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AN AXIOMATIC TREATMENT OF PAIRS
OF ELLIPTIC DIFFERENTIAL EQUATIONS

by Peter A. LOEB

Beginning with a few simple axioms, M. Brelot [6] has
developed an axiomatic setting in which many of the classical
results of the theory of elliptic differential equations can be
established. We shall use Brelot’s setting to generalize the
results obtained by H. L. Royden in [13]. These results
pertain to the classification of open Riemann surfaces and
to the existence of an isometric isomorphism from the class
of bounded solutions of one elliptic differential equation into
the class of bounded solutions of another when a certain
« majorizing » relationship exists between the two equations.

The discussion in [13] deals with the solutions of the equa-
tion Au = Pu on an open Riemann surface W. In this equa-
tion, P is a smooth nonnegative density on W, i.e., an invariant
expression which in terms of the local uniformizer z = z + 1y
has the form cdz dy, the coefficient ¢ being a nonnegative
function with continuous first derivatives. The coefficient ¢
depends on the choice of the local uniformizer in such a way
that the density P is invariant with respect to that choice.

We say that a majorizing relationship holds between the
class of solutions of the equation

(1) Au = Qu
and the class of solutions of the equation
(2) Au = Pu
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NSFGP-1988 and NSFGP-5279, and by two National Science Foundation Summer
Fellowships for Graduate Teaching Assistants.
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whenever P > Q >0 in the complement of some compact
subset A of W. If this inequality holds and ® is an open
region in W — A, then a solution k of Equation 1 and a solu-
tion k of Equation 2 will satisfy the inequality A >k in
if h >k >0 on the boundary of w. It i1s this latter form of
the majorizing relationship which can be expressed in the
axiomatic setting. The notation § > & will be used for this
relationship, where in the above example § is the class of
solutions of Equation 1 and & 1s the class of solutions of Equa-
tion 2.

In Chapter I we discuss the class of solutions of a single
elliptic differential equation. By such a class we mean a set
of functions § which satisfies the three axioms given by
Brelot in [6], pp. 61-63. These axioms are stated in Section 1.
In Section 2 we give a fourth axiom which is used to establish
a strong maximum principle for §; i.e., if § satisfies this
axiom, then a nonconstant function in § can take neither
a nonnegative maximum nor a nonpositive minimum in any
open subset of its domain. The other principal results of
Chapter I are the solution of the Dirichlet problem (Section 3),
the existence of an exhaustion by regular regions for the
domain W on which § is defined (Section 4), and the classi-
fication of §) with respect to the domain W (Section 5).

In Chapter II we consider pairs of classes § and & for which
the majorizing relationship § > & holds. We show in this
chapter that there exists an isometric isomorphism which
maps the bounded functions of & into the bounded functions
of §.

The principal statements in each section are given consecu-
tive decimal numbers, with the digits before the decimal
point indicating the section and the digits after the decimal
point indicating the order of the statement in the section.
Results are usually referred to by number alone. The notation
| is used to signify the end of a proof. ‘

I wish to express my deepest thanks to Professor Halsey
Royden, who supervised the research presented here. His
judgment and his insight have been of tremendous assistance.
I am also indebted to Professor Marcel Brelot for many
helpful suggestions.



CHAPTER 1

PROPERTIES OF A SINGLE HARMONIC CLASS OF FUNCTIONS
AND THE ASSOCIATED SUPERHARMONIC
AND SUBHARMONIC CLASSES

1. Definition and Basic Properties of a Harmonic Class.

In this section we shall review the immediate consequences
of Brelot’s axioms for what will be called a harmonic class of
functions.

Let W be a locally compact Hausdorff space which is connec-
ted and locally connected. We assume that W is not compact.
Let W denote the Alexandroff one point compactification
of W. If A is subset of W, then by A we mean the closure of
A relative to W, and if Q is an open subset of W, then by
?Q we mean the boundary of Q relative to W.

By a region  we shall mean a nonempty connected open
subset of W. By an inner region or an inner open subset of W
we shall mean a region or an open set ) with QcW.

The functions that we consider on W are extended real-
valued functions with the usual lattice ordering >. Given

two such functions f and g, we let fV g denote the function
defined by

(f V g)(#) = max (f(z), g(x))
and fA g denote the function defined by

(f A g)(x) = min (f(z), g(z)).

A functlon f is said to be nonnegative if f >0 and positive

if f(z) > 0 for every & in the domain of f. By f|S we mean the

restriction of f to a subset S in its domain. If the domain D
9
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of g i1s a proper subset of the domain of f, then we shall often
write f > g instead of f|D > g and f 4 g instead of f|D + g.

Let f be a function with domain D cW, A a subset of W,
and z, a point in D A. If B is the neighborhood system of
%o in W, then by lim sup f we mean inf( sup f(x)) and by

TEA, T>Ty wefR \rewnNDNA

lim inf f we mean sup ( inf f(x)) Note that if z, is in

TEA, T>Ty wef \zewnDdDNA
D n A and f(z,) > f(z) for all points z in a neighborhood of x,,
then lim sup f = f(z,).

TEA, T>Ty
Keeping the above definition in mind, we say that an exten-
ded real-valued function f with domain D is lower semiconti-

nuous if for every z,e D, — oo < f(x,) and lim inf f=f(z,).
€D, T> Ty
By a continuous function we mean a continuous real-valued

function. For convenience, the function which is identically
equal to the extended real number r will be denoted by r.

An increasing sequence of functions is a sequence {f,}
such that f,,, >f,,, and a family of functions directed by
increasing order is a non-empty famlly F such that for any
two functions f; and f, in F there is a third function fe J
such that f>f, V f.. The notions of a decreasing sequence
of functions and a family of functions directed by decreasing
order are similarly defined.

DeriniTioN. — Let § be a class of real-valued continuous
functions with open domains in W such that for each open set
Q c'W the set §q, consisting of all functions in § with domains
equal to Q, s a real vector space. An open subset Q of W is
said to be regular for § or regular if for every continuous real-
valued function f defined on dQ there is a unique continuous
function h defined on Q such that hle f, hlQe $, and
h>0if f>0 Moreover, the class § s called a harmonic
class on W if it satisfies the following three axioms:

Axiom 1. — A function g with an open domain QcW 1is
an element of §) if for every point x € Q there is a function
he $ and an open set w with ze wcQ such that glw = h|w.

Axtom II. — There s a base for the topology of W such that
each set w in the base is a regular inner region.
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Axiom III. — If F us a subset of q, where Q is a region in
W, and & s directed by increasing order on ), then the upper
envelope of F is either + X or a function in q.

It follows immediately from Axiom I that if & is in §, then
the restriction of i to any nonempty open subset of its domain
1s again in §

Given Axioms [ and II, Constantinescu and Cornea ([7],
p. 344 and p. 378) have shown that the following axioms are
equivalent to Axiom III:

Axiom III,. — If Q is aregion in W and {h,} is an increasing
sequence of functions in §q, then either lim h, = + ¥ or lim &,
is in §

Axiom III,. — If Q is a region in W, A a compact subset
of Q, and z, a point in A, then there is a constant M > 1 such
that every nonnegative function he g satisfies the inequality

h(z) < Mh()

at every point x in A.

Given Axiom I, it is easy to show that Axiom III is really
a «local axiom »; i.e., g satisfies the axiom for every open
set Qc W if §gq satisfies the axiom for each open set Q in a
base for the topology of W. Hence for a particular example
one only needs to establish the validity of the axiom for the
sets in such a base. Similarly, Axioms III; and III, are local
axioms. Also note that if W has a base for its topology consis-
ting of regular open sets, then it has a base consisting of regular
1nner regions.

Axioms III, ITlL;, I, all have as an immediate consequence
the following minimum principle :

Prorosition 1.1. — If Q is a region in W and h is a nonne-
gative function in $gq, then either h(z) > 0 for every zeQ or
h=0. _

Using this minimum principle, we can establish a new
criterion for an open set to be regular which is easier to verify
than the standard criterion given above.

Prorosition 1.2. — If § satisfies Aziom 111, 111, or II1,,
then an open set Q is regular for § if
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(1) for every continuous real-valued function f defined on dQ
there is a continuous function h defined on Q such that

RpQ=f  and h|Qe 8,
and
(2) there ts a function hy in g such that inf hy(z) > 0
E2-10)

Proof. — We shall assume that Q is a region and show that
if g is a continuous function on Q with g|Qe § and g >0
on dQ, then g >0 in Q, given h; € Ho. The proposition fol-
lows immediately from this fact.

Assume that g takes a negative value in {, and let
%y = inffa: ah, + g > 0}. Clearly, @, > 0 and ayh, + g>0
For each 8 such that 0 << << o, let

Kg= §fxeQ: (Bh + g)(z) < 04.

