
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Mladen BOŽIČEVIĆ
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LIMIT FORMULAS FOR GROUPS WITH ONE
CONJUGACY CLASS OF CARTAN SUBGROUPS

by Mladen BOŽIČEVIĆ

Abstract. — Limit formulas for the computation of the canonical measure on
a nilpotent coadjoint orbit in terms of the canonical measures on regular semisim-
ple coadjoint orbits arise naturally in the study of invariant eigendistributions on
a reductive Lie algebra. In the present paper we consider a particular type of the
limit formula for canonical measures which was proposed by Rossmann. The main
technical tool in our analysis are the results of Schmid and Vilonen on the equi-
variant sheaves on the flag variety and their characteristic cycles. We combine the
theory of Schmid and Vilonen, and the work of Rossmann to compute canonical
measures on nilpotent orbits for the real semisimple Lie groups with one conjugacy
class of Cartan subgroups.

Résumé. — Les formules limites qui relient la mesure canonique sur une orbite
coadjointe nilpotente aux mesures canoniques sur les orbites semi-simples régu-
lières jouent un rôle important dans les études des distributions invariantes sur les
groupes de Lie réels réductifs. Le but de cet article est d’étudier un type parti-
culier de la formule limite proposée par Rossmann. En utilisant les résultats de
Schmid et Vilonen concernant les faisceaux équivariants sur la variété de drapeaux
d’une algèbre de Lie réductifs, nous calculons les mesures invariantes associées aux
orbites nilpotentes pour les groupes de Lie semi-simples ayant l’unique classe de
conjugaison de sous-groupes de Cartan.

Introduction

Let GR be a semisimple Lie group, gR the Lie algebra of GR, g the com-
plexification of gR, and X the flag variety of g. In case gR has a complex
structure it was observed first by Rossmann [16] that the invariant eigendis-
tributions on gR can be expressed as integrals of certain equivariant forms
over homology classes on the conormal variety of GR-action on X. These
ideas were later refined and generalized to arbitrary semisimple groups by

Keywords: nilpotent orbit, Liouville measure, Weyl group, limit formula.
Math. classification: 22E46, 22E30, 43A80.



1214 Mladen BOŽIČEVIĆ

Schmid and Vilonen [19]. The formulas that relate invariant eigendistribu-
tions and homology classes are usually called Rossmann integral formulas.
They have proved to be important in studying asymptotic properties of
invariant eigendistributions, and in particular, for computing the Liouville
measure on a coadjoint nilpotent orbit in terms of Liouville measures on
regular semisimple orbits. The corresponding formulas are known as limit
formulas. They already appear in the classical work of Harish-Chandra on
the harmonic analysis on semisimple groups. Namely, the simplest example
of limit formulas is the Harish-Chandra’s formula for delta function at zero.

Liouville measures on nilpotent orbits for complex groups were computed
independently by Rossmann [16] and Hotta and Kashiwara [12], and for
special orbits by Barbasch and Vogan [1] [2]. Rossmann proposed in [15] a
method for computing nilpotent Liouville measures for arbitrary semisim-
ple groups, which was based on his theory of Weyl group representations on
homology classes of conormal varieties, and on the notion of character con-
tours. Subsequent work of Schmid and Vilonen on the characteristic cycles
of equivariant sheaves provides the tools for the analysis of cycles that enter
the integral formulas. The main goal of the present paper is to combine and
relate the methods of Schmid and Vilonen [18] [20] to those of Rossmann
[16] [17], and to use them to compute Liouville measures for semisimple
groups with one conjugacy class of Cartan subgroups. We should point
out that our hypothesis on a group is quite restrictive. If GR is a simple
Lie group with one conjugacy class of Cartan subgroups, which is neither
complex nor compact, then gR is one of the following three types: A II,
D II, E IV [10], Ch.IX, 6.1, Ch.X, F.1-9. For such groups the structure
of the real nilpotent cone is relatively simple: distinct real nilpotent orbits
are non-conjugate under the action of the complex group. The fact that
this is not true in general represents the major difficulty in extending the
results of the present paper to an arbitrary semisimple group. The main
ingredients in our analysis, Proposition 2.4 and Theorem 3.1, which relate
the work of Schmid and Vilonen to the work of Rossmann, appropriately
generalize to the setting of arbitrary semisimple groups, and perhaps could
be considered even more interesting than the main result Theorem 3.4. In
view of these facts, we expect some of the ideas introduced in the present
paper will be useful in pursuing the problem of limit formulas in a more
general context.

