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FORMAL GEOMETRIC QUANTIZATION

by Paul-Émile PARADAN

Abstract. — Let K be a compact Lie group acting in a Hamiltonian way on
a symplectic manifold (M, Ω) which is pre-quantized by a Kostant-Souriau line
bundle. We suppose here that the moment map Φ is proper so that the reduced
space Mµ := Φ−1(K · µ)/K is compact for all µ. Then, we can define the “formal
geometric quantization” of M as

Q−∞K (M) :=
∑
µ∈K̂

Q(Mµ)V K
µ .

The aim of this article is to study the functorial properties of the assignment
(M, K) −→ Q−∞K (M).

Résumé. — Considérons l’action hamiltonienne d’un groupe de Lie compact
K sur une variété symplectique (M, Ω) préquantifiée par un fibré en droites de
Kostant-Souriau. On suppose que l’application moment Φ est propre, ainsi les
réductions symplectiques Mµ := Φ−1(K · µ)/K sont compactes pour tout µ. On
peut alors définir la quantification formelle de M comme

Q−∞K (M) :=
∑
µ∈K̂

Q(Mµ)V K
µ .

Le but de ce travail est l’étude de certaines propriétés fonctorielles de l’application
(M, K) −→ Q−∞K (M).

The aim of this article is to study the functorial properties of the “formal
geometric quantization” process, which is defined on non-compact Hamil-
tonian manifolds when the moment map is proper. For this purpose, we
introduce a technique of symplectic cutting that uses the (wonderful) com-
pactifications of de Concini-Procesi [14, 15] and Brion [11], and we prove
an extension of the “quantization commutes with reduction” theorem to
the singular setting (here the singular manifolds that we consider are those
obtained by symplectic reduction).

Keywords: Geometric quantization, moment map, symplectic reduction, index, transver-
sally elliptic.
Math. classification: 58F06, 57S15, 19L47, 19L10.
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1. Introduction and statement of results

Let (M,Ω) be a symplectic manifold which is equipped with a Hamil-
tonian action of a compact connected Lie group K. Let us denote by k∗

the dual of the Lie algebra of K. Let Φ : M → k∗ be the moment map. We
assume the existence of a K-equivariant line bundle L on M having a con-
nection with curvature equal to −iΩ. In other words M is pre-quantizable
in the sense of [21] and we call L a Kostant-Souriau line bundle.

In the process of quantization one tries to associate a unitary represen-
tation of K to the data (M,Ω,Φ, L). When M is compact one associates
to this data a virtual representation QK(M) ∈ R(K) of K defined as the
equivariant index of a Dolbeault-Dirac operator: QK(M) is the geometric
quantization of M .

This quantization process satisfies the following functorial properties:
[P1] When N and M are respectively pre-quantized compact Hamilton-

ian K1 and K2-manifolds, the product M ×N is a pre-quantized compact
Hamiltonian K1 ×K2-manifold, and we have

(1.1) QK1×K2(M ×N) = QK1(M)⊗QK2(N)

in R(K1 ×K2) ' R(K1)⊗R(K2).

[P2] If H ⊂ K is a closed and connected Lie subgroup, then the restric-
tion of QK(M) to H is equal to QH(M).

Note that [P1] and [P2] give the following functorial property:

[P3] When N and M are pre-quantized compact Hamiltonian K-
manifolds, the product M × N is a pre-quantized compact Hamiltonian
K-manifold, and we have QK(M×N) = QK(M) ·QK(N), where · denotes
the product in R(K).

Another fundamental property is the behaviour of the K-multiplicities
of QK(M) that is known as “quantization commutes with reduction”.

Let T be a maximal torus of K. Let t∗ be the dual of the Lie algebra of
T containing the weight lattice ∧∗: α ∈ ∧∗ if iα : t → iR is the differential
of a character of T . Let CK ⊂ t∗ be a Weyl chamber, and let K̂ := ∧∗∩CK
be the set of dominant weights. The ring of characters R(K) has a Z-
basis V Kµ , µ ∈ K̂: V Kµ is the irreducible representation of K with highest
weight µ.

For any µ ∈ K̂ which is a regular value of Φ, the reduced space (or
symplectic quotient) Mµ := Φ−1(K · µ)/K is an orbifold equipped with
a symplectic structure Ωµ. Moreover Lµ := (L|Φ−1(µ) ⊗ C−µ)/Kµ is a
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FORMAL GEOMETRIC QUANTIZATION 201

Kostant-Souriau line orbibundle over (Mµ,Ωµ). The definition of the in-
dex of the Dolbeault-Dirac operator carries over to the orbifold case, hence
Q(Mµ) ∈ Z is defined. In [26], this is extended further to the case of singu-
lar symplectic quotients, using partial (or shift) de-singularization. So the
integerQ(Mµ) ∈ Z is well defined for every µ ∈ K̂: in particularQ(Mµ) = 0
if µ /∈ Φ(M).

The following theorem was conjectured by Guillemin-Sternberg [17] and
is known as “quantization commutes with reduction” [25, 26, 31, 29]. For
complete references on the subject the reader should consult [30, 33].

Theorem 1.1 (Meinrenken, Meinrenken-Sjamaar). — We have the fol-
lowing equality in R(K):

QK(M) =
∑
µ∈K̂

Q(Mµ)V Kµ .

Suppose now that M is non-compact but that the moment map Φ :
M → k∗ is assumed to be proper (we will simply say “M is proper”). In
this situation the geometric quantization of M as an index of an elliptic
operator is not well defined. Nevertheless the integers Q(Mµ), µ ∈ K̂ are
well defined since the symplectic quotients Mµ are compact.

Following Weitsman [34], we introduce the following

Definition 1.2. — The formal quantization of (M,Ω,Φ) is the element
of R−∞(K) := homZ(R(K),Z) defined by

Q−∞
K (M) =

∑
µ∈K̂

Q(Mµ)V Kµ .

A representation E of K is admissible if it has finite K-multiplicities:
dim(homK(V Kµ , E))<∞ for every µ∈K̂. Here R−∞(K) is the Grothendieck
group associated to the K-admissible representations. We have a canoni-
cal inclusion i : R(K) ↪→ R−∞(K): to V ∈ R(K) we associate the map
i(V ) : R(K) → Z defined by W 7→ dim(homK(V,W )). In order to simplify
notation, i(V ) will be written V . Moreover the tensor product induces an
R(K)-module structure on R−∞(K) since E ⊗ V is an admissible rep-
resentation when V and E are, respectively, a finite dimensional and an
admissible representation of K.

It is an easy matter to see that [P1] holds for the formal quantization
process Q−∞. Let N and M be respectively pre-quantized proper Hamil-
tonian K1 and K2-manifolds: the product M ×N is then a pre-quantized
proper Hamiltonian K1 × K2-manifold. For the reduced spaces we have
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202 Paul-Émile PARADAN

(M×N)(µ1,µ2) 'Mµ1×Nµ2 , for all µ1 ∈ K̂1, µ2 ∈ K̂2. It follows then that

(1.2) Q−∞
K1×K2

(M ×N) = Q−∞
K1

(M)⊗̂Q−∞
K2

(N)

in R−∞(K1 ×K2) ' R−∞(K1)⊗̂R−∞(K2).
The purpose of this article is to show that the functorial property [P2]

still holds for the formal quantization process Q−∞.

Theorem 1.3. — Let M be a pre-quantized Hamiltonian K-manifold
which is proper. Let H ⊂ K be a closed connected Lie subgroup such
that M is still proper as a Hamiltonian H-manifold. Then Q−∞

K (M) is
H-admissible and we have the following equality in R−∞(H):

(1.3) Q−∞
K (M)|H = Q−∞

H (M).

For µ ∈ K̂ and ν ∈ Ĥ we denote Nµ
ν = dim(homH(V Hν , V Kµ |H)) the

multiplicity of V Hν in the restriction V Kµ |H . In the situation of Theorem 1.3,
the moment maps relative to theK andH-actions are ΦK and ΦH = p◦ΦK ,
where p : k∗ → h∗ is the canonical projection.

Corollary 1.4. — In the situation of Theorem 1.3, we have for every
ν ∈ Ĥ:

(1.4) Q (Mν,H) =
∑
µ∈K̂

Nµ
νQ (Mµ,K) .

Here Mν,H = Φ−1
H (H · ν)/H and Mµ,K = Φ−1

K (K · µ)/K are respectively
the symplectic reductions relative to the H and K-actions.

Since V Kµ is equal to the K-quantization of K·µ, the “quantization com-
mutes with reduction” theorem tells us that Nµ

ν = Q((K·µ)ν,H): in partic-
ular Nµ

ν 6= 0 implies that ν ∈ p(K · µ) ⇐⇒ µ ∈ K · p−1(ν). Finally

Nµ
νQ (Mµ,K) 6= 0 =⇒ µ ∈ K · p−1(λ) and Φ−1

K (µ) 6= ∅.

These two conditions imply that we can restrict the sum of RHS of (1.4)
to

(1.5) µ ∈ K̂ ∩ ΦK
(
K · Φ−1

H (ν)
)

which is finite since ΦH is proper.
Theorem 1.3 and (1.2) give the following extended version of [P3].

Theorem 1.5. — Let N and M be two pre-quantized Hamiltonian K-
manifolds where N is compact and M is proper. The product M × N is
then proper and we have the following equality in R−∞(K):

(1.6) Q−∞
K (M ×N) = Q−∞

K (M) · QK(N).
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For µ, λ, θ ∈ K̂ we denote Cµλ,θ = dim(homK(V Kµ , V Kλ ⊗V Kθ )) the multi-
plicity of V Kµ in the tensor product V Kλ ⊗ V Kθ . Since V Kλ ⊗ V Kθ is equal to
the quantization of the product K ·λ ×K ·θ, the “quantization commutes
with reduction” theorem tells us that Cµλ,θ = Q((K·λ×K·θ)µ): in particular
Cµλ,θ 6= 0 implies that (∗) ‖λ‖ 6 ‖θ‖+ ‖µ‖.

Corollary 1.6. — In the situation of Theorem 1.5, we have for every
µ ∈ K̂:

(1.7) Q ((M ×N)µ) =
∑
λ,θ∈K̂

Cµλ,θQ (Mλ)Q (Nθ) .

Since N is compact, Q(Nθ) 6= 0 for (∗∗) θ ∈ {finite set}. Then (∗) and
(∗∗) show that the sum in the RHS of (1.7) is finite.

Weitsman proved in [34] the validity of (1.6) in a particular case. The
natural strategy to obtain Theorem 1.3 can be summarized as follows:

(1) Cut the non-compact manifold M at different levels “n” to ob-
tain Hamiltonian K-manifolds M (n), possibly singular, but which
are compact and pre-quantized. We require that the manifold M is
the limit of the sequence M (n) in the following sense. Each M (n)

contains an invariant and dense open subset Un which is symplec-
tomorphic to an invariant open subset Ũn of M . The sequence Ũn
is increasing and we have M =

⋃
n Ũn.

(2) Compute QK(M (n)).

We then expect to have another definition of Q−∞
K (M) as the limit of

QK(M (n)) when “n” goes to infinity. Then we can prove that “Q−∞”
satisfies [P2].