Each Kgis a compact subset of Q, and Kg < K, when §, > §3,.
Therefore there is a point z,e n K@, and (aoh; + g)(@o) = 0.
By 1.1, g + ah, = 0. Since this is impossible, we conclude
that g >0. |

As an example of a harmonic class of functions we have the
C2-solutions of the elliptic differential equation

(1) Zaik

—i—E ——{—ch—O
bmi

on a region in Euclidean n-space R", where Xa;zz; is a posi-
tive definite quadratic form and the coeflicients of the equa-
tion satisfy a local Lipschitz condition. (See Chapter vir
of [10].)

Throughout this chapter, § will denote an arbitrary har-
monic class of functions on W, and throughout the rest of
this section Q will denote an arbitrary set which is regular
with respect to H. Let C(dQ) denote the set of continuous
functions on d2Q. For each fe C(dQ) there is by definition a
unique continuous function h with domain Q such that
hloh = f and hA|Q is in §. We shall denote R|Q by H(f, Q)
or simply H(f). For each z € Q, it is easy to see that H(f, Q)(x)
as a function of f, is a bounded positive linear functional
on C(0Q). Therefore, there is a finite positive Radon measure
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o(z, Q) defined on dQ such that H(f, Q)(z) = ﬂgfdp(x, Q)
for each fe C(2Q). ‘

DeriniTioN. — Let f be an extended real-valued function on
Q. We say that f is integrable with respect to § on d() or stmply
that [ is integrable if f is integrable with respect to p(z, Q) for
each point xe(). Assume that [ is integrable on (), and let
H(f, Q) be the function on () which satisfies the equation

H(f, Q)(z) = [ f do(z, Q)

at each point x Q. We call H(f, ) the §-extension of f in Q.
The symbol H(f) is also used to denote the $-extension of f.

It is clear that for each z in Q, H(f, Q)(z) is a positive
linear functional on the vector space of integrable functions
on (2. Using Axiom III, it can be shown (see [6], p. 65) that
a function f on d( is integrable if it is integrable with respect
to p(z, Q) for some point z in each component of Q and that
the $)-extension of an integrable function is in §). In parti-
cular, if f is a lower semicontinuous function on dQ and
is the family of all continuous functions g on 20 with g </,
then f is integrable if and only if the upper envelope A of
the set {H(g, Q): ge§l is finite at some point x in each
component of (. In this case, & is in § and H(f, Q) = h.
It follows that if Q is a regular region and f is an integrable
lower semicontinuous function on 30, then f(z) is not identi-
cally equal to 4 o in any open subset of 2(. Moreover, H(f)
is positive in Q if f>0 and f=£0.

To conclude this section we consider the behavior of -
extensions at the boundary of Q.

Prorosition 1.3. — Let f be an integrable function on L,
and let z; be any point on dQ. If f is bounded above, then

lim sup H(f) < lim sup f.

rze(), >, ZED, T>,

If f is bounded from below, then
lim inf f<lim inf H(f).

TEV(), >, z€Q), T>x,
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Proof (from [6]). — Let r be any real number such that

lim sup f<<r. There is a continuous function ¥ on 2Q such
TEJQ, T>x,

that ¥ > f and ¥(z) <r in a neighborhood of z,. Since
H(f) < H(¥), we have

lim sup Hf) < lim HW)<r.

z€(), T>x, zEQ), T,

The rest of the proof is clear. |

2. The superharmonic and subharmonic classes associated with .

In this section we shall review the immediate consequences
of Brelot’s local definition of the superharmonic and subhar-
monic classes § and § associated with §. We shall also give
a new axiom which is used to establish a maximum principle

for 9.

DeriniTiON. — We say that a lower semicontinuous function
¢ with an open domain Q) ¢ W belongs to the class § if

(1) ¢(z) < 4+ o for some point z in each component of (),
and

(2) for every point xye(Q such that v(zy) < + o and for
every neighborhood w, of x, with w,c(, there is a regular
region w with 2, € w c ® c w, such that v is integrable on dw
and

(%) > H(p, ®)().

We say that an upper semicontinuous function u belongs to
the class § if -u belongs to the class §. We call § the super-
harmonic class associated with § and § the subharmonic
class associated with §. The symbol g denotes the functions
in —.@— with domain Q and $q denotes the functions in § with
domain Q. A potential in an open set () is a nonnegative func-
tion P in §q such that if he Ho and h <P then h<0.

The results of this section will be given for the class §;
corresponding results hold for §. Clearly, $<cHn H. Let Q

be an open subset of W, ¢ a function in 9o, h a function in
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Ho and ¢ a nonnegative constant; then h -4 ¢ and cv are in

$Ho. Moreover, we have the following generalization of Pro-
position 1.1:

ProrositioN 2.1. — Let Q be a region in W and let v be a
non-negative function in §)q. Then either v = Q or o(z) >0
for all z Q.

Proof. — Assume that ¢ == 0 in Q. Let B be a component
of the set {zeQ: ¢(z) > 0}. If B 5~ Q, then there is a point
zo on 3B n (), and ¢(z,) = O since ¢ is lower semicontinuous.
In this case there is a regular region ® with r,ewcmc()
and B ¢ » such that ¢ 1s integrable of dw and

9(mo) = H(p, 0)(2,).

Since B is connected, the boundary of w has a nonempty
intersection with B. Therefore, ¢[ow =0, and thus

0 < H(p, w)(#@) < #(20)-
But ¢(z,) = 0. It follows from this contradiction that B = Q. |

CoroLrary 2.2. — Let Q be a regular open subset of W
and let ¢ be a lower semicontinuous function defined on Q such
that o[dQ > 0 and ¢|Q is in Hq. Then ¢ >0 in Q.

Proof. — The proof is essentially the same as the proof
of 1.2.

Using the above corollary, we obtain the following theorem
which generalizes the theorem on page 72 of [6].

Tueorem 2.3. — Let Q be a regular open subset of W. Let ¢
be a lower semicontinuous function defined on Q such that
9|Q is in §. Then ¢ is integrable on 3Q and ¢ > H(e, Q) in Q.

Proof. — If g is a continuous function on dQ with g < ¢,
then by 2.2, H(g, Q) < ¢ in Q. The theorem follows from this
and the fact that ¢ is finite at some point z in each compo-
nent of Q. |

CoroLLary 2.4. — If ¢ is a function in §, then ¢ is not
udentically equal to + oo in any open subset of its domain.
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Proof. — Assume that there is a nonempty component
B of the interior of the set ¢~ [4 oo]. Then there is a regular
region o the closure of which is contained in the domain of ¢
such that dwnB =@ and ¢ i1s finite at some point zew
(whence ¢|we §,). By 2.3, ¢ is integrable on dw and yet
9 = -+ oo on an open subset of dw. Since this is a contra-
diction, the corollary follows. |

CororrLary 2.5. — If ¢ e §, then the restriction of ¢ to any
nonempty open subset of its domain is again in §. Conversely,
if v is a function with open domain QO < W, and if the restriction
of ¢ to some neighborhood of each point xe(Q is in §, then
ved.

CororLARY 2.6. = Hn §.

If ¢ is a function in § and Q) is a regular open set the closure
of which is contained in the domain of ¢, then by 2.3 and 2.5,
¢ is integrable on d(2 and ¢ > H(y, Q). -

If Q is any subset of W and ¢, and ¢, are functions in g,
then it is easy to see that ¢, /\¢, 1s in 5@ Using 2.3 one can
show that ¢; 4 ¢, i1s not identically equal to -+ o in any
component of Q, whence it follows that ¢, + ¢, is also in Hq.
It also follows from 2.3 that if  is a region and 7 is a family
of functions directed by increasing order on Q with 7 c §q,
then the upper enveloppe of 7 is either 4 X or again in Hq.
Moreover, we have the following easy to prove consequence

of 1.3 and 2.3:

Prorosition 2.7. — Let Q be an open subset of W and let
Q, be a regular open set with Q, < Q. Given a function ¢ in
Da, let v, be the function which is equal to ¢ in Q — Qy and
H(p, Q) in Qp. Then ¢ > ¢, and ¢, is in Ho.

Using a proof similar to the proof of 1.2, Constantinescu
and Cornea ([7], p. 375] have established a generalization of
2.2 which is given below by Proposition 2.9. However, in proving
that generalization one should note the following fact:

Lemma 2.8. — Let Q ¢ W be an open set on which there exust
two functions V and ¢ in Ho. If B= {2 Q: o(z) <0} and
B 5= @, then V s finite at some point x € B.
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Proof. — Given z, e B, there is a regular region » with
Tpewcwcl), and

H(s, o)(z) = [ o do(ar, 0) < o(w) < 0.

Therefore p(z,, ®)(B ndw) > 0, but since V is integrable on
2, p(ay, @)(VI[+ ®]ndw) = 0. |

Prorosition 2.9. — Let QcW be an open set on which
there exists a function V e g with inf V(z) >0 If ¢ is a func-
ze)

tion in o such that lim inf ¢ > 0 at dQ, then ¢ > 0 in Q.

Proof. — Assume that ¢ takes a negative value in ( and let
% =inffa:a >0, aV+4 ¢ > 0}{. By 2.8, ay > 0. It follows
(see proof of 1.2) that oV 4+ ¢ =0 which is impossible.
Therefore, v >0 in Q. |

Cororrary 2.10. — Let Q ¢ W be an open set on which there
exists a function Ve Hq with inf V(z) > 0. Then Q is regular
rel)

if for every continuous f on dQ there is a continuous h on Q
such that hjoQ = f and h|Q e §.

