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NORMALIZATION OF BUNDLE HOLOMORPHIC
CONTRACTIONS AND APPLICATIONS

TO DYNAMICS

by François BERTELOOT,
Christophe DUPONT & Laura MOLINO

Abstract. — We establish a Poincaré-Dulac theorem for sequences (Gn)n∈Z
of holomorphic contractions whose differentials d0Gn split regularly. The resonant
relations determining the normal forms hold on the moduli of the exponential rates
of contraction. Our results are actually stated in the framework of bundle maps.

Such sequences of holomorphic contractions appear naturally as iterated inverse
branches of endomorphisms of CPk. In this context, our normalization result al-
lows to estimate precisely the distortions of ellipsoids along typical orbits. As an
application, we show how the Lyapunov exponents of the equilibrium measure are
approximated in terms of the multipliers of the repulsive cycles.

Résumé. — Nous démontrons un théorème de Poincaré-Dulac pour des suites
de contractions holomorphes (Gn)n∈Z à différentielles d0Gn scindées. Les relations
de résonance qui déterminent les formes normales portent sur les modules des
taux exponentiels de contractions. Les résultats sont formulés dans le cadre des
applications fibrées.

De telles suites de contractions holomorphes apparaissent naturellement comme
branches inverses d’endomorphismes de CPk. Dans ce contexte, notre résultat de
normalisation nous permet d’estimer précisément les distorsions des ellipsoides le
long d’orbites typiques. Nous en déduisons que les exposants de Lyapounov de la
mesure d’équilibre sont approchés par les multiplicateurs des cycles répulsifs.

1. Introduction and results

As it is well known, any holomorphic function F which is invertible and
contracting at the origin of C is conjugated to its linear part A := F ′(0).
Moreover, the conjugation is realized by a function N obtained by a renor-
malization procedure : N = limnA

−nFn. Remarkably, the proof only relies

Keywords: Normalization, Poincaré-Dulac theorem, Lyapounov exponents.
Math. classification: 37F10, 37G05, 32H50.
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on the fact that, by analyticity, F is tangent to A at the order 2. It turns
out that these arguments may be adapted to the case of holomorphic map-
pings and yield to the Poincaré-Dulac theorem. We show in this paper that
this strategy also works in a non-autonomous setting, that is for families
of holomorphic contractions.

Our results will be expressed in the framework of bundle maps which we
now briefly describe (see the subsection 2.1 for more details). Let X be a
set and X := X×Ck. For any positive function r on X, the tube E(r) ⊂ X
is defined by

E(r) :=
⋃

x∈X

{(x, v) ∈ X , |v| < r(x)},

where | . | is the euclidean norm on Ck. A bundle map over a bĳective map
τ : X → X is a map of the form

K :
E(r) −→ X
(x, v) 7−→ (τ(x),Kx(v))

where Kx is holomorphic and Kx(0) = 0. A bundle map K is tame when
the coefficients of the Taylor expansion of Kτn(x) grow exponentially slowly
when n tends to infinity. A function φε : X →]0, 1] is ε-slow if φε(τ±1(x)) >
e−εφε(x). We note I the identity map of X over IdX .

Let us now present our results. To this purpose we will describe the au-
tonomous case (Poincaré-Dulac theorem) and, step by step, precise the cor-
responding statements for bundle maps. Let F : Ck → Ck be an holomor-
phic map whose linear part A satisfies m|v| 6 |A(v)| 6 M |v|. If Mq+1 < m,
the sequence (A−nFn)n converges as soon as F and A are tangent at the
order q + 1. This means that a sufficently high tangency between F and
A allows to overcome the fact that ‖A‖ 6= ‖A−1‖−1 and implies the con-
jugation (when k = 1, then m = M and one sees again that the tangency
at the order 2 suffices). Moreover, the linear map A may actually be re-
placed by any automorphism N which is tangent to F at the order q + 1.
The same phenomenon actually occurs in a non-autonomous setting, the
precise statement is the following:

Theorem 1.1. — Let F and N be two tame bundle maps over τ which
are tangent at the order q + 1, with q > 1. Assume that their linear part
A satisfies m|v| 6 |Ax(v)| 6 M |v| for any x ∈ X, where 0 < m 6 M < 1
and Mq+1 < m. Then F is conjugated to N .

More precisely, there exists a ε-slow function ρε such that F , N contract
the tubes E(ρε), E(2ρε) and a bundle map T := limn→+∞N−nFn which is
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NORMALIZATION OF BUNDLE HOLOMORPHIC CONTRACTIONS 2139

κ-tangent to I at the order q+1 such that the following diagram commutes:

E(ρε)
F //

T
��

E(ρε)

T
��

E(2ρε)
N // E(2ρε) .

Moreover, for any Mq+1/m < θ < 1, the following estimate

∀n > 1 , ∀v ∈ Ex(ρε) , |(Nn
x ◦ Tx − Fn

x )(v)| 6 ϕε(x)(mθ)n|v|q+1

occurs for some ε-fast function ϕε.

Let us return to the autonomous case. To obtain a conjugation between
F and A it thus would suffice to perform local changes of coordinates can-
celling the non-linear terms of order at most q in the Taylor expansion
of F . The determination of these changes of coordinates is a purely alge-
braic problem which yields to the so-called Poincaré’s homological equa-
tions. As one easily sees, these equations have solutions when there are
no resonance relations among the eigenvalues of A. In that case F is thus
linearizable. When resonances do occur, a finite number of monomials in
the Taylor expansion of F can not be cancelled. However, as it turns out,
these terms added to A define a triangular automorphism N . Then, the
sequence (N−nFn)n converges and the map F is conjugated to N . This is
the Poincaré-Dulac theorem for an holomorphic contraction.

This procedure may be used for a bundle map whose linear part is regular
and contracting, a property which we state here formally:

Definition 1.2. — A linear bundle map A over τ is regular contracting
if there exist
− an integer 1 6 l 6 k and a decomposition k = k1 + . . .+ kl,
− real numbers Λl < . . . < Λ1 < 0 and ε� |Λ1| such that:

A(Lj) = Lj and eΛj−ε|v| 6 |Ax(v)| 6 eΛj+ε|v| for any (x, v) ∈ Lj

and 1 6 j 6 l,

where Lj := X ×
[
{0} × . . .× Ckj × . . .× {0}

]
so that X = L1 ⊕ . . .⊕ Ll.

We say that a bundle map is regular contracting if its linear part is. In
this setting, the resonances hold on the moduli of the contraction rates of
A, that is the Λj . These are relations of the form α · λ = Λj where α :=
(α1, . . . , αk) ∈ Nk and λ := (Λ1, . . . ,Λ1, · · · ,Λj , . . . ,Λj , · · · ,Λl, . . . ,Λl)
(see the subsection 2.3 for more details). As in the autonomous case, the
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2140 François BERTELOOT, Christophe DUPONT & Laura MOLINO

monomials zα1
1 · · · zαk

k in the j-th component of the maps Fx may be can-
celled by suitable changes of coordinates if α · λ 6= Λj . This is the meaning
of the proposition 3.2 which, combined with the above theorem 1.1 gives
the following version of Poincaré-Dulac theorem for bundle maps:

Theorem 1.3. — A tame and regular contracting bundle map G over
τ is conjugated to a resonant bundle map R. More precisely there exist a
bundle map V which is κ-tangent to I and a ε-slow function rε such that
the following diagram commutes:

E(rε)
G //

V
��

E(rε)

V
��

E(2rε)
R // E(2rε)

and G,R contract the tubes E(rε), E(2rε).

The above theorem is a linearization statement (R = A) when there are
no resonances among the Λj . Let us however stress that even in the reso-
nant case, the “stability” properties of resonant bundle maps (see proposi-
tions 2.7 and 5.1) imply that the iterated bundle maps Rn and An behave
similarly, a fact which is of great importance for our applications.

Similar results were proved by Guysinsky-Katok-Spatzier ([11], [8] theo-
rem 1.2) for smooth bundle maps and by Jonsson-Varolin ([9] theorem 2) in
the holomorphic case. In this article, Jonsson and Varolin proved the Bed-
ford’s conjecture on the complex structure of stable manifolds of holomor-
phic automorphisms in the non-uniform setting. The articles of Fornæss-
Stensønes [7] and Peters [12] are also dedicated to this conjecture.

The originality of our approach is the use of a renormalization technique.
It has the advantage of being simpler and also provides an answer to a ques-
tion asked by Jonsson and Varolin ([9] final remarks). To our knowledge,
this approach also gives the simplest proof of Poincaré-Dulac theorem for
an holomorphic contraction (see the survey [2] for a precise exposition).
Other simple proofs are due to Sternberg [15] and Rosay-Rudin [13].

The Oseledec-Pesin reduction theorem (see theorem 4.2) opens a large
field of applications for the theorem 1.3 in the setting of smooth ergodic
dynamical systems. We will here investigate the case of holomorphic endo-
morphisms of the complex projective space CPk. Our aim is to precisely de-
scribe the asymptotic behaviour of typical iterated inverse branches for such
endomorphisms. Let us recall that the works of Fornaess-Sibony [14] and
Briend-Duval [5] show that any holomorphic endomorphism f : Pk → Pk
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of algebraic degree d > 2 induces an ergodic dynamical system (Pk, f, µ)
where µ is the unique maximal entropy measure of f . This measure is mix-
ing and its Lyapunov exponents χ1 6 . . . 6 χk are bounded from below by
log

√
d.

