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SETS OF MULTIPLICITY
IN LOCALLY COMPACT ABELIAN GROUPS

by N. Th. VAROPOULOS

Introduction, notations and remarks.

Let G be a locally compact additive abelian group. In what
follows we shall use freely standardized and well-established
notations and terminology. We shall for instance always
denote by 0 = OG the zero element of G. We shall denote
by Z and R" the group of the integers and the Euclidean
n-space respectively.

M(G) [> Mo(G) denotes the complex Banach algebra of all
bounded complex Radon measures on G, and the closed ideal
of those, whose Fourier transform vanishes at the infinity of G,
the character group of G. M^G) c M(G) will denote the cone of
positive measure and M^-(G) = M-^G) n Mo(G).M(G) has a
natural involution ^ -> pi = (x(— rr). For pieM(G), s{^) will
denote the support of [JL i.e. the smallest closed set whose
complement is a pi-null set. We shall denote by ho the Haar
measure of G which is unique up to multiplicative constant;
when G is compact he will always be normalised by Ae(G) = 1.
We shall denote by Li(G) the algebra of elements of M(G)
which are absolutely continuous with respect to ho-

For P, Q c G subsets of G and n e= Z we denote :
^p the characteristic function of P i.e. ^p(rc) == 1 if r ceP ;
and ^p(rr) = 0 it x ^ P.

P+Q- |^+2/; ^P, 2 / ^ Q j ^G

nP^sgn(n) '| ̂ ,; o;,eP, !</<|nljcG

Gp(P) == Gp{x\x^V\.
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T» : G —> G the continuous endomorphism : T^(g) == ng for
g e G. For any set X, |X[ will denote the cardinal number
of X. For any x e R, x^O'y [x] = snp^n e Z; n^a;| will
denote the integral part of re.

We shall also use the letter C, possibly with suffixes, to
denote absolute positive constants, appearing in various
formulae (not necessarily the same constant everywhere).

Finally we shall follow N. Bourbaki [1] for measure theory
and Loeve's book [4] for probability theory.

We now make a number of definitions :

DEFINITION I. — A subset P c G will be called strongly
independent if, for all N, positive integer, any family of N
distinct points of P, {pj e P)^Li, and any family of N integers,

N

(riyeZ)^ such that ^ njpj = OG, we must have T^.(P) == OG
for all 1 < / < N. J=l

DEFINITION S. — A positive Radon measure on G,

0^[XeM+(G)

will he called an ^-measure (Salem) if:

(i) u-eMo(G)
(ii) s(^) is compact and hG[Gp(s([jJ))] == 0.

DEFINITION S*. — A positive Radon measure on G,

O^jXeM^G),

will be called an S*-measure if it is an S-measure and if:

(iii) m e Z , T,(G)^Oo=^^[g^G; mg e Gp(^))] = 0.

DEFINITION R. — A subset P c G will be called an H-set
(Rudin) of G, if it is perfect, strongly independent and if there
exists pi e MO"(G), pi =/= 0, such that s(y.) c P.

The two main theorems of this paper can be stated :

THEOREM S. — Every non discrete, locally compact, abelian
group has S-measures.

THEOREM R. — Every non discrete, metrisable, locally
compact, abelian group has I{-sets.
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We point out that the only point of introducing the concept
of S*-measures is, that it is through them that R-sets will be
constracted. In many important cases every S-measure is
automatically an S*-measure. We have :

LEMMA 0.1. — Let G be a denumerable at infinity, locally
compact, abelian group, then we can afirm that every S-measure
on G is an y-measure, provided that the following hypothesis
(H) is satisfied for G.

(H) For every open subgroup il c G and every m e Z we
have:

T,(G)^OG=^G[^(a)]=^0.

Proof. — Observe that for an S-measure [x on G and every
m e Z, the set [g^G; mg e Gp{s{^))~\ is a Borel subgroup of
G; thus if it has a positive h^ measure it must be an open
subgroup; and that is impossible if T^(G)=^OG by the hypo-
thesis (H).

LEMMA 0.2. — The following groups satisfy hypothesis (H).
(a) R and T = R/Z the one dimensional torus.
(P) ^(p) == (Z(P°°)r ^ additive group of p-adic integers

for some prime p.
00

(y) G == JJ Z(p^) for prime numbers p^(n ̂  1) such that
Pn —^ QO . ra==l
.r" n->oo

Proof. — (a) Immediate.
(P) By dualising a well-known property of Z(p°°) (cf. [3] 2 (9))

we see that every non zero closed subgroup of U(p) has finite
index in U(p) and thus positive Haar measure. It suffices then
to observe for any QcU(p) open subgroup, and m ^=- 0,
T^(Q) is a non zero compact subgroup.

(y) The open subgroups 0^ = n ^Pn) (N e Z, N > 1) form
n^N

a neighbourhood basis of OG. And to see property (H) it
suffices to observe that, since ?„ —^ oo, for all m e Z, m -=f^ 0,
there exists No = No(m) such that T^(QN) = QN tor all N > No.

The material of this paper is divided :
§ 1 The main tools and specialized notations for our con-

tractions are introduced.
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00

§ 2 We treat the case G == JJ Z(pJ where ?„ (n^.1) are
n=l

prime numbers increasing very rapidly (in a sense to be
specified).

§ 3 We treat the case G == U(p) == (ZO^^ the group of
p-adic integers, for some fixed prime p.

00

§ 4 We treat the case G == ]J Gn where G^ ̂  Z^), for

some fixed prime p and some fixed N e Z. N ̂  1, and all
^>1-

§ 5 We treat the case G == JJ Z^P") for some fixed prime p.
§ 6 We prove Theorem S.
§ 7 We prove Theorem R.
It might be worth observing that § 2, § 3, § 4 do not depend

on each other and that § 5 depends only on § 3.
The names of Salem and Rudin, we use, are justified by

[7] and [5].

1. The main tools and notations for the constructions.

We start by introducing some notations that will prove
useful.

For, r, m e Z $ r ̂  1, m ̂  1 we set:
\ m—l Q-rr;|r/ \ -*- v< M^! r(r(r$ m) = — ^ cos—•L

m FQ m\
and:

a(r) =a(r; oo) = f^ |cos ̂ r d^

we have by the mean value theorem:

(1.1) ^r,m)-^r}\^

also elementary considerations give [7] p. 537:

(1.2) <r(r) < c2-
V

Let now for the rest of this paragraph denote by G a metri-
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sable, compact, abelian group and let:

2 G==Go3Gi=> ... =?G^...3 F|G,= lO^I
n==l

be a series of compact open subgroups.
We shall associate with G and 2 two probability spaces :

(Q, ̂  P) and (Q', %', P')
as follows :

Q = ft Gn and Q' = f[ L,
l̂ n=i

where L^ = G^ X G»; % and %' are the topological Borel
fields of Q and Q' respectively (for the Tychonov topology
of course);

P = h^ = 0 h^ and P7 = h^ = (g) ̂  .
»=l n=l B

We shall now define on Q and Q' two random Radon
measures of G as follows:

DEFINITION Q. — With each

<oe()[(o= (g,, g^ ..., ̂  ...); g^G,]

we associate a sequence of Radon measures on G (a, ^ ?°7 /* i i (r./»"))./ — idefined by:

.̂J == ^y, g j ~ 1 } and ,̂.(|g,p = ̂ ..(tg,-1!) =-!-.

for / .̂ 1 we then define:

oo N

(̂  = ĉo = * ̂ co = lim if (JL. ^ 6 M+(G).
y=l N y=i • "

TVe 5/iaM call (x = ̂  ^ Q (= Q[G, S])-random measure
associated with S, a/zd ^ === (JL^^ its /th component.

