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SETS OF MULTIPLICITY
IN LOCALLY COMPACT ABELIAN GROUPS

by N. Th. VAROPOULOS

Introduction, notations and remarks.

Let G be a locally compact additive abelian group. In what
follows we shall use freely standardized and well-established
notations and terminology. We shall for instance always
denote by O = Og the zero element of G. We shall denote
by Z and R" the group of the integers and the Euclidean
n-space respectively.

M(G) > M,(G) denotes the complex Banach algebra of all
bounded complex Radon measures on G, and the closed 1deal
of those, whose Fourier transform vanishes at the infinity of G,
the character group of G. M*(G) < M(G) will denote the cone of
positive measure and M{(G) = M*(G) n My(G).M(G) has a
natural involution g — & = p(— z). For we M(G), s(n) will
denote the support of w i.e. the smallest closed set whose
complement is a p-null set. We shall denote by ks the Haar
measure of G which i1s unique up to multiplicative constant;
when G is compact k¢ will always be normalised by hg(G) = 1.
We shall denote by L,;(G) the algebra of elements of M(G)
which are absolutely continuous with respect to hg.

For P, Q c G subsets of G and neZ we denote:

Zp the characteristic function of P ie. &(z) =1 if zeP;

and &p(z) =0 if z¢P.
P+ Q= f{z+y; zeP, yeQ}cG

In|
nP=lsgn(n) 3 o weP, 1< <Inl{<G
j=1

Gp(P) = Gp{z; z < P}.
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7,: G — G the continuous endomorphism: 7,(g) = ng for
geG. For any set X, |X| will denote the cardinal number
of X. For any zeR, 2>0; [z] =supfneZ; n<z} will
denote the integral part of z.

We shall also use the letter C, possibly with suffixes, to
denote absolute positive constants, appearing in various
formulae (not necessarily the same constant everywhere).

Finally we shall follow N. Bourbaki [1] for measure theory
and Loéve’s book [4] for probability theory.

We now make a number of definitions:

Derinition 1. — A subset PG will be called strongly
independent if, for all N, positive integer, any family of N
distinct points of P, (pje PYL,, and any family of N integers,

I(cn eﬁ)1 1<3ch 1t\l}mt 12 n;p; = Og, we must have 7,(P) = Og
or a =

DeriniTiON S. — A positive Radon measure on G,
0 e MHG)
will be called an S-measure (Salem) if:
(i) e My(G)
(11) s(w) s compact and he[Gp(s(n))] = 0.
DeriniTiON 5% — A positive Radon measure on G,
0+ 1< My (G),

will be called an S*-measure if it vs an S-measure and if :
(i) meZ, 1,(G)5£0¢=>hs[geG; mgeGp(s(w))]=0.

DeriniTion R, — A subset PG will be called an R-set
(Rudin) of G, if it is perfect, strongly independent and if there
exists e M (G), w=~0, such that s(p) c P.

The two main theorems of this paper can be stated:

Tueorem S. — Every non discrete, locally compact, abelian
group has S-measures.

Tueorem R. — Every non discrete, metrisable, locally
compact, abelian group has R-sets.
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We point out that the only point of introducing the concept
of S*-measures 1is, that it is through them that R-sets will be
constracted. In many important cases every S-measure is
automatically an S*-measure. We have:

Lemma 0.1. — Let G be a denumerable at infinity, locally
compact, abelian group, then we can afirm that every S-measure
on G is an S*-measure, provided that the following hypothesis
(H) 1s satisfied for G.

(H) For every open subgroup QcG and every meZ we

have :
Tn(G) 5= Og == hg[T4(Q)] == 0.

Proof. — Observe that for an S-measure & on G and every
meZ, the set [ge G; mge Gp(s(r))] 1s a Borel subgroup of
G; thus if it has a positive hg measure it must be an open
subgroup; and that is impossible if 7,(G)=~Og by the hypo-
thesis (H).

Lemma 0.2. — The following groups satisfy hypothesis (H).
() R and T = R|Z the one dimensional torus.
(B) U(p) = (Z(p~))" the additive group of p-adic integers

for some prime p.