ANNALES DE L’INSTITUT FOURIER



LIMIT FORMULAS 1215

1. Preliminaries

Suppose GR is a real, connected, linear, semisimple Lie group. We assume
that GR has a unique conjugacy class of Cartan subgroups. We embed GR
into a complexification G and denote by

τ : G −→ G

the involution on G having GR as the connected component of the set of
fixed points. Next we choose a Cartan involution

θ : GR −→ GR,

and extend it to G. Denote by KR resp. K the set of fixed points of θ on
GR resp. G. Observe that θτ is a Cartan involution on G. We denote by
UR the set of fixed points. Write g, k, gR, kR, uR for the Lie algebras of G,
K, GR, KR, UR respectively. Denote the involutions on g induced by θ, τ

by the same letters. In addition, let

gR = kR + pR , g = k + p

be the eigenspace decompositions defined by θ. Let ( , ) be the Killing form
on g. We will use it whenever convenient to identify g and the dual space
g∗.

Now we fix a θ-stable Cartan subalgebra hR ⊂ gR. Let

hR = tR + aR, tR = hR ∩ kR, aR = hR ∩ pR

be the Cartan decomposition, and h the complexification of hR. Denote by

∆ = ∆(g, h)

the root system of the pair (g, h). By our assumption on the group, hR is
both a fundamental and maximally split Cartan subalgebra, so there are
no real and noncompact imaginary roots in ∆. Denote by ∆c the set of
compact imaginary and by ∆cx the set of complex roots in ∆. Then we
have

∆ = ∆c ∪∆cx.

We fix a positive subsystem ∆+ ⊂ ∆ such that

(1.1) θ∆+ = ∆+.

Let

Π = {α1, · · · , αk, αk+1, · · ·αl} , αi ∈ ∆c, i 6 k; αj ∈ ∆cx, j > k + 1,

TOME 58 (2008), FASCICULE 4



1216 Mladen BOŽIČEVIĆ

be the corresponding set of simple roots. Next we recall some facts about
real Weyl groups following [23]. Write ZGR(A) (resp. NGR(A)) for the cen-
tralizer (resp. normalizer) of A ⊂ g. Let

HR = ZGR(hR)

be the Cartan subgroup defined by hR. Set

W (GR,HR) = NGR(hR)/HR.

Given a root system R we denote by W (R) the Weyl group of R. Recall
that W (R) is generated by the reflections sα, α ∈ R. In patricular, we write
W = W (∆). We will consider W also as a group of linear endomorphisms
of h and h∗. It is then not difficult to deduce

(1.2) W (GR,HR) ⊂W.

Observe that ∆c is a root system. Set

Wc = W (∆c) , 2ρc =
∑

α∈∆c∩∆+

α.

Then the condition

∆C = {α ∈ ∆ : (α, ρc) = 0}

defines a root system and θ∆C = ∆C. Observe that α ∈ ∆c implies (α, ρc) 6=
0, hence

∆C ⊂ ∆cx .

Finally we set

WC = W (∆C), W θ = {w ∈W : wθ = θw} , W θ
C = WC ∩W θ.

The next proposition is a special case of [23], 3.12, 4.16.

Proposition 1.1.

1. W θ
C is generated by sαsθα, where α ∈ Π ∩∆C.

2. Wc is a normal subgroup of W θ and

W θ = W θ
C n Wc

3. The embedding 1.2 induces an isomorphism

W (GR,HR) ∼= W θ.

ANNALES DE L’INSTITUT FOURIER
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Denote by N the set of nilpotent elements in g. There exists a natu-
ral bĳection between the sets of GR-orbits in N ∩ igR and K-orbits in
N ∩p, called the Kostant-Sekiguchi correspondence [21]. We recall the con-
struction. We say that elements (h, e, f) from g form an SL2-triple if the
following commutation relations hold

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

We choose an SL2-triple (h, e, f) such that

(1.3) e, f ∈ p, τe = f ,

and set
h′ = e + f, e′ =

1
2
(e− f − h), f ′ =

1
2
(f − e− h).

Then (h′, e′, f ′) is also an SL2-triple in g, and it is not difficult to show
that

h′ ∈ pR, e′, f ′ ∈ igR, θe′ = f ′.

Put V = K · e and O = GR · e′. Then the association

V 7→ O

defines a bĳection between finite sets N ∩ p/K and N ∩ igR/GR. This
bĳection has an additional important property. Let OC be a nilpotent G-
orbit. Then

OC ∩ igR 6= ∅ ⇔ OC ∩ p 6= ∅,
and the Sekiguchi correspondence induces a bĳection between finite sets of
orbits

(1.4) OC ∩ igR/GR ←→ OC ∩ p/K.

Our goal is to show that for groups with one conjugacy class of Cartan
subgroups, if OC ∩ igR 6= ∅, then it is a single GR-orbit. The proof of this
fact is sketched in [22], Prop. 13. Here we present an alternative argument.
First, we choose a set A ⊂ ∆cx such that

∆cx = A ∪ θA

is a disjoint union. For α ∈ ∆ let gα be the corresponding root space, and
Xα ∈ gα. We write the root space decomposition in the form

g = h +
∑

α∈∆c

gα +
∑
α∈A

C · (Xα + θXα) +
∑
α∈A

C · (Xα − θXα).