Weitsman worked out point (1) in the case where K is the unitary
group U(r). He defines the cut spaces M (n) via symplectic reductions of
M × Matr(C), where Matr(C) is the vector space of complex r × r ma-
trices, viewed as a Hamiltonian U(r) × U(r)-manifold. He could handle
point (2) under the hypothesis that all the cut spaces M (n) are smooth.
Under this strong smoothness hypothesis, Weitsman was then able to show
Theorem 1.5.

A natural way to carry out point (1) for any compact connected Lie group
is by using another version of symplectic cutting due to C. Woodward [36]
(see also [26]): each non-abelian cut space M

(n)
CW is defined by patching

together abelian cut spaces (made on each symplectic slice of M). But the
cut spaces M (n)

CW are either singular or not pre-quantized, hence the main
difficulty is point (2).

TOME 59 (2009), FASCICULE 1



204 Paul-Émile PARADAN

Let KC be the complexification of the Lie group K. In this article, a
smooth projective compactification of KC is a smooth projective complex
variety X embedded in P(E) where

i) E is a KC ×KC-module,
ii) X is KC ×KC-stable,
iii) X contains an open and dense KC×KC-orbit O isomorphic to KC.

In this paper, we work out point (1) for any compact connected Lie
group K by introducing another method of symplectic cutting which uses
projective compactifications of KC. Each cut space M

(n)
PEP is defined as

the symplectic reduction of a Hamiltonian K × K-manifold of the type
M ×X : here X is a smooth projective compactification of KC viewed as a
Hamiltonian K×K-manifold. We make the reduction relatively to one copy
of K, so that the reduced space M (n)

PEP is a Hamiltonian K-manifold. These
cut spaces are in general singular, but each of them contains an open and
dense subset of smooth points which is symplectomorphic to an invariant
open subset of M .

Originally, projective compactifications ofKC were defined by de Concini-
Procesi in the case of an adjoint group: these compactifications were won-
derful [14, 15]. This construction was extended by Brion [11] to the case of
a connected reductive group. In Section 3.1, we recall the construction of
these compactifications and we study them from the Hamiltonian point of
view. We show in particular that the open KC ×KC-orbit in X is K ×K-
equivariantly symplectomorphic to an open subset of the cotangent bundle
T∗K.

In order to work out point (2), we have to handle the non-smoothness of
the cut spaces. For this purpose, we prove an extension of Theorem 1.1 to
the singular setting.

Let N be a smooth pre-quantized Hamiltonian K ×H-manifold. Let us
denote by N//0H the symplectic reduction of N at 0 relatively to the H-
action: we assume that the moment map relatively to H is proper so that
N//0H is a compact Hamiltonian K-manifold. Even if N//0H is singular,
one can still define its geometric quantization QK(N//0H) ∈ R(K). In
Section 2, we prove the following

Theorem 2.4 (Quantization commutes with reduction in the singular
setting). — We have the following equality in R(K):

QK(N//0H) =
∑
µ∈K̂

Q
(
(N//0H)µ

)
V Kµ ,

where the reduced space (N//0H)µ is equal to (N ×K · µ)//(0,0)K ×H.

ANNALES DE L’INSTITUT FOURIER
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Note that Theorem 2.4 applies naturally to the cut spaces M (n)
PEP, but a

priori not to the cut spaces M (n)
CW.

In a forthcoming paper, we will exploit these results to compute the
multiplicities of the holomorphic discrete series representations of a real
semi-simple Lie group S relatively to a compact subgroup H ⊂ S.

Acknowledgements. — I am grateful to Michel Brion and Nicolas
Ressayre for enlightening discussions about the wonderful compactifica-
tions. I thank also Anton Alekseev for his remarks on a preliminary version
of the paper.

2. Quantization commutes with reduction

In this section we give the precise definition of the geometric quantization
of a smooth and compact Hamiltonian manifold. We extend the definition
to the case of a singular Hamiltonian manifold and we prove a “quantization
commutes with reduction” theorem in the singular setting.

Let K be a compact connected Lie group, with Lie algebra k. In the
Kostant-Souriau framework, a Hamiltonian K-manifold (M,Ω,Φ) is pre-
quantized if there is an equivariant Hermitian line bundle L with an invari-
ant Hermitian connection ∇ such that

(2.1) L(X)−∇XM
= i〈Φ, X〉 and ∇2 = −iΩ,

for every X ∈ k. Here XM is the vector field on M defined by XM (m) =
d
dte

−tXm|0.
(L,∇) is also called a Kostant-Souriau line bundle. Remark that condi-

tions (2.1) imply via the equivariant Bianchi formula the relation

(2.2) ι(XM )Ω = −d〈Φ, X〉, X ∈ k.

We will now recall the notion of geometric quantization.

2.1. Geometric quantization: the compact and smooth case

We suppose here that (M,Ω,Φ) is compact and is pre-quantized by a
Hermitian line bundle L. Choose a K-invariant almost complex structure J
on M which is compatible with Ω in the sense that the symmetric bilinear
form Ω(·, J ·) is a Riemannian metric. Let ∂L be the Dolbeault operator
with coefficients in L, and let ∂

∗
L be its (formal) adjoint. The Dolbeault-

Dirac operator on M with coefficients in L is DL = ∂L+∂
∗
L, considered as

an operator from A0,even(M,L) to A0,odd(M,L).

TOME 59 (2009), FASCICULE 1



206 Paul-Émile PARADAN

Definition 2.1. — The geometric quantization of (M,Ω,Φ) is the el-
ement QK(M) ∈ R(K) which is defined as the equivariant index of the
Dolbeault-Dirac operator DL.

Remark 2.2.
• We can define the Dolbeault-Dirac operator DJ

L for any invariant al-
most complex structure J . If J0 and J1 are equivariantly homotopic the
indices of DJ0

L and DJ1
L coincide (see [29]).

• Since the set of compatible invariant almost complex structures on M
is path-connected, the element QK(M) ∈ R(K) does not depend of the
choice of J .

2.2. Geometric quantization: the compact and singular case

We are interested in defining the geometric quantization of singular com-
pact Hamiltonian manifolds: here “singular” means that the manifold is
obtained by symplectic reduction.

Let (N,Ω) be a smooth symplectic manifold equipped with a Hamilton-
ian action of K ×H: we denote (ΦK ,ΦH) : N → k∗× h∗ the corresponding
moment map. We assume that N is pre-quantized by a K ×H-equivariant
line bundle L and we suppose that the map ΦH is proper. One wants to
define the geometric quantization of the (compact) symplectic quotient

N//0H := Φ−1
H (0)/H.

When 0 is a regular value of ΦH , N//0H is a compact symplectic orbifold
equipped with a Hamiltonian action of K: the corresponding moment map
is induced by the restriction of ΦK to Φ−1

H (0). The symplectic quotient
N//0H is pre-quantized by the line orbibundle

L0 :=
(
L|Φ−1

H
(0)

)
/H.

Definition 2.1 extends to the orbifold case, so one can still define the geo-
metric quantization of N//0H as an element QK(N//0H) ∈ R(K).

Suppose now that 0 is not a regular value of ΦH . Let TH be a maximal
torus of H, and let CH ⊂ t∗H be a Weyl chamber. Since ΦH is proper, the
convexity theorem says that the image of ΦH intersects CH in a closed
locally polyhedral convex set, that we denote ∆H(N), [23].

We consider an element a ∈ ∆H(N) which is generic and sufficiently
close to 0 ∈ ∆H(N): we denote Ha the subgroup of H which stabilizes a.
When a ∈ ∆H(N) is generic, one can show (see [26]) that

N//aH := Φ−1
H (a)/Ha

ANNALES DE L’INSTITUT FOURIER
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is a compact Hamiltonian K-orbifold, and that

La :=
(
L|Φ−1

H
(a)

)
/Ha.

is a K-equivariant line orbibundle over N//aH: we can then define, like in
Definition 2.1, the element QK(N//aH) ∈ R(K) as the equivariant index
of the Dolbeault-Dirac operator on N//aH (with coefficients in La).

Proposition-Definition 2.3. — The elements QK(N//aH) ∈ R(K)
do not depend on the choice of the generic element a ∈ ∆H(N), when a is
sufficiently close to 0. Their common value will be taken as the geometric
quantization of N//0H, and still be denoted by QK(N//0H).

Proof. — When N is compact and K = {e}, the proof can be found
in [26] and in [29]. The K-theoretic proof of [29] extends naturally to our
case. �

2.3. Quantization commutes with reduction: the singular case

In Section 2.2, we have defined the geometric quantization QK(N//0H) ∈
R(K) of a compact symplectic reduced space N//0H. We will compute its
K-multiplicities like in Theorem 1.1.

For every µ ∈ K̂, we consider the co-adjoint orbit K · µ ' K/Kµ which
is pre-quantized by the line bundle C[µ] ' K ×Kµ

Cµ. We consider the
product(1) N×K · µ which is a Hamiltonian K×H-manifold pre-quantized
by the K × H-equivariant line bundle L ⊗ C−1

[µ] . The moment map N ×
K · µ→ k∗×h∗, (n, ξ) 7→ (ΦK(n)−ξ,ΦH(n)) is proper, so that the reduced
space

(N//0H)µ := (N ×K · µ)//(0,0)K ×H

is compact. Following Proposition 2.3, we can then define its quantization
Q((N//0H)µ) ∈ Z. The main result of this section is the

Theorem 2.4. — We have the following equality in R(K):

(2.3) QK(N//0H) =
∑
µ∈K̂

Q
(
(N//0H)µ

)
V Kµ .

Proof. — The proof will occupy the remainder of this section. The start-
ing point is to state another definition of the geometric quantization of a
symplectic reduced space which uses the Atiyah-Singer theory of transver-
sally elliptic operators. �

(1) K · µ denotes the co-adjoint orbit with the opposite symplectic form.

TOME 59 (2009), FASCICULE 1
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2.3.1. Transversally elliptic symbols

Here we give the basic definitions from the theory of transversally elliptic
symbols (or operators) defined by Atiyah-Singer in [6]. For an axiomatic
treatment of the index morphism see Berline-Vergne [8, 9] and for a short
introduction see [29].

Let X be a compact K1 × K2-manifold. Let p : TX → X be the pro-
jection, and let (−,−)X be a K1 × K2-invariant Riemannian metric. If
E0, E1 are K1×K2-equivariant complex vector bundles over X , a K1×K2-
equivariant morphism σ ∈ Γ(TX ,hom(p∗E0, p∗E1)) is called a symbol. The
subset of all (x, v) ∈ TX where σ(x, v) : E0

x → E1
x is not invertible is called

the characteristic set of σ, and is denoted by Char(σ).
Let TK2X be the following subset of TX :

TK2X =
{
(x, v) ∈ TX , (v,XX (x))X = 0 for all X ∈ k2

}
.

A symbol σ is elliptic if σ is invertible outside a compact subset of TX
(i.e. Char(σ) is compact), and is K2-transversally elliptic if the restric-
tion of σ to TK2X is invertible outside a compact subset of TK2X (i.e.
Char(σ) ∩ TK2X is compact). An elliptic symbol σ defines an element in
the equivariant K-theory of TX with compact support, which is denoted
by KK1×K2(TX ), and the index of σ is a virtual finite dimensional repre-
sentation of K1 ×K2 [2, 3, 4, 5].

