ(S) = 2 then N1(S) ∼= Z[C]⊕Z[f ]. To see
this note that, since N1(S) is torsion free, we have N1(S) ∼= Z[A]⊕Z[A′] for
some A,A′ ∈ PicS. On the other hand Z[C]⊕Z[f ] has rank two, therefore
there are integers a > 1, a′ > 1, u, v, u′, v′ such that aA ≡ uC + vf and
a′A′ ≡ u′C + v′f . Now aA.f = u, whence a divides both u and v and we
get A ≡ u1C + v1f for some integers u1, v1. Similarly A′ ≡ u′1C + v′1f .

To study the extendability of Weierstrass fibrations we will need the
following simple results.

Lemma 3.9. — Let π : S → B be a smooth Weierstrass fibration with
section C, general fiber f and fundamental line bundle L with n = degL >
1 and g = g(B). Let D ≡ αC + βf . For g > 1 and P ∈ Pic0B we will set
DP = D ⊗ π∗P. We have:

(i) H1(D) = 0 if either α = 1 and β > 2g − 1 or α > 2 and β >
αn+ 2g − 1.

(ii) If g > 1 and P ∈ Pic0B is general, then H1(DP) = 0 if either α = 1
and β > g − 1 or α > 2 and β > αn+ g − 1.

(iii) If H ≡ aC + bf , g > 1 and P ∈ Pic0B is general, then H1(H −
2DP) = 0 if either a− 2α = 1 and b− 2β > g− 1 or a− 2α > 2 and
b− 2β > αn+ g − 1.

(iv) |D| is base-point free if α > 2 and β > αn+ 2g.
(v) D is very ample if α > 3 and β > αn+ 2g + 1.
(vi) If D is very ample then α > 3 and β > αn+ 1.

Proof. — To see (i) note that, by Proposition 3.6(v), we have D ∼=
OS(αC) ⊗ π∗M for some M ∈ Picβ B. By Lemma 3.5(i) and the Leray
spectral sequence we deduce that H1(S,D) ∼= H1(B, π∗D) = 0 for degree
reasons.

We now show (ii) and (iii). Let d > g − 1 be an integer. Since g > 1
we know that there is a nonempty open subset Vd ⊂ PicdB such that
H1(L) = 0 for any L ∈ Vd. Given any N ∈ PicdB consider the isomorphism
φN : Pic0B → PicdB given by tensoring with N . Then we get a nonempty
open subset UN := φ−1

N (Vd) ⊂ Pic0B such that H1(N ⊗ P) = 0 for any
P ∈ UN .

As above we have D ∼= OS(αC) ⊗ π∗M for some M ∈ Picβ B and
DP ∼= OS(αC) ⊗ π∗(M ⊗ P). Since α > 1, Lemma 3.5(i) and the Leray
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spectral sequence imply that H1(S,DP) ∼= H1(B, π∗DP). By Lemma 3.5(i)

and (ii) we have π∗DP = M⊗P when α = 1 and π∗DP = (M⊗P)⊕
α⊕

i=2

(M⊗

L−i ⊗ P) when α > 2. Hence, to prove (ii), we can choose P ∈ UD := UM

when α = 1 and P ∈ UD := UM ∩
α⋂

i=2

UM⊗L−i when α > 2.

Now to see (iii) consider, using additive notation for line bundles on B,
the surjective morphism h2 : Pic0B → Pic0B defined by h2(P) = −2P.
Hence, given any N ∈ PicdB, we deduce a surjective morphism ψN :=
φN ◦ h2 : Pic0B → PicdB. Therefore H1(N − 2P) = 0 for any P ∈ AN :=
ψ−1

N (Vd). Now by Proposition 3.6(v), we have H ∼= OS(aC) ⊗ π∗MH for
someMH ∈ PicbB, whenceH−2DP ∼= OS((a−2α)C)⊗π∗(MH−2M−2P).
Since a−2α > 1, Lemma 3.5(i) and the Leray spectral sequence imply that
H1(S,H−2DP) ∼= H1(B, π∗(H−2DP)). By Lemma 3.5(i) and (ii) we have
π∗(H − 2DP) = MH − 2M − 2P when a − 2α = 1 and π∗(H − 2DP) =

(MH − 2M − 2P)⊕
a−2α⊕
i=2

(MH − 2M − iL − 2P) when a− 2α > 2. Hence,

to prove (iii), we can choose P ∈ UH,D := AMH−2M when a− 2α = 1 and

P ∈ UH,D := AMH−2M ∩
a−2α⋂
i=2

AMH−2M−iL when a− 2α > 2.

To prove (iv) note that H1(D − f) = 0 by (i). Let F be any fiber of π.
We will be done if we prove that |D|F | is base-point free. Now this follows
by [8, Prop.2.3,I] since we have α = D.F > 2 = 2pa(F ).

Similarly to see (v) note that, for any fiber F , we have H1(D − F ) = 0
by (i) and |D − F | is base-point free by (iv). Let x, y ∈ S be two distinct
points. If x and y belong to the same fiber F , we can separate them with
sections in |D| since |D|F | is very ample by [8, Thm.3.1] (because we have
α = D.F > 3 = 2pa(F )+1). If x and y belong to two different fibers Fx and
Fy respectively, then to separate them just use the fact that |D−Fx| is base-
point free. On the other hand suppose that x ∈ S, y ∈ TxS and dϕD(y) = 0,
where dϕD is the differential of the morphism ϕD : S → PH0(D). Arguing
as above we deduce that y must be tangent to Fx, contradicting the fact
that |D|Fx

| is very ample.
Finally (vi) is a consequence of the fact that α = D.f and β − αn =

D.C. �

Lemma 3.10. — Let π : S → B be a smooth Weierstrass fibration with
section C, general fiber f and fundamental line bundle L with n = degL >
1 and g = g(B). Let D0 ∈ PicS such that either D0 ≡ 3C+βf with β > 3n
if g = 0 or D0 ≡ 2C + βf with β > 2n+ 2g if g > 1. Then a general curve

ANNALES DE L’INSTITUT FOURIER



ON THE EXTENDABILITY OF ELLIPTIC SURFACES 321

D ∈ |D0| is smooth irreducible and nonhyperelliptic. Moreover, if g > 1,
then D is nontrigonal.

Proof. — By Lemma 3.9(iv) we know that |D0| is base-point free, whence
D is smooth and irreducible by Bertini’s theorems.

First consider the case g = 0. Note that f|D gives a g1
3 on D. If D is

hyperelliptic then D has a morphism D → P1 × P1 which is (necessarily)
birational onto its image D. Therefore we get the contradiction

4 6 6n− 2 6 3β − 3n− 2 = g(D) 6 pa(D) = 2.

Next consider the case g > 1, so that D2
0 = 4β − 4n > 12, with equality

only if n = g = 1 and β = 4.
If equality holds andD is trigonal, using the 2 : 1 morphism π|D : D → B,

we get a morphism D → B × P1 which is (necessarily) birational onto its
image D. But this gives the contradiction 8 = g(D) 6 pa(D) = 4.

To deal with the remaining cases, let A be a base-point free g1
k on D,

with k = 2, 3. By the above, we know that it cannot be k = 3, n = g = 1
and β = 4.

Let F = Ker{H0(A) ⊗ OS → A} and define E = F∗. As is well known
([33]), E is a rank two vector bundle sitting in an exact sequence

(3.1) 0 −→ H0(A)∗ ⊗OS −→ E −→ ND/S ⊗A−1 −→ 0

and moreover c1(E) = D and c2(E) = k, so that ∆(E) := c1(E)2− 4c2(E) =
D2 − 4k > 0. Therefore E is Bogomolov unstable ([33]), so that, if M is
the maximal destabilizing subbundle (with respect to some fixed ample line
bundle H on S), we have an exact sequence

(3.2) 0 −→M −→ E −→ JZ/S ⊗ L −→ 0

where L is another line bundle on S and Z is a zero-dimensional subscheme
of S.

We now claim that these line bundles satisfy:
(i) D ∼M + L;
(ii) k = M.L+ length(Z) > M.L > L2 > 0;
(iii) there exists an effective divisor Z1 on C of degree M.L+L2−k > 0

such that A ∼= L|D(−Z1);
(iv) L is base-component free and nontrivial;
(v) if L2 = 0 then M.L = k and A ∼= L|D.

To see this claim note that computing Chern classes in (3.2) we get (i) and
the equality in (ii). Since the destabilizing condition reads (M −L).H > 0
and since (M −L)2 = ∆(E) + 4 length(Z) > 0, we see that M −L belongs
to the closure of the positive cone of S.
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We want to prove that E is globally generated off a finite set.
To this end observe that we just need to prove that h0(ND/S ⊗ A−1) >

2g + 1 = 2h1(OS) + 1, since then the map ψ : H0(E) → H0(ND/S ⊗ A−1)
in (3.1) is nonzero and this gives that E is globally generated off a finite
set. Now the exact sequence

0 −→ OS −→ OS(D) −→ ND/S −→ 0

shows that h0(ND/S⊗A−1) > h0(ND/S)−k = g−1+h0(OS(D))−k, since
H1(OS(D)) = 0 by Lemma 3.9(i). Using Lemma 3.5 we find h0(OS(D)) =
2β−2n−2g+2, so that the desired inequality is satisfied and E is globally
generated off a finite set.