If α ∈ A, then α|t = θα|t, hence the above decomposition implies

∆(k, t) = ∆(g, h)|t.

TOME 58 (2008), FASCICULE 4



1218 Mladen BOŽIČEVIĆ

In particular, a positive root system in ∆(k, t) is determined by

∆(k, t)+ = ∆(g, h)+|t.

The corresponding closed chambers in h and t are given by

Cg =
{
x ∈ itR + aR : α(x) > 0, α ∈ ∆+

}
,

Ck =
{
x ∈ itR : α(x) > 0, α ∈ ∆(k, t)+

}
.

Proposition 1.2. — Let OC be a nilpotent G-orbit. If OC ∩ igR 6= ∅,
then it is a single GR-orbit.

Proof. — By the remark (1.4), it will suffice to prove that OC ∩ p is
a single K-orbit. Let O and O1 be K-orbits in OC ∩ p. Let (h, e, f) and
(h1, e1, f1) be SL2-triples associated with orbits O and O1 as in (1.3).
Then h, h1 ∈ ikR, hence conjugating by KR, if necessary, we may assume
h, h1 ∈ Ck. The definition of the positive root system ∆(k, t)+ implies
Ck ⊂ Cg, hence we also have h, h1 ∈ Cg. On the other hand by [9],
Th. 2.2.4 G · h ∩ Cg is a single element, thus we obtain h = h1. Finally,
by [9], Th. 9.4.4 the triples (h, e, f) and (h, e1, f1) are K-conjugate. In
particular O = O1, as desired. �

Next we recall some facts on the GR-orbit structure of the flag variety.
Denote by X the flag variety of Borel subalgebras of g. We view X as
a homogeneous space for G. Matsuki [14] shows that the number of GR-
orbits on X is finite. In the present setting these orbits can be described
as follows. Given w ∈ W write bw for the Borel subalgebra defined by the
pair (h, w∆+) and xw ∈ X for the corresponding point. Set

Sw = GR · xw.

Then the map w 7→ Sw induces a bĳection

W/W θ ←→ X/GR.

Recall that

Sw ⊂ X open ⇐⇒ θ(w∆+) = w∆+ ⇐⇒ w ∈W θ.

2. Intertwining functors

The goal of this section is to describe the K-group of GR-equivariant
sheaves on X as a module for the Weyl group. Similar results, in the set-
ting of D-modules, appear in [22]. In view of our applications, it will be
convenient to work in the setting of semi-algebraic sets and semialgebraic
maps, as in [18], § 6, for example.

ANNALES DE L’INSTITUT FOURIER
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Given a real algebraic manifold Y we denote by Shc(Y ) the category of
sheaves of (complex) vector spaces constructible for semi-algebraic strati-
fications on Y [18], § 6, and by D(Y ) the corresponding bounded derived
category. Let f : Y −→ Z be a semi-algebraic map of (locally compact)
semi-algebraic sets. Then the notation for functors

Rf∗ : D(Y ) −→ D(Z), Rf! : D(Y ) −→ D(Z),

f−1 : D(Z) −→ D(Y ), f ! : D(Z) −→ D(Y )

is the same as in [13], Ch. II, Ch. III. Suppose that A is a real algebraic
group acting on Y . Then we denote by ShA,c(Y ) the full subcategory of
A-equivariant sheaves in Shc(Y ) [3], 0.2, 1.10. We remark that the notion
of equivariant derived category from [3] will not be used in this paper. We
return now to the setting of flag variety X.

Following [18], § 7 we will define intertwining functors on D(X). If w ∈W

write l(w) for the length function. Let

Yw ⊂ X ×X

be the variety of pairs of Borel subalgebras in the relative position w, and

p1, p2 : Yw −→ X

projections onto the first and second factor in X ×X. Then we define the
intertwining functor attached to w ∈W by the formula:

Iw = Rp1∗p
−1
2 [l(w)] : D(X) −→ D(X),

One can show that Iw is an equivalence of categories. Moreover, the equiva-
lences Iw induce an action of the Weyl group W on the K-group K(D(X)).
We write [F ] ∈ K(D(X)) for the image of an object F from D(X). The
action of W on K(D(X)) will be denoted by

w · [F ] = [Iw(F)].

Observe that the GR-orbit stratification on X is semi-algebraic, and any
F ∈ ShGR,c(X) is constructible for the orbit stratification. We know that
the category ShGR,c(X) is abelian, hence we can also define the K-group
K(ShGR,c(X)). It is known [19], 6.2 that K(ShGR,c(X)) is generated by
standard sheaves. We recall the definition. Let S ⊂ X be a GR-orbit and
τ an irreducible GR-equivariant local system on S. To the pair (S, τ) we
associate the standard sheaf

I(S, τ) = iS∗(τ).