DEFINITION Q' (only needed for § 4). -- With each
a/e0'[o/=(^ ^ ..., ^ . . . ) ^ ^=(^ ^)eL,=G.xGJ

we associate a sequence of Radon measures on G i^j^}^^
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defined by :

,̂J = {gp g j } and f^(|^) = ̂ {{g'^ = 4--

for / ̂  1 we then define:

^ = ^' = * !̂  = lim * ̂ .co' ^ M+(G).
y=l N y=i

We shall call ^' = (^y ^e Q' (== Q'[G, S]) -random measure
associated with S, a/zd p.} == uiy ^, its / t h component.

We make at once a number of important remarks :

Remarks. — (1-i-) The convergence of the infinite, convolu-
tion product appearing in both definitions (] and Q' is taken
for the vague topology of measures, and is assured by the

00

fact thatf^|G,=|0^ and ^JcG^. and ^JcG, for

all /^l^coeD, o/eQ'.
(l.ii) For all 00 e= Q and co' <= Q' we have :

(^>o, ^L'>o; ||̂ |[ = [[ui^[| == i.
(l.iii) For each y. e G, ^(yj^ (resp. ^(yj^) is a

sequence of (complex) independent random variables defined
on the probability space Q (resp Q') and we have :

W = ft Pv(/J and [l'(yj = f[ R^);
y=i y=i

from that it follows at once that for all r e Z, r ;> 1 :

EIPW = ft Ej^yjl- and E|p/(yJ| = ft E|P';<yJI.
^=i j=i

1. iv) Let us assume that y^ e G is an element of finite
order or equivalently that m = |G/keryJ < + °° then we see
at once that if mj = \GjlGj n keryj then :

E]p./yjr=^;m,).

(l.v) In the particular case when for some N e Z, N .̂ 1

G = ft G(ra) with G^ ̂  Z(2^ (n > 1),
n=l
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and
G/ = n G(ra) for / > i and i < AI < Aa < . •..

n^Aj

We have for every ^ e G

_ - , , 1 if y|G,=l
E|ri(,JI= ^)<i ,, î

and observe that just as above

/ v , v 1 ,̂ 27:ai , 2^Qi
^•(x) ̂  a(m7) - 9 - 2 S ^P —— + exP -J-

^^ O^a.P^m^—l m/ my

depends only on my == [Gy/Gy n keryj which can take only the
values 2, 4, . . ., 2^ if yJGy ̂  1. So there exists a == sup 0(2^)
independent of ^ and / such that l^fc^N

^|G,E^l=^a,(yJ<a<l.

We now prove some lemmas.

LEMMA 1.1 (only needed for § 4). — Let X c G be a set of
characters of G and assume that

S E]fl(^)l < + oo /resp. 2 E|^(yJ| < + °o)
xex \ xex /

^Aen almost surely [l(yj ^ —> 0 {resp. almost surely
i^x)^^?0)-

Proof. — We prove the result for the Q-random measures,
the one for Q'-random measures is proved identically.

Using the elementary properties of mathematical expecta-
tion we see that (observe |X| <^ |G| <^ S*<o) :

E J S \W\\== 5 EIt^OI < + ^
(Xex 5 ^cex

thus almost surely:

S |P-(yJI < + 00 ==^ almost surely p.(yj y^ ̂ ,> 0.
^(€X
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LEMMA 1.2. — Suppose that there exists a family of positive
integers | py j ̂ e6 such that for all values of \^0

S ^E|p^)|Px<+oo.
ye6

Then almost surely:

W^r°-
Proof. — Just as in the proof of Lemma 1.1 we have for all

) i>0
E; S ̂ lî N- S ^E|(W<+OO

(xe& ) ye&

and almost surely:

S ^IP•(x)lp7•<+ w-
Xe&

From that we conclude that almost surely:

l"n|i^)|<1

X->oo A

and A being arbitrary it suffices to take a sequence Xn —^ oo
to obtain the required result.

LEMMA 1.3. — Suppose that S in G is such that:

,. log WGJhm ° "v n/ = — oo*n/

n n

then for all co e Q and all positive integer r we have:

^([0] = o
and thus since s{^) = — s(p^) we have:

^[Gp(.(^))] == 0.

Proof. — We have in general for all N e Z, N ;> 1 and
(o e Q :

N

^(E^J c S ^(^j,co) + GN
J'=l
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and thus :

hG[rs(^)] < 2^(0^) = exp|r(log2)N + log M^)! == ̂

and by the hypothesis we have lim KN == 0. That proves
the result, oo N

Now let G be of the form G = JJ G^ for G^ compact abelian

groups. And let § == ^esG^cG^ and

3t= ̂ eZ^ such that Ki == 1$

K^>K, n>l.

DEFINITION A' (only needed for § 4). — With G and 3C
we associate a sequence of measures of G {^n}^=i defined by:

^>0, JM=1, .(^)== U (g,ug7i),
Kft^j<Kn-n

'[
xes{\^=^\^{x}) = ; for n>l

l5^^!
^ a^o define:

^ - O ^ - ^ ^ n ^ M ^ G )
n==.l n==l

one? w^ caM ^ the A (== A[G$ ,̂ yi])-measure associated to
£ and 3t; a/zd X^ w^ caM its /th component.

