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AN AXIOMATIC TREATMENT OF PAIRS
OF ELLIPTIC DIFFERENTIAL EQUATIONS

by Peter A. LOEB

Beginning with a few simple axioms, M. Brelot [6] has
developed an axiomatic setting in which many of the classical
results of the theory of elliptic differential equations can be
established. We shall use Brelot5 s setting to generalize the
results obtained by H. L. Royden in [13]. These results
pertain to the classification of open Riemann surfaces and
to the existence of an isometric isomorphism from the class
of bounded solutions of one elliptic differential equation into
the class of bounded solutions of another when a certain
« majorizing » relationship exists between the two equations.

The discussion in [13] deals with the solutions of the equa-
tion Au == Pu on an open Riemann surface W. In this equa-
tion, P is a smooth nonnegative density on W, i.e., an invariant
expression which in terms of the local uniformizer z = x + iy
has the form c dx dy^ the coefficient c being a nonnegative
function with continuous first derivatives. The coefficient c
depends on the choice of the local uniformizer in such a way
that the density P is invariant with respect to that choice.

We say that a majorizing relationship holds between the
class of solutions of the equation

(1) Au = Q_u
and the class of solutions of the equation

(2) Au= Pu
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whenever P ̂  Q ̂  0 in the complement of some compact
subset A of W. If this inequality holds and (D is an open
region in W — A, then a solution h of Equation 1 and a solu-
tion k of Equation 2 will satisfy the inequality h ̂  k in CD
if h ;> k ̂  0 on the boundary of (o. It is this latter form of
the majorizing relationship which can be expressed in the
axiomatic setting. The notation S^ ^> ̂  will be used for this
relationship, where in the above example ^ is the class of
solutions of Equation 1 and St is the class of solutions of Equa-
tion 2.

In Chapter I we discuss the class of solutions of a single
elliptic differential equation. By such a class we mean a set
of functions ^ which satisfies the three axioms given by
Brelot in [6], pp. 61-63. These axioms are stated in Section 1.
In Section 2 we give a fourth axiom which is used to establish
a strong maximum principle for ^); i.e., if ^p satisfies this
axiom, then a nonconstant function in ^p can take neither
a nonnegative maximum nor a nonpositive minimum in any
open subset of its domain. The other principal results of
Chapter I are the solution of the Dirichlet problem (Section 3),
the existence of an exhaustion by regular regions for the
domain W on which jp is defined (Section 4), and the classi-
fication of ^ with respect to the domain W (Section 5).

In Chapter II we consider pairs of classes ̂  and St for which
the majorizing relationship S^^St holds. We show in this
chapter that there exists an isometric isomorphism which
maps the bounded functions of St into the bounded functions
of ^.

The principal statements in each section are given consecu-
tive decimal numbers, with the digits before the decimal
point indicating the section and the digits after the decimal
point indicating the order of the statement in the section.
Results are usually referred to by number alone. The notation
| is used to signify the end of a proof.

I wish to express my deepest thanks to Professor Halsey
Royden, who supervised the research presented here. His
judgment and his insight have been of tremendous assistance.
I am also indebted to Professor Marcel Brelot for many
helpful suggestions.



CHAPTER I

PROPERTIES OF A SINGLE HARMONIC CLASS OF FUNCTIONS
AND THE ASSOCIATED SUPERHARMONIC

AND SUBHARMONIC CLASSES

1. Definition and Basic Properties of a Harmonic Class.

In this section we shall review the immediate consequences
of Brelot's axioms for what will be called a harmonic class of
functions.

Let W be a locally compact Hausdorff space which is connec-
ted and locally connected. We assume that W is not compact.
Let W denote the Alexandroff one point compactification
of W. If A is subset of W, then by A we mean the closure of
A relative to W, and if Q is an open subset of W, then by
^)Q we mean the boundary of Q relative to W.

By a region Q we shall mean a nonempty connected open
subset of W. By an inner region or an inner open subset of W
we shall mean a region or an open set Q with Q c W.

The functions that we consider on W are extended real-
valued functions with the usual lattice ordering ^>. Given
two such functions f and g, we let f V g denote the function
defined by

{fyg)(x)=m^(f(x),g{x))

and f A g denote the function defined by

(f/\g){x)=min(f{x),g{x)).

A. function f is said to be nonnegative if f ̂  Q and positive
if f(x) > 0 for every x in the domain of /*. By f\S we mean the
restriction of f to a subset S in its domain. If the domain D
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of g is a proper subset of the domain of /, then we shall often
write /*> g instead of /'[D > g and /•+ g instead of f\D + g.

Let f be a function with domain D c W, A a subset of W,
and ^o_a point in D n A. If (3 is the neighborhood system of
XQ in W, then by lim sup f we mean inf / sup f(x} \ and by

. iceA.a^o (oepUetonbnA /
hm inf f we mean sup / inf f(x)\. Note that if x. is in
xeA,x->xo ^gp \a;efa)nDnA /
D n A and f(xo) > f(x) for all points a; in a neighborhood ofa;o,
then lim sup f = f{xo).

a?eA, X->XQ

Keeping the above definition in mind, we say that an exten-
ded real-valued function f with domain D is lower semiconti-
nuous if for every x^ e D, — oo < f{xo) and lim inf f=f{xo).

. . . xeD,x->xo
t5y a continuous function we mean a continuous real-valued
function. For convenience, the function which is identically
equal to the extended real number r will be denoted by r.

An increasing sequence of functions is a sequence if^\
such that /^i > f^ and a family of functions directed by
increasing order is a non-empty family 3 such that for any
two functions f^ and /g in S there is a third function fe9
such that /^fiVj^. The notions of a decreasing sequence
of functions and a family of functions directed by decreasing
order are similarly defined.

DEFINITION. — Let ^ be a class of real-valued continuous
functions with open domains in W such that for each open set
Q c W the set ^Q, consisting of all functions in ̂  with domains
equal to Q, is a real sector space. An open subset Q of W is
said to be regular for ^ or regular if for every continuous real-
valued function f defined__on 6Q there is a unique continuous
function h defined on Q such that h\^Q == /*, h\Q e ,jp, and
^ ̂  Q if f ̂  Q- Moreover, the class jp is called a harmonic
class on W if it satisfies the following three axioms :

AXIOM I. — A function g with an open domain Q c W is
an element of ^ if for every point x e Q there is a function
heJQ and an open set co with r r e o c Q such that g|co == /i|(jo.

AXIOM II. — There is a base for the topology of W such that
each set oj in the base is a regular inner region.
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AXIOM III. — If 9 is a subset of jpo, where Q is a region in
W, and 9 is directed by increasing order on 0, then the upper
envelope of S is either + Go or a function in JpQ.

It follows immediately from Axiom I that if h is in ^, then
the restriction of h to any nonempty open subset of its domain
is again in S^.

Given Axioms I and II, Constantinescu and Cornea ([7],
p. 344 and p. 378) have shown that the following axioms are
equivalent to Axiom III:

AXIOM IIIi. — IfQ is a region in W and \h^\ is an increasing
sequence of functions in ^Q, then either lim hn, == + °2 or lim h^
is in <^>.

AXIOM IIIg. — If Q is a region in W, A a compact subset
of Q, and XQ a point in A, then there is a constant M ̂  1 such
that every nonnegative function h e ,̂ )Q satisfies the inequality

h{x) < MA(^o)

at every point x in A.
Given Axiom I, it is easy to show that Axiom III is really

a « local axiom »; i.e., ^)Q satisfies the axiom for every open
set Q c W if <§)Q satisfies the axiom for each open set Q in a
base for the topology of W. Hence for a particular example
one only needs to establish the validity of the axiom for the
sets in such a base. Similarly, Axioms IIIi and IIIg are local
axioms. Also note that if W has a base for its topology consis-
ting of regular open sets, then it has a base consisting of regular
inner regions.

Axioms III, IIIi, IIIg all have as an immediate consequence
the following minimum principle :

PROPOSITION 1.1. — IfQ is a region in W and h is a nonne-
gative function in J?Q, then either h(x) > 0 for every x e= Q or
A = Q .

Using this minimum principle, we can establish a new
criterion for an open set to be regular which is easier to verify
than the standard criterion given above.

PROPOSITION 1.2. — If S^ satisfies Axiom I I I , I I I ^ or I I I ^
then an open set Q is regular for S^ if
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(1) for every continuous real-valued function f defined on ^)Q
there is a continuous function h defined on Q such that

h\^Q = f and h\Q e= ̂ ,
and

(2) there is a function h^ in ^Q such that inf \(x) > 0
a?eQ

Proof. — We shall assume that Q is a region and show that
if g is a continuous function on Q with g|0 e ^p and g ̂  0
on ^)Q, then g ̂  Q in Q, given /ii e= ^p^. The proposition fol-
lows immediately from this fact.

Assume that g takes a negative value in Q, and let
(X.Q == int | a : a/ii + g ̂  Q |. Clearly, ao > 0 and OL^ + g ̂  Q.
For each j3 such that 0 -< (i << ap, let

Kp= ^eQ:(^+g)(^)<0| .

Each Kp is a compact subset of Q, and Kj^ c K(^ when (3i > pg-
Therefore there is a point XQ e n Kp, and (ao/^i + g)(^o) =:= 0.
By 1.1, g + ̂ i = Q- Since this is impossible, we conclude
that g>Q. |

As an example of a harmonic class of functions we have the
absolutions of the elliptic differential equation

(1) S a . , ^ + 2 6 ^ + c A = Q
^XftXfc ^Xi

on a region in Euclidean yi-space R", where Sai^a^ is a posi-
tive definite quadratic form and the coefficients of the equa-
tion satisfy a local Lipschitz condition. (See Chapter vn
of [10].)