Here iS : S −→ X denotes the inclusion map. We describe in more de-
tails GR-equivariant local systems on the orbit S. Recall that irreducible

TOME 58 (2008), FASCICULE 4



1220 Mladen BOŽIČEVIĆ

GR-equivariant local systems on S are parametrized by irreducible repre-
sentations of ZGR(x)/ZGR(x)◦, the group of connected components of the
centralizer of x ∈ S in GR. If x is fixed by a θ and τ -stable Cartan subgroup
H ⊂ G then

ZGR(x)/ZGR(x)◦ ∼= H ∩GR/(H ∩GR)◦.

In particular, in our case H∩GR is connected, so it follows that the constant
sheaf CS is up to isomorphism the only GR-equivariant local system on S.
Hence, we deduce

(2.1) dimC K(ShGR,c(X))C = #(W/W θ),

where the subscript C stands for the complexification of the K-group.
Following [19], § 10 we will recall the formulas for the action of simple

reflections on standard modules. To simplify the notation we write I(Sw) =
I(Sw, CS), w ∈W .

Lemma 2.1. — Let α ∈ ∆+ be a simple root, and w ∈W .

1. If wα ∈ ∆c then Isα
I(Sw) = I(Sw)[1].

2. If wα ∈ ∆cx, and θ(wα) ∈ −w∆+, then IsαI(Sw) = I(Swsα)[1].

Proof. — We can argue similarly as in [19], 10.17 to prove both formulas.
Actually, Schmid and Vilonen work with twisted equivariant sheaves, so in
our case the argument is even simpler. �

Lemma 2.2. — Let w ∈ W , w /∈ W θ, and let Sw be the corresponding
GR-orbit. There exist simple roots α1, · · · , αm ∈ ∆+ such that

Isαm
◦ · · · ◦ Isα1

(I(Sw)) = I(Se)[m].

Proof. — For v ∈W set

D(Sv) =
{
α ∈ ∆+ : wα ∈ ∆+

cx, θwα ∈ −w∆+
}

, d(Sv) = #(D(Sv)).

Then we have d(Sv) = 0 ⇔ v ∈ W θ. By the assumption d(Sw) > 0, hence
we can find a simple root α1 ∈ D(Sw) (compare [19], 9.1). It is not difficult
to show d(Swsα1

) = d(Sw) − 1. Now we use Lemma 2.1, and induction on
d(Sw) to complete the proof. �

Observe that K(ShGR,c(X))C is a subspace of K(D(X))C. We already
remarked that standard sheaves generate K(ShGR,c(X))C, hence the above
lemmas impply that K(ShGR,c(X))C is W -invariant. In the following propo-
sition we describe the W -module structure on K(ShGR,c(X))C more explic-
itly.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.3. — Write εθ(w) = (−1)l(w) for w ∈ W θ. As a W -
module K(ShGR,c(X))C is generated by [I(Se)] and

IndW
W θ (εθ) ∼= K(ShGR,c(X))C.

Proof. — First we show

w · [I(Se)] = εθ(w)[I(Se)], w ∈W θ.

We use the result 1.1 on the structure of W θ. It will suffice to check

sθαsα[I(Se)] = [I(Se)],

if α is a simple complex root. Observe that α± θα are not roots, hence

sθαsα = sαsθα.

It follows that sθαsα ∈W θ. By 2.1 we have

IsαI(Se) = I(Ssα)[1] and Isθα
I(Se) = I(Ssθα

)[1].

Since sθαsα ∈W θ we have Ssα = Ssθα
. Finally, we conclude IsθαsαI(Se) =

I(Se), as desired. To complete the proof, observe that we have a natural
map

IndW
W θ (εθ) −→ K(ShGR,c(X))C.

By 2.2 this map is necessarily surjective, hence by (2.1) it is also an iso-
morphism. �

Finally, we relate the K-group of the GR-equivariant sheaves to the char-
acteristic cycle construction. In order to explain this, we need some addi-
tional notation. If Y is a locally compact space, we denote by Hi(Y, Z)
resp. Hi(Y, C), i ∈ Z, the Borel-Moore homology groups with integral resp.
complex coefficients. Suppose that Y is a real algebraic manifold. The char-
acteristic cycle CC(F) of a constructible sheaf F from D(Y ) was defined by
Kashiwara [13], Ch.IX, [19]. Recall that CC(F) is defined as a Lagrangian
cycle in the real cotangent bundle T ∗Y . In fact, let S be a semi-algebraic
Whitney stratification on Y, and F a complex of sheaves on Y constructible
for S. Denote by T ∗SY the union of conormal bundles to the strata. Then

CC(F) ∈ Hm(T ∗SY, Z), m = dimR Y.

Returning to the flag variety X, denote by T ∗GR
X the union of the conormal

bundles to the GR-orbits. Recall that CC is additive on exact sequences in
ShGR,c(X), and for any F from ShGR,c(X), CC(F) is supported in T ∗GR

X.
We conclude that the characteristic cycle map determines a homomorphism
of abelian groups

CC : K(ShGR,c(X)) −→ H2n(T ∗GR
X, Z).