Since E is globally generated off a finite set then so is L. It follows that
L > 0, L is base-component free and L2 > 0. Now the signature theorem
[4, VIII.1] implies that (M − L).L > 0 thus proving (ii). To see (iii) and
(iv) note that if M.L > 0 then the nefness of L implies that H0(−M) = 0.
On the other hand if M.L = 0 then L2 = D.L = 0, whence L ≡ 0 by
the Hodge index theorem and therefore D ≡ M . Then M.H = D.H > 0,
whence again H0(−M) = 0. Twisting (3.1) and (3.2) by −M we deduce
that h0(L|D⊗A−1) > h0(E(−M)) > 1. This proves (iii) and (iv). Moreover
it gives deg(L|D ⊗ A−1) > 0, whence, if L2 = 0, we get that M.L > k. By
(ii) it follows that M.L = k and therefore deg(L|D ⊗ A−1) = 0, whence
L|D ∼= A and also (v) is proved.

By the Hodge index theorem we now have

(3.3) L2(D2 − 4k) 6 L2(M − L)2 6 (L.(M − L))2 = (M.L− L2)2

and it is easily seen that (3.3) gives L2 6 1 and that L2 = 1 holds precisely
when k = 3, g = 1 and either n = 2, β = 6 or n = 1, β = 5 (recall that we
have excluded the case k = 3, n = g = 1 and β = 4). Moreover, in both
cases above with L2 = 1, we have equality in (3.3), whence M ≡ 3L and
D ≡ 4L by (i) above. On the other hand, in both cases, 2 = f.D is not
divisible by 4.

Therefore L2 = 0,M.L = k and A ∼= L|D by (v) above. Hence L.D = k

and, since L is nef (by (iv) above), we must have L.f = 0, whence L.C = 1
and k = 2. But (iv) above also gives that L is effective, whence L ≡ f .
From the exact sequence

0 −→ L−D −→ L −→ L|D −→ 0

and Lemma 3.9(i) we get that h0(D,L|D) = h0(S,L). By Proposition 3.6(v)
and Lemma 3.5(i) we also know that h0(S,L) = h0(B,M) for some line
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bundle M of degree 1 on B. Since g > 1 we get the contradiction

2 = h0(A) = h0(D,L|D) = h0(S,L) = h0(B,M) 6 1.

�

4. Extending the morphism to the threefold

An elliptic surface has a surjective morphism onto a smooth curve with
fibers elliptic curves. The goal of this section will be to give some sufficient
conditions, both on S and on the singularities of X, to insure that this
morphism extends to a threefold containing the elliptic surface as an ample
divisor.

Extendability results for morphisms abound in the literature. We repro-
duce here the one of [5, Thm.5.2.1] in a form that will be convenient for us.

Proposition 4.1. — Let X be a projective irreducible threefold with
Cohen-Macaulay singularities, let L be an ample line bundle on X and let
A ∈ |L| be a normal divisor. Suppose that the restriction map PicX →
PicA is an isomorphism and that there is a surjective morphism p : A→ Y

onto a projective variety Y such that dimY 6 dimA− 1.
If there exists a very ample line bundle L on Y such that H1(A, p∗L −

tL|A) = 0 for every t > 1, then p extends to a morphism p : X → Y .

Proof. — By hypothesis there is a line bundle H ∈ PicX such that
H|A ∼= p∗L. We claim that the natural restriction map H0(X,H) →
H0(A,H|A) is surjective.

To this end it is of course enough to prove that H1(H − L) = 0. Now,
for each t > 1, we have an exact sequence

0 −→ H− (t+ 1)L −→ H− tL −→ p∗L − tL|A −→ 0,

whence, by hypothesis, we have that h1(H − tL) 6 h1(H − (t + 1)L) for
every t > 1. Let ω0

X be a dualizing sheaf for X. Since h1(H−jL) = h2(ω0
X⊗

(−H+ jL)) = 0 for large j by Serre vanishing, we get that h1(H− tL) = 0
for every t > 1.

Therefore H0(X,H) → H0(A,H|A) is surjective, whence, since H|A is
globally generated, we get A ∩ Bs |H| = ∅. Let m = dimY and choose, for
1 6 i 6 m + 1, ∆i ∈ |L| such that ∆1 ∩ . . . ∩ ∆m+1 = ∅. Pulling back
to A and using the above surjection we therefore find divisors Di ∈ |H|
such that D1 ∩ . . . ∩Dm+1 ∩ A = ∅. Since A is ample we have that either
D1∩. . .∩Dm+1 = ∅ or dimD1∩. . .∩Dm+1 = 0. But in the latter case we get
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the contradiction 0 = dimD1∩. . .∩Dm+1 > dimX−m−1 = dimA−m > 1.
Therefore D1 ∩ . . . ∩ Dm+1 = ∅ and |H| is base-point free and defines a
morphism p : X → p(X) ⊂ PH0(H) such that p|A = p. Let us show that
p(X) = Y . Of course we have Y = p(A) = p(A) ⊆ p(X). On the other hand
if there exists x0 ∈ X such that p(x0) 6∈ Y then A∩ p−1(p(x0)) = ∅, whence,
as A is ample, we get dim p−1(p(x0)) = 0, and therefore dim p−1(p(x)) = 0
for a general x ∈ X. Hence dim p(X) = dimX. Now D1 ∩ . . . ∩Dm+1 = ∅
implies that there are hyperplanesHi in PH0(H) such thatH1∩. . .∩Hm+1∩
p(X) = ∅, whence dimX = dim p(X) 6 m 6 dimA − 1 6 dimX − 2, a
contradiction. �

Here is an effective way to apply this to elliptic surfaces.

Corollary 4.2. — Let X be a projective irreducible threefold with
Cohen-Macaulay singularities, let L be a very ample line bundle on X

and let S ∈ |L| be a smooth surface. Suppose that the restriction map
PicX → PicS is an isomorphism and that π : S → B is an elliptic fibration.

Suppose furthermore that H1(S,KS + L|S − f1 − . . . − fd(B)) = 0 for
every set of distinct smooth fibers fi’s.

Then π extends to a morphism π : X → B.

Proof. — Set d = d(B) and F1 = 0, Fs = f1+. . .+fs−1 for 2 6 s 6 d+1.
For each t > 1 and u such that 1 6 u 6 d we have exact sequences
(4.1)
0 −→ KS + tL|S−Fu+1 −→ KS + tL|S−Fu −→ (KS + tL|S−Fu)|fu

−→ 0.

We first claim that H1(KS +L|S−Fs+1) = 0 for 0 6 s 6 d. Since the latter
is true by hypothesis when d = s, we proceed by induction on d− s. Now
when d − s > 1 we have that H1(KS + L|S − Fs+2) = 0 by the inductive
hypothesis and H1((KS + L|S − Fs+1)|fs+1) = 0, whence (4.1) with t = 1
and u = s+ 1 gives the claim.

Now let W = Im{H0(S,L|S) → H0(fs, L|fs
)}. Then W is very ample,

whence dimW > 3. Hence we deduce, by [18, Thm.4.e.1], that for any
N ∈ PicB and for any t > 1, the multiplication maps µt,s : W ⊗H0((KS +
tL|S + π∗N)|fs

) → H0((KS + (t+ 1)L|S + π∗N)|fs
) are all surjective.

For t > 1 and 1 6 s 6 d consider the restriction maps

ϕt,s : H0(KS + tL|S − Fs) → H0((KS + tL|S − Fs)|fs
).

We want to prove, by induction on t, that they are all surjective. For t = 1
this follows from (4.1) with u = s and the claim proved above. Now the
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commutative diagram

H0(KS + (t− 1)L|S − Fs)⊗H0(L|S) //

ϕt−1,s⊗rfs

��

H0(KS + tL|S − Fs)

ϕt,s

��
H0((KS + (t− 1)L|S − Fs)|fs

)⊗W
µt,s // H0((KS + tL|S − Fs)|fs

)

shows, by induction on t, that ϕt,s is surjective for every t > 1.
We now claim that H1(KS + tL|S − Fs+1) = 0 for t > 1 and 0 6 s 6 d.

Since the latter is true by Kodaira vanishing when s = 0, we proceed by
induction on s. Now when s > 1 we have that H1(KS + tL|S − Fs) = 0 by
the inductive hypothesis, whence (4.1) with u = s and the surjectivity of
ϕt,s gives the claim.