Throughout this chapter, ^ will denote an arbitrary har-
monic class of functions on W, and throughout the rest of
this section Q will denote an arbitrary set which is regular
with respect to H. Let C{^Q) denote the set of continuous
functions on ^)Q. For each /*€= C(^)Q) there is by definition a
unique continuous function h with domain Q such that
h\bh = f and h\Q is in ^). We shall denote h\Q by H(/*, Q)
or simply H(/'). For each x e Q, it is easy to see that H(/', Q){x),
as a function of /*, is a bounded positive linear functional
on C(^)Q). Therefore, there is a finite positive Radon measure
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p(rc, Q) defined on ^)Q such that H(/, Q){x) = f f dp{x, Q)
for each /'eC(^Q).

DEFINITION. — Let f be an extended real-valued function on
^)Q. We say that f is integrable with respect to JQ on ^Q, or simply
that f is integrable if f is integrable with respect to p{x^ Q) for
each point x e 0. Assume that f is integrable on ^)Q, and let
H(/*, Q) be the function on Q which satisfies the equation

H(f,Q)(x)=J^fdp(x,Q)

at each point x <= Q. We call H(/, Q) the ^-extension of f in Q.
The symbol H(/") is also used to denote the SQ-extension of f.

It is clear that for each x in Q, H(/*, 0)(rr) is a positive
linear functional on the vector space of integrable functions
on bQ. Using Axiom III, it can be shown (see [6], p. 65) that
a function f on bQ is integrable if it is integrable with respect
to p{x, Q) for some point x in each component of Q and that
the ^-extension of an integrable function is in ^). In parti-
cular, if f is a lower semicontinuous function on bQ and G
is the family of all continuous functions g on <)Q with g ̂  /*,
then f is integrable if and only if the upper envelope h of
the set ^H(g, 0) : g ^ ^ j is finite at some point x in each
component of Q. In this case, h is in jp and H(/*, Q) == h.
It follows that if Q is a regular region and f is an integrable
lower semicontinuous function on ^)Q, then f(x) is not identi-
cally equal to + °° i11 any open subset of 6Q. Moreover, H(/*)
is positive in Q if f ̂  Q and f =^ Q.

To conclude this section we consider the behavior of S^-
extensions at the boundary of Q.

PROPOSITION 1.3. — Let f be an integrable function on <)Q,
and let x^ be any point on bQ. Iffis bounded abo^e, then

lim sup H(/1) <; lim sup f.
a"eQ. x-^x^ a?e5Q, x•^x^

If f is bounded from below, then

lim inf /•<lim inf H(/1).
a;e5Q, x-^x^ a?eQ, x-^x^
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Proof (from [6]). — Let r be any real number such that
lim sup f<r. There is a continuous function T on ^Q such

a*€6Q, a?->-a;j

that T > /• and ^¥(x) < r in a neighborhood of x.. Since
H(y) < H(Y), we have

lim sup H{f) < lim H(¥) < r.
a;€Q, a;->-a^ a;eQ, a^a?,

The rest of the proof is clear. |

2. The superharmonic and subharmonic classes associated with «§.

In this section we shall review the immediate consequences
of Brelot's local definition of the superharmonic and subhar-
monic classes ^ and ^ associated with ^p. We shall also give
a new axiom which is used to establish a maximum principle
for ^.

DEFINITION. — We say that a lower semicontinuous function
v with an open domain Q c W belongs to the class S if

(1) v(x) < + oo for some point x in each component of Q,
and

(2) for every point XQ e 0 such that v(xo) < + oo and for
every neighborhood coo of XQ with (OQ c Q, there is a regular
region (o with XQ e (D c c? c (DO such that v is integrable on ^
and

v{xo) > H(P, (o)(.ro).

We say that an upper semicontinuous function u belongs to
the class ̂  if ~u belongs to the class ^. We call jp the super-
harmonic class associated with ^ and ^ the subharmonic

class^ associated with ^. The symbol ̂  denotes the functions
zn ^ with domain Q and ^ denotes the functions in ^ with
domain 0. ^4 potential in an open set Q. is a nonnegative func-
tion P in ^Q such that if h e= ^)Q and h < P then h < Q.

The results of this section will be given for the class ^;
corresponding results hold for ^5. Clearly, ^ c jp n ̂ . Let Q
be an open subset of W, v a function in ,̂ Q, h a function in
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^)Q and c a nonnegative constant; then h + v and cv are in
^Q. Moreover, we have the following generalization of Pro-
position 1.1:

PROPOSITION 2.1. — Lei Q be a region in W and let v be a
non-negative function in jpo. Then either v = Q or v{x) > 0
for all x e Q.

Proof. — Assume that (/ =7^ Q in Q. Let B be a component
of the set \x e Q : ^(x) > O j . If B =7^= Q, then there is a point
XQ on bB n Q, and (^(rco) == 0 since ^ is lower semicontinuous.
In this case there is a regular region co with XQ e (D c ® c Q
and B ci: co such that ^ is integrable of ^)(o and

^o) > H(^ co)(o;o).

Since B is connected, the boundary of CD has a nonempty
intersection with B. Therefore, ^|5co ̂  Q, and thus

0 < H(^, o))(^o) < ̂ o).

But v(xo) = 0. It follows from this contradiction that B = Q. |

COROLLARY 2.2. — Let Q be a regular open subset of W
and let v be a lower semicontinuous function defined on Cl such
that ^Q > Q and ^|Q is in ^Q. Then v > Q in Q.

Proof. — The proof is essentially the same as the proof
of 1.2. |

Using the above corollary, we obtain the following theorem
which generalizes the theorem on page 72 of [6J.

THEOREM 2.3. — Let Q be a regular open subset of W. Let v
be a lower semicontinuous function defined on Q such that
^|Q is in ^). Then P is integrable on C)Q and v ̂  H(^, Q) in Q.

Proof. — If g is a continuous function on ^Q with g ̂  p,
then by 2.2, H(g, Q) < ^ in Q. The theorem follows from this
and the fact that v is finite at some point x in each compo-
nent of Q. |

COROLLARY 2.4. — If p is a function in ,ip, then v is not
identically equal to + °° in any open subset of its domain.
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Proof. — Assume that there is a nonempty component
B of the interior of the set v~1 [+ °o]. Then there is a regular
region CD the closure of which is contained in the domain of v
such that <^o) n B =7^= 0 and v is finite at some point x e co
(whence ^jcoe^). By 2.3, v is integrable on 6co and yet
^ == + °° on an open subset of ^co. Since this is a contra-
diction, the corollary follows. |

COROLLARY 2.5. — If v e ^p, t/ie/z the restriction of v to any
nonempty open subset of its domain is again in j?. Conversely^
if v is a function with open domain Q c W, and if the restriction
of v to some neighborhood of each point x e Q is in ^), then
^e^.

COROLLARY 2.6. jp == jp n ^).
If ^ is a function in ^Q and Q is a regular open set the closure

of which is contained in the domain of P, then by 2.3 and 2.5,
v is integrable on bO and v ̂  H(^, Q).

If Q is any subset of W and ^i and (^ are functions in ^)Q,
then it is easy to see that ^ A ̂  is in <!pQ. Using 2.3 one can
show that ^i + (^2 is not identically equal to + oo in any
component of Q, whence it follows that ^ + ^2 ls ^d80 ln «&Q-
It also follows from 2.3 that if Q is a region and 9 is a family
of functions directed by increasing order on Q with 3s c ^)Q,
then the upper enveloppe of S is either + °9 or again in ^)Q.
Moreover, we have the following easy to prove consequence
of 1.3 and 2.3 :

PROPOSITION 2.7. — Let Q be an open subset of W and let
QO be a regular open set with Qo c ^- Given a function v in
<^)Q, let VQ be the function which is equal to v in Q — Qo and
H(^, Qo) m ^o- Then v ̂  VQ and VQ is in ,ipQ.

Using a proof similar to the proof of 1.2, Constantinescu
and Cornea ([7], p. 375] have established a generalization of
2.2 which is given below by Proposition 2.9. However, in proving
that generalization one should note the following fact:

LEMMA 2.8. — Let Q c W be an open set on which there exist
two functions V and v in J^Q. If B •== ^xe Q : v{x) < Oj and
B =/=- 0, then V is finite at some point x e B.
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Proof. — Given Xy e B, there is a regular region (o with
a?o e <<> c 53 c Q, and

H(^, (o)(rco) = J p dp{xo, co) < p(^o) < 0.

Therefore p(a;o» ^(B n bco) > 0, but since V is integrable on
^co, p(o;o, ^)(V-1[+ QO ] n ^(i)) == 0. |

PROPOSITION 2.9. — Let Q c W be an open set on which
there exists a function V e ^?Q with inf V(a;) ^>0 If v is a func-

_ aceQ
tion in ^Q 5ucA (Aa( lim inf v ̂ Q at bQ, ^n p ̂  Q in Q.

Proof. — Assume that v takes a negative value in Q and let
ao == inf |a : a > 0, aV + v > Q ^ . By 2.8, ao > 0. It follows
(see proof of 1.2) that aoV + ^ === Q which is impossible.
Therefore, (/ > Q in Q. |

COROLLARY 2.10. — Let Q c W be an open set on which there
exists a function V e ^Q with inf V(rr) > 0. Then Q is regular

J?€Q . . —
i/* for every continuous f on ^)Q there is a continuous h on Q
such that h\^Q = f and A|Q e ^p.

If 1 is in ^)w? we can apply the following consequence of 2.1
to every region Q c W :

PROPOSITION 2.11. — Let 0 be a region in W, and assume
that 1 is in ^Q. Let a and b be constants.

(i) If v is in JQ^ and v ̂  a, then either v == a or v{x) > a
for every x e Q.