If 1 is in Hw, we can apply the following consequence of 2.1
to every region QcW:

Prorosition 2.11. — Let Q be a region in W, and assume
that 1 ts in q. Let a and b be constants.

(i) If ¢ is in Hq and ¢ > g, then either v =g or v(z) > a
for every ze Q.

(1) If u is in Hq and u < b, then either u=15 or u(x) < b
for every xeQ. ~

(ii1) A nonconstant function in q takes neither a mazimum
nor a minimum value in Q.

The assumption that 1 is in §w is too restrictive for our pur-
poses. We can obtain a result similar to the above proposition
for every region Q ¢« W by assuming that §) satisfies the follow-
Ing axiom :

Axiom IV. — There is a base O for the topology of W such
that each set w € O is a regular inner region with 1 > H (1, ).
10
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The assumption that §) satisfies Axom IV is equivalent to
the assumption that 1 is in Hw. An example of a harmonic
class of functions which satisfies Axiom IV is given by the
class of solutions of Equation 1 (following Proposition 1.2)
in Section 1 when the coefficient ¢ is nonpositive. (See [8],
pp. 326-328.) If § satisfies Axiom IV, i.e.if 1 € Hw, then the
following theorem 1is applicable to every region in W. In

this case we shall refer to the theorem as the maximum prin-
ciple for §.

Taeorem 2.12. — Let Q be a region in W, and assume that
1 is in Hw. Let a and b be constants with a << 0 < b.

(i) If ¢ is in Hq and ¢ > g, then either v = g or o(x) > a
for all zeQ.

(i) If u is in Hq and u < b, then either u = b or u(z) < b
for all z Q.

(ii1) A nonconstant function in q takes neither a nonnegative
mazimum value nor a nonpositive minimum value in Q.
- Finally, as an easy to prove consequence of 2.9 we have the
following result:

Prorosition 2.13. — Let Q be an open subset of W and

let v be a nonconstant function in $gq. Let ¢ be a real number
such that ¢ < lim inf ¢ for each point z, on 3Q. Then ¢(z) > ¢

rzEQ, T>Ty
)

for every xeQ if 1 is in Hg or if 1 is in Hg and ¢ < 0.

3. The Dirichlet problem.

Throughout this section, (1 will denote an open subset of
W. Brelot [6] has established a criterion for testing the regula-
rity of points on 20 n W using the assumption that Q is an
inner open set with a positive potential defined on Q. In this
section we establish a similar criterion without making this
assumption. We do, however, assume that there 1s a function

Vin §q with inf V > 0. Thus we may apply 2.9 and 2.10 to Q.

rzEQ
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DeriNitioN. — Let f be an extended real- valued function
on ). We denote the set

gv e Ha:lim inf 0 > f(z,)  forall T € OQg

TEQ, T>T, >—o0

by the symbol V(f, Q) or simply V(f), and we denote the set

%ue Ho: £1en$ iligo u \/+wa forall z, e ng
by the symbol U(f, Q) or U(f). If V(f)#~2 and U(f)5~D, then we
denote the lower envelope of the functions in V(f) by H(f, Q) or
simply H(f) and we denote the upper envelope of the functions
in U(f) by H(f, Q) or H(f). We shall call H(f, Q) the upper
H-extension of f in Q and H(f, ) the lower $H-extension of f
in Q. If H(f) = H(f), then f is said to be resolutive on ).

If fis a function on ?Q with ¢« U(f) and u<U(f), then
¢ — uis in Hg and lim inf (¢ — u) > 0 at 2Q. By 2.9, ¢ > u,
and thus H(f) > H(f). It is easy to see that

H({f) = — H(— f).

If g is a bounded function on 2Q, then since 3V e Hg with
inf V> 0, we have U(g) = @ and U(g) * @.

zel)

Prorosition 3.1. — Let f be a function on dQ such that
V(f) # & and U(f) == @. Then H(f) and H(f) are in Hg.

Proof. — We need only show that H(f)e §. For each
uel(f), u < H(f). Thus H(f) is finite on a dense subset of ().
If o is a regular region with ® <, then by 2.7 we have

H(f, Q)(=) =Ueqi)§}f9) H(v, w)(x) for each zew. By Axioms I

and III, H(f,Q)e . |
If Q 1s regular and f is an integrable function on 2Q with
V(f) # & and U(f) =~ &, then one ‘can show that

H(f) = H(f) = H(f)

(See [6] pp. 84-85). We also have the following result which
is due to Brelot:
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Taeorem 3.2. (ComparisoN THEorREM). — Let f be a func-
tion on 3 such that V(f) =@ and U(f) 5= @. Let » be an open
subset of Q, and let F be the function on dw such that F = f
ondw ndQ and F = H(f, Q) on 2w n Q. Then H(f, Q) = H(F, )

in w.

Proof. — (from [6]) : Given vy in V(F, w), let ¢, = ¢y AH(f, Q)
in © and ¢; = H(f, Q) in Q — ©. For each

veUf, Q), V1+"'_ﬁ<f7 Q) « (f, Q),
whence ¢; + ¢ — H(f, Q) > H(f, Q). For any xeQ and

Ve >0, 3veV(f, Q)
such that ¢(z) — H(f, Q)(z) <e Thus ¢y > H(f,Q) in o,
whence H(F, o) > H(f, Q). Clearly H(F, o) < H(f, Q). There-
fore, H(f, o) = H(f, Q) in w. |}
If Q is a regular open set and f is a bounded function on 2Q,
then a proof similar to the proof of 1.3 shows that for each
Z € 2

(1)
lim inf f<lim inf H(f) <lim sup H(f) < lim supf.

z€J, T>x, ze, x>, zE, T>x, zEJQ, T,

On the other hand, if Equation 1 is valid for every z, e 2(}
and every bounded function on dQ, then for every continuous

function f on 2Q we have H(f) = H(f) and gl)im H(f) = f(=,)

at each x, € Q. Thus in this case () is regular and the §-exten-
sion of each continuous function f i1s equal to H(f) and H(f).
With this in mind we make the following definition :

DeriniTION (). — Let z, be a point on dQ. We say that x,
is a regular point for Q with respect to § or simply that z, is
regular if Equation 1 holds for every bounded function f on dQ.

The second inequality in Equation 1 is always true since

H(f) < H(f). The validity of the first inequality in Equation 1

(*) Note that unlike the standard definition of regularity at a point, this definition
does not assume the resolutivity of continuous functions on 2Q.
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follows from the validity of the last inequality since
H(f) = — H(— .

Therefore, a point 7, €d( is a regular point if and only if
for every bounded function f on 2Q we have

lim sup H(f) < lim sup f.

ze, T, €I, T>T,

Clearly, Q is regular if and only if each point z,edQ is
regular. If Oy is a component of Q and z, is a point on 3,
then z, is regular for ), if z, is regular for (). We next establish
a criterion for testing the regularity of points on 2.

DeriniTiON (2). — Let z, be a point on 3. By an §)-barrier

or a barrier for Q at x, we mean a positive function b in §
such that b is defined in the intersection of () and an open neigh-

borhood of zy and lim b= 0.

ze(, x>,

Tueorem 3.3. — Given z,€d3Q n W, if there is a barrier b

for Q at z, and a function V, e Ha bounded in a neighborhood
of xy with inf Vo> 0, then z, is a regular point for (.

Proof. — Let f be a bounded function on 2, and let

¢ = lim sup f. Let ¢ be any positive constant. Since z, is
z€d, T>x,

contained in a regular inner region, there is a function he §
defined in a neighborhood of 2z, such that h(z,) = ¢ + ¢. Let
o be a regular inner region containing z, such that & is defined
on @, bis defined on @ nQ, A > f on dQ n &, and V, is bounded
on ®nQ. Let F=f on 3(Qnw)ndQ and F = H(f, Q) on
3(Qnw)nQ =dwnQ; F is bounded. If 2w nQ = @, then
heO(F, Q n ®), whence

lim sup H(F, Qnow) <c -+«

TEQ, T>T,

If ownQ=£0, let M be a constant > su]r)m (|F(z)] + |h(2)]).
TEIW

(3) Following Brelot, we have deviated from the classical definition of a barrier

by omitting the assumption that lim inf b > 0 for every point z; 5% 2 on 2Q.
z€Q1, >,
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There is a compact subset C of dw n Q such that if
D= (dwnQ) — Candyp

is the characteristic function of D ondw then H(yp, w)(z,) < —1\—84—
In this case, setting

M
T=t+ 0w

zeC

b + MH(X_D, (1)),

we have TeO(F, Qnw) and lim sup T < ¢ + 2¢. In either

rE(), T>T,

case, therefore, lim sup H(f, Q) << ¢ + 2¢. Since ¢ is arbitra-

TE(), T>T,

rily chosen, z, is a regular point for Q. |

In establishing a partial converse of the above theorem,
we shall need to consider the possibility that a regular inner
region may have only one point on its boundary. For example,
let W be the real line together with the point + oo under
the order topology, i.e., a base for W consists of intervals of
the form {x:a<:v<b§ and {z: a <<z <+ o} where a
and b are finite. Let fbe in § if f is a hnear function az + §
on an open subset of W — {4 oo} orif fis a constant func-
tion ¢ on an open subset of W. It is easy to see that § is a
harmonic class of functions. Moreover, every inner region
which contains the point + o 1s regular and has only one

point on its boundary. Nevertheless, we have the following
result for the general case:

ProrositioN 3.4. — Let Q be an open subset of W, and let
xo be a regular point for Q on dQ n W. Then there is a bounded
barrier b for Q at z, with the domain of b equal to Q if either
of the following conditions holds :

(1) Q has at most a countable number of components, and if
Q, is any component of Q, then either 3Q, = {x,} or there is a
point x; == xy on ¥Q, such that z; is regular for Q,.