By definition of d there is a very ample line bundle L of degree d on B and
we can obviously write π∗L ∼ f1+. . .+fd. Therefore H1(S, π∗L−tL|S) = 0
for every t > 1 by Serre duality and the last claim. Hence π extends to a
morphism π : X → Y by Proposition 4.1. �

Remark 4.3. — The vanishing condition in the above corollary is satis-
fied in the case of smooth Weierstrass fibrations with n > 1 and in several
other cases, even when N1(S) ∼= Z[C] ⊕ Z[f ] with C.f > 2. Suppose for
example that π : S → B is a smooth Weierstrass fibration with section C,
general fiber f and fundamental line bundle L with n = degL > 1 and
g = g(B). Suppose furthermore that ρ(S) = 2. By Remark 3.8 we have
L|S ≡ aC + bf . Also L|C is very ample on C ∼= B, therefore d(B) 6 L.C =
b− an. Then KS +L|S − f1 − . . .− fd(B) ≡ aC + (b+ n+ 2g− 2− d(B))f .
Hence b + n + 2g − 2 − d(B) > n + 2g − 2 + an > an + 2g − 1, therefore
H1(S,KS +L|S−f1− . . .−fd(B)) = 0 by Lemma 3.9(i). The vanishing can
be easily proved also in other cases, for example in the cases in 6.1, 6.2,
6.3, 6.4 (either with B ∼= P1 or with E sufficiently ample).

To apply Corollary 4.2 to elliptic surfaces we need to verify the hypothesis
on the restriction map of Picard groups. It is here that the hypothesis on
the rank becomes important.

Proposition 4.4. — Let X be a projective irreducible l.c.i. threefold,
let L be an ample line bundle on X and let S ∈ |L| be a smooth surface
with ρ(S) = 2 and κ(S) = 1. Then the restriction maps PicX → PicS and
N1(X) → N1(S) are isomorphisms.

Proof. — Since S is smooth we have that dim Sing(X) 6 0 and X is
normal, whence rS : PicX → PicS is injective with torsion free cokernel by
Lefschetz’s theorem [5, Cor.2.3.4]. Moreover the adjunction formula KS =
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(KX +L)|S holds (see for example [1, Prop.2.3 and 2.4]). Since κ(S) = 1 we
have that L|S and KX |S are numerically independent and since ρ(S) = 2
we get that for any line bundle A ∈ PicS there are integers a, u, v with
a > 1 such that aA ≡ uL|S + vKX |S . Therefore we can write aA ∼ uL|S +
vKX |S + D with D ≡ 0. By [25, Thm.4.6] there is an integer m > 1
such that mD ∈ Pic0 S and by [5, Thm.2.3.1 and Thm.2.2.4] we have that
Pic0X → Pic0 S is an isomorphism, whence mD ∈ Im rS . Therefore also
maA ∈ Im rS , whence A ∈ Im rS , since Coker rS is torsion free.

The map N1(X) → N1(S) is now clearly surjective. To see its injectivity
let M ∈ PicX such that M|S ≡ 0. As above there is an integer m > 1
and a line bundle N ∈ Pic0X such that mM|S ∼= N|S , whence mM ∼= N ,
therefore M ≡ 0. �

The previous two results, together with some facts already present in
the literature, allow us to give our best version of an extension theorem for
elliptic fibrations.

Theorem 4.5. — Let X be a projective irreducible threefold, let L be
an ample line bundle on X and let S ∈ |L| be a smooth surface having
an elliptic fibration π : S → B with general fiber f . Then π extends to a
morphism π : X → B if one of the following is satisfied:

(i) X is l.c.i. with rational singularities and g(B) > 0.
(ii) X is l.c.i. with Q-factorial terminal singularities, not a cone over S,

L is very ample, B ∼= P1, κ(S) = 1 and N1(S) ∼= Z[C] ⊕ Z[f ] for
some divisor C such that C.f > 1.

(iii) X is l.c.i., L is very ample, ρ(S) = 2, κ(S) = 1 and H1(S,KS +
L|S − f1 − . . . − fd(B)) = 0 for every set of smooth distinct fibers
fi’s.

(iv) X is smooth, B ∼= P1, N1(S) ∼= Z[C]⊕Z[f ] for some divisor C and
L|S ≡ aC + bf for any a, b with b > aC.f

2 + 1 + 1
2aC.f −

aC2

2C.f .

Proof. — Observe that (i) follows by [5, Thm.5.2.3] since, as in the
beginning of the proof of Proposition 4.4, X is normal. Now (iii) is a
consequence of Corollary 4.2 and Proposition 4.4. To see (iv) note that
aC.f = L|S .f > 1. Therefore the assumed inequality on b is equivalent to
(f.L|S + 1)2 < L2

|S , whence π extends by [45, Thm.1.4].
To prove (ii) we use first some adjunction theory to show that KX + L

is nef.
By Proposition 4.4 we have that PicX → PicS and N1(X) → N1(S)

are isomorphisms, so that ρ(X) = 2. Since KS ≡ ef for some e > 1, we
have that X does not admit a surjective morphism onto a variety Y in such

ANNALES DE L’INSTITUT FOURIER



ON THE EXTENDABILITY OF ELLIPTIC SURFACES 327

a way that a general fiber F intersects S in a curve γ with pa(γ) = 0, for
otherwise we would have that −2 = γ.(γ +KS) = eγ.f > 0.

Now suppose thatKX+L is not nef, so thatKX is not nef and let τ be the
nefvalue of (X,L) (see Definition 2.1). Then τ > 1 and by Proposition 2.2
we deduce that τ 6 3 and that KX + 3L is nef and big. By Theorem 2.3 it
follows that KX + 3L is ample and that τ 6 2.

To go further note that we cannot have KX ∼ −2L, for otherwise KS ∼
−L|S , giving the contradiction κ(S) = −∞. Furthermore let us show that
X cannot have a surjective morphism ψ : X → Y with connected fibers
onto a variety Y of dimension m = 1, 2 in such a way that KX +2L ∼ ψ∗L,
for some ample line bundle L ∈ PicY such that ψ is defined by the linear
system |q(KX + 2L)| for q >> 0.

In fact if such a ψ exists then ψ|S must be surjective and if m = 1 we get
the contradiction 0 < (KS +L|S)2 = (KX + 2L)2|S = (ψ∗L)2|S = (ψ∗|SL)2 =
0. On the other hand suppose that m = 2 and let Fη be a general fiber of ψ.
Then q(KX +2L)|Fη

∼ 0 and by [5, Lemma3.3.2] we get (KX +2L)|Fη
∼ 0,

whence KFη
+ 2L|Fη

∼ 0 and therefore (Fη, L|Fη
) ∼= (P1,OP1(1)). Now let

F be any fiber of ψ. Then F is a line and if F ⊂ S we get the contradiction
0 6 F.KS = F.(KX + L)|S = F.(KX + L) = −L.F < 0. Now consider the
Fano variety F(X) of lines contained in X, which is at least 2-dimensional
as the fibers of ψ are lines. Let ΣY ⊆ F(X) be the irreducible subvariety
of dimension two defined by the fibers of ψ. We have proved that the
hyperplane H ⊂ PN+1 = PH0(X,L) defining S does not contain any line
in ΣY . As is well known, this implies that there is a point P ∈ PN+1

belonging to all lines in ΣY , therefore X is a cone with vertex P . On the
other hand, as S is smooth, we get that P 6∈ S, therefore X is a cone over
S ⊂ PN , a contradiction.

Now by Theorem 2.4 we have that either KX + 2L is ample or there
exists a surjective birational morphism φ : X → X ′ onto a normal pro-
jective variety X ′ with the following two properties: a) φ is the simultane-
ous contraction to distinct smooth points p′i ∈ X ′ of some divisors Ei ⊂
X − Sing(X) such that Ei

∼= P2, OEi(Ei) ∼= OP2(−1) and L|Ei
∼= OP2(1);

b) If L′ := (φ∗L)∗∗ then KX′ + 2L′ is ample.
We now claim that if such a φ exists then it is an isomorphism.
As a matter of fact suppose that φ is not an isomorphism, so that there is

at least one contracted divisor Ei. Let S′ = φ(S) ∈ |L′|. As S∩Sing(X) = ∅
we have that S′ is certainly smooth outside all p′i’s. On the other hand
Ei

2
|S = Ei.Ei.L = Ei|Ei

.L|Ei
= −1, so that p′i is also a smooth point of S′.
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Therefore S′ is birational, but not isomorphic to S, whence κ(S′) = 1 and
therefore ρ(S′)>2. But this gives the contradiction 2=ρ(S)>ρ(S′)+1 > 3.

Hence, in any case, KX + 2L is ample, whence 1 < τ < 2 by [5,
Lemma1.5.5]. In this context the first reduction (X̃, L̃) of (X,L) is defined
(see Section 2) and the above discussion shows that in fact (X,L) ∼= (X̃, L̃).
Finally by Theorem 2.5 we get that X has a surjective morphism onto a
variety Y in such a way that a general fiber F intersects S in a curve γ
with pa(γ) = 0, case already excluded.