(ii) J/' u 15 in ^Q and u ̂  &, </ien either u == & or u(a?) <^ &
/or every x e Q.

(iii) A nonconstant function in ^RQ (a/ce5 neither a maximum
nor a minimum value in 0.

The assumption that 1 is in ^w is too restrictive for our pur-
poses. We can obtain a result similar to the above proposition
for every region Q c W by assuming that ^ satisfies the follow-
ing axiom:

AXIOM IV. — There is a base 0 for the topology of W such
that each set co e 0 is a regular inner region with 1 ̂  H (1, co).

10
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The assumption that JQ satisfies Axom IV is equivalent to
the assumption that 1 is in ^)w. An example of a harmonic
class of functions which satisfies Axiom IV is given by the
class of solutions of Equation 1 (following Proposition 1.2)
in Section 1 when the coefficient c is nonpositive. (See [8],
pp. 326-328.) If jp satisfies Axiom IV, i.e. if 1 e ^p^y, then the
following theorem is applicable to every region in W. In
this case we shall refer to the theorem as the maximum prin-
ciple for ^.

THEOREM 2.12. — L e t Q be a region in W, and assume that
1 is in ^pw Let a and b be constants with a ̂  0 ̂  b.

(i) If v is in » )̂Q and v ̂  a, then either v = q or v(x) > a
for all x e Q.

(ii) If u is in ^Q and u <; 6, then either u = b or u(x) < b
for all x e= Q.

(iii) A nonconstant function in ^Q tak^s neither a nonnegative
maximum value nor a nonpositive minimum value in Q.

Finally, as an easy to prove consequence of 2.9 we have the
following result:

PROPOSITION 2.13. — Let Q be an open subset of W and
let v be a nonconstant function in ^)Q. Let c be a real number
such that c ̂  lim inf v for each point XQ on ^)Q. Then v[x} > c

xeQ, X->XQ _
for every x e Q if 1 is in ^Q or if 1 is in ^Q and c <^ 0.

3. The Dirichlet problem.

Throughout this section, Q will denote an open subset of
W. Brelot [6] has established a criterion for testing the regula-
rity of points on ^)Q n W using the assumption that Q is an
inner open set with a positive potential defined on Q. In this
section we establish a similar criterion without making this
assumption. We do, however, assume that there is a function
V in ^)Q with inf V > 0. Thus we may apply 2.9 and 2.10 to Q.

a?eQ
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DEFINITION. — Let f be an extended real-valued function
on ^)Q. We denote the set

\ ̂  e <&Q : I™ m! ^ ^> fi^o) for all XQ e bQ I
^ a?eQ» X->XQ >~oo )

6y (Ae symbol T)(/1, Q) or simply ^{f), and we denote the set

\u e <&Q : I1311 ̂ P u ̂  /(^o) /or ^11 XQ^^QI
( — a;eQ. X->XQ < -+- oo )

6y ̂  52/m&o^ Zl̂  0) or U{f). If (0(/l)^0 anrf 'HC/') ,̂ ̂ M ̂
denote the lower envelope of the functions in T)(/1) by H(/", Q) or
simply H(/') and we denote the upper envelope of the functions
in U{f) by H(f, Q) or H(/*). We shall call H(/; Q) ̂  upper
S^-extension of f in Q. and H(/*, il) the lower ^-extension of f
in Q. If H(/*) == H(/*), ^TZ /* is said to be resolutive on <)Q.

If f is a function on ^Q with ^ <= T)(/*) and ue^^), then
(/ — u is in HQ and lim inf (^ — u) ̂  0 at ?)Q. By 2.9, ^ ;> u,
and thus H(/*) ̂  ii(/^)- It is easy to see that

H(n=-H(-n .
If g is a bounded function on bQ, then since 3V e ^Q with
inf V > 0, we have T(g) ̂  0 and U{g) ̂  0.
a;eQ

PROPOSITION 3.1. — Let f be a function on &Q such that
^(f) ̂  0 and U(f) =/= 0. r/^n H(f) and H{f) are in ̂

Proof. — We need only show that H(/*) e ^p. For each
uell^), u < H(/1). Thus H^) is finite on a dense subset of Q.
If a) is a regular region with 53 c Q, then by 2.7 we have
H(/, Q)(x) = inf H(^, a))(n;) for each .reco. By Axioms I

_ y<=W, D)
and III, H^Qye^. |

If Q is regular and f is an integrable function on bQ with
T)(/')^:0 and H^) =/=0, then one can show that

H(f) = H(f) = H(f)

(See [6] pp. 84-85). We also have the following result which
is due to Brelot:
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THEOREM 3.2. (COMPARISON THEOREM). — Let f be a func-
tion on bQ such that ^{f) -=f=^ 0 and U(f) =/=. 0. Let (D be an open
subset of Q, and let F he the function on <)co such that F = f
on ̂  n ^)Q one? F = H(/*, Q) on 6co n Q. TA^ H(/, Q) = H(F, co)
in (o.

Proof. - (from [6]) : Given ^ in T)(F, co), let ^ = ^o AH(/; Q)
in CD and ?i == H(/, Q) in Q — (Q. For each

^ e T)(/; Q), ^ + ^ - H(/1, Q) e T)(y, Q),

whence ^ + ^ -- H(/', Q) > H(/', Q). For any x e Q and

V£ > 0, 3p e T)(/*, Q)

such that ^{x) - H(f, Q){x) < £. Thus ^ >_H(/; Q) in co,
whence H(F, O))>H(/', Q). Clearly H(F, co) < H(/*, Q). There-
fore, H(/*, co) = H^, Q) in co. |

If Q is a regular open set and f is a bounded function on ^Q,
then a proof similar to the proof of 1.3 shows that for each
XQ €= bQ

(1)
lim inf /•< lim inf H(f) < lim sup H{f) < lim sup f.

a;e6Q, x-^Xo a-eQ, X-^XQ a;eQ, X-^XQ a-ebQ, a-^o-o

On the other hand, if Equation 1 is valid for every XQ e bQ
and every bounded function on ^)Q, then for every continuous
function f on ^)Q we have H{f) == H(f) and lim H(f) == f{x^

xeQ, X->XQ

at each XQ e ^Q. Thus in this case Q is regular and the ^-exten-
sion of each continuous function f is equal to H(/1) and H(/').
With this in mind we make the following definition :

DEFINITION (1). — Let XQ be a point on ^)Q. We say that XQ
is a regular point for Q with respect to ^ or simply that XQ is
regular if Equation i holds for every bounded function f on b[).

The second inequality in Equation 1 is always true since
H(jf) <: H(/'). The validity of the first inequality in Equation 1

(1) Note that unlike the standard definition of regularity at a point, this definition
does not assume the resolutivity of continuous functions on &Q.
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follows from the validity of the last inequality since

n(f) = - H(- n.
Therefore, a point XQ e= bQ is a regular point if and only if
for every bounded function f on &Q we have

lim sup H(/*) ̂  lim sup /*.
a'eQ, X-^XQ ice&Q, x-^xy

Clearly, Q is regular if and only if each point XQ e ^)Q is
regular. If Qo ls a component of Q and XQ is a point on bQo?
then XQ is regular for Qo ^ ^o ls regular for Q. We next establish
a criterion for testing the regularity of points on ?)Q.

DEFINITION (2). — Let XQ be a point on ^)Q. By an JQ-barrier
or a barrier for Q at XQ we mean a positive function b in fQ
such that b is defined in the intersection of Q and an open neigh-
borhood of XQ and lim b = 0.

a-eQ, a-^a-o

THEOREM 3.3. — Given XQ e 6Q n W, if there is a barrier b
for Q at XQ and a function Vo e ^Q bounded in a neighborhood
of XQ with inf Vo > 0, then XQ is a regular point for Q.

Proof. — Let f be a bounded function on &Q, and let
c = lim sup f. Let £ be any positive constant. Since XQ is

a?e5Q, X-^XQ
contained in a regular inner region, there is a function h e ̂
defined in a neighborhood of XQ such that h{xo) = c + £. Let
a) be a regular inner region containing XQ such that h is defined
on G5, & is defined on G5 n Q, A ^> /* on ^)Q n G5, and Vo is bounded
on o) n Q. Let F == f on b(0 n <o) n bQ and F = H(/*, Q) on
b(Q n co) n Q = bco n Q; F is bounded. If ^)(o n Q == 0, then
/i e T)(F, Q n co), whence

lim sup H(F, Q n co) <; c + £.
a?€Q, a;->-a?o

If ^)(o n 0=7^=0, let M be a constant > sup (|F(^)| + |A(^)|).
a;€b(or»Q

(2) Following Brelot, we have deviated from the classical definition of a barrier
by omitting the assumption that lim inf b > 0 for every point x-^ =^=- x^ on 5Q.

a?e(i, a;->ac,



182 PETER A. LOEB

There is a compact subset C of <)o) n Q such that if

D == (^)(o n 0) — C and /n

is the characteristic function of D on ^(D then H(%D? ^)(^o) ̂  ^r-
In this case, setting

^^int*^1"1^'
a?eC

we have T e ̂ (F, Q n co) and lim sup T <; c + 2s. In either
_ a;eQ, X-^XQ

case, therefore, lim sup H(/*, Q) ̂  c + 2&. Since £ is arbitra-
xeQ,, X-^XQ

rily chosen, r^o is a regular point for Q. |
In establishing a partial converse of the above theorem,

we shall need to consider the possibility that a regular inner
region may have only one point on its boundary. For example,
let W be the real line together with the point + oo under
the order topology, i.e., a base for W consists of intervals of
the form \x: a < x <; b j and | x: a < x <; + °° \ where a
and b are finite. Let f be in S^ if f is a linear function y.x -4- P
on an open subset of W — |+ oo ^ or if f is a constant func-
tion c on an open subset of W. It is easy to see that SQ is a
harmonic class of functions. Moreover, every inner region
which contains the point + oo is regular and has only one
point on its boundary. Nevertheless, we have the following
result for the general case:

PROPOSITION 3.4. — Let Q be an open subset of W, and let
XQ be a regular point for Q on oQ n W. Then there is a bounded
barrier b for Q at XQ with the domain of b equal to Q if either
of the following conditions holds:

(i) Q has at most a countable number of components^ and if
QQ is any component of Q, then either ^Qp == \XQ\ or there is a
point x^ ^f=- XQ on bQo such that x^ is regular for Oo.