We aim to apply the Oseledec-Pesin reduction theorem and the normal-
ization theorem 1.3 to a bundle map generated by the inverse branches of f .
For that purpose we work in the set of orbits O := {x̂ := (xn)n∈Z , xn+1 =
f(xn)}. The right shift τ acts on O and leaves invariant a probability mea-
sure ν related to µ by ν(π−1(A)) = µ(A), π being the time zero projection
π(x̂) = x0. A typical orbit x̂ does not intersect the critical locus of f for
all n and we may therefore define the inverse branch f−n

x̂ of fn that sends
x0 to x−n. Our result compares f−n

x̂ with its linear tangent map:

Theorem 1.4. — Let f be an holomorphic endomorphism of algebraic
degree d on Pk. Let Σs be the sum of the s largest Lyapounov exponents
of the maximal entropy measure µ. Let ν be the measure induced by µ on
the natural extension O of (Pk, f, µ) and τ the right shift on O. There exist
a full measure subset X of O, ε-slow functions rε, tε : X →]0, 1], a resonant
bundle map R over τ and an injective bundle map S over IdX such that the
following diagram commutes for all n > 1 (we note Rn

x̂ = Rτn(x̂) ◦ . . .◦Rx̂):

Bx0(rε(x̂))
f−n

x̂ //

Sx̂

��

f−n
x̂ [Bx0(rε(x̂))]

Sτn(x̂)

��
B(tε(x̂))

Rn
x̂ // B(tε(τn(x̂))).

There exist also constants α,M > 0 and ε-fast functions βε, Lε, Tε : X →
[1,+∞[ such that for all n > 0 :

1. f−n
x̂ [Bx0(rε(x̂))] ⊂ Bx−n(M),

2. ∀(p, q) ∈ f−n
x̂ [Bx0(rε(x̂))] , α d(p, q) 6 |Sτn(x̂)(p) − Sτn(x̂)(q)| 6

βε(τn(x̂)) d(p, q),
3. Lip f−n

x̂ 6 Lε(x̂)e−nχ1+nε on Bx0(rε(x̂)),
4. for all p∈f−n

x̂ [Bx0(rε(x̂))], | 1n log ‖
∧s
dpf

n ‖−Σs| 6 1
n log Tε(x̂)+ε.

The above result is useful for studying the properties of the maximal
entropy measure µ. A weak version of it, corresponding to the case where
all Lyapunov exponents are equal, has been used in [4] for characterizing
the endomorphisms f for which µ is absolutely continuous with respect
to the Lebesgue measure. In this article, we will use the theorem 1.4 for
proving the following approximation formula for Lyapunov exponents:
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Theorem 1.5. — We use the same notations than in the previous the-
orem, recall that Σs = χk−s+1 + . . .+ χk. Let Rn (resp. R∗

n) be the set of
repulsive periodic points whose period divides n (resp. equals n). Then:

Σs = lim
n→+∞

1
dn

t

∑
p∈Rn

1
n

log
∥∥ s∧

dpf
n
∥∥ = lim

n→+∞

1
dn

t

∑
p∈R∗

n

1
n

log
∥∥ s∧

dpf
n
∥∥.

Bedford-Lyubich-Smillie [1] proved a similar result for the positive Lya-
punov exponent of a Hénon map f : C2 → C2, with Rn replaced by the
n-periodic saddle points. The theorem 1.5 was proved by Szpiro-Tucker for
rational maps (k = 1) whose coefficients are in a number field ([16], corol-
lary 6.1). Observe also that for s = k, the exterior product

∧k
dpf

n is the ja-
cobian of fn at p, which satisfies the multiplicative property

∧k
dpf

m+n =∧k
dfn(p)f

m.
∧k

dpf
n. We thus also have:

Corollary 1.6. — limn→+∞
1

dn
t

∑
p∈Rn

log | Jac dpf | = χ1 + . . .+ χk.

These approximation formulas have some importance in the study of
bifurcations of holomorphic families of endomorphisms of Pk. In particular
the theorem 2.2 of Bassanelli-Berteloot [3] is a consequence of the above
corollary.

We may extend the theorems 1.4 and 1.5 to polynomial-like mappings
i.e., holomorphic and proper maps F : U → V between two open sets
U b V ⊂ Ck. The dynamical properties of these maps have been studied
by Dinh-Sibony [6]. They proved in particular the existence of an equilib-
rium measure µ when dt > 2. This measure is mixing and its Lyapunov
exponents are positive if µ is PLB (i.e., the plurisubharmonic functions are
in L1(µ)). The theorem 1.5 remains valid if the cardinal of the n-periodic
points is asymptotically bounded from above by dn

t ([6] subsection 3.5).
These conditions are fullfilled e.g., for perturbations of polynomial lifts of
endomorphisms of Pk.

2. Generalities

2.1. Slow and fast functions, tube and bundle maps

We introduce in this subsection several notations and definitions. We
consider a set X and a fixed bĳective map τ : X → X. A function φε :
X →]0, 1] is ε-slow if φε(τ±1(x)) > e−εφε(x). A function φ : X →]0, 1]
is slow if φ is bounded from below by a ε-slow function for all ε � 1.
A function ψε : X → [1,+∞[ is ε-fast if 1/ψε is ε-slow and a function
ψ : X → [1,+∞[ is fast if 1/ψ is slow.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.1. — Assume that X is endowed with a τ -invariant probabil-
ity measure ν. Let ε > 0 and u : X →]0, 1] satisfying log u ∈ L1(ν). Then
there exists a ε-slow function uε such that uε 6 u for ν-almost every x ∈ X.

Similarly, if v : X → [1,+∞[ satisfies log v ∈ L1(ν) then there exists a
ε-fast function vε such that v 6 vε for ν-almost every x ∈ X.

Proof. — By Birkhoff ergodic theorem, we have limn→±∞
1
n log u(τn(x))

= 0 for ν-almost every x ∈ X. So there exists V : X →]0, 1] such that
u(τn(x)) > e−|n|εV (x) for all n ∈ Z. Let uε(x) := infn∈Z{u(τn(x))e|n|ε}.
We have V (x) 6 uε(x) 6 u(x) and

uε(τ(x)) = inf
n∈Z

{u(τn+1(x))e|n|ε}

= e−ε inf
n∈Z

{. . . , u(τ−1(x))e3ε, u(x)e2ε, u(τ(x))eε, u(τ2(x))e2ε, . . .}

> e−ε inf
n∈Z

{. . . , u(τ−1(x))eε, u(x), u(τ(x))eε, u(τ2(x))e2ε, . . .}

= e−εuε(x).

We prove similarly uε(τ−1(x)) > e−εuε(x): the function uε is therefore ε-
slow. The analogous property for v is obtained by considering u := 1/v. �

We set X = X × Ck. Let Ex = {(x, v) ∈ X , v ∈ Ck} and Ex(t) :=
{(x, v) ∈ X , |v| < t}. For any function r : X → [0,+∞[, we note Ex(r) :=
Ex(r(x)) and E(r) =

⋃
x∈X Ex(r(x)). The subset E(r) ⊂ X is the tube of

radius r. We say that E(r) is slow (resp. ε-slow) if r is slow (resp. ε-slow).
Idem with the “fast” terminology.

Let σ ∈ {IdX , τ}. A holomorphic bundle map K : E(r) → X over σ is
a map satisfying K(x, v) = (σ(x),Kx(v)), where Kx : Ex(r) → Eσ(x) is
holomorphic and Kx(0) = 0. We say that K is tame if there exists ε0 > 0
such that for all ε < ε0 there exist a ε-slow function rε and a ε-fast function
sε with K : E(rε) → E(sε).

A stable bundle map, that is a map of the form K : E(r) → E(r), may
be iterated. The n-th iterate Kn is defined by Kn

x := Kσn−1(x) ◦ · · · ◦Kx.
When it makes sense, we consider K−1 the inverse bundle map of K.

We note K−1(x, v) = (σ−1(x),K−1
x (v)) where K−1

x := (Kσ−1(x))−1 : Ex →
Eσ−1(x) (this map is defined in a neighbourhood of 0 ∈ Ex).

We note Lip(K) := supx∈X Lip(Kx) and say that K contracts E(r) if
Lip(K) < 1 on E(r). The tube E(r) is stable if K(E(r)) ⊂ E(r). Let I be
the identity map of X over IdX and O the zero bundle map over τ , which
sends X to X × {0}. We say that a bundle map K over IdX is κ-tangent
to I if Lip(K − I) < κ.
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Let m > 1. A bundle map K is homogeneous of degree m (or m-
homogeneous) if the map Kx is homogeneous of degree m for all x ∈ X. Let∑

m>1K(m) be the Taylor expansion of K, where K(m) is m-homogeneous.
The linear part of K is K(1). A bundle map K is polynomial if there exists
m0 > 1 such that K =

∑m0
m=1K(m).

Let K1 and K2 be two bundle maps over σ ∈ {IdX , τ}. We say that K1

is tangent to K2 at the order m + 1 if K1 and K2 share the same Taylor
expansion up to the order m. We then note K1 = K2 + O(m + 1). When
m = 1, we just say that K1 is tangent to K2. If K1 and K2 are bundle maps
over τ , we say that K1 is conjugated to K2 if there exist a bundle map W
tangent to I and positive functions r, s such that the following diagram is
commutative:

E(r)
K1 //

W
��

E(r)

W
��

E(s)
K2 // E(s).

We say that K1 is conjugated to K2 at the order m+ 1 if K1 is conjugated
to a bundle map K̃2 which is tangent to K2 at the order m+ 1.

Let |K(m)|(x) := maxv 6=0 |K(m)
x (v)|/|v|m (also denoted |K(m)

x |). For any
α = (α1, . . . , αk) ∈ Nk, we note |α| := α1 + . . . + αk and Pα(z1, . . . , zk) =
zα1
1 . . . zαk

k . Then |K(m)|(x) is equal (up to a constant) to the maximum of
the coefficients of K(m)

x with respect to the basis {Pαei , |α| = m, 1 6 i 6
k}, (ei)16i6k being the canonical basis of Ck. The notation | . | will also be
used for the standard hermitian norm on the spaces (

∧s Ck)16s6k and for
the norm of operators:

∧s Ck →
∧s Ck.

2.2. Two simple lemmas on bundle maps

Lemma 2.2. — Let σ ∈ {IdX , τ} and K : E(r) → E(s) be a bundle
map over σ. For all m > 1, |K(m)| 6 s ◦σ/rm. In particular |K(m)| is a fast
function when K is tame.

Proof. — Let Kx : Ex(r) → Eσ(x)(s). For all v 6= 0 and ρ < r(x), we
have:

ρm

|v|m
K(m)

x (v) = K(m)
x

(
ρ
v

|v|

)
=

1
2π

∫ 2π

0

Kx

(
ρ
v

|v|
eiθ

)
e−imθ dθ.