(1) There is a countable base for the neighborhood system
of zo in 3Q, and if Qq is any component of (, then there is a point
x, = xy on 3y such that z, is regular for O

Proof. — Assume first that () is a region. If there is a regular
point z; =~ z, on 3, then by the Urysohn lemma there is a
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continuous nonnegative function f on ?Q such that f(z,) = 0
and f(»,) = 1. Clearly, H(f, Q) is a barrier for Q at z,. If
0Q = {z,}, then Q is regular. Let » be any regular inner
region containing z, such that Q — @ 5= 3. Then

0w = (3w n Q) u (dw n (W — Q)).
Let ¢ =2 sup H(l, Q)(z). It is easy to see that 3d <0

redwNQ —_
such that if g=c¢ on dwnQ and g=4d on dwn (W — Q)

then H(g, o)(z,) = 0. Let 6 = H(1, Q)AH(g, ®) in wnQ.
Then b is a barrier for Q at x,.
Assume that () satisfies condition (i). In each component

0, of Q there is a positive function b, = §g, such that bngi
n
and lim b,=0if z,e0Q,. Set b = b, in each Q,. Then b

TEQ,, T>Z,
is a barrier for Q at z,.

Now assume that Q satisfies condition (ii). A slight varia-
tion of the Urysohn lemma shows that there is a continuous
function f on ?Q such that f(z,) =0 and f(z) > 0 for all
x=#x, on 32 By 3.2, H(f,Q) is positive in Q. Since
lim H(f, Q) = 0 at =, H(f, Q) is a barrier for Q at z, |

R.-M. Hervé ([10], p. 443) has shown that if Q, is a compo-
nent of Q and Z is a point on 3, n W, then every neighborhood
of £ contains at least one point z, € 3Q, such that z, is regular

for Q, ().

4. The Existence of an Exhaustion of W by Regular Inner Regions.

DeriniTioN. — An exhaustion of W by inner regions is a
family R of inner regions such that if Q, and Q, are in R then
there is a region Qe®R with Q; uQ, cQ, and W = U Q.

QeR
We shall show in this section that there 1s an exhaustion of

W by regular inner regions if there is a positive function
iIl gw.

(®) The proof in [10] assumes the existence of a positive potential on 50, but that
assumption may easily be eliminated. (See the proof of 4.1.)
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DeriniTioN. — We shall call a nonempty compact subset A

of W an outer-regular compact set if there exists a barrier for
W — A at each point x on dA.

The first proposition shows that each point ye W is con-
tained in the interior of an outer-regular compact set. The
proofs for this proposition and corollary 4.2 are similar to
the proofs of the corresponding results given by R.-M. Hervé
in [10] (pp. 439-440). We do not, however, assume the existence
of a positive potential on W.

ProrositioN 4.1. — Let D be a compact subset of W, and
assume that there is a regular inner region Q containing D.

Then there is an outer-regular compact set A with nonempty
intertor A° such that Dc A°c A c (.

Proof. — Let Q; and (), be regions such that
DCQlcﬁlcgz‘:ﬁzCQ.

Leth = H(1, Q),andlet G = fve Ha: ¢ > 0 and ¢|Q; > h|Q,}.
Let P be the lower envelope of G (*). If f=0 on dQ and f=h

on 3Q;, then P =H(f,Q — Q,)in Q — Q,. Therefore,
P|(Q — Q)

is in § and lim P = 0 at Q. If » is any regular region with

®cQ and if veG, then ¢>H(y,w) = H(s, ), whence

P > H(P, o). Since P(z) > 0 in (Q;, P(z) > 0 in Q. (See proof
P(z)

of 2.1). Let « = min —=- Clearly « > 0. Setting A equal
ze00, h(2)

to the compact set
Qyu fzeQ:P(z) > ah(z)},

we see that the restriction of ah — P to Q — A is a barrier
for W — A at each point  on 2A. |

CoroLLARY 4.2. — Let Qg be a région in W, and let D be
a compact subset of (). Assume that there is a positive function

(%) In the notation of [6], P = (Rf)q.
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V in g, Then there is a regular inner region Q with
DcQcQcQ,.
Proof. — Let Q, and (), be regions such that
DcQcQcQecl,cQ,.

It follows from 4.1 that there are a finite number of outer
regular compact sets A;, 1 = 1, ..., n, such that

szan_JA}’cL:JAicW-—QI.

Let Q be the component of Q, — U A, which contains Q,.
Then by 3.3, Q is regular. i=1

As a corollary of 4.2 we have the fact that there is an exhaus-
tion of W by regular inner regions if there is a positive func-
tion in Hw.

Tueorem 4.3. — Let A be a compact subset of W, and let R
be the family of all regular inner regions Q which contain A.
If there is a positive function in w, then R is an exhaustion

of W.

CoROLLARY 4.4. — If there is a positive function in Hw,
then every compact set is contained in an outer-regular compact
set.

5. $-measures and the Classification of £.

Throughout this section we assume that § satisfies Axiom
IV, that is, that 1 is in §w. Given this assumption, we distin-
guish between two types of harmonic classes on W. If 1
is not in Hw, then § is said to be a hyperbolic harmonic class
on W if there are nonzero bounded functions in §w, and § is
said to be a parabolic harmonic class on W if there are no
nonzero bounded functions in Yw. If, however, 1 is in Hw,
then there 1s always a trivial nonzero bounded function in
$Hw, namely 1. In this case we take an outer-regular compact
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subset A of W and define § to be hyperbolic or parabolic
on W depending on whether the upper $-extension of the
function which is equal to 1 on dW and Q on dA is positive in
some component of W — A or identically equal to 0. We
shall show that this classification of §) is independent of the
choice of A and that it is equivalent to the classification in
terms of the existence of a nonzero bounded function in Hw
when 1 ¢ Hw. We shall also show that if 1 € Hw, then there is
a positive potential on W if and only if § is hyperbolic.

We first define four functions in § which play a special
role in defining the classification of §. They will also be used
extensively in Chapter 1.

DeriniTiON. — Let A be an outer-regular compact subset
of W.

(1) By the $)-measure for W, H(W), we mean the upper
§H-extension in W of the constant function 1 on dW.

(i) By the §-measure for W — A, HW — A), we mean the
upper $-extension in W — A of the constant function 1 on
d(W — A).

(i11) By the §-measure of dW for W — A, H(dW, W — A),
we mean the upper $-extension in W — A of the function
which is equal to 1 on W and Q on dA.

(iv) By the §)-measure of dA for W — A, H(dA, W — A),
we mean the lower -extension in W — A of the function
which is equal to 1 on dA and 0 on dW.

Since A is an outer-regular compact set, H'W — A) and
H(®A, W — A) tend to 1 at dA and H(dW, W — A) tends to
0 at dA. Thus H(W — A) and H(dA, W — A) are positive in
W — A. Moreover, if t is the function on 3(W — A) such
that t = 0 on dW and ¢t = 1 on dA, then since

lim inf HRA, W — A) >0
at dW we have HPA, W — A) = H(¢t, W — A)=H(t, W — A).

That is, ¢ is resolutive on 3(W — A). A similar statement is
true for HW), H'W — A) and HOW, W — A).

The following proposition establishes another method of
obtaining the four §-measures defined above:
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Prorosition 5.1. — Let A be an outer- -regular compact
set in W, and let & be any exhaustion of W consisting of regular
inner regions  which contain A. Then

(i) H(W) is the lower envelope of the family {Fg: Qe®{,
where for each Qe R, Fo=H(1, Q) in Qand Fa=1 in W — Q.

(ii) H(W — A) is the lower envelope of the family {Gq: Q e R Y,
where for each Qe®R, Go=H(l, Q —A) in Q — A and
Gog=1in W — Q.

(1) HOW,W — A) s the lower envelope of the family
§Sq: QeR{, where if sg=1 on 2Q and sg =0 on dA for
each Qe®R, then Sg = H(sg, Q — A) in Q — A and Sg=1
in W — Q.