(ii) There is a countable base for the neighborhood system
of XQ in ^)Q, and ifQo is any component of Q, then there is a point
x^=/= XQ on bQo such that x^ is regular for Qo.

Proof. — Assume first that Q is a region. If there is a regular
point ^i -=f=- XQ on ^)Q, then by the Urysohn lemma there is a
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continuous nonnegative function f on ^)Q such that f{xo) == 0
and /*(^i) == 1. Clearly, H(/, Q) is a barrier for Q at a;o- K
^)Q == ^oj, then 0 is regular. Let co be any regular inner
region containing XQ such that Q — G5 -=^ 0. Then

^ == (BCO n Q) u (^)(o n (W — 0)).

Let c == 2 sup H(l, Q)(rc). It is easy to see that 3rf <; 0
a*e6a)nQ _

such that if g == c on bco n Q and g = d on ^)co n (W — Q)
then H(g, (o)(^o) == 0. Let b = H(l, Q)AH(g, o) in co n Q.
Then 6 is a barrier for Q at rro.

Assume that Q satisfies condition (i). In each component
_ ^

Q» of Q there is a positive function &„€= JQ^ such that bn^—
Tv

and lim bn •===- 0 if XQ e ^Qn- Set b == &„ in each Qn. Then &
^eQ^, a-^a;o

is a barrier for Q at XQ.
Now assume that Q satisfies condition (ii). A slight varia-

tion of the Urysohn lemma shows that there is a continuous
function f o n bQ such that f{xo) == 0 and f{x) > 0 for all
x ̂  XQ on 6Q. By 3.2, H(f, Q) is positive in Q. Since
lim H(/', Q) == 0 at x^ H{f, Q) is a barrier for Q at XQ. |

R.-M. Herve ([10], p. 443) has shown that if Qo ls a compo-
nent of Q and x is a point on oQo n W, then every neighborhood
of x contains at least one point x^ e bQo such that x^ is regular
for Qo (3).

4. The Existence of an Exhaustion of W by Regular Inner Regions.

DEFINITION. — An exhaustion of W by inner regions is a
family ift of inner regions such that if Qi and Q^ are in S{ then
there is a region Q e= Si with Qi u Og c ^? an(^ W = I j Q.

Qe^R/
We shall show in this section that there is an exhaustion of

W by regular inner regions if there is a positive function
in ^)w

(3) The proof in [10] assumes the existence of a positive potential on Q(), but that
assumption may easily be eliminated. (See the proof of 4.1.)
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DEFINITION. — We shall call a nonempty compact subset A
of W an outer-regular compact set if there exists a barrier for
W — A at each point x on ^)A.

The first proposition shows that each point y e W is con-
tained in the interior of an outer-regular compact set. The
proofs for this proposition and corollary 4.2 are similar to
the proofs of the corresponding results given by R.-M. Herve
in [10] (pp. 439-440). We do not, however, assume the existence
of a positive potential on W.

PROPOSITION 4.1. — Let D be a compact subset of W, and
assume that there is a regular inner region Q containing D.
Then there is an outer-regular compact set A with nonempty
interior A° such that D c A° c A c Q.

Proof. — Let Qi and Qg be regions such that

D c Qi c Hi c Qg c % <= Q.

Let h === H(l, Q), and let ^ == [v e ̂ : v > 0 and ̂  > /i|£?ij.
Let P be the lower envelope of ^ (4). If f ==^0 on bQ and f = h
on €)Qi, then P == H(/1, Q — Hi) in Q — Hi. Therefore,

P|(Q - Hi)

is in ^ and lim P = 0 at bO. If co is any regular region with
® c Q and if v e ̂ , then v ^> H(^, co) = H(^, co), whence
P > H(P, co). Since P{x) > 0 in [Ji, P(^) > 0 in Q. (See proof

P(x}of 2.1). Let a == min —-J' Clearly a > 0. Setting A equal
xe^ n[x)

to the compact set

I?2U ^eQ:P(rc) >a/i(o;)j,

we see that the restriction of aA — P to Q — A is a barrier
for W — A at each point x on ^)A. |

COROLLARY 4.2. — Let QQ be a region in W, and let D be
a compact subset of Qo. Assume that there is a positive function

(4) In the notation of [6], P== (R^)i2.
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V in JQQ^. Then there is a regular inner region Q with

D c Q c H c Q o .

Proof. — Let Qi and Qg he regions such that

D c Qi c H, c Qg c Ha c Do.

It follows from 4.1 that there are a finite number of outer
regular compact sets A», i == 1, ..., n, such that

n n

^ c U A? c U A, c W - Hi.
1=1 i=i

n

Let Q be the component of 02 ~ I J ^i which contains i^.
Then by 3.3, Q is regular. | 1=1

As a corollary of 4.2 we have the fact that there is an exhaus-
tion of W by regular inner regions if there is a positive func-
tion in ^pw.

THEOREM 4.3. — Let A be a compact subset of W, and let 3{
be the family of all regular inner regions Q which contain A.
If there is a positive function in ^)w? then 3{ is an exhaustion
ofW.

COROLLARY 4.4. — If there is a positive function in ^)w?
then every compact set is contained in an outer-regular compact
set.

5. ^-measures and the Classification of <§.

Throughout this section we assume that jp satisfies Axiom
IV, that is, that 1 is in ^)w. Given this assumption, we distin-
guish between two types of harmonic classes on W. If 1
is not in ,^w? then ^p is said to be a hyperbolic harmonic class
on W if there are nonzero bounded functions in ^pw? and ^ is
said to be a parabolic harmonic class on W if there are no
nonzero bounded functions in ^w It, however, 1 is in <ipw,
then there is always a trivial nonzero bounded function in
^)w? namely 1. In this case we take an outer-regular compact
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subset A of W and define ^ to be hyperbolic or parabolic
on W depending on whether the upper ^-extension of the
function which is equal to 1 on ^W and Q on bA. is positive in
some component of W — A or identically equal to 0. We
shall show that this classification of j? is independent of the
choice of A and that it is equivalent to the classification in
terms of the existence of a nonzero bounded function in jpw
when 1 ^ <^w. We shall also show that if 1 e ^)w, then there is
a positive potential on W if and only if ^ is hyperbolic.

We first define four functions in ^p which play a special
role in defining the classification of ^p. They will also be used
extensively in Chapter n.

DEFINITION. — Let A be an outer-regular compact subset
o^W.

(i) By the ^-measure for W, H(W), we mean the upper
^'extension in W of the constant function 1 on ^W.

(ii) By the S^-measure for W — A, H(W — A), we mean the
upper ^-extension in W — A of the constant function 1 on
^W ~ A).

(iii) By the ^'measure of ^N for W — A, H(^W, W — A),
we mean the upper ^-extension in W — A of the function
which is equal to 1 on ^)W and Q on ^)A.

(iv) By the ^'measure of ^)A for W — A, H(bA, W — A),
we mean the lower ^-extension in W — A of the function
which is equal to 1 on <)A and Q on <)W.

Since A is an outer-regular compact set, H(W — A) and
H(bA, W — A) tend to 1 at ^)A and H(^)W, W — A) tends to
Q at bA. Thus H(W — A) and H(bA, W — A) are positive in
W — A. Moreover, if ( is the function on ^)(W — A) such
that t = Q on bW and t = 1 on 5A, then since

lim inf H(bA, W - A) > 0

at bW we have H(^A, W - A) = H(t, W - A) = H(t, W - A).
That is, t is resolutive on ^)(W — A). A similar statement is
true for H(W), H(W - A) and H(^W, W - A).

The following proposition establishes another method of
obtaining the four ^-measures defined above:
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PROPOSITION 5.1. — Let A be an outer-regular compact
set in W, and let 81 be any exhaustion of W consisting of regular
inner regions Q which contain A. Then

(i) H(W) is the lower envelope of the family ^FQ: Q e ^ l j ,
where for each Q e 31, FQ == H(l, Q) in Q and FQ == 1 in W — Q.

(ii) H (W — A) is the lower envelope of the family j GQ : Q e 9{ j ,
where for each Q e 31, GQ == H(l, Q — A) in Q — A and
GQ == 1 in W - Q.

(iii) H(bW,W — A) is the lower envelope of the family
[SQ: Qe=8l| , wA^re if 5Q == 1 on bQ and ^Q == Q on ^A. for
each Q e 81, then SQ == H(5Q, Q — A) in Q — A and SQ == 1
in W ~ Q.

(iv) H(^)A, W — A) is the upper envelope of the family
| TQ : Q e S{ ̂ , where if tQ === Q on bQ and ^Q == 1 on bA /or eac/^
Q e rfl, then TQ == H(IQ, Q L- A) in Q — A and TQ == 0 in
W - Q.

Proof. — We shall prove (iii)$ Statements (i), (ii) and (iv)
can be proved in a similar fashion. Let s be equal to 1 on bW
and Q on ^)A. For each Q e S{, SQ is in °D(5, W — A). Let S be
the lower envelope of the functions SQ. Since

H(5W, W - A) = H(5, W - A),
S > H(oW,W - A).