A K2-transversally elliptic symbol σ defines an element of
KK1×K2(TK2X ), and the index of σ is defined as a trace class virtual
representation of K1 × K2 (see [6] for the analytic index and [8, 9] for
the cohomological one): in fact IndexX (σ) belongs to the tensor product
R(K1)⊗̂R−∞(K2).

Remark that any elliptic symbol of TX is K2-transversally elliptic, hence
we have a restriction map KK1×K2(TX ) → KK1×K2(TK2X ), and a com-
mutative diagram

(2.4) KK1×K2(TX ) //

IndexX

��

KK1×K2(TK2X )

IndexX

��
R(K1)⊗R(K2) // R(K1)⊗̂ R−∞(K2) .

Using the excision property, one can easily show that the index map
IndexU : KK1×K2(TK2U) → R(K1)⊗̂R−∞(K2) is still defined when U is a
K1 ×K2-invariant relatively compact open subset of a K1 ×K2-manifold
(see [29], Section 3.1).

ANNALES DE L’INSTITUT FOURIER
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2.3.2. Quantization of singular spaces: second definition

Let (X ,Ω) be a Hamiltonian K1×K2-manifold pre-quantized by a K1×
K2-equivariant line bundle L. The moment map Φ2 : X → k∗2 relative
to the K2-action is supposed to be proper. Take a compatible K1 ×K2-
invariant almost complex structure on X . We choose a K1 ×K2-invariant
Hermitian metric ‖v‖2 on the tangent bundle TX , and we identify the
cotangent bundle T∗X with TX . For (x, v) ∈ TX , the principal symbol of
the Dolbeault-Dirac operator ∂L + ∂

∗
L is the Clifford multiplication cX (v)

on the complex vector bundle Λ•TxX ⊗Lx. It is invertible for v 6= 0, since
cX (v)2 = −‖v‖2.

When X is compact, the symbol cX is elliptic and then defines an el-
ement of the equivariant K-group of TX . The topological index of cX ∈
KK1×K2(TX ) is equal to the analytical index of the Dolbeault-Dirac oper-
ator ∂L + ∂

∗
L:

(2.5) QK1×K2(X ) = IndexX (cX ) in R(K1)⊗R(K2).

When X is not compact the topological index of cX is not defined. In
order to give a topological definition of QK1(X//0K2), we will deform the
symbol cX as follows. Consider the identification k∗2 ' k2 defined by a K2-
invariant scalar product on the Lie algebra k2. From now on the moment
map Φ2 will take values in k2, and we define the vector field on X

(2.6) κx = (Φ2(x))X (x), x ∈ X .

We consider now the symbol

cκX (v) = c(v − κx), v ∈ TxX .

Note that cκX (v) is invertible except if v = κx. If furthermore v belongs
to the subset TK2X of tangent vectors orthogonal to the K2-orbits, then
v = 0 and κx = 0. Indeed κx is tangent to K2 · x while v is orthogonal.

Since κ is the Hamiltonian vector field of the function −1
2 ‖Φ2‖2, the set

of zeros of κ coincides with the set Cr(‖Φ2‖2) of critical points of ‖Φ2‖2.
Let U ⊂ X be a K1 ×K2-invariant open subset which is relatively com-

pact. If the boundary ∂U does not intersect Cr(‖Φ2‖2), then the restriction
cκX |U defines a class in KK1×K2(TK2U) since

Char(cκX |U ) ∩ TK2U ' Cr(‖Φ2‖2) ∩ U

is compact. In this situation the index of cκX |U is defined as an element
IndexU (cκX |U ) ∈ R(K1)⊗̂R−∞(K2).

Theorem 2.5. — The K2-invariant part of IndexU (cκX |U ) is equal to:
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• QK1(X//0K2) when Φ−1
2 (0) ⊂ U ,

• 0 in the other case.

Proof. — When K1 = {e}, the proof is done in [29] (see Section 7). This
proof works equally well in the general case. �

Remark 2.6. — If X is compact we can take U = X in the last theorem.
In this case the symbols cκX and cX define the same class in KK1×K2(TX ) so
they have the same index. Theorem 2.5 corresponds then to the traditional
“quantization commutes with reduction” phenomenon: [QK1×K2(X )]K2 =
QK1(X//0K2).

>From now one we will work with this (topological) definition of the
geometric quantization of the reduced K1-Hamiltonian manifold X//0K2

(which is possibly singular):

(2.7) QK1(X//0K2) = [IndexU (cκX |U )]K2 ,

where U is any relatively compact neighborhood of Φ−1
2 (0) such that ∂U ∩

Cr(‖Φ2‖2) = ∅.

Remark 2.7. — In this topological definition of QK1(X//0K2) one has
to check that such open subset U exists. Take U = {‖Φ2‖2 < ε} for ε > 0:
one can check that ∂U = {‖Φ2‖2 = ε} does not intersect Cr(‖Φ2‖2) for ε
small enough.

The functorial properties still hold in this singular setting. In particular:
[P2] If H ⊂ K1 is a closed and connected Lie subgroup, then the restric-

tion of QK1(X//0K2) to H is equal to QH(X//0K2).

2.3.3. Proof of Theorem 2.4

We go back to the situation of Sections 2.2 and 2.3 .
First we apply Theorem 2.5 to X = N , K1 = K and K2 = H. (2.3) is

trivially true when 0 /∈ Image(ΦH). So we suppose now that 0 ∈ Image(ΦH),
and we consider a K ×H-invariant open subset U ⊂ N which is relatively
compact and such that

Φ−1
H (0) ⊂ U and ∂U ∩ Cr(‖ΦH‖2) = ∅.

We have QK(N//0H) = [IndexU (cκH

N |U )]H and one want to compute its
K- multiplicities mµ, µ ∈ K̂. Here κH is the vector field on N associated
to the moment map ΦH (see (2.6)).
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Take µ ∈ K̂. We denote c−µ the principal symbol of the Dolbeault-
Dirac operator on K · µ with values in the line bundle C[−µ]: we have
IndexK·µ(c−µ) = (V Kµ )∗.

We know then that the multiplicity of [IndexU (cκH

N |U )]H relatively to
V Kµ is equal to

(2.8) mµ :=
[
IndexV

(
cκH

N |U � c−µ
) ]K×H

,

with V = U ×K · µ. This identity is due to the fact that we have a “mul-
tiplication”

KK×H(THU)×KK(T(K ·µ)) −→ KK×H(TK×H(U ×K ·µ))

(σ1, σ2) 7−→ σ1 � σ2 .

so that IndexU×K·µ(σ1�σ2) = IndexU (σ1) · IndexK·µ(σ2) in R−∞(K×H).
See [6].

Consider now the case where X = N×K · µ, K1 = {e} and K2 = K×H.
By Theorem 2.5, we know that

(2.9) Q((N//0H)µ) =
[
IndexV(cκX |V)

]K×H
,

where κ is the vector field on N ×K · µ associated to the moment map

Φ : N ×K · µ −→ k∗ × h∗(2.10)

(x, ξ) 7−→ (ΦK(x)− ξ,ΦH(n)).

Note that V = U ×K · µ is a neighborhood of Φ−1(0) ⊂ (ΦH)−1(0).
Our aim now is to prove that the quantities (2.8) and (2.9) are equal.
Since the definition of κ requires the choice of an invariant scalar product

on the Lie algebra k × h, we give a precise definition of it. Let ‖ · ‖K and
‖ · ‖H be two invariant Euclidean norms respectively on k and h. For any
r > 0, we consider on k × h the invariant Euclidean norm ‖(X,Y )‖2r =
r2‖X‖2K + ‖Y ‖2H .

Let κK be the vector field on N×K · µ associated to the map N×K · µ→
k∗, (x, ξ) 7→ ΦK(x)− ξ, and where the identification k ' k∗ is made via the
Euclidean norm ‖ · ‖K (see (2.6)). For (x, ξ) ∈ N × K · µ, we have the
decomposition

κK (x, ξ) = (κ1(x, ξ), κ2(x, ξ)) ∈ TxN × Tξ(K ·µ).

Let κH be the vector field on N×K · µ associated to the map N×K · µ→
k∗, (x, ξ) 7→ ΦH(x), and where the identification h ' h∗ is made via the
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Euclidean norm ‖ · ‖H . For (x, ξ) ∈ N ×K · µ, we have the decomposition

κH (x, ξ) = (κH (x), 0) ∈ TxN × Tξ(K ·µ).

For any r > 0, we denote by κr the vector field on N ×K · µ associated
to the map (2.10), and where the identification k× h ' k∗ × h∗ is made via
the Euclidean norm ‖ · ‖r. We have then

κr = κH + r κK

= (κH + r κ1, r κ2).

Now we can specify (2.9). Take an invariant relatively compact neigh-
borhood U of Φ−1

H (0) such that ∂U ∩ {zeros of κH} = ∅. With the help of
a invariant Riemannian metric on X we define

εH = inf
x∈∂U

‖κH (x)‖ > 0 and εK = sup
(x,ξ)∈∂U×K·µ

‖κ1(x, ξ)‖.

Note that for any 0 6 r < εH

εK
, we have ∂U ×K·µ∩{zeros of κH +rκ1} = ∅,

and then ∂V ∩ {zeros of κr} = ∅ for the neighborhood V := U ×K · µ of
Φ−1(0). We can then use Theorem 2.5: for 0 < r < εH

εK
we have

Q((N//0H)µ) =
[
IndexV(cκr

X |V)
]K×H

.

We are now close to the end of the proof. Let us compare the symbols
cκr

X |V and cκH

N |U �c−µ in KK×H(TK×H(U ×K·µ)). First one sees that the
symbol cX is equal to the product cN �c−µ hence the symbol cκH

N |U �c−µ
is equal to cκr

X |V when r = 0. Since for r < εH

εK
the path s ∈ [0, r] → cκs

X |V
defines a homotopy of K ×H-transversally elliptic symbols on V, we get

IndexV(cκr

X |V) = IndexV(cκH

N |U � c−µ)

and then mµ = Q((N//0H)µ). �

3. Wonderful compactifications and symplectic cutting

In this section we use projective compactifications of KC “à la de Concini-
Procesi” [14, 15] to perform symplectic cutting. These compactifications are
special cases of Spherical varieties, see [10].
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3.1. Wonderful compactifications: definitions

Here we study the projective compactifications of KC defined by Brion
[11] from the Hamiltonian point of view. This construction generalizes pre-
vious work of de Concini-Procesi [14, 15], where wonderful compactifica-
tions of an adjoint group were defined.

We consider a compact connected Lie group K and its complexification
KC. Let T be a maximal torus of K, and let W := N(T )/T be the Weyl
group. Let t∗ be the dual of the Lie algebra of T containing the lattice of
weights ∧∗. Let CK ⊂ t∗ be a Weyl chamber and let K̂ := ∧∗ ∩CK be the
set of dominant weights. An element ξ ∈ t∗ is called regular if its stabilizer
subgroup Kξ is equal to T .