DEFINITION A (only needed for § 4). — With & and 3t
we associate a sequence of measures of G |^.n|^=i defined by:

^n>0, |M[=1, ^)= U ^u0^
&»»<./<Kn+i

a;e^)^^(|.rj)=———; /or M>I
l5^^!

we also define:

X'^^X^^X^M^G)
n=i n=i

and we call it the A' (==A'[G; ,̂ 3t])-mea5ure5 associated to Q
and 3t; and \j we call its /th component,
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Remarks. — (l.vi) we have :

X > 0 , X '>0 ; [|X|| == [|X'[| = 1
(l.vii) for all y^ e G we have :

^(7.) = 11 ^(7j and X'(yJ = fi ̂y=i y=i
we finish this paragraph with a very technical:

LEMMA 1.4 (only needed for § 4 and § 5). — Suppose
00

G == YJ G^ wi^/i G^ == Z^") /or 50 me ^ed prime p, ayic?
71=1

1 ̂  NI ̂  N2 -^ • • • positive integers.
Suppose ^ = ^Ln j^ is a non decreasing sequence of positive

integers such that:

(a) lim ———H——— = + oo
n>oo n Jog log n

Suppose further that \^ e M(G) \^, 1 <; k ̂  r, are r families
of Radon measures on G suc/i t/ia(:

(?) 9S>0 and |^||=1 /•or n > l ; l < / c < r
(T) ^(P^) c 11 G. /'̂  n > 1, 1 < /c < r

J^n

(§) |s(y^)| = 0 (log n) as M -> oo for 1 < /c < r

under the above conditions if we denote by :

?'==*?!; and ̂  y = * ?'.?'==*?!; and ̂  T = * ?'.
ra=l fc=l

TAen /or aH m e Z we Aa^e:

T,(G) ̂  OG==^ Ao[ge G; mge Gp^))] = 0.

Proof. — The convergence for the vague topology of the
00

^ 9^ (1 ̂  k ̂  r) is assured by (a) and (y).
n=l

Let us now denote for all R e Z, R .̂ 1;

FK = S R^?') - S R^?')fc=i /c=i
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and observe that:

(1.3) Gp(.(9)) = |J FK
R^l

also for all n e Z n ̂  1 and 1 ̂  k <; r we have :

w c i .(9)) + n G.
J=l J^L^

thus :

(1.4) FK c D-K + II Gy
J^Ln

where :

D£= S 2 R^) - S 1 R<(??)fc=i y==i fc=i y==i

and using condition (S) we see at once that:

(1.5) l o g | D £ | = 0 ( n l o g l o g M ) .

Let us now fix ^ e= Z *( ̂  0 such that Tp?;(G) ^OG then we
have for all t e G :

(1.6) ̂  [ (t + n G;) n ^(G) -[ < /^(G) [ H ^(Gy) ]

^nM^i^p-^
where C^ is a constant (depending on 'Q.

Now putting (1;4), (1.5) and (1.6) together we see that:

^(^[TR n v,(G)] < C exp (Ci n log log n — CgL^) ^^ 0

by condition (a). And using (1.3) we see that:

(1.7) ^[geG; p^^G^(y))]<^G)[Gp(^(9)) n^(G)]=0.

Now if q=l=Q (mod p), T^, is an automorphism of G (It
\

is (1-1) continuous and T^(G) => S G ^ ) and thus preserves the
n==l /

measure of sets; that observation combined with (1.7) completes
the proof of the Lemma.
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2. The case G = ]J Z(pn) for a « very rapidly incrasing « very rapidly incrasing »
sequence of primes | pn ̂  ̂ .

DEFINITION. — A sequence of primes [pn^=i will be called
very rapidly increasing if the following conditions are satisfied.

(a) pn+i > PiP2 • • • Pn for n > 1.

(?) If ^ == r10^-^] the integral part ofl-o&^-n then q^ > ̂
for n > 1. L n J n

(y) p,>exp(^) for n > 1.

Remarks (2.1). — Observe that given an arbitrary sequence
of primes ^r^|n°=i such that sup r^ == + oo we can extract

n
a subsequence ^r^JLi which is very rapidly increasing (with/).
We can now state:

THEOREM IIi. — If [pn}^=i is a very rapidly increasing
00

sequence of primes and if G == J[J G °̂ with G^ = Z(p^)
then G has 6-measures. n=l

Proof. — Let us define for all n e Z, n ̂  1:

K^infjreZ;^!,10^^

and observe at once that:

KI == 1 and Kn f oo.

Using condition (?) of the definition, an preserving the

notation On == | -^-rra ? we see that for all n e Z, TZ ̂  1:
L n J

(2.1) j r e Z ; K,= n + 1 ! = t^2^ ?n<^<9n+i! ̂ 0;
and from that we deduce at once that for all n e Z, TZ ̂  1:

(2.2) | | /eZ; />!, K , < n + l j | = sup,
K, .^71+1

= sup / = ^+i.
K(=B+l
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Let us now define a series of subgroups of G:

2 G=Go=>Gi3 . . . 3G,3 ... a 1^^= W
i "^by

G"== 11 G^ tor all M > 1.
^n

We shall prove the theorem ITi by proving the following
fact:

« The Q-random measure ^ = ̂  associated to the series 2
is almost surely an S-measure of G. »

Towards that taking (2.1) and condition (y) of the definition
into account we see that

lim|(log p^i)n-1} > lim|(log pj(^ + l)-^ = + oo

and that together with /^(G,) = {p^ . . . pK,-i)~1 implies that
Hm ^ = — oo and thus taking Lemma 1.3 into
acount we see that for all co e Q :

(2.3) Ao[Gp(^))] = 0.

Let us now define for all 7^ e= (j:

^ = s u p ( r e Z ; yJllG^^ it X^0§; V o - ^ O
( ^^r ) ft

and:
P)C = ̂

and let us observe at once that for / >• 1:

(2.4) K, < ̂  =^ oo > |G,/G, n Ker^l > pv,;
and

(2.5) 1 ty, e G; ^= / | |== p,p, . . . p^p^ - i).

Now in general using (1. iii) and (l.iv) we see that:

(2.6) E|^)l^nElp.,(yJ|P.= n E|EX,(^= 11 ̂  m,)
•/-1 K^^ Kj^vy.

where my = |Gy/Gy n keryj and where an empty product is
interpreted as 1.
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Now using (1.1) and (1.2) we see that for all N, m e Z ,
N > 1, m > p^

r /»N2 _N2 p .-N2 N2
(2.7) o^2; m) < <7(e»1) + -le- < C^ T+^^QT^

yw r».,m p^

putting (2.4) (2.6) and (2.7) together and using (2.2) we see
that: for Vy = N > 2 :

( / N2\ ^
E|p.(x)|^<exp h o g C - ^ - ^ l t / e Z ; />1 ,K ,<N^ |

(/ N^ )== e x p j ( l o g C — - ^ - g N ^
(\ ^ / )

from that and (2.5) and conditions (a) (y) of the definition we
deduce that for N > 2

(2.8) S WyJI^ < p,p, .. . p, exp jflog C - ̂ Yj
^==N ( \ L ] ^

< p^ exp jAog C - ̂ \^\ =exp J2 log p^+flog C - ̂ }q^
(\ z / ^ ( \ ° / )

^Oiexpf-^^^
C \ 0 / )

and from that it follows that for all X ,> 0

S X^E|p.(yJ|^< S ̂ l S E|p.(yJ|P.< + oo.
Xe& N .x=N

Therefore the conditions of Lemma 1.2 are satisfied and so
the Q-random measure pi = u.^ e Mo(G) almost surely. If
we combine that with (2.3) and with remark (l.ii) we have the
required result that almost surely pi is an S-measure of G.