On the other hand, the set | SQ : Q e 31, Q D Qp I is a family
of functions directed by decreasing order in Qo — A for each
QO e ̂ « Hence S is in <^). Furthermore, Q ̂  S <^ 1 and S
tends to Q at bA. Therefore, for every function

v e ̂  W - A), v > S.

We therefore have

H(^)W, W - A) = H(^, W - A) > S,

and thus H(^)W, W - A) == S. |

COROLLARY 5.2. — Let A be an outer-regular compact set
in W. Then H(W - A) = H(5A, W - A) + H(bW, W - A).
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Proof. — Let 9i and the functions GQ, SQ and TQ be given
as in 5.1. The corollary follows from the fact that for each
Q in 31, GQ == SQ + TQ. |

If the constant function 1 is in ^, then H(W) == 1 and
H(W — A) == 1. Even if 1 is not in ^p, however, the ^-mea-
sures H(W) and H(W — A) have many properties which the
function 1 would have if it were in JQ. These properties are
extremal properties in the sense that these ^-measures are
the largest or smallest functions which satisfy certain inequa-
lities. We summarize some of the extremal properties of ^-mea-
sures in the following proposition. With the exception of
Theorem 5.8 and its corollary, the remaining propositions of
this section are statements in the axiomatic setting of the
corresponding results established for Riemann surfaces by
H. L. Royden in [13] (Propositions 1-4, pp. 7-9).

PROPOSITION 5.3. — Let A be an outer-regular compact
set in W, and let a be a nonnegatwe constant. If h is a function
in <!pw, then

(i) / i<a==^A<aH(W);
(ii) h < a(l - H(W)) -^ h < Q.

If h is a function in <^W-.A? then
(iii) A<a=^A<aH(W - A);
(iv) h ̂  a and lim sup h ̂  0 at

^ => h < aH(^)W, W - A);

(v) h ̂  Q and lim inf h ̂  a at

^)A -^ h > aH(^A, W - A).

Proof. — Statement (i) follows from the fact that if a-1 A <; 1,
then ar^h ̂  v for each function v in ^(l, W), whence

a-1 h < H(l, W) = H(W).

Statements (iii), (iv) and (v) are proved in a similar way.
By (i), h + aH(W) < a => h + aH(W) < aH(W). Therefore,
Statement (ii) follows from (i). |

We shall use the SQ measure H(6W, W — A) to classify S^
on W. To do this, however, we need the following result:
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PROPOSITION 5.4. — If H(?)W, W — Ao) == Q for some
outer-regular compact set Ao in W, ^Am H(bW,W — A) == Q
for e^ery outer-regular compact set A in W.

Proof. — Let A be any outer-regular compact set in W,
and let D = A u Ao. Then D is also an outer-regular compact
set. If ^ is any function in <§)w-Ao such that lim inf p ̂  1 at
^W and lim inf ^ ̂  0 at bAo, then lim inf v ;> 0 at each
point a;o on oD. Hence, ^ew-n.^^

H(5W, W - D) < H (6W, W - Ao) = Q,

i.e., H(^W, W - D) == 0.
Since H(^)W,W - A) < 1 and lim H(^)W,W - A) == 0 at

OA, H(OW,W - A){x) < 1 for each r y e W - A.

Let m = sup H(^)W, W — A)(nQ.
a?eD—A

Clearly, m < 1. We shall show that H(oW, W — A)< m
in W - A. _

If v is any function in ^)w-n such that lim inf ^ ̂  1 at ^)W
and lim inf ^ > 0 at ^)D, then H(^W,W — A) < m + (1 — m}v
in W — D. Therefore,

H(^W,W - A) < m + (i - m) H(oW,W — D) = m

in W — D. It follows that H(^)W, W — A) < m in W - A.
By Part (iv) of Proposition 5.3 we have

H(bW, W - A) < mH(^W,W - A).

But m < 1. Therefore H(bW,W - A) == Q. |

DEFINITION. — Let A be an outer-regular compact set in W.
The harmonic class ^ is said to be hyperbolic on W if

H ( o W , W - A ) ^ Q

and parabolic on W if H(^W, W -- A) = Q.
As we noted before, we cannot classify ^ on W in terms of

H(W) being positive or equal to Q because H(W) == 1 whenever
1 e ,jp. We do, however, have the following proposition for the
case that 1 is not in ^)w ;
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PROPOSITION 5.5. — The following statements are equivalent
if the constant function 1 is not in &w :

(i) ^ is parabolic on W.
(ii) H(W) = Q.
(m) There is no nonzero bounded function in ^»w
(iv) 1 is a potential.

Proof. — We show first that (i) -^ (ii), Let A be any outer-
regular compact set in W, and assume that H(&W, W — A) = 0.
Since H(W)(a;) < 1 for all points x in W, the maximum m
of H(W) on A is less than 1. Let v be any function in ^w-i
such that lim inf v > 1 at &W and lim inf v > 0 at 5A. Then
H(W) < m + (1 - m)? in W - A, whence

H(W) < m + (1 - m) H(OW, W - A) == m

in W — A. Since we also have H(W) < m in A, it follows
from part (i) of Proposition 5.3 that H(W) < mH(W) But
m < 1. Therefore H(W) =0.

Now assume that H(W) == Q, and let A be any outer-regular
compact set in W. If v is a function in T)(l, W), then lim inf v > 0
at &A. Hence

H(oW, W - A)< H(W) = 0.

Thus (i) -^=> (ii).
If h is a function in \<g»w such that — M < h < M for some

constant M, then \h\ < MH(W). Thus we have (ii) =^ (Hi).
Clearly, (iii) =^ (u). By part (i) of Proposition 5.3, H(W) is
the greatest minorant of 1 in ^pw. Thus (ii) -^=> (iv). |

The next proposition is an extension of the maximum prin-
ciple for the case that .§> is parabolic on W.

PROPOSITION 5.6. — Let Q be a region in W such that Q ̂ = W,
and let C = 6Q n W. Let h e ̂ Q be a function which is bounded
from above, and let a, be a nonnegative constant such that

lim sup h <; a
xeQ, a!*-^

at each point Xy e C. Then h < a in Q if ̂  is parabolic on W.
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Proof. — By 4.1 there exists an outer-regular compact
set A with A c W — Q . The fact that jp is parabolic on W
implies that H(oW, W — A) == Q. Let M be an upper bound
for h. Let p be any function in ^W-A such that lim inf v ^> 1
at bW and lim inf ^ > 0 at ^)A. Then

lim inf (M^ + a — h) > 0
a?eQ, a'-^a'o

at each point XQ on <')[). Hence, M^ ^> /i — a in Q, and thus

A - a < MH(oW, W - A) == Q.

Thus h < a in 0. |
We next establish an extremal property of the ^-measure

H(<)A, W — A) for the case that H is hyperbolic on W.

PROPOSITION 5.7. — Let A be an outer-regular compact
set in W, and let h be a function in ^Qw such that

h < MH(^A, W - A) in W - A

for some positive constant M. Then h <; Q in W if ^ is hyper-
bolic on W.

Proof. — Let m == max fO, sup /i(^)\. Without loss of
\ xeA I

generality we may assume that m ̂  M. Now

MH(bA, W — A) — h > Q

in W — A and lim inf (MH(^A, W — A) — h) > M — m at
bA. Therefore,

MH(bA, W - A) - h > (M - m) H(bA, W - A)

by Proposition 5.3, Part (vi). Hence

h < mH (^)A, W - A)

in W — A and h ̂  m in W.
Assume that m^O. By 5.2,

H(W - A) == H(6W, W -A) + H(^A, W - A),
and by assumption H(bW, W — A) -=^ Q. Therefore,

H(()A, W - A) ^= 1.
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Since h < mH (€)A, W ~ A) in W — A, h ̂  m in W — A.
Thus h(x) < m for all x in W and in particular for all x in A.
The restriction of A to A takes its maximum value on A and
that maximum value is less then m. But then m = 0. It
follows from this contradiction that m = 0 and h ̂  Q in W. |

If 1 ^ ^pw? then it follows from Part (ii) of Proposition 5.3
that 1 — H(W) is a positive potential on W. On the other
hand we have the following result for the case that 1 is in ^w '-

THEOREM 5.8. — Assume that 1 is in jpw Then there is a
positive potential on W if and only if ̂  is hyperbolic on W.

Proof. — Let A be an outer-regular compact set. If JQ is
hyperbolic on W and P is the positive function in jpw such
that P = i in A and P = H(oA, W — A) in W — A, then
by 5.7, P is a potential on W.

Now assume that JQ is parabolic on W. Also assume that
there is a positive potential F on W. Since 1 e ,jp^, we may
assume that F is bounded; e. g., replace F with F /\ 1. Let
f = F on 6A and f = Q on <)W. Clearly, F > H(/1, W - A)
in W — A. Let a == min ¥{x); then a > 0. At each XQ e ̂ A
we have XGAL

lim inf H(/1, W - A) > lim inf /•> a.
a;eW—A, X-^XQ a;€^A, X-^XQ

Thus by Part (v) of Proposition 5.3,

H(y, W - A) > aH(bA, W - A).

But since H(6W,W - A) = Q, H(^A, W - A) = 1 by 5.2.
Therefore F ,> a in W which is impossible. Thus there is no
positive potential if S^ is parabolic on W. [

COROLLARY 5.9. — Assume that ^ is parabolic on W and
that 1 e <^w. Then every lower bounded function in ^pw ^nd every
upper bounded function in ^)w is a multiple of 1.