We recall the notion of Delzant polytope [28]. Let P be a convex polytope
in t∗.

Definition 3.1. — P is a Delzant polytope (relatively to ∧∗) if:
i) the vertices of P belong to ∧∗,
ii) P is simple: there are exactly dim(t∗) edges through each vertex,
iii) at each vertex ξ, the tangent cone to P at {ξ} is generated by a

Z-basis of the lattice ∧∗.

We need the following refinement of the notion of Delzant polytope.

Definition 3.2. — A convex polytope P in t∗ is K-adapted if:
i) P is a Delzant polytope (relatively to ∧∗),
ii) the vertices of P are regular elements of t∗,
iii) P is W -invariant.

Example 1. — When K = T is a torus, a T -adapted polytope is just a
Delzant polytope.

Example 2. — We consider the Lie groups SU(3) and PSU(3) :=
SU(3)/Z, where Z ' Z/3Z is the center of SU(3). Note that PSU(3)
has a trivial center. In Figures 3.1 and 3.2, the lattice ∧∗PSU of weights
for PSU(3) is formed by the black dots and the lattice ∧∗SU of weights
for SU(3) is formed by all the dots (grey and black). In Figure 3.1, the
polytope is a Delzant polytope relatively to ∧∗PSU, but it is not a Delzant
polytope relatively to ∧∗SU: hence the polytope is PSU(3)-adapted but not
SU(3)-adapted.

Example 3. — When K has trivial center, the convex hull of W · µ is
a K-adapted polytope for any regular dominant weight µ. Figure 3.1 is an
example of this case for the Lie group PSU(3).

TOME 59 (2009), FASCICULE 1



214 Paul-Émile PARADAN

λ1

λ2

Figure 3.1. PSU(3)-adapted polytope

 
λ1

λ2

λ3

Figure 3.2. SU(3)-adapted polytope

Proposition 3.3. — For any compact connected Lie group K, there
exist K-adapted polytopes in t∗.

Proof. — Let us use the dictionary between polytopes and projective
fans [28]. Conditions i) and iii) of Definition 3.2 means that we are looking
after a smooth projective W -invariant fan F in t. Condition ii) means that
each cone of F of maximal dimension should not be fixed by any element
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of W r {Id}. For a proof of the existence of such a fan, see [12, 13]. In
particular condition (∗) in Proposition 2 of [13] implies ii). �

In the rest of this section, we consider a K-adapted polytope P . Let

(3.1) {λ1, . . . , λN}

be the set of regular dominant weights which are on the edges of P (i.e. on
the 1-dimensional faces of P ). Note that some of the λi are the vertices of
P which belong to the (interior) of the Weyl chamber.

Let Vλi be an irreducible representation of K with highest weight λi: this
representation extends canonically to the complexification KC. We denote
ρ : KC → ΠN

i=1GL(Vλi
) the representation of KC on

V := ⊕Ni=1Vλi .

Let TC ⊂ KC be the complexification of the (compact) torus T ⊂ K. Let
∆(TC, V ) be the set of weights relative to the action of TC on V . Let us
sum up the basic but essential properties concerning the set ∆(TC, V )

Lemma 3.4.
• We have W · {λ1, . . . , λN} ⊂ ∆(TC, V ) ⊂ P .
• P is equal to the convex hull of W · {λ1, . . . , λN}.
• For any vertex λ of P , the Z-basis of the lattice ∧∗ which generates

the tangent cone to P at {λ} is of the form: α1−λ, . . . , αr−λ where
αk ∈ ∆(TC, V ).

Proof. — Since each λi is a weight for the action of TC on Vλi , we have
λi ∈ ∆(TC, V ). Using the W -invariance of ∆(TC, V ), we get one inclusion
of the first point. The other inclusion follows from the fact that the set of
weights relative to the action of TC on Vλi is contained in the convex hull
of W · λi. The second point is due to the fact that all the vertices of P
belong to W · {λ1, . . . , λN}.

Let us prove the last point for a vertex λ which is dominant. Since P is
a Delzant polytope, the tangent cone to P at {λ} is generated by a Z-basis
of the lattice ∧∗ that we denote α1 − λ, . . . , αr − λ. Let us show that all
the αk belong to ∆(TC, V ). We consider the segment [λ, αk] ⊂ t∗ which
is part of an edge of P . If [λ, αk] is included in the interior of the Weyl
chamber, we have then αk ∈ {λ1, . . . , λN} ⊂ ∆(TC, V ). Suppose now that
the segment [λ, αk] intersects the wall Πα of the Weyl chamber defined by a
simple root α. Let sα ∈W be the symmetry relative to the wall Πα. Since
P is W -invariant, the segment

[sα(λ), sα(αk)] = sα ([λ, αk])
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is also part of an edge of P , and it intersects [λ, αk]. Since two distinct
edges can intersect only at the vertices, the line (λ, αk) must be invariant
under sα.

Let us sum up the properties of the weight αk: the segment [λ, αk] in-
tersects the wall Πα orthogonally and λ − αk is part of a Z-basis of ∧∗.
There are only two possibilities: either αk ∈ Πα or αk = sα(λ). Both of
them implies that

αk = λ− α.

Finally, it is a standard fact of representation theory that, for any simple
root α and any regular dominant weight λ, λ−α is a weight relative to the
action of TC on Vλ. We have proved that αk = λ− α ∈ ∆(TC, V ). �

We consider now the vector space

E = ⊕Ni=1 End(Vλi)

equipped with the action ofKC×KC given by: (g1, g2)·f = ρ(g1)◦f◦ρ(g2)−1.
Let P(E) be the projective space associated to E: it comes equipped with
an algebraic action of the reductive group KC ×KC. We consider the map
g 7→ [ρ(g)] from KC into P(E), and we denote it ρ̄.

Lemma 3.5. — The map ρ̄ : KC → P(E) is an embedding.

Proof. — Let g ∈ KC such that ρ̄(g) = [Id]: there exists a ∈ C∗ such
that ρ(g) = a Id. The Cartan decomposition gives

(3.2) ρ(k) =
a

|a|
Id and ρ(eiX) = |a| Id

for g = keiX with k ∈ K and X ∈ k. Since there exist Y, Y ′ ∈ t and
u, u′ ∈ K such that k = ueY u−1 and X = u′ · Y ′, (3.2) gives

ρ(eY ) =
a

|a|
Id and ρ(eiY

′
) = |a| Id .

and then

(3.3) ei〈α−α
′,Y 〉 = 1 and e〈α−α

′,Y ′〉 = 1,

for every α, α′ ∈ ∆(TC, V ). Using now the last point of Lemma 3.4, we see
that (3.3) implies Y ′ = 0 and Y ∈ ker(Z ∈ t → eZ). We have proved that
g = e. �

We can now define the projective compactification XP of KC.

Definition 3.6. — Let P be a K-adapted polytope in t∗. Let {λ1, . . . ,

λN} be the set of regular dominant weights which are on the edges of P .
Let E := ⊕Ni=1 End(Vλi). We define the varieties:

• XP which is the Zariski closure of ρ̄(KC) in P(E),
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• YP ⊂ XP which is the Zariski closure of ρ̄(TC) in P(E).

Since ρ̄(KC) = KC × KC · [Id] and ρ̄(TC) = TC × TC · [Id] are orbits of
algebraic group actions their Zariski closures coincide with their closures
for the Euclidean topology.

Theorem 3.7. — The varieties XP and YP are smooth.

The proof will be given in the next section.

Remark 3.8. — In the definition of XP , we work with the representation
V = ⊕Ni=1Vλi

, where the λi run over the set of regular dominant weights
that belong to the edges of P . We can be interested to work with a subset
∆ ⊂ {λ1, . . . , λN}. We consider then the representations V (∆) := ⊕λ∈∆Vλ
and E(∆) := ⊕λ∈∆ End(Vλ). We define the variety X (∆) as the Zariski
closure of ρ̄(KC) in P(E(∆)).

Suppose now that ∆ contains all the vertices of P which are in the Weyl
chamber: the first two points of Lemma 3.4 apply to ∆(TC, V (∆)). One
can show by the method described in Section 3.2 that X (∆) is smooth if
∆(TC, V (∆)) satisfies the third point of Lemma 3.4. In other words we have
the following

Smoothness criterion for X (∆): for any vertex λ of P , the Z-basis of the
lattice ∧∗ which generates the tangent cone to P at {λ} is of the form:
α1 − λ, . . . , αr − λ where αk ∈ ∆(TC, V (∆)).

When K has trivial center (see Figure 3.1) one can work with the poly-
tope equal to the convex hull of W · µ, with µ a regular dominant weight.
In this case one can take ∆ := {µ}: the variety X (∆) ⊂ P(End(Vµ)) is a
smooth compactification of KC. This was the situation studied originally
by de Concini-Procesi [14].

In the example of Figure 3.1, if one takes ∆ := {λ2, λ3}, the variety
X (∆) is a smooth compactification of SL(3,C).

3.2. Smoothness of XP and YP

Let E be a complex vector space equipped with a linear action of a
reductive group G. Let Z ⊂ P(E) be a projective variety which is G-stable.
We have the classical fact

Lemma 3.9.
• Z has closed G-orbits.
• Z is smooth if Z is smooth near its closed G-orbits.
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• Z is smooth near an orbit G · z if Z is smooth near z.

We are interested here respectively in
• the KC ×KC-variety XP ⊂ P(E) ⊂ P(End(V )),
• the TC × TC-variety YP ⊂ P(E).

Since the diagonal ZC = {(t, t)|t ∈ TC} stabilizes [Id], its action on YP is
trivial. Hence we will restrict ourselves to the action of TC × TC/ZC ' TC
on YP : for t ∈ TC and [y] ∈ YP we take t · [y] = [ρ(t) ◦ y].

3.2.1. The case of YP

We apply Lemma 3.9 to the TC-variety YP = TC · [Id] in P(E). Let
{αj , j ∈ J} be the TC-weights on V = ⊕Ni=1Vλi , counted with their multi-
plicities. We suppose that a K-invariant Hermitian metric is fixed on each
representation Vλi .

Their exists an orthonormal basis {vj , j ∈ J} of V = ⊕Ni=1Vλi such that
Id =

∑
j∈J vj ⊗ v∗j and

(3.4) ρ(eZ) =
∑
j∈J

ei〈αj ,Z〉vj ⊗ v∗j , Z ∈ tC.

So the action of eZ ∈ TC on [Id] ∈ P(E) is eZ ·[Id] =
[∑

j∈J e
i〈αj ,Z〉vj ⊗ v∗j

]
.

We introduce a subset J ′ of J such that for every j ∈ J there exists a
unique j′ ∈ J ′ such that αj = αj′ . So the variety YP lives into P(E′) where
E′ = ⊕j′∈J′Cmj′ with mj′ =

∑
j∈J,αj=αj′

vj ⊗ v∗j . The closed TC-orbits in
P(E′) are the fixed points [mj′ ], j′ ∈ J ′.

Lemma 3.10. — [mjo ] ∈ YP if and only if αjo is a vertex of the poly-
tope P .