) G = H Z(p,) for prime numbers p,(n>1) such that
pn > Q.

Proof. — («) Immediate.

(8) By dualising a well-known property of Z(p*) (cf. [3] 2 (9))
we see that every non zero closed subgroup of U(p) has finite
index in U(p) and thus positive Haar measure. It suffices then
to observe for any QcU(p) open subgroup, and m 5= 0
Ta({) 1s a non zero compact subgroup

(Y) The open subgroups Qy = [] Z(p,) (NeZ, N > 1) form

n>N

a neighbourhood basis of Og. And to see property (H) it

suffices to observe that, since p, —= ©, for all meZ, m =~ 0,

there exists Ny = Ny(m) such that 7,(Qy) = Qy for all N > N,.
The material of this paper is divided:

§ 1 The main tools and specialized notations for our con-
tractions are introduced.
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§ 2 We treat the case G = || Z(p,) where p, (n>>1) are

n=1
prime numbers increasing very rapidly (in a sense to be

specified).

§ 3 We treat the case G = U(p) = (Z(p~))" the group of
p-adic integers, for some fixed prime p-

§ 4 We treat the case G = H G, where G,=Z(p"), for

some fixed prime p and some nﬁ;(ed NeZ. N>1, and all
n>1
§ 5 We treat the case G = H Z(p") for some fixed prime p.
§ 6 We prove Theorem S. "~

§ 7 We prove Theorem R.

It might be worth observing that § 2, § 3, § 4 do not depend
on each other and that §5 depends only on § 3.
The names of Salem and Rudin, we use, are justified by

[7] and [5].
1. The main tools and notations for the constructions.
We start by introducing some notations that will prove

useful.
For, r, meZ; r >1, m >1 we set:

o(r; m) = —’i— :g cos g’%l(

and:
a(r) = a(r; ) = [ |cos O] df

we have by the mean value theorem:
(1.1) jo(r, m) — o(r)] < 27
also elementary considerations give [7] p. 537:

C
1.2 o(r) < 2.
(1.2) (r) Nz

Let now for the rest of this paragraph denote by G a metri-
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sable, compact, abelian group and let:

5 G=Ge2G2 -+ 2G,2--2( |Gy= {Oq]

n=1

be a series of compact open subgroups.
We shall associate with G and X two probability spaces:

(Q, %, P) and Q, &', P

Q=ﬁG,, and Q’=f[L,,

n=1 n=1

as follows:

where L,= G, X G,; # and %' are the topological Borel
fields of Q and Q' respectively (for the Tychonov topology
of course);

P=ho=®hs and P =hg=@ hy.

n=1 n=1

We shall now define on Q and Q' two random Radon
measures of G as follows:

DerinitioNn Q. — With each

weQ[m = (81, 25 -+ Bn +++)3 g,,eG,,]

we associate a sequence of Radon measures on G {w ,}7,

defined by :

[N

$(j0) = fé’j, gj"lg and y.j’u,(ggj}) — (J.j,m(gg}-lg) =_2__;
for j > 1 we then define:

® N
b= o = K o = lim K p0 « MH(G).

Jj=1 N

We shall call p= @, the Q (= Q[G, X])-random measure

assoctated with X, and p; = w;, its J™ component.
DeriniTion Q' (only needed for § 4). — With each
oeQo=>U,1L ..., L, ...); L,=1(8 g)eL,=G, X G,]

we associate a sequence of Radon measures on G {uj 37y
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defined by :

y ! ! ’ ’ 1
slww) = fep &} and  phu(fel) = wu(fg)) = 5
for j > 1 we then define:

N
o=y = * ] o = li‘fn * ;o € MH(G).
Jj=1 h J=1

We shall call v’ = yq, the Q' (= Q'[G, X])-random measure
associated with X, and p; = w) . its j" component.
We make at once a number of important remarks :

Remarks. — (1..) The convergence of the infinite, convolu-
tion product appearing in both definitions Q and Q' is taken
for the vague topology of measures, and is assured by the
fact that m G,={0¢} and s(u;,) < G; and s(u;,)<G; for
all 1 > 1;n—al> e, el

(1.1) For all ®weQ and o' Q' we have:

o >0, o >0 [lwl| = [Juell = 1.

