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ALGEBRAIC COMPLETE INTEGRABILITY OF AN
INTEGRABLE SYSTEM OF BEAUVILLE

by Jun-Muk HWANG & Yasunari NAGAI

Abstract. — We show that the Beauville’s integrable system on a ten dimen-
sional moduli space of sheaves on a K3 surface constructed via a moduli space
of stable sheaves on cubic threefolds is algebraically completely integrable, using
O’Grady’s construction of a symplectic resolution of the moduli space of sheaves
on a K3.

Résumé. — Nous montrons que le système intégrable de Beauville sur un espace
de dimension dix de modules de faisceaux sur une surface K3 construit par un
espace de modules de faisceaux stables sur les cubiques de dimension trois est
algébriquement complètement intégrable. Nous utilisons la construction d’O’Grady
d’une résolution symplectique de l’espace des modules de faisceaux sur une surface
K3.

Introduction

Beauville [1] constructed an interesting completely integrable Hamilton-
ian system using moduli spaces of stable vector bundles on a K3 surface
and cubic threefolds.

The moduli space Mv
S of stable bundles with rank 2, c1 = 0, c2 = 4 on a

K3 surface S is a (non-compact) symplectic algebraic manifold by the theo-
rem of Mukai [6]. Assume S ⊂ P4 is a K3 surface of degree 6 and let X ⊂ P4

be a smooth cubic threefold containing S. Consider the moduli space Mv
X

of stable bundles on X with rank 2, c1 = 0, c2 = 2. Then Beauville showed
that the restriction of the bundles on X to S actually defines an embedding
rX : Mv

X → Mv
S and the image rX(Mv

X) is a Lagrangian submanifold.
Consider the space Π of cubic threefolds containing S. If we vary smooth

cubics Xt ∈ Π, we get a family of Lagrangian submanifolds Mv
Xt

⊂ Mv
S .

Keywords: Integrable system, moduli space of stable sheaves.
Math. classification: 14J60, 37J35.
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Beauville observed that there is an open dense subset M◦
S ⊂ Mv

S on which
{Mv

Xt
} form a complete integrable Hamiltonian system. We call this the

Beauville system.
On the other hand, Druel [2] showed that the moduli space MX of semi-

stable sheaves on a cubic X which compactifies Mv
X is a blowing-up of the

intermediate Jacobian J(X) of X whose center is the Fano surface F (X) of
lines on X. By Druel’s description, it turns out that Mv

X is actually an open
subset of the intermediate Jacobian J(X) and the complement contains a
divisor.

Beauville raised the following question at the end of his article ([1], Re-
mark 9.5 b)): Are the Hamiltonian vector fields on the fibers of the Beauville
system linearized? This is equivalent to asking if the Hamiltonian vector
fields on Mv

X extend to the whole of J(X) for each X. A complete inte-
grable system with this property is often called algebraically completely
integrable. As Beauville already mentioned there, in order to show the al-
gebraically complete integrability, it is enough to construct some partial
compactification of Beauville system such that the fiber is isomorphic to
the complement of a subvariety of codimension at least 2 in the intermedi-
ate Jacobian. In this article, we solve Beauville’s question affirmatively. In
other words, we prove the following theorem (for a more precise statement,
see §1).

Main Theorem. — Let MS is the moduli space of semi-stable sheaves
which compactifies Mv

S and M̃S be the O’Grady’s resolution of MS [7]. Then
there exists an open subset U of M̃S such that the Beauville system extends
to U and any fiber is the complement of a subvariety of codimension 2 in
the intermediate Jacobian J(X). In particular, the Beauville system is an
algebraically completely integrable system.

One may be able to extend the Beauville system even to a projective La-
grangian fibration using O’Grady’s space. However, as was also mentioned
by Beauville ([1] Remark 9.5 a)), O’Grady’s space itself does not seem to
allow such an extension and it seems necessary to consider a certain flop
of O’Grady’s space. So far, we have not succeeded in this direction.

This article consists of three sections. In §1, we review the construction
of the Beauville system following [1] to fix our notation and state our
Main Theorem in a precise way. In the next section, we review a part
of O’Grady’s analysis of the singularities of MS and his resolution M̃S as
much as necessary for the proof of our result. In the last section, we prove
our Main Theorem using the preparations in the previous sections.