The lemma follows by taking the norm and the limits when ρ tends to
r(x). �
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Lemma 2.3. — Let σ ∈ {IdX , τ} and K be a tame bundle map over σ.
Let D be the linear part of K. Assume that there exist 0 < a 6 b such that
a|v| 6 |Dx(v)| 6 b|v|. Let γ, κ > 0. Then for ε � 1 there exists a ε-slow
function φε such that:

1. ∀(u, v) ∈ Ex(φε), ae−γ |u− v| 6 |Kx(u)−Kx(v)| 6 beγ |u− v|.
In particular if beγ 6 e−ε then the tube E(φε) is stable by K.

2. Lip(K −D) 6 κ on E(φε).
3. If D = I, |

∧s IdCk −
∧s(dtKx)±1| 6 1

10 for all t ∈ Ex(φε) and
1 6 s 6 k.

Proof. — Let ε′ = ε/3 with ε � 1. As K is tame, there exist a ε′-slow
function rε′ and a ε′-fast function sε′ such that K : E(rε′) → E(sε′). Let
x ∈ X. The Cauchy’s estimates on Ex(rε′/2) bound the second derivatives
of Kx by c sε′(σ(x))/rε′(x)2, where c is a constant depending only on the
dimension k. We deduce that for all 0 6 ρ 6 rε′(x)/2:

(2.1) ∀t ∈ Ex(ρ) , |dt(Dx −Kx)| = |d0Kx − dtKx| 6
c sε′(σ(x))
rε′(x)2

ρ.

Let η < 1 be such that for any 1 6 s 6 k and any linear map L : Ck →
Ck, | IdCk −L| < η implies |

∧s IdCk −
∧s

L±1| 6 1
10 . Define the ε-slow

function φε by:

φε :=
r2ε′

c sε′ ◦ σ
min{(eγ − 1)b , (1− e−γ)a , κ, η}.

As φε 6
r2

ε′
c sε′◦σ

and rε′ 6 1 6 sε′ , we may assume that φε 6 rε′/2 by taking
c > 2. Making ρ = φε in (2.1) we get the following estimates on Ex(φε):

|Kx(u)−Kx(v)| 6 |Dx(u)−Dx(v)|+ |(Dx −Kx)(u)− (Dx −Kx)(v)|

6 b|u− v|+ c sε′(σ(x))
rε′(x)2

φε(x)|u− v|

6 beγ |u− v|.

We have similarly |Kx(u) − Kx(v)| > ae−γ |u − v|. If beγ 6 e−ε, then
|Kx(u)| 6 beγφε(x) 6 e−εφε(x) 6 φε(σ(x)) on E(φε), and the tube E(φε)
is stable by K. The points 2 and 3 are also a consequences of (2.1) with
ρ = φε, using respectively the estimates φε 6 κ r2ε′/c sε′ ◦ σ and φε 6
η r2ε′/c sε′ ◦ σ. �

2.3. Resonances

In this subsection, we will consider a linear bundle map A over τ which
is regular contracting. Our aim is to discuss the resonances associated to

TOME 58 (2008), FASCICULE 6
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such a bundle map. According to definition 1.2, there exist k = k1+ . . .+kl,
Λl < . . . < Λ1 < 0 and ε� |Λ1| such that

∀1 6 j 6 l , Lj := X ×
[
{0} × . . .× Ckj × . . .× {0}

]
,

A(Lj) = Lj and ∀(x, v) ∈ Lj , eΛj−ε|v| 6 |Ax(v)| 6 eΛj+ε|v|.
Observe that the matrix of Ax in the canonical basis is block diagonal.

Let us now consider a bundle map K : E(r) → X whose linear part is
equal to A. Let πj(K) : E(r) → Lj be the j-th component of K with respect
to the splitting X = ⊕16j6lLj . If α ∈ Nk, we note πα

j (K) : X → Lj the
homogeneous part of degree α in πj(K).

We set (λ1, . . . , λk) :=(Λ1, . . . ,Λ1, · · · ,Λj , . . . ,Λj , · · · ,Λl, . . . ,Λl), where
Λj appears kj times. If α = (α1, . . . , αk) ∈ Nk, we note α · λ := α1λ1 +
. . .+ αkλk. We shall denote by q̃ > 1 the entire part of Λl/Λ1.

Definition 2.4. — Let A be the above linear bundle map. For any
1 6 j 6 l, the set Rj of j-resonant degrees is defined by:

Rj := {α ∈ Nk , |α| > 2 and α · λ = Λj}.

The set Bj of j-subresonant degrees is defined similarly with α ·λ < Λj and
the set Pj of j-superresonant degrees with α·λ > Λj . We set B := ∪l

j=1Bj ,
R := ∪l

j=1Rj and P := ∪l
j=1Pj .

It should be observed that the sets R, B and P are unchanged if A is
replaced by An. As Λl < . . . < Λ1 < 0 one sees that {|α| > q̃ + 1} ⊂ B

and R ∪ P ⊂ {2 6 |α| 6 q̃}. In particular, R and P are finite sets.
Observe also that the set R1 is empty, and that αi = 0 for α ∈ Rj and
i > k1 + . . .+ kj−1 + 1. In particular for any j > 2 and α ∈ Rj , the bundle
map πα

j (K) may be viewed as a bundle map from L1 ⊕ . . .⊕ Lj−1 to Lj :

(2.2) πα
j (K) : E(r) ∩

[
L1 ⊕ . . .⊕ Lj−1

]
−→ Lj .

The following lemma will be used in subsection 3.2, the proof is left to the
reader. We recall that ε� |Λ1|.

Lemma 2.5. — There exists ζ > 0 such that for all 1 6 j 6 l:
1. if α ∈ Bj then α · λ− Λj + (|α|+ 2)ε 6 −ζ.
2. if α ∈ Pj then α · λ− Λj − (|α|+ 2)ε > ζ.

The disjoint sets R,B,P lead to the following decomposition for K :
E(r) → X :

K = K(1) +
∑

16j6l , α∈Rj

πα
j (K) +

∑
16j6l , α∈Bj

πα
j (K) +

∑
16j6l , α∈Pj

πα
j (K).
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These three sums are respectively denoted R(K), B(K), P(K) and called
the resonant part and the sub/superresonant parts of K.

Definition 2.6. — A bundle map K over τ is resonant if B(K) =
P(K) = O (the zero bundle map over τ). In other words, K is resonant if
K = A+ R(K) = K(1) + R(K).

The following classical result will be crucial. It asserts that resonant
bundle maps enjoy strong stability properties under iteration (see section 5
for a proof).

Proposition 2.7. — Let K be a resonant bundle map. For any n > 1,
we have B(Kn) = P(Kn) = O. In particular Kn = An + R(Kn) and the
degree of Kn is bounded by q̃.

Remark 2.8. — Let K be a resonant bundle map. It follows from (2.2)
and the proposition 2.7 that for any x ∈ X, w ∈ Ex and n > 1, the matrix
of the differential dwK

n
x is “block lower triangular”, with a block diagonal

part equal to An
x .

The following result compares |
∧s

dwK
n
x | and |

∧s
An

x | (see section 5).

Proposition 2.9. — Let K : E(ρε) → E(ρε) be a resonant bundle map
where ρε is a ε-slow function. There exists η > 0 (depending only on q̃, k

and not on K) and a ηε-fast function Hηε : X → [1,+∞[ such that for all
w ∈ Ex(ρε), s ∈ {1, . . . , k} and n > 1 :∣∣∣ 1

n
log |

s∧
dwK

n
x | − (λ1 + . . .+ λs)

∣∣∣ 6 1
n

logHηε(x) + ηε.

3. Normalization of contracting bundle maps

This section is devoted to the proof of theorem 1.3. We essentially pro-
ceed in two steps. We first prove that sufficently tangent bundle maps are
conjugated. We then show that any bundle map satisfying the assumptions
of theorem 1.3 is tangent to a resonant bundle map.

3.1. High tangency implies conjugation

The aim of this subsection is to prove the theorem 1.1 stated in the
introduction.
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Proof. — Let Mq+1/m < θ < 1 and κ > 0. We set σ :=
∑

j>0 θ
j and

β := e(q+2)εMq+1/m where ε is so small that Meε 6 e−ε and βeε 6 θ.
To establish the theorem, we will show that there exist a ε-slow function

rε and a ε-fast function Dε such that the map Tx,n := N−n
τn(x)F

n
x is well

defined on Ex(rε) and the following estimates hold on Ex(rε):

(3.1) max {|Fx(v)| , |Nx(v)|} 6 Meε|v|,

(3.2) |Tx,n+1(v)− Tx,n(v)| 6 βnDε(τn(x))|v|q+1.

Let us note that for any ε-slow function ρε 6 rε

2 the inequality Meε 6 e−ε

and (3.1) implies that E(ρε) and E(2ρε) are stable by F and N .
We start by showing how the theorem 1.1 follows from (3.1) and (3.2).

We check the convergence of Tx,n on E(rε) and define the functions ϕε and
ρε 6 rε. The estimate (3.2) implies for all v ∈ Ex(rε):

(3.3) |Tx,n+1(v)− Tx,n(v)| 6 βnDε(x)enε|v|q+1 6 θnDε(x)|v|q+1.

Therefore Tx :=limn→+∞ Tx,n exists on Ex(rε) and satisfies Tx =N−1
τ(x)Tτ(x)

Fx. We define ϕε := σDε and ρε := min{ rε

2 , κ/ϕε}. Observe that (3.3)
implies on Ex(ρε):

|Tx(v)− v| 6
∑
n>0

θnDε(x)|v|q+1 = ϕε(x)|v|q+1.

Thus, by the very definition of ρε, the commutative diagram holds and T
is κ-tangent to I. The commutative relation Tx = N−1

τ(x)Tτ(x)Fx implies for
all v ∈ Ex(ρε):

|Nn
x Tx(v)− Fn

x (v)| = |Tτn(x)F
n
x (v)− Fn

x (v)| 6 ϕε(τn(x))|Fn
x (v)|q+1.