(Liil) For each yeG, {f,(x)},2 (resp. §fiy)},2) is a
sequence of (complex) independent random variables defined
on the probability space Q (resp Q') and we have:

&(y) = ,LI di(z) and  P(y) = E i)
from that it follows at once that for all reZ, r > 1:

E|g(" = jHﬂEIf%(X)I’ and 2 = H E|&j00)1-

1. 1v) Let us assume that xeG 1s an element of finite
order or equivalently that m = |G/kery| << + oo then we see
at once that if m; = |G;/G; nkery| then:

E|g,())I" = o(r; m)).
(1.v) In the particular case when for some NeZ, N >1

G=T[G® with GW=Z2Y) (n>1),

n=1
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and

G, = I G® for i>1 and 1 <A <A< -

n}Aj
A
We have for every y e G

1 i y)G=1
ay) <1 if 11G;sE1

and observe that just as above

E|@j(0)] =

_ _ 1 2mat 2nfBi
aj(X) B a(mj) N 2""3 osa,ﬁémj——l P m; +exp j

depends only on m; = |G;/G; n kery| which can take only the
values 2, 4, ..., 2Vif y|G; £ 1. So there exists « = sup «(2*)
independent of y and j such that 1SksN

WG FEL=ay) < <L

We now prove some lemmas.

- Lemma 1.1 (only needed for §4). — Let X <G be a set of
characters of G and assume that

3 E[)I <+ <o (resp. 3 BRI < + o)

LEX

then almost surely [((y) 5exys2>0 (resp. almost surely

&) zem == 0)-

Proof. — We prove the result for the Q-random measures,
the one for Q'-random measures is proved identically.
Using the elementary properties of mathematical expecta-

tion we see that (observe |X| < 1(A}] < No):
E§ % i@(x)l§= 2 Elp(y)] <+
Xex AEX
thus almost surely:

x%x |0(x)] < + o0 = almost surely {i(y) ez 0-
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Lemma 1.2. — Suppose that there exists a family of positive
integers {p,},e6 such that for all values of XA >0

S W Efpps < + .
‘e

Then almost surely :
&) 7== 0.

Proof. — Just as in the proof of Lemma 1.1 we have for all
A>0

E{ 3 2p(led = % WER(F <+
et 1et

and almost surely:

5 W)l < + .

xet
From that we conclude that almost surely:
T A 1
lim |((y)] < x
PR

and A being arbitrary it suffices to take a sequence A, —> o
to obtain the required result.

Lemma 1.3. — Suppose that £ in G is such that:
lim log he(Gy) _ _ o

n n

then for all w € Q and all positive integer r we have:
helrs(is)] = 0
and thus since s(g,) = — s(i,) we have:
halGp(s(2))] = O.

Proof. — We have in general for all NeZ, N>1 and
wel:

rs(f"w) S j§1 rs(f"j,m) + Gy
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and thus:
ho[rs(p,)] << 2™ho(Gy) = exp{r(log 2)N + log he(Gy)} = Ki;

and by the hypothesis we have lim Ky = 0. That proves
the result. -
Now let G be of the form G = [] G, for G, compact abelian

=1

groups. And let G = {g,eG,¢c f}},,:l and
%= {K,eZ}{>, such that K,=1;
Kn+1 > Kn n > 1.

Derintrion A’ (only needed for §4). — With § and X
we associate a sequence of measures of G {\,}r, defined by:

=0, (=1 st= U (gug)
Kn<Jj<Kn+s

zes(h,) == A\ ({z}) = for n>1

s

we also define:

A= & h = % A M+(G)

and we call it the A (= A[G; G, R])-measure associated to
G and R; and A; we call its " component.