Proof. — We need only prove the corollary for a positive
function V in jpw It is easy to see that V has a greatest nonne-
gative minorant h in ^pw Since V — h is not a positive poten-
tial, V == A. Moreover, we have shown that for every ^ > 0,
lApiV is in ^w. It follows that V is a multiple of 1. |



CHAPTER II

PROPERTIES OF PAIRS OF HARMONIC CLASSES ON W

6. The Harmonic Class V-^H.

Throughout this section, ^p will denote a harmonic class of
functions on W. Let V be a positive continuous function on W.
We denote the set of quotients | A/V : h e JQ j by the symbol
V~1^ and the set |/i/V: h e= jp^j by V^^Q. It is well known
that V~1^) is a harmonic class on W. Note that ^p == V(V-"1^).
If Q is an inner open subset of W, then Q is regular for JQ if
and only if Q is regular for V"1^?, Furthermore, if f is a func-
tion on bQ and Q is regular for S^ and V"2^, then f is inte-
grable with respect to JQ if and only if f is integrable with
respect to V""1 ̂ . In this case the V'^-extension of f is equal
to V^I^Y/; Q).

If v is in SQ and oj is a regular inner region with G3 contained
in the domain of ^, then V~~1 v is greater than or equal to the
V""1 ̂ -extension of V~1^ in o since

V^P > V-1 H(^, co) = V-1H(V(V-1^, (o).

It follows that the superharmonic class associated with
V~1^) is the set V"1^) == JV""1^: v ^ fQ\ and the subharmonic
class associated with V~1^) is the set V~1^) == JV"1^: ue ̂ .

Let Q be an inner open subset of W. Clearly, for any bounded
function f on ^)Q, the upper and lower V'^-extensions of f
in Q are equal to V^H^V, Q) and V^I^Y, Q) respectively.
Moreover, if XQ is a point on ^0 and b is an ^-barrier for Q
at a;o, then V"^ is a V^jp-barrier for Q at XQ. It follows that
a compact subset of W is outer-regular with respect to jp
if and only if it is outer-regular with respect to V"~1^.

The constant function 1 is in V~1^) if and only if V is in ^.
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Moreover 1 is in V"1^) if and only if V is in ^p. Thus we have
the following result:

THEOREM 6.1. — Let V be a positive continuous function
on W. Then V"1^? satisfies Axiom IV if and only i/*V is in <<?.

Given 6.1, we can use the function V to generalize the
classification of <!? defined in Section 5.

DEFINITION. — If V is in ^)w? then jp is called N-parabolic if
V"~1^) is parabolic and SQ is called V-hyperbolic if V^jp is
hyperbolic. A function A e H is called N-bounded if there is a
constant M such that \h\ ̂  MV.

As a consequence of 5.1 we have the following criterion for
determining the classification of V~1^).

PROPOSITION 6.2. — Let V be a positive continuous function
in ^w. Let A be an outer-regular compact set in W and let S{
be an exhaustion o/'W consisting of regular inner regions Q which
contain A. Let S be the lower envelope of the family \ S^ : Q e 3lj,
where if SQ = V on ^)Q and SQ = 0 on bA for each Q e 91, then
SQ== H(5Q, 0 - A) in Q — A ^ and SQ = V in W - Q.
Then ^ is ^-parabolic if and only if S === Q.

If V is a positive continuous function on W, then a function
P is a potential for ^ if and only if V^P is a potential for
V~1^). Given a positive continuous function V in ,jpw, we shall
show that V'"1^) is parabolic if and only if V is a potential
or there is no potential for jp on W (in which case Ve^p) .

PROPOSITION 6.3. — Let V be a positive continuous function
in ^w? but assume that V is not in jpw Then V~1^ is parabolic
on W if and only if V is a potential for SQ.

Proof. — Since 1 = V^V is not in V^^w, V~1^ is para-
bolic if and only if 1 is a potential for V~1^), i.e., if and only
if V is a potential for jp. j

PROPOSITION 6.4. — Assume that there is a positive function
in ^pw Then the following statements are equivalent:

(i) If V is any positive function in ^)w, then V is in jpw and
every function v in jpw with v ̂  mV for some constant m is
a multiple of V.

(ii) There is no positive potential for ^ on W.
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(iii) JQ is V-parabolic for some positive V in ,!pw
(iv) There is at least one positive function in ^w? cind JQ is

\-parabolic for every positive V in S^w

Proof. — Letting m == 0 we see that (i) ===^ (ii). Given (ii),
we see that every positive V e= jp^y is equal to its greatest
minorant in ^pw Thus by 5.9, (ii) ===^ (i). The rest of the proof
follows from 5.8. | _

If Vi and Vg are positive functions in ^)w such that Vi <; MVg
for some constant M, then Vi is a potential for JQ if V^ is a
potential for jp. Thus we have the following consequence of
6.3 and 6.4:

PROPOSITION 6.5. — Let Vi and V^ be positive continuous
functions in ^)w. If Yi ̂  MVg for some constant M, then ^
is ^-parabolic if S^ is V^-parabolic. If mVi ̂  Vg for some
positive constant m, then jp is V^-hyperbolic if ̂  is V^-hyper-
bolic.

COROLLARY 6.6. — Let Vi and Vg be positive continuous
functions in jpw such that Vi == Vg in the complement of some
compact subset A of W. Then ^p is N^-parabolic if and only
if H is Vg- parabolic.

COROLLARY 6.7. — Let V be a positive continuous function
in «§)w? and assume that i is also in ^)w If V ̂  M for some
positive constant M and if JQ is parabolic on W, then V~1 ^
is parabolic on W. If m ̂  V for some positive constant m,
and if ̂  is hyperbolic on W, then V~1 jp is hyperbolic on W.

Brelot ([6], pp. 94-95) has shown that if there is a positive
function in ^pw then there is a positive continuous function in
^)w Using this fact, we establish as an application of 5.8.
the following result of Constantinescu and Cornea ([7], p. 381.)

THEOREM 6.8. — If there is a positive function in ^)w? then
there is a positive potential in any region Q such that W — Q -=f=- 0.

Proof. — We may assume that 1 e JQ^y. Let A be an outer-
regular compact set in Q. Let

Q == ^ p e ^)w-A ^ lim inf v ̂  0 at ^A,
lim v == 1 at BQ and ^|W - Q = 1}.
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Let G be the lower envelope of ^. It is easy to see that

G|Q - A = H(^Q, Q - A).
Moreover, for any regular region (o with 05 c W — A we have
G ^> H(G, (o). But there is one such region G) such that

Oco n (W — 0) 1=- 0 and co n (Q — A) ̂  0.

Thus G is positive in some component of Q — A. It follows
that ^p is hyperbolic on Q and so there is a positive potential
in Q. |

7. Comparable Harmonic Classes.

In this section we shall consider pairs of harmonic classes
JQ and St where St contains all positive functions of ^ which
have domains in the complement of some fixed compact
subset of W.

Let S be any set of functions with open domains in W
and let Wo be an open subset of W. Then ^jWo will denote
the set t/1(Wo n Qy) : /*e3?, Q^ is the domain of /^. We shall
usually take Wo to be the complement A. of a compact subset A
of W. Moreover, S^~ will denote the nonnegative functions in
S and 9~ will denote the nonpositive functions in S.

DEFINITION. — Let ,jp and ^ be harmonic classes on W. We
say that ^ majorizes ^ or that ^ is majorized by S^ if there is a
compact subset A of W such that ^"^A c ̂ !.

We do not exclude the possibility that A is an empty set.
We write fQ^ ^ when S^ majorizes ^5 and we call ^ and St
comparable harmonic classes. The set A is called an excluded
set for the ordered pair (^, ^).

An example of a comparable pair of harmonic classes is
given by the solutions on a region W in R" of the elliptic dif-
ferential equation

/A\ v ^2U i VL ^u r\(1) LOa ——— + 2A — = Quv / 7 ^xfixj ^Xi '

and the solutions on W of the equation

(2) ^^u-+^b^-u-=Puv / ^xftxj tef
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where
(i) the coefficients of (1) and (2) satisfy a local Lipschitz

condition,
(ii) the left side of (2) is the same as the left side of (1)
(iii) ^dijXiXj is a positive definite quadratic form.
(iv) P > Q and P > Q.
If h is a solution of (1) and k is a solution of (2) and if

/ i>/c>0

on the boundary of an inner region co, then h ̂  k in co. For
if not, and if 0)0 is the subset of co in which k{x) > h(x), then
since k — h takes a maximum value in each component of
(QO and

So,, b2(/c ~ h) + 26, ̂ {k ~ h) == P/c - QA > (P - Q)/i > 0IJ ^ bxj ^x, " ^ v '/ ^ "

in (Oo? A* — /i is constant in each component of coo. (See [8],
p. 326). But then k — h = Q in (OQ, which means that (OQ
is empty. Thus the class of solutions of (1) majorizes the class
of solutions of (2). If we have P ;> Q and P ,> Q only in the
complement of some compact subset A of W, th^n A is an
excluded set for the pair of solution classes of (1) and (2).

Throughout this section, S^ and St will be comparable
harmonic classes with S^^s-^ and A will be an excluded set for
the pair (^p, ^). The relationship ^[Ac^ implies several
other useful relationships between the superharmonic and
subharmonic classes associated with JQ and the corresponding
classes associated with ^. These relationships are listed below
in Proposition 7.2, but first we need the following result:

PROPOSITION 7.1. — There is a base S> for the topology of
W — A such that each set co in S> is an inner region which is
regular for both ^Q and ^.

Proof. — By Axiom II, there is a base % for the topology
of W — A consisting of inner regions which are regular for ^.
Let (o be an element of %. Without loss of generality, we may
assume that there is a region Q which is regular for ̂  such that
GJ c Q. Let A* be a positive function in ^Q. If there is only one



198 PETER A. LOEB

point XQ on ^co, then for any number a we have

lim -,—- k = a.
rceco, .K-^a'o rC^Xoj

Thus in this case CD is regular for ^. If there are at least two
points on bo), then for each XQ e ̂  there is a continuous nonne-
gative function f on ^co such that f{xo) == 0 but f •=/= Q. Clearly,
H(/, co) is a ^-barrier for co at XQ. By 3.3, (D is regular for ^. |

PROPOSITION 7.2. — We Aa^e the following consequences of
the fact that ^[A c St:

(i) ^-lAcI; (iii) ^|Ac^;
(ii) ^-|AcS; (iv) ^-|Ac^.