This proves that KX + L is nef and the base-point free theorem ([30,
Thm.3.3]) gives that for q >> 0 the line bundle q(KX + L) is base-point
free. By [5, Lemma1.1.3] there exists a surjective morphism p : X → Y

with connected fibers onto a normal projective variety Y in such a way
that KX +L ∼ p∗L, for some ample line bundle L ∈ PicY and p is defined
by the linear system |q(KX + L)| for q >> 0.

We now claim that Y is a smooth curve. In fact let F be a general fiber
of p, so that q(KX + L)|F ∼ 0, whence, as above, −KF ∼ L|F by [5,
Lemma3.3.2]. If Y is a point we find that −KX ∼ L, so that KS ∼ 0, a
contradiction. On the other hand we cannot have dimY > 2, for otherwise
picking two general divisors D1, D2 ∈ |q(KX +L)| we have dimD1∩D2 = 1,
giving the contradiction

0 = q2K2
S = q2(KX + L)2.L = D1.D2.L > 0.

Therefore Y is a smooth curve and the general fiber F of p is a smooth
connected surface. The restriction p|S : S → Y is clearly surjective and
a general fiber f = F ∩ S is therefore a smooth connected curve with
f ∈ | −KF |, that is an elliptic curve. Therefore p|S : S → Y is an elliptic
fibration and, as the latter is unique, we deduce that Y = B, p|S = π and
that π extends to X, as required. �

Remark 4.6. — The proof of the extension of π under hypothesis (ii) is
inspired by [32]. In case X is smooth it has been proved first by Ionescu
[21] (see also [12], [14]).

The above theorem gives that most threefolds studied in this article,
provided that they have the appropriate singularities, are Mori fiber spaces.

Proposition 4.7. — Let X be a projective irreducible Q-factorial ter-
minal l.c.i. threefold, let L be a very ample line bundle on X and let S ∈ |L|
be a smooth surface having an elliptic fibration π : S → B with general
fiber f . Suppose that κ(S) = 1, N1(S) ∼= Z[C] ⊕ Z[f ] for some divisor C
such that C.f > 1 and either g(B) > 0 or B ∼= P1 and X is not a cone over
S. Then π extends to a morphism π : X → B and X is a Mori fiber space.
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Proof. — Since terminal singularities are rational [13, Thm.1], by The-
orem 4.5 π extends to π : X → B with general fiber F and by Proposi-
tion 4.4 we have that N1(X) ∼= Z[E]⊕Z[F ] for a divisor E on X such that
C = E|S . Hence we can write KX ≡ uE + vF and L ≡ aE + bF , for some
integers u, v, a and b. Since L is very ample we get 0 < L|S .f = aC.f =
aE|S .F|S = aE.F.(aE + bF ) = a2E2.F , so that a 6= 0 and E2.F 6= 0. Now
0 = KS .f = ((u+a)E+(v+b)F ).F.L = a(u+a)E2.F implies that u = −a
and therefore −KX |F ≡ aE|F ≡ L|F is ample, whence X is a Mori fiber
space. �

We now study the fibers of the extended morphism.

Theorem 4.8. — Let S ⊂ PN be a smooth surface having an elliptic
fibration π : S → B with general fiber f . Let X ⊂ PN+1 be a l.c.i. extension
of S given by a very ample divisor L on X. Suppose that π : S → B extends
to a morphism π : X → B and that N1(S) ∼= Z[C]⊕ Z[f ] for some divisor
C such that C.f > 1. Set L|S ≡ aC + bf . Then

(4.2) (a,C.f) ∈ {(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 4), (3, 3)}

and for the general fiber F of π, we have L|F ∼= −KF and setting d = K2
F ,

F is one of the following:

(i) F ∼= P2.
(ii) F ∼= P1 × P1.
(iii) F is isomorphic to the blow-up of 9 − d distinct points in P2 (no

three collinear, no six on a conic) for 3 6 d 6 8.

Moreover if, in addition, X is locally factorial, then 3 6 d 6 6 in (iii) and
(a,C.f) 6∈ {(1, 7), (1, 8), (1, 9)} in (4.2).

Proof. — We have F|F ≡ 0, whence ρ(X) > 2. On the other hand,
by [5, Cor.2.3.4], PicX → PicS is injective with torsion free cokernel.
Therefore also N1(X) → N1(S) is injective with torsion free cokernel,
whence N1(X) → N1(S) is an isomorphism, since ρ(S) = 2. Let [E] and
[F ] be the generators of N1(X), restricting respectively to [C] and [f ] on
S, so that L ≡ aE + bF and aC.f = L|S .f > 3, giving a > 1.

We now claim that a general F ⊂ PN+1 is a smooth Del Pezzo surface,
that is OF (1) ∼= OF (−KF ).

A general F is certainly smooth by Bertini’s theorem. Moreover F∩S = f

is a smooth irreducible elliptic curve, whence also F is irreducible and it
follows from [5, Thm.8.9.3] that F ⊂ PN+1 embedded by L|F is either a Del
Pezzo surface or (F,L|F ) ∼= (PE , ξ), where E is a rank two vector bundle
on an elliptic curve and ξ is the tautological line bundle.
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Suppose we are in the latter case and let γ be a fiber of PE , so that
KF ≡ −2ξ + eγ for some e ∈ Z. We have ξ = L|F ≡ aE|F , whence
1 = ξ.γ = aE|F .γ gives a = 1 and ξ ≡ E|F . Note that X is Gorenstein,
whence KX is a line bundle and we can write KX ≡ uE + vF . Now

0 = KS .f = (KX + L)|S .f = (u+ 1)C.f

therefore u = −1, giving the contradiction −2 = KF .γ = (KX)|F .γ =
−E|F .γ = −ξ.γ = −1.

This proves the claim and henceforth F is a smooth Del Pezzo surface
with −KF ∼ L|F ≡ aE|F . Now d = K2

F = L2
|F = L2.F = L|S .f = aC.f

and by [43, Thm.8] we have that 3 6 d 6 9.
By [43, Thm.8] we deduce that either a = 3 and F ∼= P2, so that C.f = 3

or a = 2 and F ∼= P1 × P1, so that C.f = 4 or a = 1 and 3 6 C.f 6 9.
Thus (4.2) is proved.

Moreover, again by [43, Thm.8], when a = 1, we have that either L|F is
divisible, leading to C.f = 9, F ∼= P2 and C.f = 8, F ∼= P1 × P1 or L|F is
not divisible.

Suppose we are in the latter case. By [43, Thm.8] we get 3 6 d 6 8 and
F is the anticanonical embedding of the blow-up of P2 in 9−d points. Note
that, as F is smooth, the blown-up points cannot be infinitely near, there
is no line containing three of them and there is no conic containing six of
them.

This proves that F is as in (i), (ii) or (iii).
For the rest of the proof suppose that X is also locally factorial.
If F is as in (iii), there is a nonempty open subset U ⊂ B such that each

fiber over U is as in (iii). This gives rise to an irreducible curve B′ ⊂ F(X),
the Fano variety of lines contained in X. Let T be the union of all the lines
in B′. By [19, Exa.6.19 and Prop.6.13] we have that T is a Weil divisor
on X and by [20, Prop.II.6.11] it follows that T is also a Cartier divisor
on X. Hence T ≡ rE + sF for some integers r and s. Therefore, using the
convention that

(
m
n

)
= 0 if m < n, we have

9− d+
(

9− d

2

)
+

(
9− d

5

)
= deg T|F = L|F .T|F = L.T.F = T|S .F|S

= (rC + sf).f = rd,

giving 3 6 d 6 6.
Finally we exclude the cases (a,C.f) ∈ {(1, 7), (1, 8), (1, 9)} in (4.2).

If (a,C.f) = (1, 7) we have d = aC.f = 7, contradicting what we have
just proved. Now assume that either (a,C.f) = (1, 9), so that F ∼= P2

or (a,C.f) = (1, 8) and F ∼= P1 × P1. Let k(B) be the quotient field of
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B and k(B) its algebraic closure, so that the base changes of X, Xk(B)

to k(B) and X
k(B)

to k(B) are defined. Now either X
k(B)

∼= P2

k(B)
or

X
k(B)

∼= P1

k(B)
× P1

k(B)
, and, as in [41, Proof of 3.5.2, page 162], we have

PicXk(B)
∼= (PicX

k(B)
)G, where G = Gal(k(B)/k(B)) is the Galois group.