DerinitioN A (only needed for § 4). — With § and %

we associate a sequence of measures of G §\}, defined by:

En<Jj<Kp+y

M>=0, =1 st= |J gvO0e
1

z es(h) = N({x}) = i for  n>1

ls(Aa)]
we also define:
N =& A = % A e M¥(G)

n=1

and we call it the ' (= A'[G; G, K])-measures associated to §
and R; and A; we call its ™ component.
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Remarks. — (1.vi) we have:
| A>0, W0, (=[N =1
(1.vii) for all 4 € G we have:

@

D=TAn)  and ¥ =115

j=1

we finish this paragraph with a very technical :

Lemma 1.4 (only needed for §4 and §5). — Suppose
G =[G, with G,=Z(p™) for some fixed prime p, and

n=1
1N, <Ny < -+ positive tntegers.
Suppose & = {L,},=, is a non decreasing sequence of positive
integers such that:

. L,
(«) lnlizl nlog log n

=—|—oo

Suppose further that {3% e M(G)},2,, 1 < k < r,are r families
of Radon measures on G such that:

©) >0 and gl =1 for n>11<k<r

v sige I1 G, for n>11<k<r

j2L,

() |s(¢¥)] =0 (logn) as n—>o for 1<<kLr

under the above conditions if we denote by:

9"=;Z(1qv’,: and by ¢ = Y ¢

k=1
Then for all meZ we have:
©a(G) # Oc == ho[ge G;  mgeGp(s(¢))] = 0.
Proof. — The convergence for the vague topology of the
‘; ¢k (1 <k<r) is assured by («) and (y).

n=1

Let us now denote for all ReZ, R > 1;

[a= 3 Rs(gh — é‘l Rs(¢¥)

k=1
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and observe that:

(1.3) Gp(s(g)) = |_J T

R21

also for all neZ n>1 and 1 <k << r we have:

n

s@")cZS% + 11 G

J/L
thus:
JZLn
where :
Di= X X Rs(¢}) — X X Rs(¢))
k=1 j=1 k=1 j=1

and using condition (&) we see at once that:
(1.5) log |Dz| = 0 (n log log n).

Let us now fix {eZ { > 0 such that 1,4(G)=~0q then we
have for all te G:

(1.6)  heie [(t + I Gj) n':,,:(G)] : *(G)[ 1 «=(G ]

JZLn JZLn

=TT @l < prvee

j=1

where C; 1s a constant (depending on {).
Now putting (1:4), (1.5) and (1.6) together we see that:

he o[ 0 7x(G)] < C exp (G, nloglog n — C,L,) 7= 0
by condition («). And using (1.3) we see that:
(1.7) ho[g = G; pg = Gp(s(9))] <hezw[Gp(s(#) n 7i(G)] =
Now if ¢=£0 (mod p), 7, is an automorphism of G (It

1s (1-1) continuous and 7,(G) 2 G, ) and thus preserves the

measure of sets; that observation combined with (1.7) completes
the proof of the Lemma.
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2. The case G = H Z(p,) for a « very rapidly incrasing »
n=1
sequence of primes § p, |- ,.
DeriniTiON. — A sequence of primes {p,}-, will be called

very rapidly increasing if the following conditions are satisfied.

() Pnt1 = P1P2 - - - Pa for n>1.

(ﬁ) If ¢,= [lgg_&,] the integral part of —iﬂ then ¢, > ¢,

(‘Y) Pn = exp(e™) for n>1.

Remarks (2.1). — Observe that given an arbitrary sequence
of primes {r,};, such that supr,= -+ © we can extract

a subsequence {r, =, which is very rapidly increasing (with j).
We can now state:

Tueorem II,. — If {p.}i, is a very rapidly increasing

sequence of primes and if G = II G™ with G™ = Z(p,)
then G has S-measures.