By the ε-fast property of ϕε, (3.1) and the stability of E(ρε), the right hand
side is lower than:

ϕε(x)enε(Mnenε)q+1|v|q+1 = ϕε(x)(mβ)n|v|q+1 6 ϕε(x)(mθ)n|v|q+1,

which completes the proof of the theorem 1.1.
We shall now define the functions rε, Dε and establish the estimates

(3.1) and (3.2). Let ε′ := ε
q+2 . By the lemma 2.3(1), there exists a ε′-slow

function φε′ such that (3.1) and the following property hold on E(φε′):

(3.4) ∀(u, v) ∈ Ex(φε′) , me−ε|u− v| 6 |Nx(u)−Nx(v)| 6 Meε|u− v|.

Define Cε := 4/φq+1
ε′ , Dε := Cε/me

−ε and

rε := min
{
φε′

2
,
me−εφε′

σCε
,
me−εφε′

Meε

}
.

ANNALES DE L’INSTITUT FOURIER



NORMALIZATION OF BUNDLE HOLOMORPHIC CONTRACTIONS 2149

The functions Cε, Dε are q+1
q+2ε-fast and rε is ε-slow. Since rε 6 φε′ , the

estimate (3.1) is satisfied on E(rε). In particular, as Meε 6 e−ε, E(rε)
is stable by F and N . Also it follows from (3.4) that Nx is invertible on
Eτ(x)(me−εφε′(x)) and satisfies:
(3.5)

∀(u′, v′) ∈ Eτ(x)(me−εφε′(x)) , |N−1
τ(x)(u

′)−N−1
τ(x)(v

′)| 6 1
me−ε

|u′ − v′|.

In order to establish (3.2) we need the following lemma. The last point
relies on the tangency of F and N at the order q + 1.

Lemma 3.1. — For all v ∈ Ex(rε) and n > 0:

1.
[∑n

j=0 Cε(τ j(x))βj
]
|v| 6 me−εφε′(x).

2. max {|Fx(v)| , |Nx(v)|} 6 me−εφε′(x).
3. |Fx(v)−Nx(v)| 6 Cε(x)|v|q+1.

Proof. — By the ε-fast property of Cε, the left hand side in the point 1
is lower than

n∑
j=0

(βeε)jCε(x)|v| 6 σCε(x)rε(x) 6 σCε(x)
me−εφε′(x)
σCε(x)

= me−εφε′(x).

The point 2 is a consequence of (3.1):

max {|Fx(v)| , |Nx(v)|} 6 Meεrε(x) 6 Meεme
−εφε′(x)
Meε

= me−εφε′(x).

We now come to the last point. By lemma 2.2 and the stability of E(rε) by
F and N , we have for all j > 1 and v ∈ Ex(rε):

max
{
|F (j)

x (v)| , |N (j)
x (v)|

}
6
φε′(τ(x))
φj

ε′(x)
|v|j 6

(
|v|

φε′(x)

)j

6

(
rε(x)
φε′(x)

)j

6
1
2j
.

As F and N are tangent at the order q + 1, we deduce that:

|Fx(v)−Nx(v)| 6 2
(

|v|
φε′(x)

)q+1 ∑
m>0

1
2m

= 4
|v|q+1

φq+1
ε′ (x)

= Cε(x)|v|q+1.

�

To end the proof of the theorem, we establish (3.2) by induction. Let us
rewrite (3.2) explicitely:

(pn) : ∀v ∈ Ex(rε), |N−(n+1)
τn+1(x)F

n+1
x (v)−N−n

τn(x)F
n
x (v)| 6 βnDε(τn(x))|v|q+1.
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The proof of (pn) ⇒ (pn+1) will use the following auxiliary inequality:

(qn) : ∀v ∈ Ex(rε) , |N−n
τn+1(x)F

n+1
x (v)| 6

 n∑
j=0

Cε(τ j(x))βj

 |v|.
The assertion (p0) is a consequence of (3.5) and the two last points of
lemma 3.1:

|N−1
τ(x) (Fx(v))−N−1

τ(x) (Nx(v)) | 6 1
me−ε

|Fx(v)−Nx(v)| 6 Dε(x)|v|q+1.

The assertion (q0) follows from (3.1) and the observation Meε 6 1 6 Cε.
Assume now that (pn) and (qn) are satisfied. Let v′ ∈ Ex′(rε), v :=

Fx′(v′) and x := τ(x′). Observe that v ∈ Ex(rε) because the tube E(rε) is
stable by F . Using Dε = Cε/me

−ε and (3.1), the assertion (pn) yields:

|N−(n+1)
τn+2(x′)F

n+2
x′ (v′)−N−n

τn+1(x′)F
n+1
x′ (v′)|

6 βnCε(τn+1(x′))
me−ε

|Fx′(v′)|q+1

6 βnCε(τn+1(x′))
me−ε

(Meε)q+1|v′|q+1,

which, by the definition of β, leads to:
(3.6)
|N−(n+1)

τn+2(x′)F
n+2
x′ (v′)−N−n

τn+1(x′)F
n+1
x′ (v′)| 6 βn+1Cε(τn+1(x′))|v′|q+1.

We now deduce (qn+1) from (qn) and (3.6). For all v′ ∈ Ex′(rε) we have:

|N−(n+1)
τn+2(x′)F

n+2
x′ (v′)| 6 βn+1Cε(τn+1(x′))|v′|q+1 +

 n∑
j=0

Cε(τ j(x′))βj

 |v′|
6

n+1∑
j=0

Cε(τ j(x′))βj

 |v′|.
It follows from (qn), (qn+1) and the lemma 3.1-(1) that |N−(n+1)

τn+2(x′)F
n+2
x′ (v′)|

and |N−n
τn+1(x′)F

n+1
x′ (v′)| are lower than me−εφε′(x′). We may thus compose

(3.6) by N−1
τ(x′) and, using (3.5), get:

|N−(n+2)
τn+2(x′)F

n+2
x′ (v′)−N

−(n+1)
τn+1(x′)F

n+1
x′ (v′)| 6 βn+1Cε(τn+1(x′))

me−ε
|v′|q+1

6 βn+1Dε(τn+1(x′))|v′|q+1,

which is the assertion (pn+1). �
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3.2. Normalization at a finite order

We prove here that a bundle map which satisfies the assumptions of
theorem 1.3 is, for any prescribed order, tangent to some resonant bundle
map:

Proposition 3.2. — Let G be a tame and regular contracting bundle
map over τ . For any p > 1, there exists a resonant bundle map R such
that G is tangent to R at the order p + 1. More precisely, for any ε > 0
and 0 < κ < 1, there exist a ε-slow function σε, a bundle map U which is
κ-tangent to I and a bundle map F = R+O(p+1) such that the following
diagram commutes:

E(σε)
G //

U
��

E(σε)

U
��

E(2σε)
F // E(2σε)

and the tubes E(σε), E(2σε) are contracted.

Following Jonsson-Varolin ([9], lemma 5.2), we first solve the Poincaré’s
homological equation in a non-autonomous setting.

Proposition 3.3. — Let A be a linear regular contracting bundle map
(see definition 1.2). Let H = H(m) be a m-homogeneous bundle map over
τ and R(H) be its resonant part. Assume that |H| is a fast function. Then
there exists a m-homogeneous bundle map Q over IdX such that |Q| is a
fast function and H+ (Q ◦ A−A ◦ Q) = R(H).

Proof. — It suffices to consider a bundle map M := πα
j (H), where |α| =

m and 1 6 j 6 k. We treat the three cases α ∈ Rj ,Bj and Pj separately.
If α ∈ Rj , we let Q = 0. If α ∈ Bj , we set Q :=

∑
n>0A−(n+1)MAn, i.e.,

(3.7)
∀x ∈ X , Qx = A−1

τ(x)Mx +
∑
n>1

[
A−1

τ(x) . . . A
−1
τn+1(x)Mτn(x)Aτn−1(x) . . . Ax

]
.

A formal computation shows that Q is m-homogeneous and satisfies Mx +
(Qτ(x) ◦ Ax − Ax ◦ Qx) = 0 = R(Mx) for all x ∈ X. We now check the
convergence of the series (3.7), which we denoteQx :=

∑
n>0Qn,x. Let ψε >

|H| > |M| be a ε-fast function. Observe that each of the kj coordinates of
M : X → Lj is a multiple of the monomial Pα. We have therefore by the
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ε-fast property of ψε and the regular contracting property of A :

∀n > 1 , |Qn,x(v)| 6 e−(n+1)(Λj−ε) [ψε(x)enε] en(λ·α+|α|ε) |v|m

6 en[λ·α−Λj+(|α|+2)ε]e−Λj+εψε(x)|v|m

6 e−nζe−Λj+εψε(x)|v|m,

where ζ > 0 is defined in the lemma 2.5. Besides the convergence of (3.7)
this shows that |Q| 6 [e−Λj+ε

∑
n>0 e

−nζ ]ψε(x), so that |Q| is fast.
Finally, if α ∈ Pj , we set Q := −

∑
n>0AnMA−(n+1), i.e., :

Qx =−Mτ−1(x)A
−1
x −

∑
n>1

[
Aτ−1(x) . . . Aτ−n(x)Mτ−(n+1)(x)A

−1
τ−n(x) . . . A

−1
x

]
.

We obtain in that case:

|Qn,x(v)| 6 en(Λj+ε)
[
ψε(x)e(n+1)ε

]
e(n+1)(−λ·α+|α|ε) |v|m

6 e(n+1)[−λ·α+Λj+(|α|+2)ε]e−(Λj+ε)ψε(x)|v|m

6 e−(n+1)ζe−(Λj+ε)ψε(x)|v|m,

and we conclude as before. �

Corollary 3.4. — Let K : E(sε) → E(sε) be a regular contracting
bundle map, where sε is ε-slow. Suppose that Lip(K) 6 c < 1 on E(sε). Let
m > 2 and γ > 0 small (depending on c, ε). There exist a ε-slow function
r̃ε 6 sε, a bundle map Sm tangent to I and a bundle map K̂ tangent to
A+K(2)+. . .+K(m−1)+R(K(m)) at the order m+1, such that the following
diagram commutes for any ε-slow function rε 6 r̃ε:

E(e−γrε)
K //

Sm

��

E(e−γrε)

Sm

��
E(rε)

K̂ // E(rε) .