This implies that the canonical bundle KXk(B) is r divisible for r = 3 in
the case F ∼= P2 and r = 2 in the case F ∼= P1 × P1. Therefore we can find
a nonempty open subset U ⊂ B and a line bundle L on π−1(U) such that
L|Fu

∼= OP2(1) if Fu
∼= P2 and L|Fu

∼= OP1×P1(1, 1) if Fu
∼= P1×P1 on every

fiber Fu over U . Since X is locally factorial, L extends to a line bundle L
having the same restriction property as L on a general fiber F . But now
L ≡ αE + βF , for some α, β ∈ Z and therefore

L|F ≡ L|F ≡ αE|F ≡ αL|F ≡ −αKF

which easily gives a contradiction. �

With this baggage of results we are now ready to prove our main theo-
rems.

Proof of Theorem 1.3. — Immediate consequence of Theorems 4.5 and
4.8. �

Proof of Corollary 1.4. — If (g, n) 6= (0, 2) the Corollary follows from
Proposition 3.6(iv), Remark 3.8, Theorem 1.3(iii) and Remark 4.3. Now
suppose that (g, n) = (0, 2), so that S is aK3 surface by Proposition 3.6(iii).
In particular any line bundle numerically equivalent to 0 on S is OS . Since
S is smooth we have that X is normal and dim Sing(X) 6 0, whence
rS : PicX → PicS ∼= N1(S) is injective with torsion free cokernel by [5,
Cor.2.3.4]. Let A ∈ PicX be such that A ≡ 0. Then A|S ≡ 0, whence A|S ∼
0 and therefore A ∼ 0 by the injectivity of rS . Hence also PicX ∼= N1(X).
Therefore ρ(X) 6 2. Now if ρ(X) = 2 then necessarily PicX = N1(X) ∼=
N1(S) = PicS, therefore the morphism π : S → B extends to a morphism
π : X → B by Corollary 4.2 and Remark 4.3. Now we get a contradiction
by Theorem 4.8.

Hence ρ(X) = 1. By [5, Thm.5.3.1] we also get that −KX ∈ |OX(1)| and
that h1(OX) = h2(OX) = 0. �

Remark 4.9. — In the case (ii) of Corollary 1.4, if X is smooth, the
surface S must belong to some proper closed subset of the linear system
|L|: In fact, for a general S′ ∈ |L| we have 1 = h2(OS′) > h2(OX) = 0,
whence PicX ∼= PicS′ by a theorem of Moishezon [40, Thm.7.5].

We now consider the extendability of K3 Weierstrass fibrations.
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Lemma 4.10. — Let S ⊂ PN be a smooth Weierstrass fibration with
κ(S) = 0 and ρ(S) = 2. Then the sectional genus g(S) of S satisfies g(S) >
13.

Proof. — As usual let C be the section and f be the general fiber. Recall
that, by Proposition 3.6(iii) we have C2 = −2. If HS is the hyperplane
bundle of S we have by Remark 3.8 that HS ∼ aC + bf with a > 3 and
b > 2a+ 1 by Lemma 3.9(vi), whence

g(S) =
1
2
H2

S + 1 = −a2 + ab+ 1 > a(a+ 1) + 1 > 13.

�

Proof of Corollary 1.5. — Let X ⊂ PN+1 be an extension of S ⊂ PN . If
X is normal we have by Lemma 4.10 and [46, Cor.1.6], that 13 6 g(S) =
a(b− a) + 1 6 37. Using Lemma 3.9(vi) we get (iii).

To see (i) and (ii) suppose that X is l.c.i.. By Corollary 1.4 we have that
X is an anticanonically embedded Fano threefold with Picard number one.
Set H = −KX . Moreover, as in the proof of Corollary 1.4, we know that
PicX → PicS is injective with torsion free cokernel.

To show (ii) we will exclude from the list in (iii) the five cases

(a, b, g(S)) ∈ {(3, 9, 19), (3, 12, 28), (3, 15, 37), (4, 10, 25), (4, 12, 33)}.

As a matter of fact in the above cases we have that HS is r-divisible in
PicS with r = 3 in the first three cases, r = 2 in the fourth case and
r = 4 in the fifth case. Hence H ∼ r∆ for some ample ∆ ∈ PicX. By
the generalized Kobayashi-Ochiai theorem [5, Thm.3.1.6] we deduce that
(X,∆) ∼= (P3,OP3(1)) when r = 4, while (X,∆) ∼= (Q,OQ(1)), where
Q ⊂ P4 is a quadric when r = 3. If r = 2 we know that ∆|S ∼ 2C+5f and
(X,∆) is a Del Pezzo variety. In the above case we claim that Hi(t∆) = 0
for 0 < i < 3 and for every t ∈ Z. To see this consider the exact sequence

(4.3) 0 −→ (t− 2)∆ −→ t∆ −→ t∆|S −→ 0.

By Lemma 3.9(i), Serre duality and the fact that S is a K3 surface we
know that H1(t∆|S) = H1(2tC+5tf) = 0 for every t ∈ Z and H2(t∆|S) =
H2(2tC + 5tf) = 0 for every t > 1. Therefore we deduce from (4.3) that
(a) h1(t∆) 6 h1((t − 2)∆) for every t ∈ Z and (b) h2((t − 2)∆) = h2(t∆)
for every t > 1. Since h2(t∆) = 0 for t >> 0, using (b), we find that
h2(t∆) = 0 for every t > −1 and therefore h1(t∆) = 0 for every t 6 −1.
This, together with (a), gives that h1(t∆) = 0 for every t ∈ Z and also
h2(t∆) = 0 for every t ∈ Z by Serre duality. This proves the claim and it
follows from [15, Cor.1.5] that, also in this case, ∆ is very ample.
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Hence, in all cases, ∆|S is very ample and therefore, by Lemma 3.9(vi),
we get that a > 3r > 6, a contradiction. This proves (ii).

Finally, to prove (i), suppose thatX is also with terminal singularities. By
[44, Thm.11] we have that X is smoothable, whence a general deformation
Xη of X is a smooth Fano threefold with Picard number one and with
−KXη

very ample. Moreover Xη has genus g = g(S) > 13 by Lemma
4.10. By [9, Thm.6] and [10, Thm.3.2] or by [22, Thm.4.2], [23, Thm.6.1]
(together with [47, 48]), we find that

g(S) = a(b− a) + 1 = 13, 17, 21, 28, 33

and also that −KXη
is 2-divisible in the first three cases. Therefore also

H = −KX has the same divisibility properties, whence so does aC + bf ≡
HS = H|S . By Lemma 3.9(vi) we know that a > 3 and b > 2a+1, whence,
using (ii), we get the two possibilities (a, b, g(S)) ∈ {(3, 7, 13), (4, 9, 21)}.
As we said above, HS is 2-divisible, contradicting HS .C = 1 in the case
(4, 9, 21) and HS .f = 3 in the case (3, 7, 13). This proves (i). �

5. Nonextendability of many embeddings
of Weierstrass fibrations

In [17] and [29] a new technique to deal with the extendability of a surface
was introduced. It is the purpose of this section to recall it and then use it
to prove a nonextendability result (regardless of the singularities) for many
very ample line bundles on a Weierstrass fibration.

We first recall the definition and notation for multiplication maps and
Gaussian maps.

Notation 5.1. — Let L,M be two line bundles on a smooth projective
variety X. Given V ⊆ H0(L) we will denote by µV,M : V ⊗ H0(M) −→
H0(L⊗M) the multiplication map of sections, µL,M when V = H0(L), by
R(L,M) the kernel of µL,M and by ΦL,M : R(L,M) −→ H0(Ω1

X ⊗L⊗M)
the Gaussian map (that can be defined locally by ΦL,M (s⊗ t) = sdt− tds,
see [49, 1.1]).

Let us also recall, for the reader’s convenience, a couple of results about
Gaussian maps that will be used in the sequel.

Proposition 5.2. — [49, Prop.1.10] Let L be a very ample line bundle
on a smooth irreducible variety X giving an embedding X ⊂ Pr and let M
be another line bundle. Then
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(i) the Gaussian map ΦL,M is the restriction map H0(X,Ω1
Pr ⊗OX ⊗

L⊗M) → H0(X,Ω1
X ⊗ L⊗M);

(ii) CokerΦL,M = Ker{H1(X,N∗
X/Pr ⊗ L⊗M) → H1(X,Ω1

Pr ⊗OX ⊗
L⊗M)};

(iii) if µL,M is surjective and H1(M) = 0 then CokerΦL,M
∼= H1(X,

N∗
X/Pr ⊗ L⊗M).

Theorem 5.3. — [6, Thm.2] Let L be a line bundle on a smooth irre-
ducible curve C of genus g. If Cliff(C) > 2 and degL > 4g+ 1− 2 Cliff(C)
or if Cliff(C) > 3 and degL > 4g + 1− 3 Cliff(C) then ΦωC ,L is surjective.