Proof. — Let us define forall neZ, n >1:
K, —-1nf3reZ r>1, gg—&'>n§

and observe at once that:
K,=1 and K,%1 .
Using condition () of the definition, an preserving the
notation ¢, = [l_ognp,.} we see that for all neZ, n>1:

21) §reZ; K,=n+1} ={reZ; ¢.<r<g¢w}+9%;
and from that we deduce at once that for all neZ, n > 1:
2.2) |fjeZ; j>1, K;<n+41}|=supj

K;<n+1

= Sup ] = ¢rta-
Kj=n+1



SETS OF MULTIPLICITY IN LOCALLY COMPACT 135

Let us now define a series of subgroups of G:

2 G=0Gy=2G,2 - 2G,2 - 2 mG,.= {O0¢}

by
G,= [[ G» forall n>1.
i>X,

We shall prove the theorem II, by proving the following
fact:

« The Q-random measure g = w,, associated to the series X
is almost surely an S-measure of G.»

Towards that taking (2.1) and condition (y) of the definition
into account we see that

Tim {(log pr,-s)n} > lim {(log po)(gn +1)7] = + o

and that together with hg(G,) = (p1p: . .. Px,—1) " implies that

lim lo h:(G") = — o and thus taking Lemma 1.3 into
acount we see that for all weQ:
(2.3) he[Gp(s(iw))] = 0.

Let us now define for all y G :
vy = supgrez; ) 11>—Ir G(DE,_’:1§ if  y£0a;  v,=0

and : \
Py = €%
and let us observe at once that for j > 1:
(2.4) K; < vy == © > |G,/G; n Kery| > py,;
and
(2.5) liye GE Ve =T}l =pps - .. Pjalp; — 1).
Now in general using (1. iii) and (1.iv) we see that:

(2.6) E|p(x) I""—HEIHXIP‘—HEIH o= 1] a(py; m))

J\'A Kl\v/

where m; = |G;/G;n kery| and where an empty product is
interpreted as 1
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Now using (1.1) and (1.2) we see that for all N, meZ,
N>1, m>p

(2.7) (e m) <olev) +

Ne

N (LW _
<C23 2+;—<Ce 2

N

Ce™

putting (2.4) (2.6) and (2.7) together and using (2.2) we see
that: for v, = N > 2:

E|p(l < exp Y(logC— 5 )1/ =Z; />4, K, < N}

= exp §<log C— %)qxg

from that and (2.5) and conditions (a) (y) of the definition we
deduce that for N > 2

. N2
28) 3 ERP <y - prexp Y(l0g € = 5o

2 2
< plexp %(log C— —N2—>qN% =exp %2logpN+<logC — 1—;—>qN§

ojo(-3)

and from that it follows that for all A >0

Y ME|R)E << 2 A Y E|R(y)]* < 4 .
xeé N v=N

Therefore the conditions of Lemma 1.2 are satisfied and so
the Q-random measure @ = u,e My(G) almost surely. If
we combine that with (2.3) and with remark (1.11) we have the
required result that almost surely w is an S-measure of G.

3. The case G — U(p) the p-adic integers.

Tueorem U. — For any prime p the compact additive group
of p-adic integers U(p) has S-measures.

Proof. — We fix the prime p once and for all, and write
G = U(p) for the group of p-adic integers. Observe then that:

G=U(p) = limZ(p) and that G =Z(p") = lim Z(p"
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more explicitly to the ascending chain of G:
{0c} = Z(p) € Z(p*) € -+~ s Z(p") € -+ € Z(p") =G
corresponds the polar descending chain of G:
G2 (Z(p)P 2 Z(P)° 2 2 Z(p)P 2 - 2 {Ocf = (G)°
and of course for n < m
(Z(p)°/(Z(p)° == Z(p™),
Let us also observe that for positive integers M and N:
(3.4) = @EP")NZ(p ) <G
= |(Z(p"))°/(Z(p"))° n Ker | = prr=%L
We shall denote now for all n positive integer :
K, = [n(log n)**] = the integral part of n(log n)'/*
and let us observe that:
K;=0 and K,?% .