Moreover Lip(K̂) 6 ce2γ .

Proof. — Let γ > 0 such that ce2γ 6 e−ε. The bundle map K is tame, so
the function |K(m)| is fast (see lemma 2.2) and we may apply the proposi-
tion 3.3: there exists a m-homogeneous bundle map Q over IdX such that
|Q| is fast and

(3.8) K(m)
x + (Qτ(x) ◦Ax −Ax ◦Qx) = R(K(m)

x ).
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We let S := I+Q, this bundle map is tame. As S is tangent to I, one may
decrease r̃ε to obtain (see lemma 2.3(1)):

∀(u, v) ∈ Ex(eγ r̃ε) , e−γ |u− v| 6 |Sx(u)− Sx(v)| 6 eγ |u− v|.

In particular, S−1 exists on E(r̃ε). Thus, for any ε-slow function rε 6 r̃ε,
the bundle map K̂ := S ◦ K ◦ S−1 is well defined on E(rε) and is ce2γ-
Lipschitz. Furthermore, E(rε) is stable by K̂ since ce2γ 6 e−ε. It remains
to prove that K̂ is tangent to A + K(2) + . . . + K(m−1) + R(K(m)) at the
order m+1. Let us write Ux ' Vx when Ux−Vx = O(m+1). Observe first
that S−1

x ' IdCk −Qx. Moreover, as Q is homogeneous of degree m > 2,
we have:

KxS
−1
x '

[
(Ax +K(2)

x + . . .+K(m−1)
x ) +K(m)

x

]
◦ (IdCk −Qx)

' (Ax +K(2)
x + . . .+K(m−1)

x ) +K(m)
x −Ax ◦Qx

and then:

Sτ(x)KxS
−1
x '

(
IdCk +Qτ(x)

)
◦
[
(Ax +K(2)

x + . . .+K(m−1)
x ) +K(m)

x

−Ax ◦Qx]

' (Ax+K(2)
x +. . .+K(m−1)

x ) +K(m)
x +Qτ(x) ◦Ax −Ax ◦Qx

' (Ax +K(2)
x + . . .+K(m−1)

x ) + R(K(m)
x ),

where the last line follows from (3.8). �

Proof of the proposition 3.2. — If p = 1, we just take R = A, so
let p > 2. By the lemma 2.3(1), there exists a ε-slow function sε such
that G : E(sε) → E(sε) and LipG 6 eΛ1+εeε < 1 (take b = eΛ1+ε and
γ = ε). Let c′ := eΛ1+2ε and γ small enough such that 1/2 6 e−(p−1)γ

and c′e2(p−1)γ < 1. We apply successively the corollary 3.4 with (m, c) =
(2, c′), (3, c′e2γ), . . . , (p, c′e2(p−2)γ). We obtain bundle maps S2,S3, . . . ,Sp

tangent to I and a ε-slow function rε such that the following diagram is
commutative, where U := Sp ◦ . . . ◦ S2:

E(e−(p−1)γrε)
G //

U
��

E(e−(p−1)γrε)

U
��

E(rε)
F // E(rε)

The bundle map F is tangent to R at the order p+1 and satisfies Lip(F) 6
c′e2(p−1)γ < 1 on E(rε). We have U : E(rε/2) → E(rε) because 1/2 6
e−(p−1)γ . We set σε := rε/2. The bundle map U is κ-tangent to I on E(σε)
(decrease σε if necessary, see lemma 2.3(2)). �
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3.3. Proof of theorem 1.3

Let G be a tame and regular contracting bundle map over τ , let m :=
eΛl−ε,M := eΛ1+ε and q̃ be the entire part of Λl/Λ1 (so that M q̃+1 < m).
We apply successively the proposition3.2 and the theorem 1.1 with p = q =
q̃. There exists bundle maps T ,U tangent to I, a resonant bundle map R
and a ε-slow function σε such that the following diagram commutes:

E(σε)
G //

U
��

E(σε)

U
��

E(2σε)
R+O(q̃+1) //

T
��

E(2σε)

T
��

E(4σε)
R // E(4σε)

We let V := T ◦U and ρε 6 σε be a ε-slow function such that V is κ-tangent
to I on E(ρε) (see lemma 2.3). We obtain V : E(ρε) → E(2ρε) by choosing
κ < 1. �

4. Application to holomorphic dynamics

We prove in this section the theorems 1.4 and 1.5, let us first recall the
setting in which we will work. We consider an holomorphic endomorphism
f : Pk → Pk of algebraic degree d > 2. The topological degree of f is
dt := dk. The equilibrium measure µ of f is given by µ = limn→∞

1
dn

t
fn∗ωk,

where ω is the Fubini-Study (1, 1) form on Pk. This measure is mixing,
satisfies µ(f(B)) = dtµ(B) whenever f is injective on the borel set B, and
does not charge any analytic subset of Pk. As Briend-Duval [5] proved, the
Lyapunov exponents χ1 6 . . . 6 χk of µ are bounded from below by log

√
d.

We are interested in the following quantities:

Σs := χk−s+1 + . . .+ χk.

Let O := {x̂ := (xn)n∈Z , xn+1 = f(xn)} be the set of orbits. We note f̂
the left shift sending (. . . , x−1, x0, x1, . . .) to (. . . , x0, x1, x2, . . .) and τ :=
f̂−1. Let π be the projection x̂ 7→ x0 and ν be the unique probability
measure on O invariant by τ and satisfying ν(π−1(B)) = µ(B) on the
borel sets B ⊂ Pk. The measure ν is mixing. We will work with the subset
X := {x̂ ∈ O , xn /∈ Cf , ∀n ∈ Z} where Cf is the critical set of f . This
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subset has full ν-mesure, because µ(Cf ) = 0. For all x̂ ∈ X, the inverse
branch of fn that sends x0 to x−n is denoted f−n

x̂ .
We note d(., .) the distance on Pk induced by the Fubini-Study metric,

Bx(r) ⊂ Pk the ball centered at x of radius r for this metric and B(r) the
ball {|z| < r} ⊂ Ck for the standard metric.

4.1. Normalization along orbits of endomorphisms of Pk

Our aim here is to prove the theorem 1.4. To this purpose we will first
construct the bundle map F−1 of the inverse branches of an endomorphism
f : Pk → Pk. We will then apply to F−1 the Oseledec-Pesin reduction
theorem and our theorem 1.3. For defining this bundle map we shall use
a family of charts (ψx)x∈Pk satisfying the following properties, where 0 <
M0 < 1 is a constant independant of x ∈ Pk:

(P1) ψx : Ck → Pk is a biholomorphism onto its image and ψx(0) = x.
(P2) for all (z1, z2) ∈ B(M0), 1

2 |z1− z2| 6 d(ψx(z1), ψx(z2)) 6 2|z1− z2|.
We also require the following condition where | . |x,u is the norm
on the spaces (

∧s Ck)16s6k inherited by the strictly positive (1, 1)
form (ψ∗xω)(u):

(P3) for all u ∈ B(M0), 1
10 | . | 6 | . |x,u 6 10| . | and | . |x,0 = | . |.

For x̂ ∈ X, we identify Ex̂ = {(x̂, v) , v ∈ Ck} with Ck and let ψx̂ :
Ex̂ → Pk be the map ψx̂ := ψx0 : Ck → Pk. We define

Fx̂ := ψ−1

f̂(x̂)
◦ f ◦ ψx̂.

This map satisfies Fx̂(0) = 0. By the uniform continuity of f , there exists
0 < M1 6 M0 such that the following bundle map is well defined:

F :
E(M1) −→ E(M0)

(x̂, z) 7−→
(
f̂(x̂), Fx̂(z)

)
.

Recall that X = {(xn)n∈Z , xn+1 = f(xn) , xn /∈ Cf}. So for any x̂ ∈ X
the map Fτ(x̂) is invertible in a neighbourhood of the origin. As the next
lemma shows, the bundle map F−1 is actually tame.

Lemma 4.1. — There exists a slow function α : X →]0, 1] and a (tame)
bundle map

F−1 :
E(α) −→ E(M1)
(x̂, z) 7−→

(
τ(x̂), F−1

x̂ (z)
)
,

where F−1
x̂ := (Fτ(x̂))−1 =

(
ψ−1

x̂ ◦ f ◦ ψτ(x̂)

)−1
.
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Proof. — Let t(x̂) :=
∥∥ (dx−1f)−1

∥∥−2. There exists a constant c > 0
depending only on the first and second derivatives of f such that the map
F−1

x̂ exists on Ex̂(ct). We use here a quantitative version of the inverse
local theorem (see e.g., [5], lemma 2). We let α := min{ct, 1}. As logα is
ν-integrable (see [14], subsection 3.7), there exists a ε-slow function αε :
X →]0, 1] such that αε 6 α (see lemma 2.1). The function α is therefore
slow. �

Let D be the linear part of F−1. The Oseledec-Pesin theorem asserts
that D is regular contracting after conjugation by a “tempered” family C
of linear maps:

Theorem 4.2 (Oseledec-Pesin ε-reduction [10]). — There exist a linear
bundle map C over IdX and a function hε : X → [1,+∞[ such that:

1. A := C ◦ D ◦ C−1 is regular contracting.
2. ∀x̂ ∈ X, |v| 6 |Cx̂(v)| 6 hε(x̂)|v| and e−εhε(x̂) 6 hε(τ(x̂)) 6
eεhε(x̂).

The contraction rates Λl < . . . < Λ1 < 0 of A are in our context the
distinct opposite Lyapunov exponents of (Pk, f, µ) (i.e., the distinct −χi)
and are negative. The integers kj are the multiplicities of these exponents.

As the reader may easily check, the following proposition is a version of
the theorem 1.4. We stress that the points 2 and 3 are consequences of the
algebraic properties of the resonant maps (see proposition 2.9). We recall
that ε� |Λ1|.

Proposition 4.3. — With the preceding notations, there exist ε-slow
functions ηε, tε : X →]0,M0], a resonant bundle map R over τ and an
injective bundle map W over IdX (tangent to C) such that the following
diagram commutes for all n > 1:

E(ηε)
F−n

//

W
��

F−nE(ηε)

W
��

E(tε)
Rn

// E(tε) .