The way these maps are used to prove nonextendability is explained in
the following

Proposition 5.4. — [29, Cor.2.4] Let Y ⊂ Pr be a smooth irreducible
surface which is either linearly normal or regular (that is, h1(OY ) = 0)
and let H be its hyperplane bundle. Assume there is a base-point free and
big line bundle D0 on Y with H1(H −D0) = 0 and such that the general
element D ∈ |D0| is not rational and satisfies

(i) the Gaussian map ΦHD,ωD
is surjective;

(ii) the multiplication maps µVD,ωD
and µVD,ωD(D0) are surjective,

where VD := Im{H0(Y,H −D0) → H0(D, (H −D0)|D)}.
Then Y is nonextendable.

Now, on a Weierstrass fibration, we can translate the hypotheses of
Proposition 5.4 into (essentially) purely numerical conditions.

Proposition 5.5. — Let S ⊂ PN be a smooth surface having a Weier-
strass fibration π : S → B with general fiber f and section C and with
n = −C2 > 1 and g = g(B). Suppose that either g = 0 or S is linearly
normal and that the hyperplane bundle of S is of type H ≡ aC + bf .

Given integers α and β let D0 = αC + βf . Set P = 0 when g = 0 and
P ∈ Pic0B general (with respect to D0) when g > 1. Let D0,P = D0⊗π∗P
and suppose that the general D ∈ |D0,P | is not hyperelliptic and satisfies

(a) 10 6= D0.(D0 +KS) > 6;
(b) α > 2 and β > αn+ 2g;
(c) either a− 2α > 2 and b− 2β > (a− 2α)n+ g− 1 or a− 2α = 1 and

b− 2β > g − 1;
(d) (H −D0).D0 > D0.(D0 +KS) + 3;
(e) If D is not trigonal then H.D0 > 2D0.(D0 +KS) + 1;
(f) If D0.(D0 + KS) > 8 and D is trigonal then H.D0 > 3

2D0.(D0 +
KS) + 10;
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(g) If D0.(D0 +KS) = 6 then H.D0 > 17.
Then S is not extendable.

Proof. — Since D2
0,P = D2

0 = α(2β − αn), by (b) it follows that D2
0,P >

α(αn + 4g) > 0. By Lemma 3.9(iv) and again (b) we know that |D0,P | is
base-point free, whence D is smooth and irreducible by Bertini’s theorems.
By (a) we have that 6 6= g(D) > 4, in particular D is not isomorphic to a
plane quintic.

By (c) and Lemma 3.9(iii) we deduce that H1(H − 2D0,P) = 0 and
therefore that VD = H0((H −D0,P)|D). Now (d) is just (H −D0,P).D >
2g(D)+1, whence H1((H−D0,P)|D) = 0 and (H−D0,P)|D is very ample.
Therefore µVD,ωD

= µ(H−D0,P)|D,ωD
is surjective by [2, Thm.1.6] and the

exact sequence

0 −→ H − 2D0,P −→ H −D0,P −→ (H −D0,P)|D −→ 0

shows that also H1(H −D0,P) = 0.
The multiplication map µVD,ωD(D0,P) = µ(H−D0,P)|D,ωD(D0,P) is surjec-

tive by Green’s H0-lemma [18, Thm.4.e.1]: In fact we just need to verify
that

h0((H −D0,P)|D −D0,P|D) = h1(ωD(D0,P)− (H −D0,P)|D)

6 h0((H −D0,P)|D)− 2,

which holds since (H − D0,P)|D is very ample and D0,P|D is effective of
degree at least 2.

To apply Proposition 5.4 it remains to check that the Gaussian map
ΦHD,ωD

is surjective. Now if g(D) = 4 this follows by (g) and Proposition
5.2 (or by [28, Prop.2.9 ]). If g(D) > 5 and D is trigonal, this follows by
(f) and [28, Cor.2.10]. Finally if D is not trigonal this follows by (e) and
Theorem 5.3. �

We can also use the standard scroll containing any Weierstrass fibration
to compute the cohomology of the normal bundle.

Lemma 5.6. — Let S ⊂ PN be a smooth surface having a Weierstrass
fibration π : S → B with general fiber f and section C. Set n = −C2 and
g = g(B). Suppose that the hyperplane bundle of S is of type HS ≡ aC+bf
and that n > 1.

If a = 3u for some u > 2 and b 6= a + 1 if (n, g) = (1, 0), then
H1(TS(−HS)) = 0, where TS is the tangent bundle of S.

Proof. — Let L be the fundamental line bundle of the fibration and let
E = π∗OS(3C) ∼= OB⊕L−2⊕L−3 and Y = PE be the threefold scroll with
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projection morphism p : Y → B. By [39, III.1] S can be embedded as a
divisor linearly equivalent to 3ξ + 6p∗L in Y . As ξ|S ≡ 3C we have that
HS ∼ A|S for some line bundle A ≡ uξ + bF on Y . Therefore there exists
a line bundle M ∈ PicbB such that A ∼ uξ + p∗M . We will often use the
fact that, as HS is very ample, we have HS .C > 1, whence

(5.1) b > an+ 1.

The goal will be to use the scroll Y to compute cohomology on S. �

Claim 5.7. — With notation as above we have H0(NS/Y (−HS)) = 0.

Proof. — We have NS/Y (−HS) ≡ (9 − 3u)C + (6n − b)f , so that the
required vanishing is obvious if u > 4, while it follows by pushing down to
B and using Lemma 3.5(ii) when u = 2, 3 since, in this case, b > 6n+ 1 by
(5.1). �

Claim 5.8. — With notation as above we have H1(p∗(−KB)(−A)) = 0
and H2(p∗(−KB)(−A− S)) = 0.

Proof. — We have p∗(−KB)(−A)∼−uξ+p∗(−KB−M). SinceRip∗(−uξ)
= 0 for i = 0, 1 we get the first vanishing by the Leray spectral sequence.
As for the second, by Serre duality, we need to show that H1(p∗(KB)(KY +
A + S)) = 0. Since p∗(KB)(KY + A + S) ∼ uξ + p∗(2KB + L + M)
and R1p∗(uξ) = 0, we deduce, again by the Leray spectral sequence, that
H1(Y, p∗(KB)(KY +A+S)) ∼= H1(B,Symu E(2KB+L+M)) = 0 for degree
reasons (here we use (5.1) and the hypothesis b 6= a+1 if (n, g) = (1, 0)). �

Claim 5.9. — With notation as above we have H1(p∗E∗(ξ − A)) = 0
and H2(p∗E∗(ξ −A− S)) = 0.

Proof. — By Serre duality we have H1(p∗E∗(ξ − A)) ∼= H2(p∗E(KY −
ξ + A)) and p∗E(KY − ξ + A) ∼= p∗(E(KB + M − 5L))((u − 4)ξ). Since
Rip∗((u − 4)ξ) = 0 for i = 1, 2 we get the first vanishing by the Leray
spectral sequence. As for the second, by Serre duality, we need to show that
H1(p∗E(KY − ξ +A+ S)) = 0. Since p∗E(KY − ξ +A+ S) ∼= p∗(E(KB +
L+M))((u− 1)ξ) and R1p∗((u− 1)ξ) = 0, we deduce, again by the Leray
spectral sequence, that H1(Y, p∗E(KY − ξ +A+ S)) ∼= H1(B,Symu−1 E ⊗
E(KB + L+M)) = 0 for degree reasons (using (5.1)). �

Claim 5.10. — With notation as above we have H2(OY (−A)) = 0.

Proof. — By Serre duality we have H2(OY (−A)) ∼= H1(KY + A) and
KY + A ∼= p∗(KB + M − 5L))((u − 3)ξ). Since R1p∗((u − 3)ξ) = 0 and
p∗(−ξ) = 0 we get, by the Leray spectral sequence, that H1(KY +A) = 0
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for u = 2 and H1(KY + A) ∼= H1(B,Symu−3 E(KB + M − 5L)) = 0 for
degree reasons (using (5.1)) for u > 3. �

For the sequel we will let TY/B be the relative tangent bundle and use
the two standard exact sequences

(5.2) 0 −→ TY/B −→ TY −→ p∗(−KB) −→ 0

and

(5.3) 0 −→ OY −→ p∗E∗(ξ) −→ TY/B −→ 0.

Claim 5.11. — With notation as above we have H1(TY/B(−A)) = 0
and H2(TY/B(−A− S)) = 0.

Proof. — Tensoring (5.3) with OY (−A) we get the first vanishing by
Claims 5.9 and 5.10. Tensoring (5.3) with OY (−A− S) we get a map

ϕ : H3(OY (−A− S)) → H3(p∗E∗(ξ −A− S)).