Proof. — If αjo is a vertex of P , there exists X ∈ t such that 〈αjo , X〉 >
〈αj , X〉 whenever αjo 6= αj . Hence e−isX · [Id] tends to [mjo ] when s →
+∞. If αjo is not a vertex of P , we can find L ⊂ J ′ r {jo} such that
αjo =

∑
l∈L alαl with 0 < al < 1 and

∑
l al = 1. So YP is included into

the closed subset defined by[∑
j′∈J′

δj′mj′

]
∈ P(E′) :

∏
l∈L

|δl|al = |δjo |

 .

Hence [mjo ] /∈ YP . �

Remark 3.11. — When αj is a vertex of the polytope P , the multiplicity
of αj in ⊕Ni=1Vλi

is one, so mj = vj ⊗ v∗j .
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Consider now a vertex αjo of P (for jo ∈ J ′). We consider the open
neighborhood V ⊂ P(E′) of [mjo ] defined by [

∑
j′∈J′ δj′mj′ ] ∈ V ⇔ δjo 6= 0,

and the diffeomorphism ψ : V → CJ′r{jo}, [
∑
j′∈J′ δj′mj′ ] 7→ ( δj′

δjo
)j′ 6=jo .

The map ψ realizes a diffeomorphism between YP ∩ V and the affine sub-
variety

Z := {(tαj′−αjo )j′ 6=jo | t ∈ TC} ⊂ CJ
′r{jo}.

The set of weights {αj , j ∈ J} contains all the lattice points that belong
to the edges of P . Since the polytope P is K-adapted, there exists a subset
Ljo ⊂ J ′ such that αl−αjo , l ∈ Ljo is a Z-basis of the group of weights ∧∗.
And for every j′ 6= jo we have

(3.5) αj′ − αjo =
∑
l∈Ljo

nlj′(αl − αjo) with nlj′ ∈ N.

We define on CLjo the monomials Pj′(Z) = Πl∈Ljo
(Zl)

nl
j′ . Note that

Pj′(Z) = Zl when j′ = l ∈ Ljo . Now it is not difficult to see that the
map

CLjo −→ CJ
′r{jo}

Z 7−→ (Pj′(Z))j′ 6=jo

realizes a diffeomorphism between CLjo and Z.
We have shown that YP is smooth near [mjo ]: hence YP is a smooth sub-

variety of P(E). Since TC acts on YP with a dense orbit, YP is a smooth
projective toric variety.

3.2.2. The case of XP

Recall that E := ⊕Ni=1 End(Vλi). The closed KC×KC-orbits in P(E) are
those passing through [vλi

⊗v∗λi
] where vλi ∈ Vλi is a highest weight vector.

Recall that all the λi are regular elements of t∗.

Lemma 3.12. — [vλi ⊗ v∗λi
] ∈ XP if and only if λi is a vertex of the

polytope P .

Proof. — If λi is a vertex of P , we have proved in Lemma 3.10 that
[vλi

⊗v∗λi
] belongs to YP and so belongs to XP . We shall prove the converse

in Corollary 3.17. �

For the remainder of this section we consider a vertex λio ∈ K̂ of the
polytope P . Let B+, B− be the subgroups fixing respectively the elements
[vλio

] ∈ P(Vλi) and [v∗λio
] ∈ P(V ∗

λi
): since λio is regular, B+ and B− are
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opposite Borel subgroups of KC. Consider also the maximal unipotent sub-
groups N± ⊂ B±.

We consider the open subset VEnd ⊂ P(E) of elements [f ] such that
〈v∗λio

, f(vλio
)〉 6= 0: VEnd is a B−×B+-stable neighborhood of [vλio

⊗v∗λio
].

Consider the open subsets V ⊂ P(Vλio
) and V∗ ⊂ P(V ∗

λio
)) defined by:

• [v] ∈ V ⇔ 〈v∗λio
, v〉 6= 0: V is B− stable,

• [ξ] ∈ V∗ ⇔ 〈ξ, vλio
〉 6= 0: V∗ is B+ stable.

We define now the rational maps l : P(E) 99K P(Vλio
), [f ] 7→ [f(vλio

)] and
r : P(E) 99K P(V ∗

λio
), [f ] 7→ [v∗λio

◦ f ]. The maps l and r are defined on
VEnd: they define respectively a B−-equivariant map from VEnd to V, and
a B+-equivariant map from VEnd to V∗.

The orbits KC · [vλio
] ⊂ P(Vλio

) and KC · [v∗λio
] ⊂ P(V ∗

λio
) are closed and

we have

KC · [vλio
] ∩ V = N− · [vλio

] ' N−

KC · [v∗λio
] ∩ V∗ = N+ · [v∗λio

] ' N+.

The rational map (l, r) : P(E) 99K P(Vλio
)× P(V ∗

λio
) then induces a map

q : VEnd ∩ XP → N− ×N+

which is N− × N+-equivariant: q ((n−, n+) · x) = (n−, n+) · q(x) for x ∈
VEnd ∩ XP , and n± ∈ N±.

We can now finish the proof. The set N−TCN
+ ⊂ KC is dense in KC, so

it is now easy to see that the map

N− ×N+ × (YP ∩ VEnd) −→ XP ∩ VEnd

(n−, n+, y) 7−→ (n−, n+) · y

is a diffeomorphism. We proved above that YP ∩ VEnd is a smooth affine
variety, hence XP is smooth near [vλio

⊗ v∗λio
] ∈ XP ∩ VEnd. Lemma 3.9

then tells us that XP is a smooth variety.

3.3. Hamiltonian actions

First consider a Hermitian vector space V . The Hermitian structure on
End(V ) is (A,B) := Tr(AB∗), hence the associated symplectic structure
on End(V ) is defined by the relation ΩEnd(A,B) := −Im(Tr(AB∗)).

Let U(V ) be the unitary group and u(V ) its Lie algebra. We will use the
identification ε : u(V ) w u(V )∗, X 7→ εX where εX(Y ) = −Tr(XY ). The
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action of U(V )×U(V ) on End(V ) is (g, h) ·A = gAh−1. The moment map
relative to this action is

End(V ) −→ u(V )∗ × u(V )∗

A 7−→ −1
2

(iAA∗,−iA∗A) .

We now consider the projective space P(End(V )) equipped with the
Fubini-Study symplectic form ΩFS. Here the action of U(V ) × U(V ) on
P(End(V )) is Hamiltonian with moment map

P(End(V )) −→ u(V )∗ × u(V )∗

[A] 7−→
(
iAA∗

‖A‖2
,
−iA∗A
‖A‖2

)
where ‖A‖2 = Tr(AA∗) (see [27], Section 7). If ρ : K ↪→ U(V ) is a closed
connected Lie subgroup, we can consider the action of K×K on P(End(V )).
Let πK : u(V )∗ → k∗ be the projection which is dual to the inclusion ρ :
k ↪→ u(V ). The moment map for the action of K ×K on (P(End(V )),ΩFS)
is then

P(End(V )) −→ k∗ × k∗(3.6)

[A] 7−→ 1
‖A‖2

(πK(iAA∗),−πK(iA∗A)).

Here we are interested in

• the projective variety XP ⊂ P(End(V )) with the action of K ×K,
• the projective variety YP ⊂ P(End(V )) with the action of T × T ,

where V = ⊕Ni=1Vλi . The Fubini-Study two-form restricts to symplectic
forms on XP and YP . The action of K × K on XP is Hamiltonian with
moment map

ΦK×K : XP −→ k∗ × k∗(3.7)

[x] 7−→ 1
‖x‖2

(πK(ixx∗),−πK(ix∗x)).

Since the diagonal Z = {(t, t)|t ∈ T} acts trivially on YP we restrict
ourselves to the action of T ×T/Z ' T on YP . Let us compute the moment
map ΦT : YP → t∗ associated to this action. First we have

(3.8) ΦT ([y]) =
πT (iy∗y)
‖y‖2

=
πT (iyy∗)
‖y‖2

where πT : u(V )∗ → t∗ is the projection which is dual to ρ : t → u(V ).
Since ρ(X) = i

∑
j∈J αj(X)vj ⊗ v∗j , a small computation shows that for
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B ∈ u(V ) ' u(V )∗ we have πT (B) = −i
∑
j∈J(Bvj , vj)αj . Finally for any

[y] ∈ YP we get

ΦT ([y]) =
∑
j∈J

‖yvj‖2

‖y‖2
αj .

Together with the action of T , we also have an action of the Weyl group
W = N(T )/T on YP : for w̄ ∈W we take

(3.9) w̄ · [y] = [ρ(w) ◦ y ◦ ρ(w)−1], [y] ∈ YP .

This action is well defined since the diagonal Z ⊂ T × T acts trivially on
YP . The set of weights {αj , j ∈ J} is stable under the action of W , hence
it is easy to verify that the map ΦT is W -equivariant.

A dense part of YP is formed by the elements eZ · [Id] = [ρ(eZ)] with
Z = X + iY ∈ tC. We have ΦT (eZ · [Id]) = ψT (Y ) ∈ t∗ with

(3.10) ψT (Y ) =
1∑

j∈J e
−2〈αj ,Y 〉

∑
j∈J

e−2〈αj ,Y 〉αj .

Hence the image of the moment map ΦT : YP → t∗ is equal to the closure
of the image of the map ψT : t → t∗.

Proposition 3.13. — The map ψT realizes a diffeomorphism between
t and the interior of the polytope P ⊂ t∗.

Proof. — Consider the function FT : t → R, FT (Y ) = ln
(∑

j e
〈αj ,Y 〉

)
,

and let LT : t → t∗ be its Legendre transform: LT (X) = dFT |X . Note that
we have LT (−2Y ) = ψT (Y ).

We see that FT is strictly convex. So, it is a classical fact that LT realizes
a diffeomorphism of t onto its image, and for ξ ∈ t∗ we have

ξ ∈ Image(LT ) ⇐⇒ lim
Y→∞

FT (Y )− 〈ξ, Y 〉 = ∞

⇐⇒ lim
Y→∞

∑
j∈J

e〈αj−ξ,Y 〉 = ∞.

�

In order to conclude we need the following

Lemma 3.14. — Let {βj , j ∈ J} be a sequence of elements of t∗, and
let Q be its convex hull. We have

lim
Y→∞

∑
j∈J

e〈βj ,Y 〉 = ∞ ⇐⇒ 0 ∈ Interior(Q).
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Proof. — First we see that 0 /∈ Interior(Q) if and only there exists
v ∈ t − {0} such that 〈βj , v〉 6 0 for all j: for such a vector v, the
map t →

∑
j∈J e

t〈βj ,v〉 is bounded for t > 0. Suppose now that
limY→∞

∑
j∈J e

〈βj ,Y 〉 6= ∞. Then there exists a sequence (Xk)k ∈ t such
that limk |Xk| = ∞ and for all j the sequence (〈βj , Xk〉)k remains bounded
from above. If v is a limit of a sub-sequence of ( Xk

|Xk| )k we have then
〈βj , v〉 6 0 for all j. �

Lemma 3.15. — For [y]∈YP we have ΦK×K([y]) = (ΦT ([y]),−ΦT ([y])).

Proof. — It is sufficient to consider the case

y = ρ(eZ) =
∑
j∈J

ei〈αj ,Z〉vj ⊗ v∗j , for Z = X + iY ∈ tC.