We have F−nE(ηε) ⊂ E(M0). There exist α′ > 0 and ε-fast functions
β′ε, L

′
ε, T

′
ε : X → [1,+∞[ such that :

1. ∀(y, y′) ∈ F−n
x̂ (Ex̂(ηε)), α′ |y − y′| 6 |Wτn(x̂)(y) − Wτn(x̂)(y′)| 6

β′ε(τ
n(x̂))|y − y′|.

2. LipF−n
x̂ 6 L′ε(x̂)e

−nχ1+nε on Ex̂(ηε),
3. for all z ∈ F−n

x̂ (Ex̂(ηε)), | 1n log |
∧s

dzF
n
τn(x̂)|−Σs| 6 1

n log T ′ε(x̂)+ε.
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Proof. — Let ε′ = ε/2(k + η) (the constant η is defined in the proposi-
tion 2.9 and depends only on q̃, k). By the lemma 4.1 and the theorem 4.2,
there exist a ε′-slow function αε′ 6 α and a ε′-fast function hε′ such that
the bundle map G := C ◦ F−1 ◦ C−1 is well defined E(αε′) → E(M1hε′)
and is regular contracting (observe that E(ρ) ⊂ C(E(ρ)) ⊂ E(ρ.hε′)). In
particular G is tame. By the theorem 1.3, there exists a ε′-slow function ξε′ ,
a bundle map V 1/2-tangent to I and a resonant bundle map R such the
following diagram commutes:

E(ηε)
F−n

//

C
��

F−nE(ηε)

C
��

E(ξε′)
Gn

//

V
��

E(ξε′)

V
��

E(2ξε′)
Rn

// E(2ξε′).

We may assume that ξε′ 6 M0/2 and that |
∧s IdCk −

∧s(dtVx̂)±1| 6 1/10
for any t ∈ Ex̂(ξε′) and x̂ ∈ X (lemma 2.3(3)). Let ηε = ξε′/hε′ and
tε := 2ξε′ . These functions are ε-slow and satisfy ηε, tε 6 M0. Moreover
F−nE(ηε) ⊂ C−1E(ξε′) ⊂ E(ξε′) ⊂ E(M0). We let W := V ◦ C. Observe
that:

∀(y, y′) ∈ F−n
x̂ (Ex̂(ηε)) ,

1
2
|y − y′| 6 |Wτn(x̂)(y)−Wτn(x̂)(y′)|

6
3
2
hε′(τn(x̂))|y − y′|.

The point 1 follows with α′ = 1/2 and β′ε = 3
2hε′ . Now we prove the points 2

and 3. Let y ∈ Ex̂(ηε) and t = Cx̂(y). We obtain by the theorem 4.2(2) and
the commutative diagram above:

|
s∧
dyF

−n
x̂ | 6 |C−1

τn(x̂)|
s|

s∧
dtG

n
x̂ ||Cx̂|s 6 |

s∧
dtG

n
x̂ |hε′(x̂)s,

|
s∧
dtG

n
x̂ | 6 |Cτn(x̂)|s|

s∧
dyF

−n
x̂ ||C−1

x̂ |s 6 (hε′(x̂)enε′)s|
s∧
dyF

−n
x̂ |.

We deduce the estimate:

(4.1)
∣∣∣ 1
n

log |
s∧
dyF

−n
x̂ | − 1

n
log |

s∧
dtG

n
x̂ |
∣∣∣ 6 1

n
log hk

ε′(x̂) + kε′.
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Now let w := Vx̂(t), Gn := Gn
x̂ , Rn := Rn

x̂ , V := Vx̂, Vn := Vτn(x̂) and write:

s∧
dtG

n =
s∧

(dGn(t)Vn)−1
s∧
dwR

n
s∧
dtV :=

( s∧
IdCk +Ω1

) s∧
dwR

n

( s∧
IdCk +Ω2

)
,

where Ωi :
∧s Ck →

∧s Ck satisfy |Ωi| 6 1/10. This implies that

(4.2)
1
2
|

s∧
dwR

n| 6 |
s∧
dtG

n| 6 2|
s∧
dwR

n|.

The proposition 2.9 gives a ηε′-fast function Hηε′ such that for all s ∈
{1, . . . , k}:∣∣∣ 1

n
log |

s∧
dwR

n
x | − (λ1 + . . .+ λs)

∣∣∣ 6 1
n

logHηε′(x) + ηε′.

We deduce with (4.1), (4.2) and λi = −χi:

(4.3)
∣∣∣ 1
n

log |
s∧
dyF

−n
x̂ |+(χ1 + . . .+χs)

∣∣∣ 6 1
n

log[2Hηε′h
k
ε′ ](x)+(k+η)ε′.

The function L′ε := 2Hηε′h
k
ε′ is (k+ η)ε′-fast (therefore ε-fast). The point 2

follows from (4.3) with s = 1. For the point 3, observe that |
∧s

dzF
n
τn(x̂)| =

|
∧k−s

dyF
−n
x̂ ||

∧k
dyF

−n
x̂ |−1 where z = F−n

x̂ (y). We obtain by using (4.3)
twice:∣∣∣ 1

n
log |

k−s∧
dyF

−n
x̂ |+ (χ1 + . . .+ χk−s)

∣∣∣ 6 1
n

logL′ε(x) + (k + η)ε′,

∣∣∣ 1
n

log |
k∧
dyF

−n
x̂ |+ (χ1 + . . .+ χk)

∣∣∣ 6 1
n

logL′ε(x) + (k + η)ε′.

These estimates imply:∣∣∣ 1
n

log |
s∧
dzF

n
τn(x̂)| − (χk−s+1 + . . .+ χk)

∣∣∣ 6 1
n

logL′2ε (x) + 2(k + η)ε′.

We finally let T ′ε := L′2ε , which is a ε-slow function. �

4.2. An approximation formula for sums of Lyapunov exponents

This subsection is devoted to the proof of theorem 1.5. Let Rn (resp.
R∗

n) be the set of repulsive periodic points whose period divides n (resp.
equals n). Let us consider the function ϕn defined on Pk by

ϕn(z) :=
1
n

log

∥∥∥∥∥
s∧
dzf

n

∥∥∥∥∥ .
ANNALES DE L’INSTITUT FOURIER



NORMALIZATION OF BUNDLE HOLOMORPHIC CONTRACTIONS 2159

Then, the theorem 1.5 may be stated as follows:

(4.4) lim
n→+∞

1
dn

t

∑
p∈Rn

ϕn(z) = lim
n→+∞

1
dn

t

∑
p∈R∗

n

ϕn(z) = Σs.

Let Fn := {z ∈ Pk , fn(z) = z}. Since the number of fixed points of fn

counted with multiplicity is, by Bezout’s theorem, equal to 1+dn+. . .+dnk

(see [14], subsection 1.3) we have Card(Fn) 6 (k + 1)dn
t . This implies that

for any n > 1, Card(Rn) − Card(R∗
n) 6

∑
m Card(Fm) 6 n(k + 1)dn/2

t ,
where the sum runs over the integers 1 6 m 6 n/2 which divide n. The
first equality in (4.4) is then a consequence of the following lemma.

Lemma 4.4. — There exists Γ > 0 such that for all p ∈ Rn and n > 1,
0 6 ϕn(p) 6 Γ.

Proof. — Let p ∈ Rn and (p0, p1, . . . , pn−1) be the repulsive cycle gen-
erated by p0 := p. Let Γ := k.maxz∈Pk log+ ‖ dzf ‖. The observations
‖
∧s

dpf
n ‖6‖ dpf

n ‖k 6
∏n−1

i=0 ‖ dpif ‖
k and 06ϕn(p)= 1

n log+ ‖
∧s

dpf
n ‖

imply the inequalities: 0 6 ϕn(p) 6 k. 1n
∑n−1

i=0 log+ ‖ dpif ‖ 6 Γ. �

The proof of the theorem 1.5 basically consists in producing repulsive
cycles by Briend-Duval’s method taking into account the information on
inverse branches given by our theorem 1.4.

Let 0 < ε� χ1. We introduce:

Rε
n := {p ∈ Rn , |ϕn(p)− Σs| 6 2ε}

and write 1
dn

t

∑
p∈Rn

ϕn(p)− Σs = 1
dn

t
(un + vn + wn), where

un :=
∑

p∈Rε
n

(ϕn(p)− Σs) , vn :=
∑

p∈Rn\Rε
n

(ϕn(p)− Σs) ,

wn := (Card(Rn)− dn
t )Σs.

We show that for n sufficiently large the sequences un, vn and wn are
essentially bounded by εdn

t . The key estimate is given by the following
lemma whose proof is postponed to the end of the subsection.

Lemma 4.5. — There exists n1 > 1 such that:

∀n > n1 , Card(Rε
n) > dn

t (1− ε)3.

Let us now give the expected bounds on un, vn, wn. As Rn ⊂ Fn and
Card(Fn) 6 (dn

t d
n − 1)(dn − 1)−1 (recall that dt = dk), there exists n2 > 1

such that:

(4.5) ∀n > n2 , Card(Rn) 6 dn
t (1 + ε).
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Using (4.5) and the lemma 4.5 we see that for any n > max{n1, n2}:

|un| 6 Card(Rε
n)2ε 6 2ε(1 + ε)dn

t 6 4εdn
t and |wn| 6 4Σs · εdn

t .

The lemmas 4.4, 4.5 and the estimate (4.5) finally give:

|vn| 6 (Γ + Σs) (Card(Rn)− Card(Rε
n)) 6 (Γ + Σs)[(1 + ε)− (1− ε)3]dn

t ,

which is bounded by 5(Γ + Σs) · εdn
t .

We now end the proof of the theorem 1.5 by establishing the lemma 4.5.
The functions rε, Tε and Lε have been introduced in the theorem 1.4.