By Claim 5.9 and Serre duality we find that

H2(TY/B(−A− S)) ∼= Kerϕ ∼= Cokerϕ∗

and we need to prove that ϕ∗ : H0(p∗E(KY − ξ+A+S)) → H0(KY +A+
S) is surjective. Pushing down to B we see that this is equivalent to the
surjectivity of the natural multiplication map H0(B,Symu−1 E ⊗ E(KB +
L+M)) → H0(B,Symu E(KB +L+M)). Now the latter is surjective since,
as E is split, Symu E is a direct summand of Symu−1 E ⊗ E and the map is
given by projection. �

Conclusion of the proof of Lemma 5.6. — Tensoring (5.2) withOY (−A−
S) we see by Claims 5.11 and 5.8 that

H2(TY (−A− S)) = 0.

Tensoring (5.2) with OY (−A) we see by Claims 5.11 and 5.8 that

H1(TY (−A)) = 0.

Now from the exact sequence

0 −→ TY (−A− S) −→ TY (−A) −→ TY |S(−HS) −→ 0

we deduce that H1(TY |S(−HS)) = 0. Finally Claim 5.7 and the exact
sequence

0 −→ TS(−HS) −→ TY |S(−HS) −→ NS/Y (−HS) −→ 0

prove the Lemma. �

We are now ready to prove nonextendability.
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Proof of Theorem 1.6. — We first apply Proposition 5.5 with D0 =
3C + 3nf if g = 0 and D0 = 2C + (2n + 2g)f if g > 1. The fact that D
is not hyperelliptic is a consequence of Lemma 3.10. When g = 0 we know
that D is trigonal, while if g > 1, we have, again by Lemma 3.10, that
D is not trigonal. A straightforward calculation now proves that S is not
extendable if any of the following conditions is satisfied:

• g = 0 and a > 7,(5.4)

• g>1, S is linearly normal and either a > 7, b > an+ 5g − 1 or,(5.5)

a=6, b>max{6n+5g−1, 6n+6g−3} or a = 5, b > 6n+ 7g − 3.

On the other hand we know by Lemma 5.6 that if

• a = 3u for some u > 2 and b 6= a+ 1 if (n, g) = (1, 0),(5.6)

then H1(TS(−1)) = 0. Now the Euler sequence of S ⊂ PN implies that
h0(TPN |S(−1)) = N + 1 and therefore also h0(NS/PN (−1)) = N + 1. We
deduce by Zak’s theorem [50, page 277] (see also [36, Thm.0.1]) that S is
not extendable under condition (5.6). Putting this together with (5.4) and
(5.5), the theorem is proved. �

6. Examples of extendable elliptic surfaces

In this section we will exhibit some simple examples of smoothly ex-
tendable elliptic surfaces S with ρ(S) = 2 and some examples of smoothly
extendable Weierstrass fibrations S with ρ(S) = 3, 4.

Let B be a smooth curve and let E be a very ample vector bundle on
B. We denote by ξ the tautological line bundle on PE and by F a fiber of
π : PE → B. We recall that N1(PE) ∼= Z[ξ]⊕Z[F ]. Given a surface S ⊂ PE
we denote by C = ξ|S and by f = F|S .

Example 6.1. — Suppose E has rank 3, let X = PE , let L ∼= OX(3ξ) and
consider the embedding X ⊂ PH0(L) = PN+1. Let S ∈ |L| be a general
hyperplane section (in the countable Zariski topology). Then π|S : S → B

is an elliptic fibration and N1(S) ∼= Z[C] ⊕ Z[f ] by [40, Thm.7.5] since
pg(S) = h2(OS) > h2(OX) = 0. Here L|S ≡ 3C, C.f = 3 and L|S .f = 9.
With the notation of Theorem 1.3, this is the case (a,C.f) = (3, 3).

Example 6.2. — Suppose E has rank 4, let Y = PE and consider the
embedding Y ⊂ PH0(ξ) = PN+1. Take a general divisor X ∈ |3ξ|. Then,
by Gherardelli-Lefschetz’s theorem [16], [5, Cor.2.3.4], we have N1(X) ∼=
Z[ξ|X ]⊕Z[F|X ]. For the embedding X ⊂ Y ⊂ PN+1, the general hyperplane
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section (in the countable Zariski topology) S ⊂ PN of X is an extendable
elliptic surface over B and, as in Example 6.1, we have N1(S) ∼= Z[C]⊕Z[f ]
by [40, Thm.7.5]. If L = OX(1) we get L|S ≡ C, C.f = 3 and L|S .f = 3.
With the notation of Theorem 1.3, this is the case (a,C.f) = (1, 3).

Example 6.3. — Suppose E has rank 4, let Y = PE and consider the
embedding Y ⊂ PH0(2ξ) = PN+2. Take a general hyperplane section X =
Y ∩ H ⊂ PN+1. As in Example 6.2 we have N1(X) ∼= Z[ξ|X ] ⊕ Z[F|X ].
For the embedding X ⊂ Y ⊂ PN+1, the general hyperplane section (in the
countable Zariski topology) S ⊂ PN of X is an extendable elliptic surface
over B and, as in Example 6.1, we have N1(S) ∼= Z[C] ⊕ Z[f ] by [40,
Thm.7.5]. If L = OX(1) we get L|S ≡ 2C, C.f = 4 and L|S .f = 8. With
the notation of Theorem 1.3, this is the case (a,C.f) = (2, 4).

Example 6.4. — Suppose E has rank 5, let Y = PE and consider the
embedding Y ⊂ PH0(ξ) = PN+1. Take two general quadrics Q1, Q2 and let
X = Y ∩Q1∩Q2. As in Example 6.2 we have N1(X) ∼= Z[ξ|X ]⊕Z[F|X ]. For
the embedding X ⊂ PN+1, the general hyperplane section (in the countable
Zariski topology) S ⊂ PN of X is an extendable elliptic surface over B
and, as in Example 6.1, we have N1(S) ∼= Z[C]⊕ Z[f ] by [40, Thm.7.5]. If
L = OX(1) we get L|S ≡ C, C.f = 4 and L|S .f = 4. With the notation of
Theorem 1.3, this is the case (a,C.f) = (1, 4).

Example 6.5. — Let G(1, 4) ⊂ P9 = PH0(G(1, 4),H) be the Grassman-
nian in its Plücker embedding H and let A be a very ample line bundle of
degree v on B giving an embedding B ⊂ Pr = PH0(A). Let N = 10r−6 and
consider the Segre embedding Y = S(B×G(1, 4)) ⊂ PN+5. Let M ∼= PN+1

be a general linear space and let X = Y ∩M ⊂ PN+1, together with its
two projections p1 : X → B and p2 : X → G(1, 4). As in Example 6.2 we
have N1(X) ∼= Z[p∗2H] ⊕ Z[F ], where F is a fiber of p1. For the embed-
ding X ⊂ PN+1, the general hyperplane section (in the countable Zariski
topology) S ⊂ PN of X is an extendable elliptic surface over B and, as
in Example 6.1, we have N1(S) ∼= Z[C] ⊕ Z[f ] by [40, Thm.7.5], where
C = (p∗2H)|S . Here L = OX(1) ∼= p∗1A ⊗ p∗2H, whence L|S ≡ C + vf .
Moreover C.f = L|S .f = degF = deg G(1, 4) = 5. With the notation of
Theorem 1.3, this is the case (a,C.f) = (1, 5).

Example 6.6. — [37, Exa.8.3.9] (the example is in fact due to Mori).
Let E be a smooth elliptic curve together with a translation τ : E → E

of order 6. Let T be the blow-up of P2 at three general points. Then T

has an automorphism σ of order 6. Let X = (T × E)/ < σ, τ > and
let φ : X → B = E/ < τ > be the natural projection. Then X is a
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smooth threefold and φ is a contraction of an extremal ray (arising from
a (−1)-curve on T ) and the fibers F are Del Pezzo surfaces with K2

F = 6.
Moreover, by [41, Thm.3.2], we have N1(X) ∼= Z[−KX ] ⊕ Z[F ]. We will
prove below that L = −KX + hF is very ample for h >> 0 and that
h2(OX) = 0. Now a general (in the countable Zariski topology) S ∈ |L|
is an extendable elliptic surface over B and, as in Example 6.1, we have
N1(S) ∼= Z[C]⊕ Z[f ] by [40, Thm.7.5], where C = (−KX)|S . Then L|S ≡
C + hf and C.f = L|S .f = L2.F = L2

|F = K2
F = 6. With the notation

of Theorem 1.3, this is the case (a,C.f) = (1, 6). To see the claim first
observe that, since the fibers of φ are Del Pezzo surfaces, we get, by the
Leray spectral sequence, that h2(OX) = 0. Now let L be any very ample line
bundle on X, so that there exist integers α, β such that L ∼ α(−KX)+βF .
Then L|F ∼ −αKF is ample, so that α > 0. If j := dβ

αe, we get that
−2KX +2jF ≡ 2

αL+2(j− β
α )F is ample, and therefore H1(−KX +hF ) = 0

for h > 2j by Kodaira vanishing, since −KX + hF = KX − 2KX + hF .
Also (−KX + hF )|F = −KF is very ample on F , whence −KX + hF is
base-point free for h > 2j + 1. We will now prove that L = −KX + hF

is very ample for h > 2j + 2. Let x, y ∈ X be two distinct points. If x
and y belong to the same fiber F , we can separate them with sections in
|L| since |L|F | is very ample and H1(L − F ) = 0. If x and y belong to
two different fibers Fx and Fy respectively, then to separate them just use
the fact that |L − Fx| is base-point free. On the other hand suppose that
x ∈ X, y ∈ TxX and dϕL(y) = 0, where dϕL is the differential of the
morphism ϕL : X → PH0(L). Arguing as above, y must be tangent to Fx,
contradicting the fact that |L|Fx

| is very ample.