Then yy∗ = y∗y =
∑
j e

−2〈αj ,Y 〉vj⊗v∗j = ρ(e2iY ). So what remains to prove
is that πK(iyy∗) = πT (iyy∗). We have to check that 〈πK(iyy∗), [U, V ]〉 = 0
for U ∈ t and V ∈ k. We have〈

πK(iyy∗), [U, V ]
〉

= −i Tr
(
yy∗ρ([U, V ])

)
= −i Tr

(
ρ(e2iY )[ρ(U), ρ(V )]

)
= −i Tr

(
[ρ(e2iY ), ρ(U)]ρ(V )

)
= 0.

�

Theorem 3.16. — We have
• Image(ΦT ) = P ,
• Image(ΦK×K) =

{
(k1 · ξ,−k2 · ξ) | ξ ∈ P and k1, k2 ∈ K

}
,

• YP ⊂ Φ−1
K×K(t∗ × t∗),

• Φ−1
K×K(interior(C)) ⊂ YP , where C = CK ×−CK .

Proof. — The first point follows from Proposition 3.13. Since the map
(k1, t, k2) 7→ k1tk2 from K × TC ×K to KC is onto, we have

(3.11) XP = (K ×K) · YP .

So if [x] ∈ XP , there exist [y] ∈ Y and k1, k2 ∈ K such that [x] = (k1, k2)·[y],
hence

ΦK×K([x]) = (k1, k2) · ΦK×K([y])

= (k1 · ΦT ([y]),−k2 · ΦT ([y])) .(3.12)

The second point is proved. The third point follows also from the iden-
tity (3.12) when k1 = k2 = e. Consider now [x] = (k1, k2) · [y] such that
ΦK×K([x]) belongs to the interior of the cone CK×−CK . Then k1 ·ΦT ([y])
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and k2 · ΦT ([y]) are regular points of CK . This implies that k1, k2 ∈ N(T )
and k2k

−1
1 ∈ T . So

[x] = (k1, k2) · [y]

= (e, k2k
−1
1 ) ·

(
(k1, k1) · [y]

)
∈ YP

since YP is stable under the actions of T × T and W . �

Let Oi be the closed KC ×KC-orbit in P(E) passing through [vλi ⊗ v∗λi
],

where vλi
∈ Vλi

is a highest weight vector and λi is regular dominant
weight.

Corollary 3.17. — If Oi ⊂ XP then λi is a vertex of the polytope P .

Proof. — Let x = vλi
⊗v∗λi

, and suppose that [x] belongs to XP . In order
to show that [x] ∈ YP , we compute ΦK×K([x]). We see that xx∗ = x∗x = x

and ‖x‖ = 1, so ΦK×K([x]) = (πK(ix),−πK(ix)). For X ∈ k we have

〈πK(ix), X〉 = −i Tr
(
vλi ⊗ v∗λi

ρ(X)
)

= −i (ρ(X)vλi , vλi)

= 〈λi, X〉.

We then have ΦK×K([x]) = (λi,−λi) with λi being a regular point of CK :
then the last point of Theorem 3.16 shows that [x] ∈ YP . Now we can
conclude with the help of Lemma 3.10. Since [vλi ⊗ v∗λi

] belongs to YP , the
weight λi is a vertex of the polytope P . �

Remark 3.18. — In this section, Theorem 3.16 was obtained without us-
ing the fact that the varieties XP and YP are smooth. Hence Corollary 3.17
can be used to prove the smoothness of XP (cf. Lemma 3.12).

3.4. Symplectic cutting

Let (M,ΩM ,ΦM ) be a Hamiltonian K-manifold. At this stage the mo-
ment map ΦM is not assumed to be proper. We also consider the Hamil-
tonian K ×K-manifold XP associated to a K-adapted polytope P .

The purpose of this section is to define a symplectic cutting of M which
uses XP . The notion of symplectic cutting was introduced by Lerman in [22]
in the case of a torus action. Later Woodward [36] extended this procedure
to the case of a non-abelian group action (see also [25, 26]). The method
of symplectic cutting that we define in this section is different from that of
Woodward.
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We have two actions of K on XP : the action from the left (resp. right),
denoted ·l (resp. ·r), with moment map Φl : XP → k∗ (resp. Φr). We
consider now the product M ×XP with

• the action k ·1 (m,x) = (k ·m, k ·r x): the corresponding moment
map is Φ1(m,x) = ΦM (m) + Φr(x),

• the action k ·2 (m,x) = (m, k ·l x): the corresponding moment map
is Φ2(m,x) = Φl(x).

Definition 3.19. — We denote MP the symplectic reduction at 0 of
M ×XP for the action ·1: MP := (Φ1)−1(0)/K.

Note that MP is compact when ΦM is proper. The action ·2 on M ×XP
induces an action of K on MP . The moment map Φ2 induces an equivariant
map ΦMP

: MP → k∗. Let Z ⊂ (Φ1)−1(0) be the set of points where (K, ·1)
has a trivial stabilizer.

Definition 3.20. — We denote M ′
P the quotient Z/K ⊂MP .

M ′
P is an open subset of smooth points of MP which is invariant under

the K-action. The symplectic structure of M × XP induces a canonical
symplectic structure on M ′

P that we denote ΩM ′
P

. The action of K on
(M ′

P ,ΩM ′
P
) is Hamiltonian with moment map equal to the restriction of

ΦMP
: MP → k∗ to M ′

P .
We start with the easy

Lemma 3.21. — The image of ΦMP
: MP → k∗ is equal to the intersec-

tion of the image of ΦM : M → k∗ with K · P .

Let UP = K · Interior(P ) ⊂ K · P . We will show now that the open
and dense subset Φ−1

MP
(UP ) of MP is contained in M ′

P . Afterwards we
will prove that Φ−1

MP
(UP ) is quasi-symplectomorphic to the open subset

Φ−1
M (UP ) of M .
We consider the open and dense subset of XP which is equal to the open

orbit ρ̄(KC). From Lemma 3.5, we know that

Θ : K × k −→ ρ̄(KC)(3.13)

(k,X) 7−→ [ρ(keiX)]

is a diffeomorphism. Via Θ, the action of K ×K on K × k is k ·l (a,X) =
(ka,X) for the action “from the left” and k ·r (a,X) = (ak−1, k ·X) for the
action “from the right”.
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We now consider the map ψK : k → k∗ defined by ψK(X) = Φl([ρ(eiX)]).
In other words,

ψK(X) =
πK(iρ(ei2X))
Tr(ρ(ei2X))

.

Consider the function FK : k → R, FK(X) = ln(Tr(ρ(e−iX)). Let LK :
k → k∗ be its Legendre transform.

Proposition 3.22.

• We have ψK(X) = LK(−2X), for X ∈ k.
• The function FK is strictly convex.
• The map ψK realizes an equivariant diffeomorphism between k and
UP .

• The image of Φl : XP → k∗ is equal to the closure of UP .
• Φ−1

l (UP ) = ρ̄(KC).

Proof. — For X,Y ∈ k we consider the function τ(s) = FK(X + sY ).
Since FK is K-invariant we can restrict our computation to the case where
X ∈ t. We will use the decomposition of Y ∈ k relatively to the T -weights
on kC: Y =

∑
α Yα where ad(Z)Yα = iα(Z)Yα for any Z ∈ t, and Y0 ∈ t.

We have

τ ′(s) =
−i

Tr(ρ(e−iXs))
Tr
(
ρ(e−iXs)ρ

(
ei ad(Xs) − 1
i ad(Xs)

Y

))
=

−i
Tr(ρ(e−iXs))

Tr
(
ρ(e−iXs)ρ(Y )

)
=

1
Tr(ρ(e−iXs))

〈πK(iρ(e−iXs)), Y 〉

where Xs = X+sY . Since by definition τ ′(0) = 〈LK(X), Y 〉, the first point
is proved. For the second derivative we have

τ ′′(0) = −
(

Tr(ρ(e−iX)ρ(iY ))
Tr(ρ(e−iX))

)2

+
Tr
(
ρ(e−iX)ρ( e

i ad(X)−1
i ad(X) iY )ρ(iY )

)
Tr(ρ(e−iX))

= R1 +R2

where

R1 =
Tr
(
ρ(e−iX)ρ(iY0)ρ(iY0)

)
Tr(ρ(e−iX))

−
(

Tr(ρ(e−iX)ρ(iY0))
Tr(ρ(e−iX))

)2

=

∑
j e

−〈αj ,X〉〈αj , Y0〉2∑
j e

−〈αj ,X〉
−

(∑
j e

−〈αj ,X〉〈αj , Y0〉∑
j e

−〈αj ,X〉

)2
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and

R2 =
1

Tr(ρ(e−iX))

∑
α6=0,β 6=0

e−〈α,X〉 − 1
−〈α,X〉

Tr
(
ρ(e−iX)ρ(iYα)ρ(iYβ)

)
=

1
Tr(ρ(e−iX))

∑
α6=0,j

e−〈α,X〉 − 1
−〈α,X〉

e−〈αj ,X〉‖ρ(Yα)vj‖2.

It is now easy to see that R1 and R2 are nonnegative and that R1 +R2 > 0
if Y 6= 0. We have proved that FK is strictly convex. So, its Legendre
transform LK realizes a diffeomorphism of k onto its image. Using the first
point we know that ψK realizes a diffeomorphism of k onto its image. The
map ψK is equivariant and coincides with ψT on t. We have proved in
Proposition 3.13 that the image of ψT is equal to the interior of P , hence
the image of ψK is UP .

For the last two points we first remark that

(3.14) Φl
(
[ρ(keiX)]

)
= k · ψK(X)

hence the image of Φl is the closure of UP . If we use the fact that ψK is a
diffeomorphism from k onto UP , (3.14) shows that Φ−1

l (K · ξ) ∩ ρ̄(KC) is a
non empty and closed subset of Φ−1

l (K · ξ) for any ξ ∈ UP (in fact it is a
K×K-orbit). On the other hand Φ−1

l (K ·ξ)∩ (XP r ρ̄(KC)) is also a closed
subset of Φ−1

l (K ·ξ) since ρ̄(KC) is open in XP . Since Φ−1
l (K ·ξ) is connected

the second subset is empty: in other words Φ−1
l (K · ξ) ⊂ ρ̄(KC). �

We introduce now the equivariant diffeomorphism

Υ : K × UP −→ ρ̄(KC)(3.15)

(k, ξ) 7−→ Θ(k, ψ−1
K (ξ)).

We now consider K×UP equipped with the symplectic structure Υ∗(ΩXP
),

and the Hamiltonian action of K ×K: the moment maps satisfy

(3.16) Υ∗(Φl)(k, ξ) = k · ξ and Υ∗(Φr)(k, ξ) = −ξ.

Proposition 3.23. — We have

Υ∗(ΩXP
) = dλ+ dη

where λ is the Liouville 1-form on K × k∗ ' T∗K and η is an invariant
1-form on UP ⊂ k∗ which is killed by the vectors tangent to the K-orbits.