We note them shortly r, T and L. In the sequel, we will not use their
ε-slow/fast properties. For any x̂ ∈ X, let n(x̂) be the smallest integer
satisfying logL(x̂) 6 nε and log T (x̂) 6 nε. Let n1 > 1 large enough and
r0 > 0 small enough such that the set

Ĥ := {x̂ ∈ X , r(x̂) > r0 , n(x̂) 6 n1}

satisfies ν(Ĥ) > 1 − ε/2. We have in particular for all x̂ ∈ Ĥ and n > n1

(see the theorem 1.4):

(a1) Lip f−n
x̂ 6 e−nχ1+2nε on Bx0(r0),

(a2) for all z ∈ f−n
x̂ (Bx0(r0)), | 1n log ‖

∧s
dzf

n ‖ − Σs| 6 2ε.

We consider two concentric families of balls (Bi)16i6m ⊂ (Bγ
i )16i6m ⊂

Pk whose radii are respectively equal to r and r+γ 6 r0/2 (with 0 < γ � r)
and satisfy the following properties:

(b1) the balls Bγ
i are disjoint,

(b2) µ(∪m
i=1Bi) > 1− ε/2,

(b3) µ(Bi) > (1− ε)µ(Bγ
i ).

We may increase n1 such that for all n > n1 and 1 6 i 6 m:

(c1) e−nλ1+2nε(r + γ) < γ (in particular e−nλ1+2nε < 1),
(c2) if B̂i := π−1(Bi), then ν

(
f̂−n(B̂i ∩ Ĥ) ∩ B̂i

)
> (1 − ε)ν(B̂i ∩

Ĥ)ν(B̂i).

The last assertion is a consequence of the mixing property of ν.
Let us temporarily fix i ∈ {1, . . . ,m} and note B := Bi, Bγ := Bγ

i and
B̂γ := π−1(Bγ). Observe that if x̂ ∈ Ĥ ∩ B̂γ , then the set f−n

x̂ (Bγ) is
well defined since x̂ ∈ Ĥ ⊂ {r(x̂) > r0} and the radius of Bγ satisfies
r + γ 6 r0/2.

Let us consider the collection Cn(B) of sets of the form f−n
x̂ (Bγ) which

do intersect B, where x̂ ∈ Ĥ ∩ B̂γ . Note that the elements of Cn(B) are
disjoint open subsets of Pk. We will establish the following estimates for
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n > n1:

(4.6) Card(Rε
n ∩Bγ) > Card(Cn(B)) > dn

t (1− ε)2ν(Ĥ ∩ B̂).

Let E be an element of Cn(B) : E = f−n
x̂ (Bγ) intersects B and x̂ ∈ Ĥ∩B̂γ .

By (a1) and (c1), f−n
x̂ contracts on Bγ ⊂ Bx0(r0). Moreover E is contained

in Bγ , because E intersects B and its diameter is less than γ by (c1). We
thus obtain a point p ∈ E which is fixed by f−n

x̂ : Bγ → Bγ . This point is
n-periodic and repulsive for f , so p ∈ Rn. We have also p ∈ f−n

x̂ (Bγ) ⊂
f−n

x̂ (Bx0(r0)) which leads to p ∈ Rε
n by (a2). This gives the first inequality

in (4.6).
Let us now justify the second inequality. According to (c2) and the rela-

tion µ = π∗ν we obtain:

(1− ε)ν(B̂ ∩ Ĥ)µ(B) 6 µ
[
π
(
f̂−n(Ĥ ∩ B̂)

)
∩B

]
6 µ

(⋃
f−n

x̂ (Bγ)
)
,

where the union runs over the elements of Cn(B). By the jacobian property
we have µ(f−n

x̂ (Bγ)) = µ(Bγ)/dn
t and the right hand side is thus equal to

Card(Cn(B))µ(Bγ)/dn
t . We then get the desired inequality by (b3).

The estimates (4.6) imply finally:
(4.7)

Card(Rε
n)>

m∑
i=1

Card(Rε
n∩B

γ
i )>

m∑
i=1

Card(Cn(Bi))>dn
t (1−ε)2ν(Ĥ∩∪m

i=1B̂i).

As ν(Ĥ) > 1 − ε/2 and ν(∪m
i=1B̂i) = µ(∪m

i=1Bi) > 1 − ε/2 (see (b2)) we
have ν(Ĥ ∩ ∪m

i=1B̂i) > 1− ε. So, by (4.7), Card(Rε
n) > dn

t (1− ε)3, and the
lemma 4.5 is proved.

5. Appendix: properties of resonant maps

We prove here the proposition 2.7 and 2.9 we stated in the subsection 2.3.
A result similar to the proposition 2.7 may be found in the article [8],
lemma 1.1.

5.1. Proof of the proposition 2.7

We want to prove that for all 2 6 j 6 k, the component

πj(Kτ(x))(Kx) = πj(Kτ(x))(π1(Kx), . . . , πj−1(Kx))

is made of j-resonant monomials (the dependance of the j − 1 first com-
ponents in the right hand side is a consequence of (2.2), subsection 2.3).
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For simplicity, we may assume that kj = 1 for all 1 6 j 6 k, therefore
λj = Λj . As we are concerned with a degree property, we do not com-
pute the coefficients of polynomials (we set them equal to 1). Recall that
Pα = zα1

1 · · · zαk

k . By writing πj(Kτ(x)) =
∑

β∈Rj
Pβ , it suffices to consider

the following polynomial, where β ∈ Rj :

(5.1) Pβ(π1(Kx), . . . , πj−1(Kx)) = (π1(Kx))β1 . . . (πj−1(Kx))βj−1 .

For all 1 6 l 6 j − 1, we write πl(Kx) =
∑Card(Rl)

i=0 Pα(l,i), where α(l, 0) =
(0, . . . , 1, . . . , 0) (so that Pα(l,0) = zl) and {α(l, i) , 1 6 i 6 Card(Rl)} = Rl.
Observe that we have for any 1 6 l 6 j − 1 and 0 6 i 6 Card(Rl):

(5.2)
j−1∑
p=1

αp(l, i)Λp =
l∑

p=1

αp(l, i)Λp = Λl.

We now expand (5.1) and prove that we get a sum of j-resonant monomials.
By the Newton’s formula, the monomials that appear in the expansion of
(5.1) have the form:

(5.3) Pγ =
Card(R1)∏

i=0

P
β1(i)
α(1,i) . . .

Card(Rj−1)∏
i=0

P
βj−1(i)

α(j−1,i),

where
∑Card(Rl)

i=0 βl(i) = βl for all 1 6 l 6 j − 1. We have to prove that
γ ∈ Rj , that is:

∑j−1
p=1 γpΛp = Λj . First observe that |γ| > |β| > 2 and that

Pγ = zγ1
1 . . . z

γj−1
j−1 (indeed there are no zj , . . . , zk in the right hand side of

(5.1)). By (5.3) we have for all 1 6 p 6 j − 1:

γp =
Card(R1)∑

i=0

αp(1, i)β1(i) + . . .+
Card(Rj−1)∑

i=0

αp(j − 1, i)βj−1(i)

=
j−1∑
l=1

Card(Rl)∑
i=0

αp(l, i)βl(i).

Thus the sum
∑j−1

p=1 γpΛp is equal to:
(5.4)
j−1∑
p=1

Λp

j−1∑
l=1

Card(Rl)∑
i=0

αp(l, i)βl(i)

 =
j−1∑
l=1

Card(Rl)∑
i=0

βl(i)

(
j−1∑
p=1

αp(l, i)Λp

) .
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By using successively (5.2),
∑Card(Rl)

i=0 βl(i) = βl and β ∈ Rj , the right hand
of (5.4) is equal to

j−1∑
l=1

Card(Rl)∑
i=0

βl(i) Λl

 =
j−1∑
l=1

βlΛl = Λj .

We have therefore γ ∈ Rj , which completes the proof of the proposition.

5.2. Proof of the proposition 2.9

Let R be a resonant bundle map. By the proposition 2.7, the degree
of the iterates of R is bounded by q̃. We define the function ‖R‖ :=
max{|R(1)|, . . . , |R(q̃)|} : for all x ∈ X, ‖R‖ (x) is the maximum of the
coefficients of the polynomial map Rx (see subsection 2.1 for the definition
of |R(j)|). We show in the next proposition that for all 1 6 j 6 l, ‖πj(Rn) ‖
is close to ‖πj(An) ‖. This fact will be useful for proving the proposition 2.9.

Proposition 5.1. — Let R : E(ρε) → E(ρε) be a resonant bundle map
where ρε is a ε-slow function. There exist θ > 1 (depending only on q̃) and
a θε-fast function Mθε : X → [1,+∞[ such that

∀j ∈ {1, . . . , l} , ∀n > 1 , en(Λj−ε) 6 ‖πj(Rn) ‖ 6 Mθεe
n(Λj+θε).

Proof. — The estimate from below follows from ‖πj(Rn) ‖ > |πj(An)| >
en(Λj−ε). We prove the estimate from above. We may assume that kj = 1
and λj = Λj for all 1 6 j 6 k. Let also ∆ := Card(R) + 1. Let 1 6 s 6 k

and define the assertion (is): there exists a (q̃ + . . . + q̃s−1)ε-fast function
Ms : X → [1,+∞[ such that

∀j ∈ {1, . . . , s} , ∀n > 1 , ‖πj(Rn) ‖ 6 Mse
n(Λj+q̃2sε).

Let ψq̃ε be a q̃ε-fast function such that ψq̃ε > ‖R‖ (cf. lemma 2.2). We
proceed by induction on s. The assertion (i1) is satisfied with M1 := 1.
Indeed, π1(Rn) = π1(An) because R1 is empty (see subsection 2.3). Assume
that (is−1) is satisfied for 1 6 s− 1 6 k − 1. We define

Ms :=
ψq̃εM

q̃
s−1∆

q̃+1e−Λs

1− e−(q̃2s−1)ε
.

Observe that Ms is (q̃+ . . .+ q̃s−1)ε-fast. As Ms > Ms−1, the assertion (is)
is proved if we establish the following assertions for all n > 1:

(iin) : ‖πs(Rn) ‖ 6 Mse
n(Λs+q̃2sε).
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The assertion (ii1) is fulfilled because:

‖πs(R) ‖ 6 ‖R‖ 6 ψq̃ε 6 ψq̃ε

M q̃
s−1∆

q̃+1eq̃2sε

1− e−(q̃2s−1)ε
= Mse

Λs+q̃2sε.