(1v) H(dA, W — A) is the upper envelope of the family
{Tq: QeRY{, where if tg = 0 on 2Q and tg = 1 on dA for each
QedR, then Tg=H(ig, Q — A) in Q — A and Tg=10 n
W — Q.

Proof. — We shall prove (ii1); Statements (i), (i1) and (iv)
can be proved in a similar fashion. Let s be equal to 1 on oW
and 0 on dA. For each Q e®, Sg is in V(s, W — A). Let S be

the lower envelope of the functions Sg. Since

H(OW, W — A) = H(s, W — A),
S > HOW,W — A).

On the other hand, the set §{Sg: Qe®R, Q>0 is a family
of functions directed by decreasing order in Q; — A for each
Qo eR. Hence S is in §. Furthermore, 0 < S <1 and S
tends to Q0 at dA. Therefore, for every function

veVUs, W — A), v > S.
We therefore have ‘
HOW,W — A) =H(s, W — A) >,
and thus HoOW, W — A) =S, |

CororLrary 5.2. — Let A be an outer-regular compact set

in W. Then HW — A) = HpA, W — A) + HOW, W — A).
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Proof. — Let & and the functions Gg, Sg and Tq be given
as in 5.1. The corollary follows from the fact that for each
Qin R, Gg=Sg+ Tq. |

If the constant function 1 is in §, then H(W) =1 and
H(W — A) = 1. Even if { is not in §), however, the §)-mea-
sures H(W) and H(W — A) have many properties which the
function 1 would have if it were in §). These properties are
extremal properties in the sense that these §)-measures are
the largest or smallest functions which satisfy certain inequa-
lities. We summarize some of the extremal properties of §-mea-
sures in the following proposition. With the exception of
Theorem 5.8 and its corollary, the remaining propositions of
this section are statements in the axiomatic setting of the
corresponding results established for Riemann surfaces by

H. L. Royden in [13] (Propositions 1-4, pp. 7-9).

Prorosition 5.3. — Let A be an outer-regular compact
set in W, and let o be a nonnegative constant. If h is a function
in Hw, then

(1) h < g—h < aHW);
(1) h< el — HW)) —=h <0
If h is a function in Yw-_a, then

) A< a=>h<aHW — A);
(iv) h<aandlimsup h <0 at

A = h < aHW, W — A);
(v) h>0 and lim inf h > a at

oA =>h > aH(dA, W — A).

Proof. — Statement (i) follows from the fact that if a=2h < 1,
then a~1h < ¢ for each function ¢ in V(1, W), whence

a* h < H(L, W) = HW).
Statements (iil), (iv) and (v) are proved in a similar way.
By (1), h + aHW) < & = h + aH(W) < «H(W). Therefore,
Statement (ii) follows from (i). |

We shall use the § measure H(oW, W — A) to classify §

on W. To do this, however, we need the following result:
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Prorosition 5.4. — If HOW, W — A) =0 for some
outer-regular compact set Ay, in W, then HOW,W — A) =0
for every outer-regular compact set A in W.

Proof. — Let A be any outer-regular compact set in W,
and let D = A v A,. Then D is also an outer-regular compact

set. If ¢ is any function in Hw_,, such that lim inf ¢ > 1 at
W and lim inf ¢ > 0 at 2A,, then lim 1inf ¢ > 0 at each
point z, on dD. Hence, eEW—=D, o>

H(OWa W — D) < H(OWa W — AO) = Q’

ie., HoW, W — D) = 0.
Since HOW,W — A) <1 and lim H(OW,W — A) =0 at
A, HOW,W — A)(z) <1 for each ze W — A.

Let m = sup HOW, W — A)(=).

reD—A
Clearly, m << 1. We shall show that HoW, W — A) < m
imn W — A. .
If ¢ is any function in w_p such that lim inf ¢ > 1 at OW

and lim inf ¢ > 0 at oD, then HOW,W — A) < m + (1 — m)¢
in W — D. Therefore,

HEW,W — A) <m + (1 — m) HoW,W — D) =

in W — D. It follows that HOW, W — A) < min W — A,
By Part (iv) of Proposition 5.3 we have

H(W, W — A) < mH(W,W — A).
But m <<1. Therefore HOW,W — A) =0. |

DeriniTioN. — Let A be an outer-regular compact set in W.
The harmonic class §) is said to be hyperbolic on W if

HOW, W — A)=£0
and parabolicon W if HOW, W — A) = (.

As we noted before, we cannot classify § on W in terms of
H(W) being positive or equal to Q because H(W) = 1 whenever
1 e $. We do, however, have the following proposition for the
case that 1 is not in Hw:
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Prorosition 5.5. — The following statements are equivalent
if the constant function 1 is not in Hw:

(1) & is parabolic on W.
() H(W) = 0.
() There ts no nonzero bounded function in Hw.

(1v) 1 is a potential.

Proof. — We show first that (1) <= (11), Let A be any outer-
regular compact set in W, and assume that HoOW, W — A) = 0.
Since H(W)(z) << 1 for all points # in W, the maximum m
of H(W) on A is less than 1. Let ¢ be any function in EW—A
such that lim inf ¢ > 1 at ®W and lim inf ¢ > 0 at dA. Then,
HW)<m+ (1 — m)y in W — A, whence

HW)<m+ (1 — m) HoW,W — A)=m

in W — A. Since we also have HW) <Cm in A, it follows
from part (i) of Proposition 5.3 that H(W) << mH(W). But
m < 1. Therefore H(W) = 0.

Now assume that H(W) = (0, and let A be any outer-regular
compact setin W. If ¢ 1s a function in U(1, W), then liminf ¢ >0
at dA. Hence

HeW, W — A) < H(W) = 0.

Thus (1) <= (11).

If h is a function in Hw such that — M<Ch M for some
constant M, then |h| << MH(W). Thus we have (i1) = (iiz).
Clearly, (i11) = (12). By part (1) of Proposition 5.3, H(W) is
the greatest minorant of 1 in Hw. Thus (i) <= (iv). |

The next proposition is an extension of the maximum prin-
ciple for the case that § is parabolic on W.

Prorosition 5.6. — Let Q bé a region in W such that Q =W,
and let C = 3Q n W. Let h e Hg be a function which is bounded

from above, and let a be a nonnegative constant such that

hm suph << a

ze, T>x,

at each point 2o« C. Then h < a in Q if 8 is parabolic on W,
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Proof. — By 4.1 there exists an outer-regular compact
set A with AcW — Q. The fact that § is parabolic on W
implies that H@W, W — A) = 0. Let M be an upper bound

for h. Let ¢ be any function in Hw_, such that lim inf ¢ >1
at dW and lim inf ¢ > 0 at dA. Then

lim inf My 4+ a —h) >0

ze(Q), T>T,
at each point z, on d2Q. Hence, M¢p > h — « in (), and thus
h—a < MHOQW, W — A) = 0.
Thus h << a in Q.

We next establish an extremal property of the §-measure
H(®A, W — A) for the case that H is hyperbolic on W.

Prorosition 5.7. — Let A be an outer-regular compact
set in W, and let h be a function in Hw such that

hMHPA, W —A) in W—-A

for some positive constant M. Then h < 0 in W if § ts hyper-
bolic on W.

Proof. — Let m = max (0, sup h(x)) Without loss of

rEA
generality we may assume that m <M. Now

MH(A, W — A) — h >0

m W — A and lim inf (MHGA, W — A) —hA)>M — m at
dA. Therefore,

MH(OPA, W — A) — h > (M — m) HoA, W — A)
by Proposition 5.3, Part (vi). Hence
h<mH (0A, W — A)

mW—Aand h{m in W.
Assume that m 5= 0. By 5.2,

HW — A) = HOW, W — A) 4+ H(pA, W — A),
and by assumption H(OW, W — A) =£0. Therefore,
H(A, W — A) =£1.
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Since h << mH (A, W — A) in W — A, h=~m in W — A,
Thus h(z) << m for all z in W and in particular for all z in A.
The restriction of & to A takes its maximum value on A and
that maximum value is less then m. But then m = 0. It
follows from this contradiction that m = 0 and h < 0in W. |}

If 1 ¢ $Hw, then it follows from Part (ii) of Proposition 5.3
that 1 — H(W) is a positive potential on W. On the other
hand we have the following result for the case that 1 is in Hw:

Tueorem 5.8. — Assume that 1 vs in Hw. Then there is a
positive potential on W if and only if § is hyperbolic on W.

Proof. — Let A be an outer-regular compact set. If § is
hyperbolic on W and P is the positive function in §w such
that P=1 in A and P= H(®A, W — A) in W — A/ then
by 5.7, P is a potential on W.

Now assume that § is parabolic on W. Also assume that
there 1s a positive potential F on W. Since 1e Hw, we may
assume that F i1s bounded; e. g., replace F with F A 1. Let
f=F on 2A and f=0 on dW. Clearly, F > H(f, W—A)
in W — A, Let « = min F(z); then « > 0. At each z, €2A
we have ceh

lim inf T(f, W — A) > lim inf f>a

TEW—A, x>, TEVA, T> T,
Thus by Part (v) of Proposition 5.3,
H(f, W — A) > «HppA, W — A).