TOME 58 (2008), FASCICULE 4
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We will denote by the same symbol the complexified homomorphism

(2.2) CC : K(ShGR,c(X))C −→ H2n(T ∗GR
X, C).

We know already that the structure of W -module on K(ShGR,c(X))C is
defined by the intertwining functors. On the other hand, the structure
of W -module on H2n(T ∗GR

X, C) was defined by Rossmann. We refer to
[18], § 8 for the details of Rossmann’s construction. Then [18], 9.1 implies
that 2.2 is a homomorphism of W -modules. By [7], 2.5, the characteristic
cycles of standard sheaves generate (even over Z) H2n(T ∗GR

X, C). The next
proposition will be the main ingredient in the proof of the limit formula.
It follows immediately from the above discussion and equation (2.1).

Proposition 2.4. — The homomorphism (2.2) is an isomorphism of
W -modules.

3. Limit formula

We begin by introducing two maps, the moment map and the twisted
moment map, that are used to transfer geometric information from the
cotangent bundle of the flag variety to the Lie algebra. Denote by T ∗X the
cotangent bundle of X. Given x ∈ X denote by bx the Lie algebra of the
Borel subgroup of G which normalizes x, and by b⊥x ⊂ g∗ the space of liner
forms vanishing on bx. We use the identification

T ∗X ∼=
{
(x, ξ) : x ∈ X, ξ ∈ b⊥x

}
,

to consider T ∗X as a submanifold of X×g∗ The moment map of X is then
defined by

µ : T ∗X −→ g∗, µ(x, ξ) = ξ.

The definition of the twisted moment map is due to Rossmann [17], 2.3(5).
We can use the decomposition

g = h + [h, g]

to view h∗ as a subspace of g∗. The twisted moment map depends on
the parameter λ ∈ h∗. Observe that X is a homogeneous space for UR:
X = UR · xe. Then we define the twisted moment map µλ : T ∗X −→ G · λ
by the formula

µλ(u · xe, ξ) = u · λ + µ(u · xe, ξ), u ∈ UR, ξ ∈ b⊥u·xe
.

One can show that µλ is well-defined, and moreover, it is a UR-equivariant,
real algebraic isomorphism if λ is regular.

ANNALES DE L’INSTITUT FOURIER
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Next we recall some facts on Weyl group representations. When

S ⊂ g∗

satisfies certain natural assumptions [16], II, § 2 Rossmann defines W -
module structure on homology groups

H∗(µ−1(S), C).

In particular, we obtain W -modules in the following cases:

S = ig∗R ∩N ∗, S = O, S = O, S = {ν} .

Here O is a GR-orbit and ν ∈ N ∗. In the first case we have

µ−1(ig∗R ∩N ∗) = T ∗GR
X,

and the corresponding W -module structure was already considered in sec-
tion 2. Rossmann shows [17], 4.4.1 that inclusions of the orbit closures are
compatible with W -module structure on homology groups. In fact,
(3.1)
0 −→ H2n(µ−1(O \O), C) −→ H2n(µ−1(O), C) −→ H2n(µ−1(O), C) −→ 0

is an exact sequence of W -modules. Denote by

CG(ν) resp CGR(ν)

the group of connected components of the centralizer of ν in G resp. GR.
Let

d = d(ν) = dimC µ−1(ν).

Then CG(ν) acts on H2d(µ−1(ν), C) by permuting the irreducible compo-
nents, and this action commutes with W -action. Hence

H2d(µ−1(ν), C)CG(ν) ⊂ H2d(µ−1(ν), C)

and
H2d(µ−1(ν), C)CGR (ν) ⊂ H2d(µ−1(ν), C)

are W -submodules, and the natural projection

H2d(µ−1(ν), C)CGR (ν) −→ H2d(µ−1(ν), C)CG(ν)

is a map of W -modules. Recall that the W -module H2d(µ−1(ν), C)CG(ν) is
irreducible [17], Th. 4.5. This is the Springer representation associated to
the orbit G · ν, and we denote the corresponding character by χν . We will
also need the following isomorphism of W -modules [17], 4.4.1:

(3.2) H2n(µ−1(O), C) ∼= H2d(µ−1(ν), C)CGR (ν).

Next we introduce differential forms that will be used to define invariant
distributions on the Lie algebra. Suppose V is a coadjoint G-orbit in g∗

TOME 58 (2008), FASCICULE 4
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or a coadjoint GR-orbit in ig∗R. To treat both cases simultaneously write
M = G or M = GR, and denote by m the Lie algebra of M . The space

m · ξ = {ad∗(x)(ξ) : x ∈ m}

identifies with tangent space TξV of V at ξ, and we define a M -equivariant
2-form σV on V by the formula

σV,ξ(x · ξ, y · ξ) = ξ[x, y] , x, y ∈ m.