3. The case G — \J(p) the p-adic integers.

THEOREM U. — For any prime p the compact additive group
of p-adic integers U(p) has S-measures.

Proof. — We fix the prime p once and for all, and write
G == U(p) for the group of p-adic integers. Observe then that:

G = V(p) = Hm Z(pn) and that G = Z(p°°) = Km ZQ^)
n ~n^
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more explicitly to the ascending chain of G :

!OGJ C Z(p) C Z(p2) C ... C Z{pn) C ... C Z(p°°) = G

corresponds the polar descending chain of G :

G 2 (Z(p))o 3 (Z(^))o 3 ... ^ (Z(p.))o 3 ... 3 ^ Q G J = (G)o

and of course for n << m

(Z(pf t))o/(Z(pw))o^Z(pm-).

Let us also observe that for positive integers M and N :

(3.1) ^(Z^NZ^-^cG
==^ KZO^^ZQ^O n Ker yj = p-p|M-N.o^

We shall denote now for all n positive integer:

Kn = [^(log n)1'*] = the integral part of n(log n)1^

and let us observe that:

K i = 0 and K/foo.

Also for arbitrary a > 0 we verify that there exists no = rio(oL)
s.t. for n ̂  no we have :

(3.2) \{j € = Z ; />!, K,<n-- a log n\\

= s u p t / e Z ; K , < M - a log n\ > — — n . .
(^g ^)

Let us now define a series of subgroups :

S G=Go2G,3...=3G^...DF|G,== [0^
n==i

by
G, = (ZQ^o for ^ > 1.

We shall prove Theorem U by proving that:
« The Q-random measure ^ = ̂  associated with 2 is

almost surely an S-measure. »
Towards that we observe that since

log /ie(G,) == — (log p)K^ and since Kn -^ oo
Tt
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the conditions of Lemma 1.3 are satisfied and so for all co e Q
we have:

(3.3) MGp(^))] - 0.

Let us now define for all y e 6r:i\t

p y = i n f t r e Z ; y^Z^QcGl

we have for : N e= Z, N ̂  1:

(3.4) j |y^G; p^= N j | = \W}\W^)\ = (p - l)p^.

Now using remarks (l.iii) and (l.iv) and (3.1) we see that:
for X. =^= 06 :

(3.5) E|a(yJ|Pz= n ^(Py; P -̂)
^•^P^ < n ^ p9^)

K;<p^-alogp^

where a = — (log p)-1 and where empty products are inter-

preted as 1. But with that choice of a using (1.1) and (1.2)
we see that: for

N>1, K,<N-alogN=^.<^

-^o(N; P^X——
\/N

which together with (3.2) and (3.5) implies that there exists.
No such that for N > No and p^ = N:

E^X.)!̂  /JLV1^^1'^"^11 < /^y^

and from that we deduce using (3.4) that:

, P \(LogN)^s E|(I(^<^ -yA-' ir \A-/I ^s r l /,rr »
PX=N WN/

< exp (log p)N + (log C - ̂  log N) ̂ |̂

== 0 exp (^- 1 N(log N)1/2^).
\ ° / )
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And that implies that for all X ;> 0:

S ^E^Ocr = S ̂  S EIPW^ + ^>-
%€6 N PX=N

Therefore the conditions of Lemma 1.2. are satisfied and thus
almost surely (JL = p.^eMo(G). That fact combined with (3.3)
and remark (l.ii) implies that almost surely the Q-random
measure (x is an S-measure of G.

4. The case G == II G(y) for G(J) = ̂ P^ for some fixed Pnme

7=1
and some fixed N e Z, N >. 1.

THEOREM IIa. - If G = n G^ w^re G^ = Z^) for
./==!

5om^ j^rced prime p and some fixed N e=Z, N ;> 1$ (/ieyi G has
y-measures.

Proof. — Let us fix once and for all: 3t == | Ky e Z | Jl,i satis-
fying the following conditions:

l = K i < K , < ... < K ^ < ..., K^-K.f
(4.1) K^-^nlogn (n~>oo),

(K,^ - K;- log n} = 0 (1) (^oo)

but arbitrary otherwise,

(e.g. set K,+i - K, = [log i] +1 (/ > 1)).

Observe now that:

G == i G^ and G^ ̂  Z(pN);
y==i

for 7, e G let us introduce :

^=supireZ; ^ fiG^^l? ^ X=^0^ and Voo = 0.^
( ^=r )

<p^ == sup r

^= | rSz ; r> l ,y , n G^lj

<p == sup r
k Kr^

K Kr<7'<Kr-n )
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let us also define for / ;> 1:

X,= I X ^ G ; 9^7, S^<(logi)^cG
and :

X=UX,CG
y=i

and let us observe that using (4.1) we have :

(4.2) | X,| < /(log ̂  p^i-^-) (10^ < exp ^ C(log / ) 3} .

Let now Q == ^g^eGj^i be a family that satisfies:

(4.3) ^eGW^G^).

And let us define :

X[G ; ^3 t ] =X=0X ,
j=i

and X'[G; ̂  3t] = X'== (g)X;.;

the A and A' measures associated to ^ and 3t == tKyjj°=i?
and let us observe that when p =/= 2 we have the following
two facts: t

a) If a; e ^(XJ then we have \{ \x\) = ̂ -^————_—.
i ^^n+l — -•-^n^

fc) s(\) = - ̂ (XJ and by (4.3) Gp[s(\}] = U G^
^ Kn^y<Kn+i

for ^ e G if ^ FI G^^l, then 5^ cannot be constant
KT»-^,/ •< Kji-n

on s(\) and so there exist two points x^ x^ <= s(X^) with
/o * \

•^{xj) = exp (-y) 7=1,2 and /•i=^ra (mod p^).

From observations a) and b) using (4.1) we deduce at once:

(4.4) y. n G(^1^|^)|<1- ^
Kn<y<Kn+, ^n+l —— ^n

<1
lOg 9y + Cl

for some ? == ?(?, N) > 0 and Ci constants (independent of
n and yj.
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Then from (4.4) and remarks (l.vii) we see that if p =7^= 2 :

(4-5' ^<{l-^^)"•
Also we have analogously for p = 2

7. n G^l^l^yJKl--.———^——.
Kn^7<Kn+i ^n+l —— ^n T 1

<1- T
log y^ + Cg

for some y == y(N) > 0.
And from that it follows just as above that for p = 2

(4^ ^l^-i^Tc;)8"-
Let us now define the series of subgroups of G:

S = S[G, 3t],
00

G==Go3Gi2G,2.. .2G,2.. .2nG,=|OGJ
n==l

by G,== n ̂  for a11 ^>i ;
7^K^

and let us consider pi = ̂  and a' = pi^ the Q and Q' random
measures associated to the series.