Proof. — Let E1, . . . , Er be a basis of k, with dual basis ξ1, . . . , ξr. Let
ωi the 1-form on K, invariant by left translation and equal to ξi at the
identity. The Liouville 1-form is λ = −

∑
i ω

i ⊗ Ei. For X ∈ k we denote
Xl(k, ξ) = d

dt |0e
−tX ·l (k, ξ) and Xr(k, ξ) = d

dt |0e
−tX ·r (k, ξ) the vector
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fields generated by the action of K ×K. Since ι(Xl)dλ = −d〈Φl, X〉 and
ι(Xr)dλ = −d〈Φr, X〉, the closed invariant 2-form β = Υ∗(ΩXP

) − dλ is
K × K invariant and is killed by the vectors tangent to the orbits: (∗)
ι(Xl)β = ι(Xr)β = 0 for all X ∈ k. We have β = β2 + β1 + β0 where
β2 =

∑
i,j aij(ξ)ω

i ∧ ωj , β1 =
∑
i,j bij(ξ)ω

i ∧ dEj , and β0 is an invariant
2-form on UP . The equalities (∗) gives ι(Xl)β2 = ι(Xl)β1 = 0 which imply
that β2 = β1 = 0. So β = β0 is a closed invariant 2-form on UP which is
killed by the vectors tangent to the K-orbits. Since UP admits a retraction
to {0}, β = dη where η is an invariant 1-form on UP which is killed by the
vectors tangent to the K-orbits. �

If (m,x) ∈M×XP belongs to Φ−1
1 (0), we denote [m,x] the corresponding

element in MP . By definition we have ΦMP
([m,x]) = Φl(x) for [m,x] ∈

MP , hence the image of ΦMP
is included in the closure of UP . We see also

that [m,x] ∈ Φ−1
MP

(UP ) if and only if x ∈ Φ−1
l (UP ) = ρ̄(KC). Since (K, ·r)

acts freely on ρ̄(KC), we see that (K, ·1) acts freely on Φ−1
MP

(UP ): the open
and dense set Φ−1

MP
(UP ) ⊂MP is then contained in M ′

P .
Now, we can state our main result which compares the open invariant

subsets Φ−1
M (UP ) ⊂ M and Φ−1

MP
(UP ) ⊂ MP equipped respectively with

the symplectic structures ΩM and ΩM ′
P

.

Theorem 3.24. — Φ−1
MP

(UP ) is an open and dense subset of smooth
points in MP . There exists an equivariant diffeomorphism Ψ : Φ−1

M (UP ) →
Φ−1
MP

(UP ) such that

Ψ∗(ΩM ′
P
) = ΩM + dΦ∗

Mη.

Here η is an invariant 1-form on UP which is killed by the vectors tangent
to the K-orbits. Moreover the path Ωt = ΩM + tdΦ∗

Mη, defines a homotopy
of symplectic 2-forms between ΩM and Ψ∗(ΩM ′

P
).

Remark 3.25. — The map Ψ will be called a quasi-symplectomorphism.

Proof. — Consider the immersion

ψ : Φ−1
M (UP ) −→M ×XP

m 7−→ (m,Υ(e,ΦM (m))).

We have Φ1(ψ(m)) = ΦM (m) + Υ∗Φr(e,ΦM (m)) = 0, and Φ2(ψ(m)) =
Υ∗Φl(e,ΦM (m)) = ΦM (m) ∈ UP (see (3.16)). Hence for all m ∈ Φ−1

M (UP ),
we have ψ(m) ∈ Φ−1

1 (0), and its class [ψ(m)] ∈MP belongs to Φ−1
MP

(UP ).
We denote Ψ : Φ−1

M (UP ) → Φ−1
MP

(UP ) the map m 7→ [ψ(m)]. Let us show
that it defines a diffeomorphism. If Ψ(m) = Ψ(m′), there exists k ∈ K such

ANNALES DE L’INSTITUT FOURIER



FORMAL GEOMETRIC QUANTIZATION 229

that

(m,Υ(e,ΦM (m))) = k ·1 (m′,Υ(e,ΦM (m′)))

= (k ·m′, k ·r Υ(e,ΦM (m′)))

= (k ·m′,Υ(k−1, k · ΦM (m′))).

Since Υ is a diffeomorphism, we must have k = e and m = m′: the map
Ψ is one to one. Consider now (m,x) ∈ Φ−1

1 (0) such that ΦMP
([m,x]) =

Φl(x) ∈ UP : then x ∈ Φ−1
l (UP ) = ρ̄(KC) = Image(Υ). We have x = Υ(k, ξ)

where ξ = −Φr(x) = ΦM (m). Finally

(m,x) = (m,Υ(k,ΦM (m)))

= k−1 ·1 (k ·m,Υ(e, k · ΦM (m)))

= k−1 ·1 ψ(k ·m).

We have proved that Ψ is onto.
In order to show that Ψ is a submersion we must show that for m ∈

Φ−1
M (UP )

Image(Tmψ)⊕ Tψ(m)(K ·1 ψ(m)) = Tψ(m)Φ−1
1 (0).

Here Tmψ : TmM → Tψ(m)(M ×XP ) is the tangent map, and Tψ(m)(K ·1
ψ(m)) denotes the tangent space at ψ(m) of the (K, ·1)-orbit. We have
dim(Image(Tmψ)) + dim(Tψ(m)(K ·1 ψ(m))) = dim(Tψ(m)Φ−1

1 (0)) so it is
sufficient to prove that

Image(Tmψ) ∩ Tψ(m)(K ·1 ψ(m)) = {0}.

Consider (v, w) ∈ Image(Tmψ)∩Tψ(m)(K ·1ψ(m)). There exists X ∈ k such
(v, w) = d

dt |0e
tX ·1 ψ(m): v = d

dt |0
etX ·m and w = d

dt |0
etX ·r Υ(e,ΦM (m)).

On the other hand, since (v, w) ∈ Image(Tmψ), we have

w =
d

dt |0
Υ(e,ΦM (etX ·m)).

Since etX ·r Υ(e,ΦM (m)) = Υ(e−tX ,ΦM (etX ·m)) we obtain that

d

dt |0
Υ(e−tX ,ΦM (etX ·m)) =

d

dt |0
Υ(e,ΦM (etX ·m)),

or in other words d
dt |0

Υ(e−tX ,ΦM (m)) = 0. Since Υ is a diffeomorphism
we have X = 0, and then (v, w) = 0.
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We can now compute the pull-back by Ψ of the symplectic form ΩM ′
P

.
We have

Ψ∗(ΩM ′
P
) = ψ∗(ΩM + ΩXP

)

= ΩM + Φ∗
MΥ∗(ΩXP

)

= ΩM + dΦ∗
Mη.

It remains to prove that for every t ∈ [0, 1], the 2-form Ωt = ΩM +
tdΦ∗

Mη is non-degenerate. Take t 6= 0, m ∈ Φ−1
M (UP ) and suppose that the

contraction of Ωt|m by v ∈ TmM is equal to 0. For every X ∈ k we have

0 = Ωt(XM (m), v)

= −ι(v)d〈ΦM , X〉|m + tι(v)ι(XM )dΦ∗
Mη|m

= −ι(v)d〈ΦM , X〉|m
since ι(XM )dΦ∗

Mη = dΦ∗
M (ι(Xk∗)η) = 0. Thus we have TmΦM (v) = 0, and

then ι(v)dΦ∗
Mη = 0. Finally we have that 0 = ι(v)Ωt|m = ι(v)ΩM |m. But

ΩM is non-degenerate, so v = 0. �

3.5. Formal quantization: second definition

We suppose here that the Hamiltonian K-manifold (M,ΩM ,ΦM ) is
proper and admits a Kostant-Souriau line bundle L. Now we consider
the complex K × K-submanifold XP of P(E). Since O(−1) is a K × K-
equivariant Kostant-Souriau line bundle on the projective space P(E) the
restriction

(3.17) LP = O(−1)|XP

is a Kostant-Souriau line bundle on XP . Hence L � LP is a Kostant-
Souriau line bundle on the product M × XP . In Section 2.2 we have de-
fined the quantization QK(MP ) of the (singular) reduced space MP :=
(M ×XP )//0(K, ·1).

Notation. — OK(r) will be any element
∑
µ∈K̂ mµV

K
µ ofR−∞(K) where

mµ = 0 if ‖µ‖ < r. The limit lim
r→+∞

OK(r) = 0 defines the notion of con-

vergence in R−∞(K).

Proposition 3.26. — Let εP > 0 be the radius of the biggest ball
center at 0 ∈ t∗ which is contained in the polytope P . We have

(3.18) QK(MP ) =
∑

‖µ‖<εP

Q(Mµ)V Kµ + OK(εP ).
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Proof. — Theorem 2.4 – “Quantization commutes with reduction in the
singular setting” – tells us that QK(MP ) =

∑
µ∈K̂ Q((MP )µ)V Kµ where

(MP )µ is the symplectic reduction (MP ×K · µ)//0K.
Since the image of ΦMP

is equal to the intersection of K · P = UP with
the image of ΦM , we have Q((MP )µ) = 0 if µ /∈ P ∩ Image(ΦM ). We will
now exploit Theorem 3.24 to show that Q((MP )µ) = Q(Mµ) if µ belongs
to the interior of P .

There exists a quasi-symplectomorphism Ψ between the open subset
Φ−1
M (UP ) of M and the open and dense subset Φ−1

MP
(UP ) of MP . Moreover

one can see easily that the restriction of the Kostant-Souriau line bundle
LP → XP to the open subset ρ̄(KC) is trivial. If LMP

is the Kostant-Souriau
line bundle on MP induced by L�LP , then the pull-back of the restriction
LMP

|Φ−1
M

(UP ) by Ψ is equivariantly diffeomorphic to the restriction of L to
Φ−1
M (UP ).
Take now µ ∈ K̂ that belongs to the interior of the polytope P . The ele-

ment Q((MP )µ) ∈ Z is given by the index of a transversally elliptic symbol
defined in a (small) neighborhood of Φ−1

MP
(µ) ⊂MP . This symbol is defined

through two auxiliary data: the Kostant-Souriau line bundle LMP
and a

compatible almost complex structure J which is defined in a neighborhood
of Φ−1

MP
(µ). If we pull back everything by Ψ, we get a transversally elliptic

symbol living in a (small) neighborhood of Φ−1
M (µ) ⊂ M which is defined

by the Kostant-Souriau line bundle L and an almost complex structure
J1 compatible with the symplectic structure Ω1 := ΩM + dΦ∗

Mη. But since
Ωt = ΩM +tdΦ∗

Mη defines a homotopy of symplectic structures, any almost
complex structure compatible with ΩM is homotopic to J1. We have then
shown that Q(Mµ) = Q((MP )µ) for any µ belonging to the interior of P .
So we have

QK(MP ) =
∑

µ∈Interior(P )

Q(Mµ)V Kµ +
∑
ν∈∂P

Q((MP )ν)V Kν .

Since for ν ∈ ∂P we have ‖ν‖ > εP , the last equality proves (3.18). �

We work now with the dilated polytope nP , for any integer n > 1. The
polytope nP is still K-adapted, so one can consider the reduced space(2)

MnP and Proposition 3.26 gives that

(3.19) QK(MnP ) =
∑

‖µ‖<nεP

Q(Mµ)V Kµ + OK(nεP ).