But since HoW,W — A) =0, HPA, W — A)=1 by 5.2.
Therefore F > a in W which is impossible. Thus there is no
positive potential if § is parabolic on W. |}

CororLary 5.9. — Assume that § is parabolic on W and
that 1 € Hw. Then every lower bounded function in w and every
upper bounded function in §w is a multiple of 1.

Proof. — We need only prove the corollary for a positive
function V in 35“’- It 1s easy to see that V has a greatest nonne-
gative minorant h in Hw. Since V — h is not a positive poten-

tial, V = h. Moreover, we have shown that for every § > 0,
1ABV is in Hw. It follows that V 1s a multiple of 1. |



CHAPTER 1II

PROPERTIES OF PAIRS OF HARMONIC CLASSES ON W

6. The Harmonic Class V-1H.

Throughout this section, § will denote a harmonic class of
functions on W. Let V be a positive continuous function on W.
We denote the set of quotients {A/V: he §}{ by the symbol
V1§ and the set {h/V: he o} by V1Hq. It is well known
that V=18 is a harmonic class on W. Note that § = V(V1H).
If Q is an inner open subset of W, then () is regular for § if
and only if Q is regular for V1§, Furthermore, if fis a func-
tion on 3 and ( is regular for § and V71§, then f is inte-
grable with respect to § if and only if f is integrable with
respect to V71 §. In this case the V1§)-extension of f is equal
to VTH(Vf, Q).

If ois in § and o is a regular inner region with & contained
in the domain of ¢, then V1 ¢ 1s greater than or equal to the
V1§-extension of V-¢ in o since

V-1p > V-1 H(y, o) = VIH(V(Vy), w).

It follows that the superharmonic class associated with
V1§ is the set V71§ = {V-lo: v e §} and the subharmonic
class associated with V1§ is the set V1§ = {Vlu: ue H}.

Let Q be an inner open subset of W. Clearly, for any bounded
function f on d(, the upper and lower V—1§)-extensions of f
in Q are equal to V.TH(fV, Q) and V1H(fV, Q) respectively.
Moreover, if z, is a point on () and b is an §)-barrier for
at z,, then V71b is a V1§-barrier for Q at z,. It follows that
a compact subset of W is outer-regular with respect to §
if and only if it is outer-regular with respect to V-1§.

The constant function 1 1s in V71§ if and only if V is in §.
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Moreover 1 is in V1§ if and only if V is in §. Thus we have
the following result:

Tueorem 6.1. — Let V be a positive continuous function
on W. Then V1§ satisfies Aziom IV if and only if V is in §.

Given 6.1, we can use the function V to generalize the
classification of § defined in Section 5.

DerinitioN. — If V isin Hw, then §) is called V-parabolic if
V18 is parabolic and & s called V-hyperbolic if V71§ is
hyperbolic. A function he H is called V-bounded if there is a
constant M such that |h| < MV.

As a consequence of 5.1 we have the following criterion for
determining the classification of V4.

Prorosition 6.2. — Let V be a positive continuous function
in Hw. Let A be an outer-regular compact set in W and let R
be an exhaustion of W constisting of regular inner regions Q which
contain A. Let S be the lower envelope of the family {Sq: Q e R},
where if sg =V on 3Q and sq = 0 on dA for each Qe R, then
Sao=H(sg, Q —A) in Q — A and Sg=V in W — Q.
Then § s V-parabolic if and only if S = 0.

If V is a positive continuous function on W, then a function
P is a potential for § if and only if V7'P is a potential for
V-18. Given a positive continuous function V in gw, we shall
show that V1§ is parabolic if and only if V is a potential
or there is no potential for § on W (in which case Ve §)).

Prorosition 6.3. — Let V be a positive continuous function
in Hw, but assume that V is not in w. Then V1§ is parabolic
on W if and only if V is a potential for §.

Proof. — Since 1 = V7V is not in V1Hw, V1§ is para-
bolic if and only if 1 1s a potential for V1§, i.e., if and only
if V is a potential for §. |}

Prorosition 6.4. — Assume that there is a positive function
in Hw. Then the following statements are equivalent :

(i) If V is any positive function in Hw, then V is in Hw and
every function ¢ in Hw with ¢ > mV for some constant m is
a multiple of V.

(11) There is no positive potential for § on W.
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(1) & is V-parabolic for some positive V in Hw.
(iv) There is at least one positive function in Hw, and £ is
V-parabolic for every positive V in $w.

Proof. — Letting m = 0 we see that (1) = (i1). Given (i1),
we see that every positive Ve Qw is equal to its greatest
minorant in Hw. Thus by 5.9, (1) = (1). The rest of the proof
follows from 5.8. | .

If V, and V, are positive functions in w such that V; <MV,
for some constant M, then V; is a potential for § if V, is a
potential for §. Thus we have the following consequence of

6.3 and 6.4:

Prorosition 6.5. — Let V; and V, be positive continuous
functions in Hw. If V; <MV, for some constant M, then §
is Vi-parabolic if § s Vy-parabolic. If mV, <V, for some
positive constant m, then &) is Vy-hyperbolic if § is Vy-hyper-
bolic.

Cororrary 6.6. — Let V, and V, be positive continuous
functions in Hw such that V; =V, in the complement of some
compact subset A of W. Then § is Vy-parabolic if and only
if H is Vy-parabolic.

CororLLarY 6.7. — Let V be a positive continuous function
in Hw, and assume that 1 is also in Hw. If VM for some
positive constant M and if § is parabolic on W, then V71 §
is parabolic on W. If m <V for some positive constant m,
and if § is hyperbolic on W, then V1 § is hyperbolic on W.

Brelot ([6], pp. 94-95) has shown that if there is a positive
function in $w then there is a positive continuous function in
Hw. Using this fact, we establish as an application of 5.8.
the following result of Constantinescu and Cornea ([7], p. 381.)

Tueorem 6.8. — If there is a positive function in Hw, then
there is a posilive potential in any region Q such that W — Q == @.

Proof. — We may assume that { € §w. Let A be an outer-
regular compact set in Q. Let

G= {veHw_a: lim inf v > 0 at 24,
lim ¢ = 1 at 2Q and ¢|W — Q = 1{.
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Let G be the lower envelope of §. It is easy to see that
G|Q — A = H(Q, Q — A).

Moreover, for any regular region w with @< W — A we have
G > H(G, v). But there is one such region ® such that

dwn(W—Q)#£09 and wn(Q — A)£4.

Thus G is positive in some component of Q — A. It follows
that § is hyperbolic on () and so there is a positive potential
in Q. |

7. Comparable Harmonic Classes.

In this section we shall consider pairs of harmonic classes

$ and & where & contains all positive functions of § which
have domains in the complement of some fixed compact
subset of W.

Let F be any set of functions with open domains in W
and let W, be an open subset of W. Then F|W, will denote
the set {f|(WynQ): fed, Q is the domain of f}. We shall
usually take W, to be the complement A of a compact subset A
of W. Moreover, 5+ will denote the nonnegative functions in
F and F— will denote the nonpositive functions in F.

DeriniTION. — Let §) and & be harmonic classes on W. We
say that § majorizes & or that & is majorized by § if there is a
compact subset A of W such that $t|A < §&.

We do not exclude the possibility that A is an empty set.
We write § > & when §) majorizes &, and we call § and &
comparable harmonic classes. The set A is called an excluded
set for the ordered pair (§, &).

An example of a comparable pair of harmonic classes is
given by the solutions on a region W in R" of the elliptic dif-
ferential equation

(1) Say 2% 435, 2% — Qu

Q; ;
Y dxdx; o

and the solutions on W of the equation

%u ou
(2) Zaijm + th S.;L = Pu
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where

(1) the coefficients of (1) and (2) satisfy a local Lipschitz
condition,

(11) the left side of (2) is the same as the left side of (1)
(1) Xa;zx; 1s a positive definite quadratic form.

(iv) P>Q and P > 0.

If h 1s a solution of (1) and k 1s a solution of (2) and if

h>k>0

on the boundary of an inner region w, then 2 >k in . For
if not, and if w, 1s the subset of ® in which k(z) > h(z), then
since k — h takes a maximum value in each component of
®o and

*(k — h) Ak —h) _py .
Ya;; Brvrve %, + Xb; T Pk—Qh>P—Qr>0
in ®,, k — h is constant in each component of w,. (See [8],
p- 326). But then k — h =0 in w,, which means that w,
is empty. Thus the class of solutions of (1) majorizes the class
of solutions of (2). If we have P > Q and P > 0 only in the
complement of some compact subset A of W, then A is an
excluded set for the pair of solution classes of (1) and (2).

Throughout this section, § and & will be comparable
harmonic classes with § > & and A will be an excluded set for
the pair (), &). The relationship $*A c® implies several
other useful relationships between the superharmonic and
subharmonic classes associated with § and the corresponding
classes associated with &. These relationships are listed below
in Proposition 7.2, but first we need the following result:

Prorosition 7.1. — There is a base % for the topology of
W — A such that each set ® in B is an inner region which ts

regular for both § and K.