Proof. — Let ^ be any function in ^"^A. To prove State-
ment (i) we must show that v is in ^. Let co be an inner region
such that co is contained in the domain of v and co is regular
for JQ and ^. We must show that ^ ̂  K(^, co) where K(^, co)
is the A-extension of v in co. Let /* be any continuous function
on bo such that p ̂  /*. Then ^ .̂ H(/*, co) ̂  K(/, o), whence
^ ̂  K(^, ^). Thus ^ is in SQ. A similar proof establishes State-
ment (iii). Statement (ii) follows from (i), and Statement (iv)
follows from (iii). |

If we call SQ and St equivalent harmonic classes whenever
there is a compact set A cW such that JpjA == ^|A, then it
will follow from the corollary to the next proposition that the
relation ̂  defines a partial ordering in the set of equivalence
classes of harmonic classes on W.

PROPOSITION 7.3. — Let Wo be an open subset o/*W — A. If
there is a positive function F which is in both Jpw ^r^d Stw ? then
^|Wo = ̂ |Wo.

Proof. — Let h be in ^[Wo, and let co be an inner region
such that G3 is contained in the domain of h. Let h be the
restriction of h to co and F be the restriction of F to <o- By
the compactness of 55, there is a positive constant m such
that h + mF ̂  Q. Since F is in ^p, h + mF is in ^, and since
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P is in ^, h is in ^. There is also a positive constant M such
that h — M? <; Q. Since P is in ^p, h — M? is in ̂  and since
F is in ^, h is in ̂ . Thus the restriction of h to any inner region
in its domain is in St n ̂  === ̂ . By Axiom I, h is in ̂ . Similarly,
if /ce^|Wo, then /c e= ^. Thus ^|Wo == |Wo |

COROLLARY 7.4. — Let ̂ , ̂ , an6? L be harmonic classes onW.
If ^^St and St > L, ^n ̂  > L. //* ̂  >^ anrf ^ > ̂  anc;
i/* A is an excluded set for both the ordered pair (^p, ^) and the
ordered pair ( ,̂ j?), (Aen <^|A. == ^|A.

Proof. — The first statement follows from 7.2. To prove the
second statement, let co be any regular inner region in W — A.
By Axiom I it is sufficient to show that ^|o) == ^|co. Now
H(l, co) is a positive function in S^^. Since S^ ̂  ̂ , H(l, co)
is in ^, and since St ̂  <^), H(l, co) is in ^. Thus H(l, co) is in
^. By 7.3, ^jco = ̂ . |

The next proposition shows that the relation JQ ̂  ̂  is
preserved under division by a positive continuous function V.

PROPOSITION 7.5. — Let Vi OMC? Vg fee positive continuous
functions on W such that Vi == Vg in the complement of some
compact subset D of W. Then

^>^^.v^-i^>vr1^.
Proof. — We may assume that D is contained in an exclud-

ed set A. Let V^A be a positive function in V^pjA. Then h
is in ^^jA, whence h is in St. Therefore, V^"'1^ is in Vg" ,̂
which is the superharmonic class associated with Vg~1^.
Thus Vr^+lA c V^i I

In the following theorem we use the results of Section 3
to describe the relationship between open sets which are
regular for JQ and open sets which are regular for ^. Recall
that in establishing the results of Section 3 for an open set Q
and a harmonic class ^), we assumed the existence of a func-
tion V e ̂  with inf V(rr) > 0.

a;eQ

THEOREM 7.6. — Let Q be an open subset of W with
50 c W — A, and let XQ be a point on bQ, n W. Assume either
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(Aa( 0 has at most a countable number of components or that
there is a countable base for the neighborhood system of x»
in OQ and there is at least one point different from Xy on the
boundary of each component of Q. If Q is regular for ^, then
there is a St-barrier for Q at Xy. If Q is regular for ^ and if
there is a positive continuous^ function V defined on Q such
that V|Qe^ and V jQ-Ae^ , then there is an ^-barrier for
Q at XQ.

Proof. — The first statement follows from 3.4 and 7.2.
To prove the second statement we assume first that Q is a
region. If oQ — ̂  = ff, let w be an inner region which is
regular for ^ such that 55 c W - A, x» s o and Q - es ̂  ft.
Let c = 2 sup V(a;). It is easy to see that 3d < 0 such

.reStonQ

that if g = c on ow n 0 and g= d on bwnW — Q then

H(g, <^) (a-o) = 0.

Let 6 = V in Q - (o and 6 = VA H(g, M) in <o n Q. Then
6|Q — A is an ^-barrier for Q at Xy.

If oQ — |a;o^ ^=^, then there is a continuous nonnegative
function f on &Q such that f(x^) = 0 but f =fc 0, and /'< V.
Since V + K(/- - V, Q) is in St, V +_K(y - V, Q) > Q by 2.2^
By 7.2, K(f— V, 0)|Q — A is in ^>. Thus the restriction of
V + K(f — V, Q) to Q — A is an ^-barrier for Q at a;o.

The rest of the proof for the case that Q has at most a
countable number of components is similar to the correspon-
ding proof of 3.4. Now assume that there is a countable base
for the neighborhood system of Xy in aQ and that there is at
least one point other than Xy on the boundary of each com-
ponent of Q. Then there is a continuous function f on aQ such
that f(x,) =0, /•< V and f(x) > 0 for every x ^= x^ on oQ.
The function [V + K(/-- V, Q)]|Q - A is an ^-barrier for
il at Xy. |

COROLLARY 7.7. — Let Q be an inner open subset of W with
(»Q c W — A. Assume either that Q, has at most a countable
number of components or that &Q satisfies the first axiom accounta-
bility in the relative topology and there are at least two points
on the boundary of each component of 0. Also assume that there
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is a positive continuous function V defined on Q such that
V|Q is in both ̂  and .̂ Then Q is regular for S^ if and only if
Q is regular for .̂

The last theorem of this section establishes the fact that if
1 e. jpw and 1 <= ^w? then ^ is parabolic on W if ^ is. We can
show that the converse is not true by considering the open
unit circle W == |z: |z[ << 1^, and taking ^ to be the set of
solutions of the equation Au = Q on W and ^ to be the set
of solutions of the equation Au == 4(1 + H2)^ — Izl2)""2^. on
W. It is well known that jp is hyperbolic on W. If

CL z; \z\ < 1 - A.
n

then [Qn} is an exhaustion of W and the ^-extension of 1
in Q^ K(l, Q^), equals

JL (\ ^ ±^ 1
n \ 2n) (1 - \z\2)

Since lim K(l, Q^) ==Q, ^ is parabolic on W by 5.1 and 5.5.
n>oo '*'

THEOREM 7.8. — If 1 e ^w and 1 e ̂ \y (Aen ^ 15 parabolic
on ^N if S^ is parabolic on W.

Proof. — By 4.4, we may assume that the excluded set A
is outer-regular with respect to ,jp. It follows that A is also
outer-regular with respect to ^. Let v be any function in
Jpw~A such that lim inf v ^> 0 at ^)A and lim inf p .̂ 1 at ^)W.
Since (/ is in ^, ^ ̂  K (^W, W — A), whence

H(^W, W - A) > K(^)W, W - A).

If ^ is parabolic on W, then H (^)W, W — A) = Q and St is
parabolic on W. |

COROLLARY 7.9. — Let Vi and Vg be positive continuous
functions on W such that Vi e jp, Vg e ̂  anrf Vi == Vg in ^e
complement of some compact subset D o/* W. Then §t is Vg-
parabolic if ̂  is ^-parabolic.
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Proof. — Clearly, 1 e V^ and 1 e V^. By Proposition
7.5, Vr-^g^V^. Therefore, V^ is parabolic if V,-1^
is parabolic. |

COROLLARY 7.10. — Let Vi be a positive continuous potential
for <fp on W, and let V^ fc<° a positive continuous function in
Stw such that Va == Vi in the complement of some compact subset
D of W. Then either Vg 15 a potential for ^ on W or there is
no potential for ^ on W in which case Va e ̂  and

^|A n D == ^|A n D.

Proof. — By 6.3, V^ is parabolic, so by 7.9, V^ is
parabolic on W. Therefore, either ¥2 is a potential for St
or there is no potential for ^ on W and ¥2 e ̂ . In the latter
case, VgiA n D e ̂ , whence by 7.3, ^JA n D == .%|A n D. |

8. The Bounded Functions in Comparable Harmonic Classes.

If Q is an open subset of W and <§) is harmonic on W, then
the set of all bounded functions in ^p^ forms a Banach space
with \\h\\ == sup |A(^)|. We denote this by %^Q.

a?€EQ

If ^ is the set of solutions of Au = Q in the plane R2, then
%^w consists of all multiples of 1. On the other hand if Jp is
the set of solutions of the equation Au == Pu in R2, where
P(z) == 0 for |^| > 1 and P{z) = ̂ M-1)-1 for |z| < 1, then
%«ipw == {0} even though S^^St. If, however S$ and St are
harmonic classes which satisfy Axiom IV such that JQ ̂  ̂ ,
and if jg) is hyperbolic on W, then we can show in the general
case that there is an isometric isomorphism of S^w onto a
subspace of %<§)w We do not proceed to this result directly,
however, because in general we must work in the complement
of some compact set. Thus we shall first establish Proposi-
tion 8.1. This proposition and Theorem 8.3 and its corollary
are statements in the axiomatic setting of the corresponding
results given by H. L. Royden in [13], pp. 10-15.