Let us assume that (iin) is true and establish (iin+1). We have

(5.5) πs(Rn+1
x ) = πs(Rτn(x))(π1(Rn

x), . . . , πs(Rn
x)).

By (2.2) (subsection 2.3), the polynomial πs(Rτn(x)) has the form

πs(Rτn(x))(z1, . . . , zs) = σ(τn(x))zs +
∑

α∈Rs

σα(τn(x))Pα(z1, . . . , zs−1),

where σ(τn(x)), σα(τn(x)) ∈ C. So by (5.5), πs(Rn+1
x ) is the sum of In and

Jn:

In := σ(τn(x))πs(Rn
x),

(5.6) Jn :=
∑

α∈Rs

σα(τn(x))Pα(π1(Rn
x), . . . , πs−1(Rn

x)).

To simplify the exposition, we note in the sequel u := eΛs+q̃2sε and Ms for
Ms(x), ψq̃ε for ψq̃ε(x), etc. We obtain by (iin) and |σ(τn(x))| 6 eΛs+ε:

‖ In ‖ 6 eΛs+εMsu
n =

[
Mse

−(q̃2s−1)ε
]
un+1.

The end of the proof consists in verifying the following estimate, by using
(is−1):

(5.7) ‖ Jn ‖ 6
[
∆q̃+1ψq̃εM

q̃
s−1e

−Λs

]
un+1.

Indeed the two preceding lines imply (iin+1) by the very definition of Ms:∥∥πs(Rn+1)
∥∥ 6 ‖ In ‖+ ‖ Jn ‖ 6

[
Mse

−(q̃2s−1)ε + ∆q̃+1ψq̃εM
q̃
s−1e

−Λs

]
un+1 = Msu

n+1.

We now prove (5.7). By the proposition 2.7, Jn is a linear combination of
resonant monomials. Recall also that ‖ Jn ‖ is the maximum of the co-
efficients of Jn in the basis (Pβ)β∈Rs

. Fix a resonant degree β ∈ Rs.
Let α ∈ Rs and expand Pα(π1(Rn

x), . . . , πs−1(Rn
x)). Observe that for all

1 6 j 6 s− 1, πj(Rn
x) is a sum of at most ∆ = Card(R)+1 monomials, be-

cause R is resonant. So the degree β ∈ Rs appears in the preceding expan-
sion at most ∆α1+...+αs−1 times. It implies that the Pβ-coefficient σβ(α) of
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σα(τn(x))Pα(π1(Rn
x), . . . , πs−1(Rn

x)) satisfies by (is−1) and |σα(τn(x))| 6
ψq̃ε(x)enε:

|σβ(α)| 6 |σα(τn(x))|∆α1+...+αs−1 ‖π1(Rn
x) ‖α1 . . . ‖πs−1(Rn

x) ‖αs−1

6 ψq̃ε(x)enε[∆Ms−1e
nq̃2(s−1)ε]α1+···+αs−1en(α1Λ1+···+αs−1Λs−1).

Observe that α ∈ Rs implies α1 + . . . + αs−1 6 q̃ and α1Λ1 + . . . +
αs−1Λs−1 = Λs. We deduce (use 1 + q̃q̃2(s−1) 6 q̃2q̃2(s−1) = q̃2s):

|σβ(α)| 6 [ψq̃ε∆q̃M q̃
s−1e

−Λs ]e(n+1)q̃2sεe(n+1)Λs = [ψq̃ε∆q̃M q̃
s−1e

−Λs ]un+1.

We now use (5.6) to obtain ‖ Jn ‖ 6
∑

α∈Rs
|σβ(α)| 6 ∆[ψq̃ε∆q̃M q̃

s−1e
−Λs ]

un+1, this completes the proof of (5.7). We let finally θ = max{q̃ + . . . +
q̃k−1, q̃2k} to get the two assertions: the function Mθε := Mk is θε-fast and
‖πj(Rn) ‖ 6 Mθεe

n(Λj+θε). �

We now prove the proposition 2.9. Recall that

(λ1, . . . , λk) = (Λ1, . . . ,Λ1, · · · ,Λj , . . . ,Λj , · · · ,Λl, . . . ,Λl),

where Λj appears kj times. We note (ei)i the canonical orthonormal basis
of Ck. If A : Ck → Ck is linear, we define

∧s
A :

∧s Ck →
∧s Ck as the

linear extension of the map L satisfying L(ei1∧···∧eis) := A(ei1)∧···A(eis)
for any 1 6 i1 < · · · < is 6 k.

Proposition 2.9. — Let R : E(ρε) → E(ρε) be a resonant bundle map
where ρε is a ε-slow function. Let η := kθ (θ depends on q̃, see proposition
5.1). There exists a ηε-fast function Hηε : X → [1,+∞[ such that for all
w ∈ Ex(ρε), s ∈ {1, . . . , k} and n > 1 :

∣∣∣ 1n log |
∧s

dwR
n
x |−(λ1+ . . .+λs)

∣∣∣ 6
1
n logHηε(x) + ηε.

Proof. — We first give the proof in the case kj = 1 for all 1 6 j 6 k

(it implies λj = Λj). Let x ∈ X and w ∈ Ex(ρε). By the remark 2.8
(subsection 2.3), the matrix of dwR

n
x in the canonical basis (ei)16i6k is

lower triangular, so we have:

dwR
n
x(ei) = ζn(i)ei +

k∑
j=i+1

ωn(i, j)ej and dwR
n
x(ek) = ζn(k)ek.

We fix 1 6 i 6 k and i+ 1 6 j 6 k. We give bounds for ζn(i) and ωn(i, j).
We have

(5.8) en(Λi−ε) 6 |ζn(i)| 6 en(Λi+ε)

because the diagonal part of dwR
n
x is equal to An

x (see remark 2.8). Recall
that πj(Rn

x) is a sum of at most Card(Rj) resonant monomials with degree
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α lower than q̃ (see the proposition 2.7). We deduce by the proposition 5.1
and ρε 6 1 that:
(5.9)
|ωn(i, j)| 6

∑
α∈Rj

‖πj(Rn
x) ‖ |α|ρε(x)|α|−1 6 Card(Rj)Mθε(x)en(Λj+θε)q̃.

Let M ′
θε(x) := Card(R)q̃Mθε(x) > 1. In the sequel, we will multiply M ′

θε

by constants depending only on k and s without mentionning it. By (5.8),
(5.9) and the inequality Λj < Λi, we get:

(5.10) |dwR
n
x(ei)| 6 M ′

θε(x)e
n(Λi+θε).

Now we focus on the coefficients of the matrix
∧s

dwR
n
x in the orthonormal

basis ei1 ∧ . . . ∧ eis
, with 1 6 i1 < . . . < is 6 k. We begin with the vector∧s

dwR
n
x(e1 ∧ . . . ∧ es) which is equal to:

(5.11) ζn(1) . . . ζn(s)e1∧. . .∧es+
∑

(i1,...,is) 6=(1,...,s)

ω′n(i1, . . . , is)ei1∧. . .∧eis .

Observe now the following estimates for (i1, . . . , is) 6= (1, . . . , s) and n > 1.
The first inequality is a consequence of (5.9):
(5.12)
|ω′n(i1, . . . , is)| 6 M ′

θε(x)
sen(Λi1+...+Λis+sθε) 6 M ′

θε(x)
sen(Λ1+...+Λs+kθε).

We obtain with the lines (5.8), (5.11) and (5.12) that for any n > 1:
(5.13)

en(Λ1+...+Λs−sε) 6 |
s∧
dwR

n
x(e1 ∧ . . . ∧ es)| 6 M ′

θε(x)
ken(Λ1+...+Λs+kθε).

We now focus on
∧s

dwR
n
x(ei1∧. . .∧eis

). The Hadamard’s inequality implies
with (5.10):

|
s∧
dwR

n
x(ei1 ∧ . . . ∧ eis)| 6 |dwR

n
x(ei1)| . . . |dwR

n
x(eis)|

6 M ′
θε(x)

sen(Λi1+...+Λis+kθε)

6 M ′
θε(x)

ken(Λ1+...+Λs+kθε).

We finally obtain the following estimates for any n > 1, where η = kθ and
Hηε is equal to the ηε-fast function (M ′

θε)
k:∣∣∣ 1

n
log |

s∧
dwR

n
x | − (λ1 + . . .+ λs)

∣∣∣ 6 1
n

logHηε(x) + ηε.

We sketch the proof in the general case, i.e., when k =
∑l

i=1 kj and
kj > 1. We may assume that the block diagonal matrix An

x is a lower
(block) triangular matrix. Indeed, for all 1 6 j 6 l, there exists a matrix
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Vj ∈ Ukj (C) such that Tn
j := Vj [πj(An

x)]V −1
j is lower triangular. The metric

property:

∀(x, v) ∈ Lj , en(Λj−ε)|v| 6 |πj(An
x)(v)| 6 en(Λj+ε)|v|

implies that the modulus of the coefficients of Tn
j are 6 en(Λj+ε), and that

the diagonal coefficients (ζ(j)
n (i))16i6k of Tn

j satisfy:

en(Λj−ε) 6 |ζ(j)
n (i)| 6 en(Λj+ε).

We thus obtain estimates analogous to (5.8). Let V be the block diago-
nal matrix (V1, . . . , Vl). The matrix Tn

x := V [An
x ]V −1 is therefore block

diagonal, with lower triangular blocks (Tn
1 , . . . , T

n
l ). The matrix Sn

x :=
V [dwR

n
x ]V −1 is also lower triangular (see remark 2.8) and its coefficients

outside the block diagonal matrix Tn
x satisfy estimates analogous to (5.9)

(the (Vj)16j6l are unitary transformations). We deduce as before that for
any n > 1:∣∣∣ 1

n
log |

s∧
Sn

x | − (λ1 + . . .+ λs)
∣∣∣ 6 1

n
logHηε(x) + ηε.

The conclusion follows from

|
s∧
Sn

x | = |
s∧
V

[
s∧
dwR

n
x

]
s∧
V −1| = |

s∧
dwR

n
x |.

�
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