Now using remark (l.iii) we obtain the following estimates

E|^(yJl=nE|^(yJ|- n E|p.,(yJ|
y=i J^

with the usual interpretation of the empty product as 1.
Now since for j' <; 9^ we have yJGy^l, we see, using

remark (l.iv), that for p =/= 2 :

/<^=^E|(i(yJ|< sup ^(l,p^ =S<1;
1-^n^N

so finally we conclude :

(4.7) E|^(yJ|<^.
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Analogously for p == 2 we see, using remark (l.iii) that

ww\=ii^w\= n Eip,<yji;j=i j^/
and just as above using (l.v) we see that for p = 2 :

/•<9^E|(l;(yJ|.<a=a(N)<l;

so finally:

(4.8) E|(X'OC)| < a^.

Now using (4.2) and (4.7) we see that

S E|^(X)1 = 2 S E1^(X)1 < S |XM| sup (E|(^)|)
yex M yex,, M 'Xex^

< S exp^C(log M)3 + (log S)M^ < + oo
M

and thus the conditions of Lemma 1.1 are satisfied and we
conclude that for p =/= 2 :

(4-9) E^T.) xex;^^ ° almost surely.

In an entirely analogously fashion we see that for p = 2 :

(4.10) ^(X) xex^^O almost surely.

Let us now observe that for all co e Q (o/ e Q' respectively)
the Sequences of measures ^j^i and {^n,w}^=i

(W^i and { ̂  ̂  } n°Li respectively)

satisfy the conditions of Lemma 1.4 if we take ^ == X So
we deduce that for all co e Q and all o/ e Q' and all m e Z
with T^(G) =7^= OG we have:

(4.11) MgeG; mgeGp(5(X*^))]
= /lG[ge G; mge Gp(5(X'*^))] = 0.

Thus finaly taking (4.11) into account and remarks (l.ii)
and (l.vi) we see that Theorem IIg will follow if we prove:

(P) (i) For p -=f=- 2 almost surely \ * (JL^ e Mo(G)
(ii) For p == 2 almost surely X'*(JL^ €= M()(G)
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more explicitly:

P(i) ==^^*(x is an S*-measure of G almost surely when
p^2.

P(ii) =^'*^' is an S*-measure of G almost surely when
p=2.

To prove P(i) it suffices, taking (4.9) into account, to prove
that, if co e Q is such that p.(yj ^.^^> 0 then:

(^12) X(yJMx) W 0.
This we do; towards that let for /' ̂  1;

^sT,=^e6; ^ = / j c 6 ; /,^=^nT^=0

then:

(4.13) |T,|<+oo, U^"0^6;

X-T;\X,=^>(log/)2.

From that using remarks (l.ii) and (l.vi) and (4.5) and the
choice of y.^ we see that:

s, = sup iMx) ^(/Jl < sup |Mx)l -TST °
7ex^ xex^

and:

^-.^'^^K.^1^1J / p Y^_^o
^V log/+C,; ^u

so : sup | p.<o()c) ^(X) I < max ̂ ; o,} -^ 0

and that together with (4.13) implies (4.12).
The proof of P(ii) follows in an entirely analogous line when

we use (4.10) and (4.6).

5. The case G = ]~[ Z(p/) for some fixed prime p.
J=i

Let us in this paragraph readopt some of the notations of
§ 3; in particular let:

K/ = [/'(log j')1'*] be the integral part of /'(log y)1'4 for /' > 1.
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Let us also fix tHy^i a sequence of integers such that:

(5.1) Hi =1, H, f oo, ^ > (/ + 1)2 for / > 1.
S H,
r=l

Let us also introduce for all n ̂ -1;

a(n)=inf ^-eZ; / > 1, IL > K^ a(n) f oo
P(n)=sup^/eZ; />!, K,<n| p(n) f oo

and we observe that:

(5.2) [n e Z; ra > 1, a(n) < m] = [re e Z, ra > 1, K,, < HJ
=^ sup n = P(HJ

a(ra).^m
and that:

f15-3) ^'"((io^r) M »^°°
we can then state :

THEOREM IL. - J/* G = fi G, wK/i G, = Z(pHi) (j > 1)
7=1

and |H^y!!i satisfying (5.1); </ien G /ia5 ^-measures.
00

Proof. — Observe that G = ̂  Gj where G/^ZQ^) and
^=1

that the canonical injections Gy->Z(p00) (/^ 1) induce a
projection :

q: G->Z(p°°)

which by polarity induces a canonical injection:

q0=:i: V(p) = ̂ (p-)--> G.
00

Let now v == ̂  Vy be an S-measure of U(p) as constructed
.•/==1

in § 3, and using the injection i let us identify Vy (/ ̂  1)
and v with elementary M(G), going back then to § 3, we see
that for that identification, for all n ̂  1

(5.4) .(^^(p^c n G,;
./^a(n)
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and
1^)1 - 2.

Let us also fix once and for all:

|e,eM+(G,)^
satisfying the following conditions: 61 === §o ^d f01* 7 ^ 2
we have

||e,|| = 1; js(9,)l = p^-; 0 ̂  y, e Z^--) c G,=^ e,(yj == 0

such a sequence of measures exists always, e.g. consider
[Gj: Z^J-^-J-1)] a section of Gy->Z(p11./-1) in Gj and give equal
masses to all of its points.

Using that sequence let us define 0 == (x) 9^ e M(G) and
7=1

let us also define y = v * 9 we have of course y ̂  0 and
| [9) | == 1 and we shall prove that y is an S*-measure of G.

It is trivial to see that y e Mo(G). Indeed by the definition
00

of 6 and the fact that for all 7,eG 6(yJ === JJ Oy(yJ, we see

that if |ya e G| aeA is a net in G such that /oc €= supp y c supp 6
for all a e A , and y,a ^eT °° we have ?(X.a)-oeT 00 in Z(POO)5
thus v(^)^0^y(x,)-^0.

We proceed to prove that the condition on the support of y
is satisfied. Towards that using the argument developed the
end of the proof of Lemma 1.4 we see that it suffices to prove
that for all ^ e Z ^ ̂  0 we have :

(5.5) ^^[Gp(.(9))n^(G)]=0.