In case M = GR the form −iσV is real valued and we use the form

(−iσV)k , 2k = dimR V

to orient V. In this case we define the measure mV by the formula

(3.3) mV =
1

(2πi)kk!
σk
V ,

and call it the Lioville measure. When V = M · λ, λ ∈ h∗, we will use the
following notation

σV = σλ.

Let λ ∈ h∗. Then a UR-equivariant 2-form τλ on X is defined at xe ∈ X by

τλ(axe , bxe) = λ([a, b]).

Here axe and bxe denote the tangent vectors at xe ∈ X, which a, b ∈ uR
induce by the differentiation of UR-action. Denote by

π : T ∗X −→ X

the natural projection, and by σ the canonical symplectic form on T ∗X.
For λ ∈ h∗reg the following formula holds [19], Prop. 3.3:

(3.4) µ∗λ(σλ) = −σ + π∗(τλ).

Next we recall, following [19], § 3, the definition of invariant distributions
on the Lie algebra as integrals of certain differential forms over the semi-
algebraic cycles in T ∗X. The Fourier transform of a test function φ ∈
C∞

c (gR) will be defined by

φ̂(ξ) =
∫

gR

eξ(x)φ(x)dx , ξ ∈ g∗,

without the usual i in the exponential. Here dx denotes a suitably normal-
ized Lebesgue measure on gR. Let Γ be a semi-algebraic chain in T ∗X. We
say that Γ is R-bounded if

Re µ(supp(Γ)) ⊂ g∗
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is bounded. Here Re is defined with respect to g∗R. If Γ is a semi-algebraic,
R-bounded, 2n-chain in T ∗X one can prove that for a test function φ ∈
C∞

c (gR) and λ ∈ h∗ the integral

(3.5) Θ(Γ, λ)(φ) =
∫

Γ

µ∗λ(φ̂)(−σ + π∗τλ)n

converges and depends holomorphically on λ. In particular, this is true for
a cycle Γ ∈ H2n(T ∗GR

X, C). In this case Θ(Γ, λ) is a GR-invariant distri-
bution on gR. We mention that this facts depend essentially on the rapid
decay of φ̂ in imaginary directions. Moreover, Rossmann’s definition of W -
action on H2n(T ∗GR

X, C) implies the following W -equivariance formula for
distributions Θ(Γ, λ) [16], 3.1:

(3.6) Θ(wΓ, λ) = Θ(Γ, w−1λ) , w ∈W, λ ∈ h∗reg.

We say that two semi-algebraic, R-bounded, 2n-cycles Γ1 and Γ2 in T ∗X

are R-homologous if
Γ1 − Γ2 = ∂Γ

for a semi-algebraic, R-bounded, (2n + 1)-chain Γ in T ∗X. In this case we
have [19], 3.19∫

Γ1

µ∗λ(φ̂)(−σ + π∗τλ)n =
∫

Γ2

µ∗λ(φ̂)(−σ + π∗τλ)n.

Now we can state Rossmann’s integral formula in the form convenient for
applications we have in mind.

Theorem 3.1. — Let φ ∈ C∞
c (gR) and let C ⊂ it∗R be the positive

chamber defined by k/be∩k. Write s = dimC [be, be]∩k. Then for λ ∈ C+ia∗R
we have ∫

CC(Rie∗CSe)

µ∗λ(φ̂σn
λ) = (−1)s

∫
GR·λ

φ̂σn
λ .

Proof. — It was proved in [6], Th. 1, [8], 3.4 that for λ ∈ C the cycles
CC(Rie∗CSe) and (−1)sµ−1

λ (GR·λ) are R-homologous. We will use a similar
argument to extend the formula to the case λ ∈ C + ia∗R. Write

λ = λ1 + λ2 , λ1 ∈ C, λ2 ∈ ia∗R.

Set λ(t) = λ1 + tλ2, t ∈ [0, 1]. It is not difficult to show that that for
λ ∈ C + ia∗R
(3.7)
µ−1

λ (Ad(g)λ) = (g.xe,Ad(g)λ−Ad(u)λ), g ∈ GR, u ∈ UR, g.xe = u.xe.

Consider the following map

Φ : [0, 1]×GR/HR −→ T ∗X , Φ(t, gHR) = µ−1
λ(t)(Ad(g)λ(t)).
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Then Φ is a homotopy, and (3.7) implies that Re µ(Φ([0, 1] × GR/HR)) is
bounded. It follows that the cycles µ−1

λ(0)(GR ·λ(0)) and µ−1
λ(1)(GR ·λ(1)) are

R-homologous. Hence, for λ ∈ C + ia∗R, we have∫
CC(Rie∗CS)

µ∗λ(φ̂σn
λ) = (−1)s

∫
µ−1

λ(0)(GR·λ(0))

µ∗λ(φ̂σn
λ) =

(−1)s

∫
µ−1

λ(1)(GR·λ(1))

µ∗λ(φ̂σn
λ) = (−1)s

∫
GR·λ

φ̂σn
λ ,

as desired. �

Our goal is to study the asymptotic behaviour of distributions Θ(Γ, λ)
when λ ∈ h∗reg approaches zero. Some additional results are needed for this
analysis.