Also for arbitrary « > 0 we verify that there exists ny = ny(«)
s.t. for n >> n, we have:

(32) |fjeZ;j>1, K;<n— alog ni|
=supfjeZ; K;<n — « log n} >(1—051W-

Let us now define a series of subgroups:

2 G=Gy2G,2--2G,2---2 mG,,= {Oc}

by
G,= (Z(p™) for n>1

We shall prove Theorem U by proving that:
« The Q-random measure p = @, associated with X 1is
almost surely an S-measure. »
Towards that we observe that since
log ho(G,) = — (log p)K,  andsince =ty o

n>»w
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the conditions of Lemma 1.3 are satisfied and so for all we Q
we have:

(3.3) ha[Gp(s(pn))] = O.

Let us now define for all y eG:
o, = inffreZ; er(p’);Gi
we have for: NeZ, N>1:

(84) 1fxeGsp = Nj| = ZENZ(P™)] = (p — Dp™.
Now using remarks (1.11) and (1.iv) and (3.1) we see that:
for y £ 0¢:

(35) Elpl= TJ (e, p™)

< I sleys ™)

Kj<p;—alogpy

where a = —;’— (log p)* and where empty products are inter-

preted as 1. But with that choice of a using (1.1) and (1.2)
we see that: for

N>1 K,<N-—alogN—_—N_ <1

N—KJ \/N
C

—a(N; ') <

which together with (3.2) and (3.5) implies that there exists.
No such that for N> N, and p, = N:
N

R . C |{j€eZ; j>1, xjgN—a Log N}| C (Log N)t/2

and from that we deduce using (3.4) that:

(LogN)'l*
S Efpln < p( )

Pl.—..N

< exp

N
(log p)N <log C— log N> (log N 1/2#

)
=0 exp(——N (log N) 2 ;
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And that implies that for all A > 0:
2 WE[pQ = 22T B E|p()l* < + oo
h 1=

1eb

Therefore the conditions of Lemma 1.2. are satisfied and thus
almost surely p. = @, € My(G). That fact combined with (3.3)
and remark (1.11) implies that almost surely the (-random
measure p. 1s an S-measure of G.

4. The case G = H G for GY¥ = Z(pY) for some fixed prime
j=1
and some fixed NeZ, N > 1.
Taeorem I, — If G= H GO where GO = Z(p") for

some fized prime p and some ﬁwed NeZ, N>1,; then G has

S*-measures.

Proof. — Let us fix once and for all: A= {K;eZ{ 2, satis-
fying the following conditions:

1=K1<K<"‘<K<“', Knﬂ”—an

(4.1) K,~nlogn (n— o),
(Kpya — K —logn)=0(1) (n— )

but arbitrary otherwise,
(eg.set Kiyy — K;=[logi]+1 (>1)).
Observe now that:

G = G and GO~ zZ(p");

TIMS

for y e G let us introduce :

vxzsupgrez;x g if y5£0s and voy=0.
Jj=r

= supr
?X' KrLv,

g8 = ‘%réz; r>1,y

Il Go=1))

Kr<J<Kr+1
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let us also define for j >1:
X;={xeG; ¢, =] 8§ <(logip}cC

X=Jx<G
Jj=1
and let us observe that using (4.1) we have:

(4.2) |X,| < jOoen pNEia—Kp Qosd* L exp gC(log ])3§

and :

Let now G = {g,e G}, be a family that satisfies:

(4.3) g, = GO\, (G®).
And let us define:
A[G; G, K] =A=Q )
Jj=1
and VG G K] =N = QN;
Jj=1

the A and A’ measures associated to § and & = {K;}~,,
and let us observe that when p =2 we have the following

two facts: 1

a) If z e s(2,) then we have A,({z}) = 5K K
. a1 T n
b) s = — s(0) and by (43) Gpls)]= I GO

II G@=£1, then y cannot be constant

Kn<J<Kn+q
on s(A,) and so there exist two points z;, z, € s(A,) with

for XEG if x

2nra

Y (z;) = exp <?L> j=12 and ri=Er, (mod pv).
From observations a) and b) using (4.1) we deduce at once :

44 5 T GOl =Pl <1 — b

Kn<Jj<Kn+y Kn+1 - Kn

<1 —
o log ¢, + G

for some 3 = B(p, N) > 0 and C, constants (independent of
n and y).