To show that, let us observe that for all N e Z, N ̂  1 we have,
using (5.4) and (5.2):

P(HN)
^c S ^)+IIG/

./==! J > N

P(Hn) N
and thus :

^ S ^y)+ S W + t l G y .y=i y=i y>N

Therefore using the arguments of the proof of Lemma 1.4
and in particular (1.6) and what follows : we have for all
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fixed R e Z and N > j ^ j
N-l / N \

2R S H, - ( S H,—?:N )
^(G)[(R^(y) - R5(9))^v,(G)]<22RP?)p ^1 p ^=1 >'

= exp (- CiH, + C, ̂  H^ + CgN + ^^(H^)) ̂  0
\ y==i /

by (5.1) (5.3) (Cy>0, 1</<4 are constants). This together
00

with the fac that Gp{s{<f)) = U(R^(9) — R«(y)) prove (5.5)
and completes the proof. R==i

6. Proof of Theorem S and application.

We start with a lemma on locally compact abelian groups :

LEMMA 6.1. — (i) Let G be a compact group and H c G be a
closed subgroup then:

a) If G/H has S-measures so has G.
(3) J/*G/H has y-measures and is in addition a group unboun-

ded order (m ^=/=. 0 ==^ T^(G/H) -=^ Oc/n) then G has ^-measures
also.

(ii) If G and H are locally compact groups and if they both
have y-measures {respectively S-measures) then G X H = K
has S*-measures (respectively S-measures).

(iii) If G is a locally compact group and Q c G is an open
subgroup of G then if Q has S-measures so has G.

Proof. — (i) Observe that if p : G -> G/H is the canonical
projection, there exists a canonical injection

p : M(G/H)^M(G)

(cf. [1] ch .7) such that:

(6.1) p-^G/H)) c Mo(G), p(M+(G/H)) c M+(G);
^{M) = P-1^)).

From that we see at once that for all (JI€=M(G/H) and m e Z ,
m^O:

(6.2) p[geG; mg^Gp{s{pW)}]
=[geG/H;mgeGp(^))]
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putting m === 1 and p. an S-measure of G/H in (6.2) we see
using (6.1) that p(^) is an S-measure of G and that proves a.

To prove ^ we let [JL be an S*-measure of G/H, and m =/= 0,
m e Z, then by the hypothesis on G/H we see that

/iG/H[geG/H; mg^GpW)] =0,

and that, together with (6.1) and (6.2) implies that p(pi) is
an S*-measure of G.

(ii) Let \ and p. be S*-measures of G and H respectively,
then if v == X 0 [JL e M(K), we have:

(6.3) 0 = / = v e M o ( K ) , v > 0 ;

also if m e Z is such that T^(K) =/= OK, then either T^(G) ^OG
or T^(H) =/= On or both; suppose then that T^(G) ^= OG then
by the hypothesis :

ha[g^G, rng^Gp{s{\))]==0',

and that implies:

h^[k^G', m/ceGp(^(v))] === 0;

which together with (6.3) implies that v is an S*-measure of K.
The result about S-measures follows similarily and is only

simpler.
(iii) Is trivial.

DEFINITION 6.1. — (i) We shall call a compact abelian
group G a group of type T if G has torsion free elements.

(ii) We shall call a compact abelian group G a group of type
V if G contains a subgroup B c G, B ̂  Z(p00) for some prime p.

(iii) We shall call a compact abelian group G a group of

type II if G contains a subgroup S c G such that S ̂  5 ^(p?"),
n=l

where p^ are primes and N^ es Z, N^ ;> 1 (^^1), and where
P^^^-

Observe that the above classification is not identical with
the one given in [8] § 5. With our classification we can obtain :
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COROLLARY 6.1. — (i) Groups of type T and U have y'mea-
sures.

(ii) Groups of type II have ^-measures.

Proof. — (i) It follows from a theorem by Salem [7],
from theorem U, and from Lemma 0.1 and Lemma 0.2, that
T, the one dimensional torus, and U(p), the additive group
of p-adic integers, for any prime p, have S*-measures. Our
result follows from that, Lemma 6.1 (i) (3, and the simple
observation that if B c G and B ̂  Z or Z(p°°) then G/B° ̂  T
orU(p).

(ii) Let G be a group of type II and let G^S ̂  S ^P?")
n==l

with p!?" -^- oo as in the definition. We distinguish two
mutually exclusive cases.

a) sup pn < + oo : then there exists Si c S £ G such that
n
00

^i "= S ^(P^) with N^ -̂ - oo and some fixed prime p.
n=l oo

Then there exists Sgc 2i with Sg ̂  S ^P117) where H.
oo y=i

satisfy (5.1) : then G/S§ ̂  Jj[ Z(pH•/), and thus, a simple use of
y=i

Theorem IIg and Lemma 6.1 (i) (3. proves the result.
b) sup p^ === + °o ^ then just as above we see that

n

SicScG

where Si ̂  ^ ^(pn) with pn^oo"00? an(^ ^y remark (2.i)
n=l

we may assume that tpn^°°=i ls a very rapidly increasing
sequence of prismes. Then G/S^ ̂  [̂ Z(p^), and thus G

ra=i
has S*-measures by Theorem FIi and Lemma 6.1 (i) ?.

We next prove:

LEMMA 6.2. — If a compact abelian group G is neither a
group of type T, type V or type II, then it is a group of hounded
order, and thus ([3], 8) G =^ JJ Z(p^^ where for all a e A pa

aeA
is a prime number and Uy, is a positive integer such that

SUp p^ < + °°-
aeA
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Proof. — Using duality we see that to prove the Lemma it
suffices to prove that:

« If A (= G) is a discrete abelian group such that: (a) A
is a torsion group.

(?) A is not of bounded order.
(y) A is a reduced group. ^==^ A contains no divisible sub-

groups. -^=^ A contains no subgroups isimorphic to any Z(p°°)
for any p prime number (use (a)).

Then A contains a subgroup S c A such that

s^i;z(p^)
71=1

for ^p^jn^i a sequence of powers of primes with p^" -̂ - oo.»
To prove the above we can make on A the extra assumption :

(S) « A is a p-primary group for some prime p. )) Indeed,
anyway A == Q) Ap is the direct sum of its primary compo-

p
nents, if the number of those components is infinite the conclu-
sion above follows at once, otherwise we see that one of those
components must satisfy (?) (and of course also (a) and (y)),
and we can argue on that component.

Now to prove the above statement it suffices to show that,
for every group A satisfying conditions (a)-(S), and for every
N e Z, N ̂  1, there exists a direct decomposition A == B ©C
where TpN(B) -=f=- OB and TpN(C) =7^= Oc. For then, it would follow
that either B or C or both satisfy conditions (a) — (S), and
thus iterating the decomposition with increasing N, we
would obtain :

A 2 D ̂  BI e Bg © • - • © B^ e • • •

such that Tpn(BJ -=^ OB^ {n ̂  1), and that clearly implies our
assertion.

Thus suppose that for some A satisfying conditions (a) — (S),
and some positive integer N, such a decomposition is impos-
sible. From that contradictory hypothesis it follows that in all
direct decompositions of A = B e C we always have either

Tp.(B) = OB or Tp.(C) = Oc.
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Now let I A == BeeCejeeQ be a family of direct decompo-
sitions where 0 is a simply ordered set such that

9l<92= =^Be,cBe.

and such that T^(Be) = OA$ 9 e Q. Then we claim that
B = [_j BQ is a direct component of A, of order ̂  p^. Indeed

ee©
Tpn(B) == OA trivially, further B is a serving (pure) subgroup
of A (indeed x e= B and ny = x some y e= A and n e Z ==^ re e Be
some 9 e © and y = 69 + CQ with &Q e BQ CQ e €9 -=^ nfce == a;),
so our assertion is a consequence of a well-known theorem
in abelian group theory ([3] 8-Th. 7].