ANNALES DE L’INSTITUT FOURIER



AN INTEGRABLE SYSTEM OF BEAUVILLE 561

1. Settings and statement

Through this article, we fix a generic K3 surface S ⊂ P4 of degree 6
with Pic(S) = Z〈OS(1)〉. In this section, we review the construction of the
Beauville system in [1] and state our result in a precise manner.

Let MS be the moduli space of semi-stable torsion free sheaves on S of
rank 2, c1 = 0, c2 = 4 and MS ⊂ MS be the open subset of the points corre-
sponding to the stable sheaves. Then, we can easily see that dim MS = 10.
Moreover we have a natural symplectic form on MS by the theorem of
Mukai [6]. Denote the open dense subset of MS consisting of the points
corresponding to stable vector bundles by Mv

S .
Choose a (smooth) cubic threefold X ⊂ P4 containing S. Then there is a

quadric Q such that S = X∩Q. Let MX be the moduli space of semi-stable
torsion free sheaves on X of rank 2, c1 = 0, c2 = 2, c3 = 0. Druel [2] showed
that MX is a smooth fivefold and the second Chern class map

c2 : MX → J(X)

is just the blowing-up of the intermediate Jacobian J(X) of X with the
center F (X) ⊂ J(X), where F (X) is the Fano surface of lines on X. Denote
the exceptional divisor of c2 by AX .

Let MX ⊂ MX be the open subset consisting of the points corresponding
to stable sheaves and put BX = MX\MX . Druel also showed that BX is the
strict transform of the hyper-surface F (X)+F (X) ⊂ J(X). In other word,
every strictly semi-stable sheaf E ∈ BX is S-equivalent to Il1 ⊕Il2 , where
li (i = 1, 2) is a line on X, and c2(Il1⊕Il2) = [l1]+[l2] ([2], Théorème 3.5).
If we denote the open subset of MX consisting of the points corresponding
to vector bundles by Mv

X , we have MX\Mv
X = AX ∪ BX . Note that this

implies Mv
X can be regarded as an open subset of J(X).

As we chose S generically, for every stable vector bundle E ∈ Mv
X , its

restriction E|S to S is also stable (see [1], Proposition 9.4). Thus we have a
natural map

rX : Mv
X → MS .

Let M◦
S ⊂ MS be the set of locally free sheaves F with a resolution

0 −→ OQ(−2)⊕6 MF−→ OQ(−1)⊕6 −→ F −→ 0

where MF is a skew-symmetric matrix with linear entries. M◦
S turns out to

be an open set of MS . Thanks to this resolution, we can define a morphism

H : M◦
S → Π = PH0(P4,IS(3)) ∼= P5

TOME 58 (2008), FASCICULE 2



562 Jun-Muk HWANG & Yasunari NAGAI

sending F to a cubic defined by the Pfaffian Pf(MF ). Beauville showed
in [1] that rX is injective, the fiber H−1(X) is nothing but rX(Mv

X) ⊂ MS ,
and this is actually a Lagrangian sub-manifold for smooth X ∈ Π. This
implies H is a completely integrable Hamiltonian system over an open
subset of Π. We call this system H the Beauville system.

Let E be a torsion-free sheaf on X. Then we have an exact sequence

E (−2) −→ E −→ E|S −→ 0.

The correspondence
E 7→ E|S

induces a map from MX to MS if the (semi-)stability is preserved, thanks
to the co-representability of the moduli spaces. We actually have a rational
map r̄X : MX

// MS in our setting, since E|S is stable if E ∈ MX is

locally free and stable, as we noticed above. [E ] ∈ MX is strictly semi-
stable if and only if E is an extension of Il1 by Il2 , where l1 and l2 are
lines on X. Since S contains no line, E|S must be an extension of IZ1

by IZ2 , where Z1 and Z2 is a 0-dimensional sub-scheme on S of length
2. This is exactly a strictly semi-stable sheaf in MS ([7], Lemma 1.1.5).
A sheaf E ∈ MX is stable, but not locally free, if and only if there exists
an elementary transformation

0 −→ E −→ O⊕2
X −→ ι∗L −→ 0,

where ι : C ↪→ X is a smooth conic and L⊗2 = OC(1) ([2], Lemme 3.4,
Théorèm 3.5). Since Pic(S) = Z〈OS(1)〉, S contains no conic so that this
exact sequence restricts to

0 −→ E|S −→ O⊕2
S

Ψ−→ OZ −→ 0

where Z ⊂ S is a 0-dimensional sub-scheme of length 4. For generic choice
of Ψ, its kernel turns out to be a stable sheaf on S ([7], p.97).