Denote by Hd(h∗) (Hd(h)) the space of harmonic polynomials on h∗ (h)
of degree d. The map

(3.8) H2d(X, C) −→ Hd(h∗) , γ 7→ b(γ) =
1

(2πi)dd!

∫
γ

τd
λ

is an isomorphism of W -modules, usually called the Borel isomorphism
[4]. Here, we consider the W -action on H2d(X, C) induced by the natural
W -action on X. On the other hand, we have a natural homomorphism

(3.9) H2d(µ−1(ν), C) −→ H2d(X, C),

defined by the inclusion µ−1(ν) −→ X × {ν}. Rossmann shows this is a
nonzero W -module homomorphism [16], Cor. 3.2, which factors through
the projection

(3.10) H2d(µ−1(ν), C) −→ H2d(µ−1(ν), C)CG(ν).

It is known that χν appears exactly once in Hd(h∗) [5], Cor. 4. We de-
note the corresponding subspace by Hd(h∗)ν . Now taking into account
(3.1), (3.2), (3.8), (3.9), (3.10) we obtain a surjective homomorphism of
W -modules

(3.11) H2n(µ−1(O), C) −→ Hd(h∗)ν , Γ 7→ pΓ.

Denote by ΘO the Fourier transform of the Liouville measure mO. In more
details,

ΘO(φ) =
1

(2πi)kk!

∫
O

φ̂σk
O , 2k = dimRO, φ ∈ C∞

c (gR).

Let Γ∈H2n(µ−1(O), C). Applying Fubini’s theorem to the fibration µ−1(O)
−→ O, using (3.11), and µ∗σO = −σ|µ−1(O) (at the smooth points) [18],
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Lem. 8.19, Rossmann proves the following formula relating distributions
Θ(Γ, λ) and ΘO

(3.12) Θ(Γ, λ) = pΓ(λ)ΘO + o(λd).

The term o(λd) can be described as follows. For any φ ∈ C∞
c (gR), o(λd)(φ)

is a holomorphic function of λ and

lim
t→0

o((tλ)d)(φ)
td

= 0.

Denote by C[h] resp. C[h∗] the algebra of polynomial functions on h resp.
h∗. Write S(h) resp. S(h∗) for the symmetric algebra of h resp. h∗. Recall
that we have canonical isomorphisms

C[h] ∼= S(h∗) and C[h∗] ∼= S(h).

On the other hand the map

v 7→ ∂(v), ∂(v)f(λ) = lim
t→0

(f(λ + tv)− f(λ))/t, λ, v ∈ h∗, f ∈ C∞(h∗)

extends to an isomorphism of S(h∗) and the algebra D(h∗) of differential
operators on h∗ with constant ceofficients. Thus we obtain the isomorphism
of algebras

C[h] ∼= D(h∗), p 7→ p(∂), p ∈ C[h].

Let δ : h −→ h∗ be the isomorphism defined by the Killing form and

δ : S(h) −→ S(h∗)

the induced isomorphism of algebras. We write

δ−1(λ) = hλ , λ ∈ h∗.

Put
h∗0 =

∑
α∈∆+

R · α,

and denote by
¯: h∗ −→ h∗

the conjugation with respect to h∗0. Let

¯: S(h∗) −→ S(h∗)

be the induced conjugation of S(h∗).

Lemma 3.2. — Let (r1, · · · , rs) be a basis in Hd(h∗)ν ⊂ S(h). Put
pi = δ(ri), i = 1, · · · , s, and let

Vd =
s∑

i=1

C · p̄i .
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Then Vd is a W -module isomorphic to Hd(h∗)ν .

Proof. — Since δ is an isomorphism of W -modules,
∑s

i=1 C · pi is iso-
morphic to Hd(h∗)ν . Observe that h∗0 is invariant for W , hence

wp̄i = wpi , w ∈W.

It follows that Vd is a W -module. Moreover the corresponding character
χ(Vd) satisfies

χ(Vd) = χν .

On the other hand by the Springer theory of Weyl group representations χν

is defined over Q [5], Th. 3. Hence χν = χν , which implies the statement.
�

Let h0 =
∑

α∈∆+ R · hα. Observe that (., .) is positive definite on h0,
hence we can choose an orthonormal basis

(e1, · · · , el)

in h0. Then
(ε1 = δ(e1), · · · , εl = δ(el))

is the dual basis in h∗0.