(2) These are the cut spaces denoted M
(n)
PEP in the introduction.
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for any integer n > 1. We can summarize the result of this section in the
following

Proposition 3.27. — Let (M,ΩM ) be a pre-quantized Hamiltonian
K-manifold, with a proper moment map ΦM .
• For any integer n > 1, the (singular) compact Hamiltonian manifold

MnP contains as an open and dense subset, the open subset Φ−1
M (nUP )

of M .
• We have Q−∞

K (M) = lim
n→∞

QK(MnP ).

4. Functorial properties: Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We will use in a
crucial way the characterisation of Q−∞

K given in Proposition 3.27.
Let H ⊂ K be a closed and connected Lie subgroup. Here we con-

sider a pre-quantized Hamiltonian K-manifold M which is proper as a
Hamiltonian H-manifold. We want to compare Q−∞

K (M) and Q−∞
H (M).

For µ ∈ K̂ and ν ∈ Ĥ we denote Nµ
ν the multiplicity of V Hν in the restric-

tion V Kµ |H . We have seen in the introduction that Nµ
νQ (Mµ,K) 6= 0 only

for the µ belonging to finite subset K̂ ∩ ΦK
(
K · Φ−1

H (ν)
)
. Then Q−∞

K (M)
is H-admissible and we have the following equality in R−∞(H):

(4.1) Q−∞
K (M)|H =

∑
ν∈Ĥ

mνV
H
ν

with mν =
∑
µN

µ
νQ (Mµ,K). We will now prove that

Q−∞
K (M)|H = Q−∞

H (M).

Lemma 4.1. — The restrictionQ−∞
K (M)|H is equal to lim

n→∞
QK(MnP )|H .

Proof. — Let us denote by P o and ∂P respectively the interior and the
boundary of the K-adapted polytope P . We write

Q−∞
K (M) =

∑
µ∈nP o

Q(Mµ,K)V Kµ +
∑

µ/∈nP o

Q(Mµ,K)V Kµ .

On the other side

QK(MnP ) =
∑

µ∈nP o

Q(Mµ,K)V Kµ +
∑

µ∈n∂P

Q((MnP )µ,K)V Kµ .

So the difference D(n) = Q−∞
K (M)−QK(MnP ) is equal to

D(n) = −
∑

µ′∈n∂P

Q((MnP )µ′,K)V Kµ +
∑

µ/∈nP o

Q(Mµ,K)V Kµ .
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We show now that the restriction D(n)|H tends to 0 in R−∞(H) as n goes
to infinity. For this purpose, we will prove that for any c > 0 there exists
nc ∈ N such that D(n)|H = OH(c) for any n > nc.

For c > 0 we consider the compact subset of k∗ defined by

(4.2) Kc = ΦK
(
K · Φ−1

H (ξ ∈ h∗, ‖ξ‖ 6 c)
)
.

Let nc ∈ N such that Kc is included in K · (ncP o): hence Kc ⊂ K · (nP o)
for any n > nc. We know that for µ ∈ K̂, we have Nµ

νQ (Mµ,K) 6= 0 only
for µ ∈ ΦK

(
K · Φ−1

H (ν)
)
, and for µ′ ∈ K̂, we have Nµ′

ν Q ((MnP )µ′,K) 6= 0
only for µ′ ∈ nP ∩ ΦK

(
K · Φ−1

H (ν)
)
.

Then if n > nc, we have

Nµ
νQ (Mµ,K) = Nµ′

ν Q ((MnP )µ′,K) = 0

for any ν ∈ Ĥ ∩ {ξ ∈ h∗, ‖ξ‖ 6 c}, µ /∈ nP o and µ′ ∈ n∂P . This means
that D(n)|H = OH(c) for any n > nc. �

Since QK(MnP )|H = QH(MnP ), we are led to the

Lemma 4.2. — The limit lim
n→∞

QH(MnP ) is equal to Q−∞
H (M).

Proof. — Theorem 2.4 – “Quantization commutes with reduction in the
singular setting” – tells us thatQH(MnP ) =

∑
ν∈Ĥ Q((MnP )ν,H)V Hν where

(MnP )ν,H is the symplectic reduction

(MnP ×H · ν)//0H ∼= (M ×XnP ×H · µ)//(0,0)H ×K.

For c > 0 we consider the compact subset of Kc defined in (4.2). Let
nc ∈ N such that Kc ⊂ K · (nP o) for any n > nc. This implies that

Φ−1
H (ξ ∈ h∗, ‖ξ‖ 6 c) ⊂ Φ−1

K (K · (nP o))

for n > nc. Since MnP “contains” the open subset Φ−1
K (K · (nP o)), ar-

guments similar to those used in the proof of Proposition 3.26 show that
Q((MnP )ν,H) = Q(Mν,H) for ‖ν‖ 6 c and n > nc. This means that

QH(MnP ) =
∑
‖ν‖6c

Q(Mν,H)V Hν +OH(c) when n > nc.

It follows that lim
n→∞

QH(MnP ) =
∑
ν∈Ĥ Q(Mν,H)V Hν = Q−∞

H (M). �

5. The case of a Hermitian vector space

Let (E,h) be a Hermitian vector space of dimension n.
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5.1. The quantization of E

Let U := U(E) be the unitary group with Lie algebra u. We use the
isomorphism ε : u → u∗ defined by 〈ε(X), Y 〉 = −Tr(XY ) ∈ R. For v, w ∈
E, let v ⊗ w∗ : E → E be the linear map x 7→ h(x,w)v.

Let ER be the space E view as a real vector space. Let Ω be the imaginary
part of −h, and let J the complex structure on ER. Then on ER, Ω is a
(constant) symplectic structure and Ω(−, J−) defines a scalar product.
The action of U on (ER,Ω) is Hamiltonian with moment map Φ : E → u∗

defined by 〈Φ(v), X〉 = 1
2Ω(Xv, v). Via ε, the moment map Φ is defined by

(5.1) Φ(v) =
1
2i
v ⊗ v∗.

The pre-quantization data (L, 〈−,−〉,∇) on the Hamiltonian U-manifold
(ER,Ω,Φ) is a trivial line bundle L with a trivial action of U equipped with
the Hermitian structure 〈s, s′〉v = e

−h(v,v)
2 ss′ and the Hermitian connexion

∇ = d− iθ where θ is the 1-form on E defined by θ = 1
2Ω(v, dv).

The traditional quantization of the Hamiltonian U-manifold (ER,Ω,Φ),
that we denote QL2

U (E), is the Bargman space of entire holomorphic func-
tions on E which are L2 integrable with respect to the Gaussian measure
e
−h(v,v)

2 Ωn. The representation QL2

U (E) of U is admissible. The irreducible
representations of U that occur in QL2

U (E) are the vector subspaces Sj(E∗)
formed by the homogeneous polynomials on E of degree j > 0.

On the other hand, the moment map Φ is proper (see (5.1)). Hence we
can consider the formal quantization Q−∞

U (E) ∈ R−∞(U) of the U-action
on E.

Lemma 5.1. —The two quantizations of (E,Ω,Φ),QL2

U (E) andQ−∞
U (E)

coincide in R−∞(U). In other words, we have

(5.2) Q−∞
U (E) = S•(E∗) :=

∑
j>0

Sj(E∗) in R−∞(U).

Proof. — Let T ⊂ U be a maximal torus with Lie algebra t ⊂ u. There
exist an orthonormal basis (ek)k=1,...,n of E and characters (χk)k=1,...,n of
T such that t · ek = χk(t)ek for all k. The family (iek⊗ e∗k)k=1,...,n is then a
basis of t such that 1

i dχl(iek⊗ e
∗
k) = δl,k. The set Û ⊂ t∗ ⊂ u∗ of dominant

weights is composed, via ε, by the elements

λ = i

n∑
k=1

λkek ⊗ e∗k,

where λ = (λ1, λ2, . . . , λn) is a decreasing sequence of integers.
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The formal quantization Q−∞
U (E) ∈ R−∞(U) is defined by

Q−∞
U (E) =

∑
λ1>...>λn

Q(Eλ)Vλ

where Eλ = Φ−1(U · λ)/U is the reduced space and Vλ is the irreducible
representation of U with highest weight λ.

It is now easy to check that

Eλ =

{
{pt} if λ = (0, . . . , 0,−j) with j > 0,

∅ in the other cases,

and then

Q(Eλ) =

{
1 if λ = (0, . . . , 0,−j) with j > 0,

0 in the other cases.

Finally (5.2) follows from the fact that V(0,...,0,−j) = Sj(E∗). �

5.2. The quantization of E restricted to a subgroup of U

Let K ⊂ U be a closed connected Lie subgroup with Lie algebra k. Let
KC ⊂ GL(E) be its complexification. The moment map relative to the
K-action on (ER,Ω) is the map

ΦK : E → k∗

equal to the composition of Φ with the projection u∗ → k∗.

Lemma 5.2. — The following conditions are equivalent:
(a) the map ΦK is proper,
(b) Φ−1

K (0) = {0},
(c) {0} is the only closed KC-orbit in E,
(d) for every v ∈ E we have 0 ∈ KC · v,
(e) S•(E∗) is an admissible representation of K,
(f) the K-invariant polynomials on E are the constant polynomials.

Proof. — The equivalence (a) ⇐⇒ (b) is due to the fact that ΦK is
quadratic.

LetO be a KC-orbit in E. Classical results of Geometric Invariant Theory
[27, 19] assert that O ∩ Φ−1

K (0) 6= ∅ and that O is closed if and only if
O ∩ Φ−1

K (0) 6= ∅. Hence (b) ⇐⇒ (c) ⇐⇒ (d).
>From Lemma 5.1 we know that Q−∞

U (E) = S•(E∗). Since Q−∞
U (E) is

K-admissible when ΦK is proper (see Section 4), we have (a) =⇒ (e).
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For every µ∈K̂, the µ-isotopic component [S•(E∗)]µ is a module over
[S•(E∗)]0=[S•(E∗)]K . Hence dim[S•(E∗)]µ<∞ implies that [S•(E∗)]K=C.
We have (e) =⇒ (f).

Finally (f) =⇒ (d) follows from the following fundamental fact. For any
v, w ∈ E we have KC · v ∩ KC · w 6= ∅ if and only if P (v) = P (w) for all
P ∈ [S•(E∗)]K . �

Theorem 1.3 implies the following

Proposition 5.3. — Let K ⊂ U(E) be a closed connected subgroup
such that S•(E∗) is an admissible representation of K. For every µ ∈ K̂,
we have

dim ([S•(E∗)]µ) = Q(Eµ,K)

where [S•(E∗)]µ is the µ-isotopic component of S•(E∗) and Eµ,K is the
reduced space Φ−1

K (K · µ)/K.

In the following examples the condition Φ−1
K (0) = {0} is easy to check.

1) the subgroup K ⊂ U(E) contains the center of U(E),
2) E = ∧2Cn or E = S2(Cn) and K = U(n) ⊂ U(E),
3) E = Mn,k is the vector space of n × k-matrices and K = U(n) ×

U(k) ⊂ U(E).
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