From the above it follows that the direct summands of A
or order ^ p^ have maximal elements. Let K be such a
maximal element and let A = KeL. Now L satisfies condi-
tions (a) — (S) and thus it is a decomposable group ([3] 9
Th. 10) L == Li e Lg, Li ^= 0, Lg =^ 0 and thus by our contra-
dictory hypothesis either TpN(Li) = 0 or Tp^Lg) == 0 and in
either case we contradict the maximality of K.

We now prove :

LEMMA 6.3. — (i) If G is a metrisable compact abelian group
then it has ^ "measures,

(n) If G is any compact abelian group then it has S-measures.

Proof. — Taking corrollary 6.1 and Lemma 6.2 into account,
it suffices to prove our Lemma making, in both (i) and (ii),
the extra assumption that G is a group of bounded order,
then:

(i) G == GI e Gg C ... C GR for some R >. 1 and where
oo

G? ̂  II G^ t̂h Gy ̂  Z(p?) for pj prime numbers and N,
ra==l

positive integers (1<;/<;R). Our result then follows from
Theorem tig and Lemma 6.1 (ii).

(ii) G contains a closed subgroup H c G such that
00

G/H ̂  U G^ where G^ ̂  Z(p) for some fixed prime p and
ra==l

then the result follows from Theorem tig and Lemma 6.1.1. a.
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We shall now use the following classical structure theorem
(e.g. Cf. [6] 2-4).

(S) « Every locally compact abelian group G contains
Q c G an open subgroup such that Q ̂  R" X K for some
n €= Z, n ̂  0; and K a compact group. »

Now using Salem's result [7] which asserts that R has
S-measures, using also Lemma 6.3(i), Lemma 6.1(ii) and
Lemmas 0.1 and Lemma 0.2 our structure theorem (S) above
we see that we have :

COROLLARY 6.2. — Every metrisable non discrete locally
compact abelian group, contains a countable at infinity open
subgroup Q which has ^-measures.

Proof of theorem S. — Using again Lemma 6.3 (ii) the result
of Salem [7] and Lemma 6.1 (ii) we see that every group of
the from R" X K where K is a compact abelian group, has
S-measures provided that either n ;> 1 or |K| ^>^o- Theorem S
then follows from that, our structure theorem (S) above,
and Lemma 6.1 (iii).

We now proceed to give an application of theorem S.
Towards that we start by describing a particular case a clas-
sical decomposition of M(G) due to Raicov (Cf. [2] § 2).

For S c G any compact subset of the locally compact
abelian group G let:

^(S) == t g + mS — nS$ geG, m > 0, n>0|

and let:

I(S) == ^ m e M ( G ) ; VRe^(S), R is an m-null setj

R(S) = j m e M ( G ) ; 3^R,egl(S)|^ s.t. G\(J R, is m-null j -
. v j 'Then it can be proved [2] that x e I(S) and y e R(S) => xA-y

(are mutually singular) and I(S)<M(G) is an ideal, while
R(S) is a subalgebra, and we have the decomposition

M(G) == I(S)©R(S).

Let us also define :
p,: M(G) -> C by ps{m) = j dr where m= i -}- r', i e I(S)
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and r e R(S) is the orthogonal (unique) decomposition of m.
It is then easy to see that p, is a complex homomorphism
i.e. p^e^lVHG)) [2] the maximal ideal space of M(G). Also
it is easy to verify that for all m <= M(G) we have :

p.W = p.(^)
in other words that p^ is a symmetric ideal.

Let us then apply that decomposition starting from S = s(u.),
for ^ an S-measure of G, normalised by [|pi[| = 1. We verify
then at once that Li(G) c I(S), so that p,(Li(G)) == 0 i.e. p,^ G
for the canonical identification of G into a subset G c IT^MYG)).
What is more to the point p^ (G), the topological closure
(for_the Gelfand topology) of G in ^IV^G)), for we have:
T e (G)\G ==^ p.(T) = 0, while we have p.(p,) == p,(p.) == 1.

So we have proved.

Application. — If G is a non discrete locally compact abelian
group then there exists <r a symmetric maximal ideal of M(G)
such that :

crDLi(G) and <7^Mo(G).

7. Theorem R.

We start from a lemma on locally compact abelian groups :

LEMMA 7.1. — (i) If G is a metrisable^ locally compact group,
and if it has S^-measures, then it also has an S*-measure X,
such that OG ^ s(\) and s(\) is totally disconnected.

(11) If Q is a locally compact group, and if Q is an open
subgroup, and if Q contains I{-sets, then G contains I{-sets
also.

Proof. — (i) Indeed if v is an S*-measure of G then it suffices
to find 0 = ^ X < v and such that OG ^ s{\) and s(\) is totally
disconnected. This can be done using simple arguments of
general topology and Radon measure theory.

(ii) It is trivial.
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Remarks. — (7.i) In general if [JL is an S-measure, 5((x) has
no isolated points since (JieMo(G). Thus in the above Lemma
7.1(i) s{\) is a Cantor set.

Let now G for the rest of this paragraph denote an abelian,
metrisable, countable at infinity, locally compact group, and
let us fix on it d a translation invariant metric. Let us also
fix X an S*-measure on G which is as in Lemma 7.1(i) i.e.
OG ««(X) = A and A is a Cantor set, and let us normalise
i tby : l |X | |= l .

Then by the hypothesis on X and G we have for:

/ •=0 ,1 ,2 , . . ;A==UAJ
a=l

where |Aj^ $ / = 0,1,2, . .., 1 < a < 27 are compact sets
satisfying:

(a) Aj n Af = 0 for a ^= (i and all / > 0
(P) sup (diam A?) -.^ 0 where of course for any

l^a^2-7 J v

E c G diam E == sup d(^, e^)
ei,e»eE

(y) Aj^Aj+iuA^ for / > 0 and l<a<2^.
Let us also denote by:

^ = ̂  e M^-(G) for all / > 0; 1 < a < V.
Let us now denote :

2-7
Gy == I! Ga with G^ = G, 1 < a < 2^ for / > 0

a=l

and for all gj = (g{, gg', ..., g^-) e G '̂ and n; e G.
Let us define:

(7.2) (a) A j [ ^ = = a ; + A j ; / > 0 , l < a < 2 ^
(P) ^?M ==^*^ a ^M,+(G) ; />0 , l<a<2^

(T) W] = S^[gi]^M,t-(G);/>0.
a=l

We have of course:

(7.3) \\W\=i, M^>0, <X[g/J) = (J A?[g{].
a==l
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We then compute, taking (7.1) and (7.2) into account for
all /' > 0 and ^ <= G :

{wm-w^n^ s K^[^]r()0 - ̂ [g^rw s
a=l

+ i K^[^])'(yJ- (^^[^^'(x)^
oc=l

and using (7.2) and (7.3) and observing that

WWW = X(^(X) tor a; e G,

we see that there exists | e, > 0 ^ JL, such that:

^sG^ for all / > 0 ; g » = O G 6 G ° = G ;

for all / > 0

(7.4) D[g/, g/^] = sup ,̂ g î) + rf(^, g^);
l<a<2^<e^

implies:

(7.5) supi(x[g/]nyj - w^]rw\ < 2-^
and

s^^]) c A + K for / > 0

and K some compact neighbourhood of Or,.
From (7.5) it follows at once that if \^\^ is a sequence

satisfying (7.4) then X[^'] -> I for the vague topology of
measures and by (7.3).

(7.6) ?>0, ||;||==1, ^Mo(G).

Let us now denote for all / ̂  0:

S = t n e Z ; T , ( G ) ^ O G J s Z
2, === | (n, e Z)2.^; |̂ | < / + 1 for 1 < a < 2 ,̂

2 ^G)^OG?
a=l )

and let us also denote for /' ̂  0 :

H,- U ^e(y; S nag^OGis^
(^LxeS/ a=l 1
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and for / ̂  0

^•^ U ^eG/; S^^GpAcG^.
("cOSLieS/ a=l

We observe at once that:

(7.7) /^(K,)=O for / > 0

indeed by the definition of 2, 2̂ . and K, to prove (7.7) it
suffices to prove that:

if / > 0, 1 < a < V and n^ e 2 c Z and n^ Z for a =^= ao

arbitrary, then:

M^G^; | n^eGpA]=0;
a=i

and that follows from Fubini's theorem and the fact that the

[ 2^ -

section of the set g'eCr'; 2 ^a<=GpA by the « plane »
a==i J

g'a=^a tor a=/=ao; l<a<2^ is
S(^) ̂  [g 6 G; M^g e - ^ M^ + GpAl

L a?&ao J

and so is either ^ or a coset of a subgroup of G of measure
zero by the definition of X an S*-measure of G, and the defini-
tion of 2.

We then prove:

LEMMA 7.2. — For all / > 1 and g^ e G-7-1 and e > 0
we can find g^= ^g^^eG7 such that:

/ 2 j \
W-1, g7] < £ and ( n Aj[g^] ) n H, == 0.

\a=l /

Proof. — Observe that for / ̂  1:

(^S) (IT AJ[^]) n H, ̂  0 =^ g^e K, c G^;
\a=l /

it is also trivial, since [g^G^; D[g/-1, gJ] < e^ c G^is an open
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subset, that:

(7.9) M^^; D[^,^]<e]>0 />1 .
Thus the Lemma follows by comparing (7.7), (7.8) and (7.9).
Now we choose inductively three families :

|^= (^)ti-G^, {^> 0^., |p, > Oj,^
satisfying for all /' ;> 0 the following conditions:

(i) §°=OG and D[g/, g^j < YI,

(") Py>|^

(iu) . ^ < s?

(iv) (fi(AM)p,)nH,=^
\a=i /

where for any E c G and any

p>0 Ep== ^eG; d(^E)<p^

(v) ,̂-̂ .

To see how that choice is carried out, suppose that for some
/ ^> 0 g^ e G^ has been chosen such that:

(nA^])nH,=^.
\a==l /

j[
Then we can choose p,<; ——. such that (iv) above holds,t 7 / + 1-

and impose on the IY)^^ the condition that they are small
enough so that (ii) and (iii) hold. Then using Lemma (7.2)
we can choose ^+1 e &'-1-1 such that (i) holds and that

(nA^Eg^l^nH^^^
\a=l /

And that completes the indective step. The induction starts
trivially since Ho = | OG \ c G and thus :

A [ g O ] n H o = A n |0oj =^.

Now by (i) and (iii) as well as by (7.4) and (7.5) and (7.6) for
such a choice of |g^7==o? ^[g^] -> I e Mo(G) for the vague
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topology of measures and \\l[\ = 1. Also from (7.2) and (7.3)
and (i), (ii) and (iii) above it follows that for i ̂  j' ŝ. 0

2^

-L
a=l

^M^U^M)^-^
a=l

and thus also s{l) c Xy for all / ;> 0, and so s(l) c F l̂ X .̂
y==o

And from that we see that the relations (iv) and (v) and the
conditions (7.1) imply that s(l) is a strongly independent set;
in fact rather more can be asserted, namely:

« For any N e Z, N ;> 1, and any ^o^ e= s{l) ̂ ^ distinct
N

points, if (n^eZ)^ are such that ^ ^^ == OG, then for all
/c=l

1 <; k <; N Mfc « S, which implies that T^(G) == OQ ».
Thus we have proved the :

LEMMA 7.3. — If G is a metrisable locally compact group
and if it has S'1"measures then it has I{-sets.

Proof of Theorem R. — The Lemma 7.3 the corollary 6.2
put together with the Lemma 7.1(ii) imply Theorem R at
once.

Remarks. — (7.ii) Observe that the condition of metrisability
cannot be relaxed for the construction of R-sets. Indeed if
p. e Mo(G), for G a non metrisable compact group, then

jsupp p.) < No,

and thus there exists v e G/[Gp(supp p.)]0 such that pi can be
identified canonically with v (as in [1] ch. 7). Thus in particular
^((Ji.) must contain a coset of [Gp(supp p')]°, which is a non
trivial group ([Gp(supp p.)]0 is not even metrisable); and
thus ^((Ji) cannot be independent.

(7.iii) Any metrisable R-set contains a totally disconnected
R-set (cf. Lemma 7.1).

We finish up the paragraph by stating without proof what
we think is the main application of Theorem R.

If for any algebra R we denote :

R2 = S ̂ y,\ N > 1; X <= G; ^,, y ,eR
y=o
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and if we denote the algebra of continuous measures :

M,(G) == |meM(G); y x e G { x } is a m-null set^

which is seen at once to be a closed ideal of M(G) then we have :

Application. — For any G non discrete locally compact
abelian group :

(i) M<;/M2 is a non separable Banach space.
(ii) Mo/M2 is an infinite dimensional Banach space.
(iii) If in addition G is metrisable then:

Mo<tM|.

The proof of that result will be given in a publication which
will follow this one [9].

I should like to finish up by expressing my gratitude to
the C.N.R.S. for supporting this research financially, and
to the Departement de Mathematiques de la Faculte
des Sciences d'Orsay, that offered to me for the second year
running its generous hospitality.
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