Lemma 3.3. — Let Γ ∈ H2n(T ∗RX, C), λ ∈ h∗, p ∈ C[h] and w ∈W .
1. limλ→0 p(∂)Θ(Γ, λ) exists as a distribution on gR.
2. limλ→0 w−1p(∂)Θ(Γ, λ) = limλ→0 p(∂)Θ(wΓ, λ).

Proof. — Let i1, · · · , im ∈ {1, · · · , l} and φ ∈ C∞
c (gR). We know that

Θ(Γ, λ)(φ) depends holomorphically on λ, hence using repeatedly [11], Th.
2.1.8 we deduce that

φ 7→ ∂(εi1) · · · ∂(εim)Θ(Γ, λ)(φ)

is a distribution on gR. The first claim now follows. To prove the second
statement consider the Taylor series expansion

Θ(Γ, λ)(φ) =
∑

n1,··· ,nl∈Z+

an1···nl
(Γ)(φ)λ(e1)n1 · · ·λ(el)nl .

Then we have

p(∂)Θ(Γ, λ)(φ) =
∑

n1,··· ,nl∈Z+

an1···nl
(Γ)(φ)p(∂)(λ(e1)n1 · · ·λ(el)nl),

and by (3.6)

Θ(wΓ, λ)(φ) =
∑

n1,··· ,nl∈Z+

an1···nl
(Γ)(φ)λ(we1)n1 · · ·λ(wel)nl .
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We conclude it will suffice to prove

lim
λ→0

∂m1(w−1ε1) · · · ∂ml(w−1εl)(λ(e1)n1 · · ·λ(el)nl) =

lim
λ→0

∂m1(ε1) · · · ∂ml(εl)(λ(we1)n1 · · ·λ(wel)nl),

for any m1, · · · ,ml ∈ Z+. To prove the last formula we use induction on
m1 + · · ·+ ml. Assume

∂m1(w−1ε1) · · · ∂ml(w−1εl)(λ(e1)n1 · · ·λ(el)nl)

=
∑

ki6ni

ak1···kl
λ(e1)k1 · · ·λ(el)kl ,

∂m1(ε1) · · · ∂ml(εl)(λ(we1)n1 · · ·λ(wel)nl)

=
∑

ki6ni

ak1···kl
λ(w−1e1)k1 · · ·λ(w−1el)kl .

We use the formulas

∂(w−1εj)(λ(e1)k1 · · ·λ(el)kl)=
l∑

i=1

w−1εj(ei)λ(e1)k1 · · ·λ(ei)ki−1 · · ·λ(el)kl ,

∂(εj)(λ(we1)k1 · · ·λ(wel)kl)

=
l∑

i=1

w−1εj(ei)λ(we1)k1 · · ·λ(wei)ki−1 · · ·λ(wel)kl

to complete the inductive proof. �

Now we can state and prove the main result of the paper.

Theorem 3.4. — Suppose GR is a connected linear semisimple Lie
group with one conjugacy class of Cartan subgroups. Let O ⊂ ig∗R be a
nilpotent coadjoint GR-orbit. Let mO and mλ, λ ∈ ih∗R be the Liouville
measures on O and GR · λ defined in (3.3). Then there exists up to a
constant unique harmonic polynomial p ∈ C[h] corresponding to the W -
character χν , ν ∈ O, and transforming by εθ under W θ, such that the
following limit formula for the orbital measures holds

lim
λ→0(C+ia∗R)

p(∂)mλ = κmO.

Here κ is a nonzero constant and C is as in 3.1.

Proof. — To simplify notation we write

V = H2n(TGRX, C).
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First we remark that as a W -module [17], 4.4.1

V ∼=
∑

V∈iN∗
R /GR

H2n(µ−1(V), C).

By 1.2 distinct real orbits belong to distinct complex nilpotent orbits, hence
we conclude that

[V : χν ] = 1.

Let Pχν be the projection to the isotypical component of type χν . Explicitly

Pχν
: V −→ V, Pχν

(Γ) =
deg χν

|W |
∑

w∈W

χν(w−1)wΓ.

The multiplicity one property implies that

Pχν V ⊂ H2n(µ−1(O), C).

Let

Γ0 = CC(Rie∗(CSe
)).

By 2.3 Γ0 generates V as W -module, hence Pχν Γ0 6=0. Then r=b(Pχν Γ0) 6=
0 and applying (3.12) we obtain

Θ(Pχν
Γ0, λ) = r(λ)ΘO + o(λd).

Set p = δ(r). Then by 3.2 p is a harmonic polynomial on h corresponding
to the W -character χν . Moreover, the definition of p implies

p(∂)r(λ) = p(∂)r(0) 6= 0.

Now we apply 3.3 to conclude

lim
λ→0

p(∂)Θ(Γ0, λ) = p(∂)r(0)ΘO.

Here we used the formula χν(w−1) = χν(w), w ∈W , which is a consequence
of the fact that χν is defined over Q [5], Th. 3. To complete the proof it
will suffice to use 3.1, and take the inverse Fourier transform. �
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