PROPOSITION 8.1. — Let ^ and ^ be harmonic classes which
satisfy Axiom IV such that jp ̂  ,̂ and let A be an excluded
compact set for the pair (,!?, ^). Assume that A is outer-regular
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with respect to both ^ and .̂ Let %o^w-A denote the subspace
of %^w-A consisting of all functions of %^w-A which vanish
at ^)A. Then there is an isometric isomorphism of £8o^w-A onto
a subspace of ̂ x^w. If also ^ ̂  ̂  and A is an excluded set for
the pair (̂ !, ^)), then %o^w-A and 3^w are isometric if there
is a positive potential for ^p on W.

Proof. — By Part (iv) of Proposition 5.3, 9U?w-A = {0}
if ^ is parabolic on W. If ^ ̂  JQ and ^ is parabolic on W,
then jp is parabolic on W, and thus S>S^w = {0} unless there
is no positive potential for j? on W, in which case 1 e S^w'
Therefore, the proposition holds if ,% is parabolic on W. We
assume for the remainder of the proof that ^ is hyperbolic
onW.

Let 3{ be the set of all regular inner regions Q in W such
that A c Q; S{ is an exhaustion of W. Let A* be a nonnegative
function in %o^w-A- For each il e S{ we set AQ equal to k in
W — Q and H(/c, Q) in Q. By 2.3 we have h^ ̂  k, and conse-
quently AQ, ̂  h^ if Og D ̂ r Thus the family {h^: Q e R j
is directed by increasing order on W, and for each 0 e R we
have AQ ̂  [1/cjl. Let nk be the upper envelope of the functions
AQ. It follows from Axiom III that ir/c is in ^.fpw. We thus
define a mapping TC from the nonnegative functions of %o^w-A
into %<^w. If k and k are nonnegative functions in %o^w-A
and if a is a nonnegative constant, then we have

^k + ^k = ir[A* + k~\^ ^ak = a^A*,
and

(1) Q</c<^<||/c||.

Moreover, if h is any function in ^B<ipw? then

(2) Q < k < h ==> ̂ k < h.

Since K(?)W, W — A) < 1, it follows from 5.3 and Equation
(1) that

K(^)W, W - A) < 7rA-(oW, W - A) < H(W) < 1.

If k is an arbitrary element of %o^w-A? then

/c+ ||/c||K^W,W - A ) > 0
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by 5.3. Hence any function in %o^w-A can be expressed as
the difference of two positive functions in %o^w-A. If

ki — k^ = A-3 — /f4,

then /Ci + A-4 = A-3 + ^2 and TC/CI + 7^4 = -71/03 + ̂  whence
^i — ^2 == ^3 — ^4- Therefore, we can extend the defi-
nition of IT to all of ^W-A by setting TC(/CI — k^) == TC/CI — ̂
for each pair of positive functions A-i and /Cg in %o^w-A. With
this definition, 71 is a linear mapping of %o^w-A into %^w

For any k in %o^w-A we have

0 < TT/C + N TiK (^W, W - A) = </c + ||/c|| K (^W, W - A)]
<Tc[2||/c| |K(6W,W-A)]
<2||/c| |^K(^W,W-A).

1 herefore,

|̂ | < \\k\\ TTK (6W, W - A) < ||/c[|,
and thus IT does not increase norms.

We now proceed to define a linear mapping p of S>^w into
^BO^W-A- Let A be a nonnegative function in ^8»6w For each
Q e 3{ let /Q be equal to h on ^)Q and Q on ^A. Let /CQ be equal
to K(/Q, Q — A) in Q — A and equal to h in W — Q. If
QI and Qg are in Si and Qg => Q^, then h > /CQ > /CQ > Q.
Let pA be the lower envelope of the functions /CQ ; p/i2 is in
%O^W-A. Moreover

(3) 0 < pA < A,

while if k is any positive function in %o^w-A, we have
(4) k < A ==^ k < pA.

For arbitrary functions A in 3^w we have h + \\h\\ H(W) > Q.
Therefore we may, as above, extend p to a linear mapping
on all of %^w into %o^w-A by setting p[h^ —h^]= p/ii -- p/^
for any pair of positive functions h^ and h^ in %^w. By 5.3
and the linearity of p we have

0 < ph + ||%H(W) = p[A + ||/i||H(W)]
<p[2||A||H(W)]
<2||A||pH(W).

Hence |pA| < ||A||pH(W) < ||A|],

and so p does not increase norms.
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For any positive function k in %o^w-A we have TT/C ;> A*
by (1) and hence by (4) we must have prc/c ̂  /c. Thus

K(bW, W - A) < p7rK(^W, W - A) < 1,

whence by 5.3 we have K(oW, W ~ A) == p^K^W, W — A).
Consequently, for an arbitrary k in %o^w-A we have

k + [|/c[|K(oW, W - A) < p</c + ||/C[|KO)W, W - A)]
< PTT/C + ||K||K(oW, W - A).

Hence pTc/c ̂  k for all /c in %o^w-A. Replacing /c by — k we
obtain pn/c <; k, and so pTt/c == /c. Since neither it nor p increase
norms, we see that it is an isometric isomorphism of %o^w-A
onto a subspace of 3S^w? and this establishes the first part of
the proposition.

If it is also true that ^ ̂  ̂  and A is an excluded set for
(^, jp), then H(^W, W - A) = K(^)W, W - A), and so by
(1), H(^W, W - A) < 7rK(^W, W - A). We then have

0 < H(W) - TCK(^W, W - A) < H(W) - H(^W, W - A)
< H(W - A) - H(^W,-W - A) == H(^A, W ~ A)

by 5.2. By 5.7 and 7.8, H(W) = ̂ K(^W, W - A).
Therefore,

i,pH(W) = ̂ (?^K(6W, W ~ A)) = 7:K(6W, W - A) = H(W).

By (2) and (3) we have for each h in ^6^w

h + ||^|H(W) > ^p[A + ||A[|H(W)] = TTpA + NH(W),

whence A .̂ 7CpA for every h in S^w Thus T^ph = h, and we
see that in this case IT is an isometry of S^oStw-A onto ^<§)w. |

COROLLARY 8.2. — Let S^ be a harmonic class which satisfies
Axiom IV, and assume that there is a positive potential for ^
on W. Let A. be a compact subset of W such that A is outer-
regular with respect to <^), and let ^o^w-A denote the functions
in %^W~A which vanish at bA. Then there is an isometric iso-
morphism of S^o^w-A onto %<§)w

THEOREM 8.3. — Let ^ and St be harmonic classes which
satisfy Axiom IV such that jp ̂  ̂ , and assume that ^ is hyper-
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bolic on W. Then there is an isometric isomorphism of 3^w
onto a subspace of %^w If ̂  ̂  ̂  ̂  well^ then S^^w ct,nd 8^w
are isometric.

Proof. — If ^ is parabolic on W, then either ^B^w == |Q^
or %^w consists of all multiples of 1. In the latter case, the
isometry is defined by mapping 1 onto H(W), for since

H(W) == H(l, W) = H(l, W),
we have sup H(W)(rc) = 1. We shall assume for the remainder

a?6W

of the proof that ^ is hyperbolic on W.
Let A be an excluded set for (,<?, ^) and assume that A is

outer-regular with respect to both S^ and ^. If St ̂  <§), assume
that A is also an excluded set for (^, ^)). By 8.2 there is an
isometric isomorphism TC of S>Stw onto %o^w-A. By 8.1 there
is an isometric isomorphism X of ^BQ^W-A onto a subspace of
^<ipw? and X maps %o^w-A onto %^w it ^^^. The map Xo-rc
is the desired isomorphism, j

COROLLARY 8.4. — If JQ and ^ are harmonic classes which
satisfy Axiom IV such that JQ ̂  ̂ , and if 1 is in ^)w? then the
first two of the following statements are equivalent and imply
the third and fourth:

(i) There are at least two linearly independent functions
in £8^w.

(ii) There is a function in S>^w which assumes both positive
and negative values.

(iii) There is a nonconstant function in ^8jpw.
(iv) There is a positive potential for ^ on W.

Proof. — If /Ci and k^ are linearly independent functions,
we can always choose constants a and jS so that aA*i + ^2
assumes both positive and negative values. On the other hand,
if A* is a function in %^w which assumes both positive and
negative values, it is not linearly dependent on K(W). Hence
we have at least two linearly independent elements of %^w
Thus we see that the first two statements are equivalent and
imply that dim 3^w ̂  2. But by 8.3 this implies that
dim %^pw ̂  2, and so there must be one nonconstant function
in S^w and a positive potential for SQ on W. |
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Let ,ip be a harmonic class of functions on W and let V be a
positive continuous function in ^pw. We denote the set of
V-bounded function in Jpw by ^6(V)^w. The space £8(V)^pw
is a Banach space with the norm

||A||v== supV-1/^).
xeW

Clearly, the mapping h —> V~1 h is an isometric isomorphism
of 35(V)^)w onto ^V-^w, where ^V-^w is the set of bounded
functions in V^^w Therefore, we have the following conse-
quence of 6.1, 7.5 and 8.3.

THEOREM 8.5. — Let ^ and ^ be harmonic classes with
<S? ̂  ̂  Let Vi and ¥2 be positive continuous functions on W
such that Vi <= <Sp, Vg e= ̂  and Vi == Vg in ̂  complement of
some compact subset D o/* W. Assume that ^ is \i-hyperbolic
on W. Then there is an isometric isomorphism of S>(y^)^w
onto a subspace of %(Vi)»!pw If ̂ ^- ̂  as well, then 3^(\^)Stw
and %(Vi)^pw ^^ isometric.
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