Example 6.7. — Suppose E has rank 3, let Y = PE and, for d = 1, 2,
let Bi ⊂ Y, 1 6 i 6 d be sections of π : Y → B of type Bi = Hi ∩ H ′

i,
for general hyperplanes Hi,H

′
i ∈ |ξ|. Let ε : X → Y be the blow-up of Y

along B1, . . . , Bd and denote by E1, . . . , Ed the corresponding exceptional
divisors and by G a fiber of p : X → B. As we will see below, the line
bundle L = −KX + hG is very ample for h >> 0 and G is embedded by
L as a smooth Del Pezzo surface of degree 9− d. Let S ∈ |L| be a general
hyperplane section (in the countable Zariski topology). We will show that
p|S : S → B is a Weierstrass fibration and that ρ(S) = 2 + d. To see
the assertions claimed above, let us assume that L is very ample. Since
KS ∼ hG|S , we have h2(OS) > h2(OX) = h2(OY ) = 0 by the birational
invariance of h2,0. By [40, Thm.7.5] we deduce that N1(S) ∼= N1(X) has
rank 2+d. For 1 6 i 6 d, we have Ei.L.G = −Ei|G.KX |G = −Ei|G.KG = 1,
whence Ei ∩S is a section of p|S . By the choice of B1, . . . , Bd we have that
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each fiber G of p : X → B is just P2 blown-up at d distinct points and
L|G ∼ −KG is very ample, so that G is embedded in PN = PH0(L) by
−KG. In particular G is not ruled by lines and therefore by Castelnuovo-
Kronecker’s theorem (see for example [35, LemmaII.2.4]) we find that G
does not have a (N−1)-dimensional family of reducible hyperplane sections.
Therefore a general hyperplaneH ∈ (PN )∗ is such that S = X∩H is smooth
and G ∩H is irreducible for all fibers G of p. Hence p|S : S → B does not
have reducible fibers and it must then be a Weierstrass fibration. Finally
to see that L is very ample observe that L|G ∼ −KG is very ample by [20,
Thm.V.4.6], whence, arguing as in example 6.6, it is enough to find some
h1 > 0 such that H1(−KX +hG) = 0 for h > h1. Then L = −KX +hG will
be very ample for h > h1 +2. To find such h1, for each b ∈ B and each fiber
Gb = p−1(b), let Gb,n = X ×B SpecOB,b/m

n
b be the n-th thickening of Gb.

Now if J is the ideal sheaf of Gb we have that J n/J n+1 ∼= Symn J /J 2 ∼=
OGb

, whence, as in [20, Proof of Prop.V.3.4], there is an exact sequence

(6.1) 0 −→ OGb
−→ OGb,n+1 −→ OGb,n

−→ 0.

Since H1(L|Gb
) = H1(−KGb

) = 0 it follows from (6.1) by induction on
n that H1(L|Gb,n

) = 0 for each n > 1 and now the theorem on formal
functions [20, Thm.III.11.1] gives that R1p∗L = 0. Therefore, by the Leray
spectral sequence, we have H1(X,L) ∼= H1(B, p∗L) ∼= H1(B, π∗(ε∗L)).
Hence it will be enough to prove that H1(Y, ε∗L) = 0. Now if g is the genus
of B and e is the degree of E we have that ε∗L ∼= J{B1∪...∪Bd}/Y (3ξ +
π∗(N − KB − det E)) for some line bundle N ∈ PichB. Now let M =
3ξ + π∗(N −KB − det E) ≡ 3ξ + (h− 2g + 2− e)F and consider the exact
sequence

(6.2) 0 −→ J{B1∪...∪Bd}/Y (M) −→M −→ OB1∪...∪Bd
(M) −→ 0.

It is easily seen that, for h >> 0 we have H1(M) = 0, whence, from
(6.2), it remains to show that H0(M) → H0(OB1∪...∪Bd

(M)) is surjec-
tive. For d = 1 the required surjectivity follows easily by the definition
of B1. For d = 2 we need to show, for {i, j} = {1, 2}, that the maps
H0(JBi/Y (M) → H0(OBj (M)) are surjective. To this end consider the
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following exact diagram, defining the sheaf F , where the middle exact se-
quence is the Koszul resolution of Bj ⊂ Y :

0

��

0

��

0

��
0 // JBi/Y (M−2ξ) //

��

JBi/Y (M − ξ)⊕2 //

��

F //

��

0

0 // M − 2ξ //

��

(M − ξ)⊕2 //

��

JBj/Y (M) //

��

0

0 // (M − 2ξ)|Bi
//

��

(M − ξ)⊕2
|Bi

//

��

M|Bi
//

��

0

0 0 0

Now we just need H1(F) = 0, which, in turn, follows from H1(JBi/Y (M −
ξ)) = H2(JBi/Y (M−2ξ)) = 0 for i = 1, 2. Finally the latter two vanishings
follow easily from the Koszul resolution of Bi ⊂ Y .

We end the section with two simple examples of extendable elliptic K3
surfaces of rank two.

Example 6.8. — Consider S4 ⊂ P3 a general quartic surface containing
a line C. The pencil of planes through C gives a fibration π : S → P1 by
elliptic plane cubic curves, ρ(S) = 2 (by [35, Cor.II.3.8] or by [27, Thm.1.1]),
C2 = −2, C.f = 3 and S4 ⊂ P3 is extendable.

Example 6.9. — Consider S2,3 ⊂ P4 a general complete intersection
containing a linearly normal elliptic quintic C ⊂ P4. Then ρ(S) = 2 (by [35,
Thm.III.2.1] or by [27, Thm.1.1]), and S has an elliptic fibration π : S → P1

given by f ∼ 5H − 3C, C2 = 0, C.f = 25 and S2,3 ⊂ P4 is extendable.

As a matter of fact, if π : S → P1 is a K3 elliptic surface with ρ(S) =
2 then, by [31, Thm.5.1] and [34, Exa.1.4.33], there exists an irreducible
effective curve C ⊂ S such that NE(S) = {αC + βf | α, β > 0} such that
either C2 = −2 and C ∼= P1 or C2 = 0 and pa(C) = 1.

7. A non extendability condition for other fibered surfaces

Following the ideas of Section 6 we present a criterion for a fibered surface
S ⊂ PN not to be extendable.
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Proposition 7.1. — Let Y ⊂ PN be a smooth irreducible nondegen-
erate variety. Let p : Y → Z be a surjective morphism onto a projective
variety Z having a finite-to-one morphism into an abelian variety and sup-
pose that dimY > dimZ + 1. If the general fiber f ⊂ PN of p is not
extendable and is not a linear subspace, then Y is not extendable to a
normal variety X ⊂ PN+1 with rational singularities.

Proof. — Let X ⊂ PN+1 be a normal variety with rational singulari-
ties containing Y ⊂ PN as a hyperplane section. By [5, Thm.5.2.3] the
morphism p : Y → Z extends to a morphism p : X → Z. Let f and F

denote their respective fibers. Since f ⊂ PN is not extendable we have that
F ⊂ PN+1 is a cone over f , whence F is singular since f is not a linear
subspace.

On the other hand F is smooth by Bertini’s theorem and this contradic-
tion proves the theorem. �

We have the following nice consequence of Proposition 7.1 (by Proposi-
tion 5.2 and Zak’s theorem [50], p. 277).

Corollary 7.2. — Let S be a smooth irreducible surface with a surjec-
tive morphism π : S → B onto a smooth irreducible curve with g(B) > 0.
Let L be a very ample line bundle on S such that, on a general fiber f
of π we have that H0(S,L) → H0(f, L|f ) is surjective, g(f) > 0 and the
Gaussian map ΦL|f ,ωf

is surjective. Then, in the embedding S ⊂ PH0(L),
S is not extendable to a normal variety with rational singularities.

For example one can take any fibration whose general fiber is not trigonal
and not isomorphic to a plane quintic and line bundles L = 2KS + f + A

for any line bundle A on S such that KS +A is big and nef and A.f > 1. In
this case H1(L−f) = 0 by Kawamata-Viehweg vanishing and the Gaussian
map ΦL|f ,ωf

is surjective by Theorem 5.3 (since degL|f = 2KS .f +A.f >
4g(f)− 3).
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