Proof. — By Axiom II, there is a base % for the topology
of W — A consisting of inner regions which are regular for §.
Let @ be an element of $. Without loss of generality, we may
assume that there is a region ) which is regular for & such that
®c (). Let k be a positive function in . If there is only one
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point z, on dw, then for any number a« we have

lim ok =a

el g T
Thus in this case o is regular for . If there are at least two
points on dw, then for each z, € dw there is a continuous nonne-
gative function f on dw such that f(z,) = 0 but f == 0. Clearly,
H(f, ») is a &-barrier for w at z,. By 3.3,  is regular for 8. |

Prorosition 7.2. — We have the following consequences of
the fact that 1A c &

SheE @ gics:
1) _._@_‘]A cf; (iv) R 1A c &.

Proof. — Let ¢ be any function in §*/A. To prove State-
ment (i) we must show that ¢ is in &. Let © be an inner region
such that ® i1s contained in the domain of ¢ and w is regular
for § and &. We must show that ¢ > K(v, w) where K(y, w)
1s the &-extension of ¢ in w. Let f be any continuous function
on dw such that ¢ > f. Then ¢ > H(f, ) > K(f, w), whence
¢ > K(v, w). Thus ¢ is in §. A similar proof establishes State-
ment (i11). Statement (i1) follows from (i), and Statement (iv)
follows from (iu).

If we call § and & equivalent harmonic classes whenever
there is a compact set A ¢ W such that $|A = K|A, then it
will follow from the corollary to the next proposition that the
relation > defines a partial ordering in the set of equivalence
classes of harmonic classes on W.

Prorosition 7.3. — Let W, be an open subset of W — A. If
there is a positive function F which is in both §w, and 8w,, then
HIW, = KIW,.

Proof. — Let h be in §|W,, and let » be an inner region

such that ® is contained in the domain of k. Let h be the

restriction of & to w and F be the restriction of F to w. By
the compactness of @, there is a positive constant m such

that A + mF > 0. Since F is in 9, h + mF is in &, and since
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Fisin R, his in & There is also a positive constant M such
that A — MF < 0. Since F is in §, A — MF is in R, and since
Fisin &, k is in &. Thus the restriction of & to any inner region
in its domain is in 8 n & = &. By Axiom I, A is in &. Similarly,
if ke®W,, then ke §. Thus H|W, = |§W, |

CoroLrLARY 7.4. — Let §, &, and L be harmonic classes on W.
If §>8 and R>L, then H>L. If §> K and .@>‘§§ and
if A isan e:ccluded set for both the ordered pair (§), &) and the
ordered pair (R, §), then H|A = R|A.

Proof. — The first statement follows from 7.2. To prove the
second statement, let w be any regular inner region in W — A.
By Axiom I it is sufficient to show that o = &|w. Now
H(i ) is a positive function in .@w. Since > &, H(1, )
is in &, and since & > §, H(1, ») is in & Thus H({, ) is in
K, By 7.3, Hlo = Ko §

The next proposition shows that the relation § > & 1s
preserved under division by a positive continuous functlon V.

Prorosition 7.5. — Let V; and V, be positive continuous
functions on W such that V; = V, in the complement of some
compact subset D of W. Then

H>2K=V1H>V' R

Proof. — We may assume that D is contained in an exclud-
ed set A. Let Vi'h be a pos1t1ve function in V—1@|A Then A
1s in J:)"‘IA Whence h is in & Therefore, Vi1h is in V;IR,
which is the superharmonic class assoc1ated with V—1@
Thus Vi1HHA c VIR |

In the followmg theorem we use the results of Section 3
to describe the relationship between open sets which are
regular for § and open sets which are regular for &. Recall
that in establishing the results of Section 3 for an open set Q
and a harmonic class §), we assumed the existence of a func-

tion Ve ,@Q with 1nf V( z) > 0.

Tueorem 7.6. — Let Q be an open subset of W with
3QcW — A, and let zy be a point on dQ n W. Assume either
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that Q has at most a countable number of components or that
there is a countable base for the neighborhood system of x,
in 30 and there is at least one point different from x, on the
boundary of each component of Q. If Q is regular for §), then
there is a K-barrier for Q at z,. If Q is regular for & and if
there is a positive continuous function V defined on Q such
that VIQ e & and V|Q — A e §, then there is an §-barrier for

Q at z,.

Proof. — The first statement follows from 3.4 and 7.2.
To prove the second statement we assume first that Q is a
region. If oQ — §z,} = ¢, let @ be an inner region which is
regular for § such that 5cW — A, z,ew and Q — © £ 4.
Let ¢ =2 sup V(z). It is easy to see that 3d << 0 such

zedwN) —
that if g=1c on dwn{ and g=d on 2w n W — Q then

H(g, ©) () = 0.

Let b=V in Q — w and b= VAH(g, ®) in wnQ. Then
b|QQ — A is an $H-barrier for Q at z,.

If 8Q — {z,} 5= ¢, then there is a continuous nonnegative
function f on ?Q such that f(z,) = 0 but f=£0, and f<CV.
Since V4 K(f — V,Q)isin &, V+ K(f — V, Q) >0 by 2.2.
By 7.2, K(f — V, Q)]Q — A is in §. Thus the restriction of
V+K{f—V, Q) to Q— Ais an §H-barrier for Q at z,.

The rest of the proof for the case that Q has at most a
countable number of components is similar to the correspon-
ding proof of 3.4. Now assume that there is a countable base
for the neighborhood system of z, in ?( and that there is at
least one point other than z, on the boundary of each com-
ponent of Q). Then there is a continuous function f on (2 such
that f(x,) =0, f<<V and f(z) > 0 for every x 5= z, on d{.
The function [V 4+ K(f — V, Q)]|Q — A is an $-barrier for
Qat z,. |

Cororrary 7.7. — Let Q be an inner open subset of W with
M cW — A, Assume either that () has at most a countable
number of components or that d() satisfies the first axiom of counta-
bility in the relative topology and there are at least two points
on the boundary of each component of Q. Also assume that there



AN AXIOMATIC TREATMENT OF PAIRS 201

is a positive continuous function V defined on Q such that
V|Q is in both § and §. Then Q is regular for & if and only if
Q is regular for K.

The last theorem of this section establishes the fact that if
1 e Hw and 1 € 8w, then K is parabolic on W if § is. We can
show that the converse is not true by considering the open
unit circle W = {z: |z] <1}, and taking § to be the set of
solutions of the equation Au =0 on W and & to be the set
of solutions of the equation Au = 4(1 + |z]?)(1 — |2/?)2u on
W. It is well known that § is hyperbolic on W. If

1

Q, =1z 7| <1 — —
n

then {Q,} is an exhaustion of W and the R-extension of 1
in Q,, K(1, Q,), equals

He-Brtm

Since lim K(1, Q,) =0, & i1s parabolic on W by 5.1 and 5.5.

n»>o0

Tueorem 7.8. — If 1 € Hw and 1 Rw then & is parabolic
on W if § is parabolic on W.

Proof. — By 4.4, we may assume that the excluded set A
is outer-regular with respect to §. It follows that A is also
outer-regular with respect to . Let ¢ be any function in
Hw-a such that lim inf ¢ > 0 at oA and liminf ¢ > 1 at dW.
Since ¢ 1s in &, ¢ > K (0W, W — A), whence

H(W, W — A) > K(@W, W — A).

If & is parabolic on W, then H(O®W, W —A)=0 and & 1s
parabolic on W. |

Cororrary 7.9. — Let V; and V, be positive continuous
functions on W such that Ve §, V, & and V, =V, in the
complement of some compact subset D of W. Then & ts V,-
parabolic if § ts V,-parabolic.
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Proof. — Clearly, 1 Vii§) and 1 e V;IR. By Proposition
7.5, V719 > V;'R. Therefore, V;& is parabolic if V1§
is parabolic. |

Cororrary 7.10. — Let V; be a positive continuous potential
for  on W, and let V, be a positive continuous function in

Rw such that V, =V, in the complement of some compact subset
D of W. Then either V, is a potential for & on W or there is
no potential for & on W in which case V, € & and

HlAnD = f]A a D.

Proof. — By 6.3, V71§ is parabolic, so by 7.9, V;If is
parabolic on W. Therefore, either V, is a potential for &
or there i1s no potential for & on W and V, e &. In the latter
case, VaJAnDe$, whence by 7.3, HIAnD = R|An D. |

8. The Bounded Functions in Comparable Harmonic Classes.

If Q is an open subset of W and § is harmonic on W, then
the set of all bounded functions in §q forms a Banach space
with |[|h|| = sup |h(z)|. We denote this by BHq.

ze()

If & is the set of solutions of Au = ( in the plane R2, then
RRw consists of all multiples of 1. On the other hand if & is
the set of solutions of the equation Au = Pu in R2, where
P(z) =0 for |z > 1 and P(z) = ¥ for |z| << 1, then
BHw = {0} even though § > &. If, however § and & are
harmonic classes which satisfy Axiom IV such that § > &,
and if § is hyperbolic on W, then we can show in the general
case that there is an isometric isomorphism of #®w onto a
subspace of BHw. We do not proceed to this result directly,
however, because in general we must work in the complement
of some compact set. Thus we shall first establish Proposi-
tion 8.1. This proposition and Theorem 8.3 and its corollary
are statements in the axiomatic setting of the corresponding

results given by H. L. Royden in [13], pp. 10-15.

Prorosition 8.1. — Let § and & be harmonic classes which
satisfy Aziom IV such that § > K, and let A be an excluded
compact set for the pair (£, &). Assume that A s outer-regular
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with respect to both § and 8. Let B,8w_x denote the subspace
of BRw_a consisting of all functions of BRw_a which vanish
at dA. Then there is an isometric isomorphism of B,8w_a onto
a subspace of BHw. If also & > § and A is an excluded set for
the pair (8, 9), then BRw_r and BHw are isometric if there
is a positive potential for § on W.

Proof. — By Part (iv) of Proposition 5.3, B,8w_r = {0}
if & is parabolic on W. If & > § and & is parabolic on W,
then § is parabolic on W, and thus ﬂé{)w = {0} unless there
is no positive potentlal for H on W, in which case 1 e Hw.
Therefore, the proposition holds if & 1s parabohc on W. We
assume for the remainder of the proof that & is hyperbolic
on W.

Let & be the set of all regular inner regions  in W such
that A cQ; R is an exhaustion of W. Let k& be a nonnegative
function in BRw_s. For each e R we set hg equal to k in
W — Q and H(k, Q) in Q. By 2.3 we have hg > k, and conse-
quently hg, > hq, if Q,>Q,. Thus the family {hg: Qe R{
is directed by increasing order on W, and for each Qe R we
have hg < ||k||- Let ©k be the upper envelope of the functions
hq. It follows from Axiom III that =k is in BHw. We thus
define a mapping = from the nonnegative functions of B,8w_a
into BHw. If k and k are nonnegative functions in B,Rw_a
and if a is a nonnegative constant, then we have

whk + wh = =[k + k],  mak = axk,

and
) 0.< k< <[]

Moreover, if A is any function in 8w, then
(2) 0<k<h=nk<h

Since K(@oW, W — A) <1, it follows from 5.3 and Equation
(1) that

KW, W — A) < nk(dW, W — A) < HW) < 1.
If k is an arbitrary element of $,8w_a, then

ke -+ [ KOW, W — A) >0
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by 5.3. Hence any function in %,8w_a can be expressed as
the difference of two positive functions in B,Rw_4s. If

kl_k2=k3_k4:
then K + ky = ks + k, and =k, + wky = wh; 4+ mk,, whence

nhk, — whky, = wh; — wk,. Therefore, we can extend the defi-

nition of © to all of BR®w_a by setting w(ky — ky) = nhy — ok,

for each pair of positive functions k; and k, in BRw_s. With

this definition, 7 is a linear mapping of BRw_a Into BHw.
For any k in $,8w_x we have

0 < wh + [[M] =K (W, W — A) = =[k + [|k]| K @W, W — A)]
< (2| K oW, W — A)]
< 2/|K]| =K (0W, W — A).
Therefore,

k| < ||kl =K (oW, W — A) <[],

and thus = does not increase norms.

We now proceed to define a linear mapping p of 8w into
Bofw—a. Let h be a nonnegative function in BHw. For each
Qe let fo be equal to h on 2Q and Q on dA. Let kg be equal
to K(fo, & — A) in Q — A and equal to b in W — Q. If
Q, and (; are in & and Q,>5Q,, then h > kg > ko > 0.
Let ph be the lower envelope of the functions ka; ph 1s 1n

RB&w_a. Moreover

(3) 0<ph<h
while if k 1s any positive function in BeHw_a, we have
(4) k<<h=-k<¢h.

For arbitrary functions h in 8w we have h + ||| HW) > 0.
Therefore we may, as above, extend ¢ to a linear mapping
on all of BHw into BRw_a by setting p[hy — hy] = phy — phy
for any pair of positive functions A; and h, in $w. By 5.3
and the linearity of p we have

0 < ph + [IWlleH(W) = o[k - ||H]|H(W)]
< p[ 2| H(W
< 2|[A]jo H(W
Hence okl < lIRlle H(W) < [IA]],

and so p does not increase norms.
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For any positive function k in B,8w_» we have nk >k
by (1) and hence by (4) we must have prk > k. Thus

KW, W — A) < pnKOW, W — A) < 1,
whence by 5.3 we have KW, W — A) = pxK(oW, W — A).

Consequently, for an arbitrary k in B,8w_r we have

k + [[K|KQW, W — A) < pn[k + [[K]|KQ@W, W — A)]
< pmk + |K||[K(@W, W — A).

Hence pnk > k for all k in $,8w_a. Replacing k by — k we
obtain prk < k, and so pnk = k. Since neither = nor p increase
norms, we see that T 1S an isometric isomorphism of B,®w_a
onto a subspace of BHw, and this establishes the first part of
the proposition.

If it 1s also true that & > § and A is an excluded set for
(R, 9), then HOW, W — A) KOW, W — A), and so by

)s (bW W — A) < ©K(0W, W — A). We then have

(1

0 < H(W) — zK@W, W — A) < H(W) — HOoW, W — A)
< HW — A) — HoW, W — A) = H(pA, W — A)

by 5.2. By 5.7 and 7.8, HW) = tK(eW, W — A).

Therefore,
wpH(W) = n(prK(@W, W — A)) = =KW, W — A) = H(W).
By (2) and (3) we have for each k in B§Hw

h + ||W|H(W) > =pl[h + [[A||H(W)] = mph + ||A||H(W

whence h > wph for every h in B w. Thus nph = h, and we
see that in this case w is an isometry of B,f8w_a onto BHw. |

CororLrary 8.2. — Let § be a harmonic class which satisfies
Axiom IV, and assume that there is a positive potential for £
on W. Let A be a compact subset of W such that A s outer-
regular with respect to §, and let ByHw-_a denote the functions
in BOw_a which vanish at dA. Then there is an isometric iso-
morphism of B,Hw-_r onto BHw.

Taeorem 8.3. — Let § and & be harmonic classes which

satisfy Aziom IV such that § > &, and assume that &) is hyper-
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bolic on W. Then there is an isometric isomorphism of BRw

onto a subspace of BYw. If § > § as well, then BRw and BHw

are Lsometrw

Proof. — If & is parabohc on W, then elther BRw = {0}
or BRw consists of all multiples of 1 In the latter case, the
1sometry is defined by mapping 1 onto H(W), for since

H(W) =H(1, W) = H(1, W),
we have sup H(W)(z) = 1. We shall assume for the remainder

of the proof that & is hyperbolic on W.

Let A be an excluded set for (, &) and assume that A is
outer-regular with respect to both § and & If & > §, assume
that A is also an excluded set for (8, §). By 8.2 there is an
isometric isomorphism © of B®w onto B,®w_a. By 8.1 there
1s an 1sometric 1somorphism A of B,8w_a onto a subspace of
RHw, and A maps ByRw_a onto BHw 1f & > H. The map Aow
is the desired isomorphism. §

Cororrary 8.4. — If § and & are harmonic classes which
satisfy Axtom IV such that § > &, and if 1 is in Hw, then the
first two of the following statements are equivalent and imply
the third and fourth:

(1)  There are at least two lLinearly independent functzons
ln Jsﬁw

(1) There is a function in BRw which assumes both positive
and negative values.

(ii1) There is a nonconstant function in BHw.
(iv) There is a positive potential for § on W.

Proof. — If ky, and k, are linearly independent functions,
we can always choose constants a« and B so that ak, 4 Bk,
assumes both positive and negative values. On the other hand,
if k is a function in BRw which assumes both positive and
negative values, it is not linearly dependent on K(W). Hence
we have at least two linearly independent elements of BRw.
Thus we see that the first two statements are equivalent and
imply that dim $B8w > 2. But by 8.3 this implies that
dim $Hw > 2, and so there must be one nonconstant function
in BHw and a positive potential for H on W. |
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Let § be a harmonic class of functions on W and let V be a
positive continuous function in $Hw. We denote the set of

V-bounded function in Hw by B(V)Hw. The space K(V)Hw

1s a Banach space with the norm

W[y = sup V1 h(z).
zeW

Clearly, the mapping A — V~! h is an isometric isomorphism
of B(V)Hw onto BV 1Hw, where BV1Hw is the set of bounded
functions in V1§w. Therefore, we have the following conse-

quence of 6.1, 7.5 and 8.3.

Tueorem 85. — Let § and & be harmonic classes with
H >R Let V, and V, be positive continuous functions on W

such that Vleg, V,e® and V, =V, in the complement of
some compact subset D of W. Assume that § is V;-hyperbolic
on W. Then there is an isometric isomorphism of R(V,)®w
onto a subspace of B(V,)Dw. If & > H as well, then B(V,)R®w

and $(V,)Hw are isometric.
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