Thus we have shown the following proposition.

Proposition 1.1. — There exists a natural rational map

r̄X : MX
// MS

which sends stable (resp. strictly semi-stable) sheaves to stable (resp. strictly
semi-stable) sheaves where r̄X is defined. This map is regular and injective
on Mv

X ∪BX .

To get a (partial) compactification of the Beauville system H, we cer-
tainly have to take some blow-up of MS . To see this, if we take a repre-
sentative F = IZ1 ⊕IZ2 of a point in MS\MS , there exists a unique line

ANNALES DE L’INSTITUT FOURIER



AN INTEGRABLE SYSTEM OF BEAUVILLE 563

li ⊂ P4 which pass through Zi (i = 1, 2). Therefore, a stable torsion free
OX -coherent sheaf E = Il1 ⊕Il2 restricts to F on S for any cubic three-
fold X containing S and l1, l2. This means that the images of MX1 and
MX2 under r̄X intersect at [E ] ∈ MS , where X1 and X2 are cubic threefolds
containing S, l1, and l2, so that we cannot extend H to MS\MS .

As Beauville [1] already mentioned, O’Grady’s resolved moduli space
M̃S is certainly a candidate to compactify H. Let Mv

S ⊂ MS be the open
subset consisting of stable vector bundles. Then we have obvious inclusions
M◦
S ⊂ Mv

S ⊂ MS ⊂MS , and define

AS = (MS\Mv
S) ,̄ BS = (MS\MS) ,̄

where the bars stands for the closures in MS . Also we define B′
S ⊂ BS

to be the points corresponding to semi-stable sheaves of the form IZ ⊕
IZ (Z ∈ Hilb2(S)). Let µ : M̃S → MS be the O’Grady’s resolution and
M̃′
S = M̃S\µ−1(AS ∪ B′

S). Under these notations, we state our result as
follows.

Theorem 1.2 (Main Theorem). — The Beauville’s systemH : M◦
S → Π

extends to a Lagrangian fibration on an open subset in M̃′
S whose fiber over

X ∈ Π is isomorphic to the complement of a closed subset of codimension
not less than 2 in the intermediate Jacobian J(X) of X.

O’Grady’s resolution µ restricted to MS\B′
S is just the blowing-up of

BS\B′
S from the construction (we can actually say that the whole µ is the

blowing-up of BS in MS by a singularity theoretic argument, see [5]). The
essential part of our proof of the Main Theorem is the following.

Proposition 1.3. — Let B′
X ⊂ BX be the closed subset consisting of

the points corresponding to semi-stable sheaves Il ⊕ Il in MX , where l
is a line on X, M′

X = MX\(AX ∪ B′
X), M′

S = MS\(AS ∪ B′
S), and r′X :

M′
X → M′

S be the restriction of r̄X . Then, r′X lifts to an embedding r̃′X :
M′
X → M̃′

S .

M′
X is nothing but J(X)\(F (X) ∪ c2(B′

X)) by Druel’s result, where
c2 : MX → J(X) is the second Chern class map. F (X) ⊂ J(X) has the
codimension 3. Note that the codimension of c2(B′

X) ⊂ J(X) is also 3,
since the codimension of B′

X ⊂ MX is 3 and B′
X maps birationally onto

its image under c2. Therefore, the complement of M′
X ⊂ J(X) has the

codimension 3, which is, of course, not less than 2. Also note that Propo-
sition 1.3 immediately implies that r′X(M′

X) is a Lagrangian sub-manifold
of an algebraic symplectic manifold M̃′

S , because rX(Mv
X) ⊂ M◦

S is a La-
grangian sub-manifold and rX(Mv

X) ⊂ r′X(M′
X) is open.

TOME 58 (2008), FASCICULE 2



564 Jun-Muk HWANG & Yasunari NAGAI

2. Versal deformation space and local study of O’Grady’s
blow-up

In this section, we review a part of the local description of O’Grady’s
resolution. In O’Grady’s argument in [7], the following proposition was one
of the fundamental tools.

Proposition 2.1 (O’Grady [7], Proposition 1.2.3). — Let (Y,OY (1)) be
a projective scheme and E is a semi-stable sheaf on Y . We define G(E ) =
Aut(E )/C∗ and assume G(E ) is reductive. Then there exists an affine versal
deformation space (0 ∈ D(E )) of E with the following properties:

(i) D(E ) has a natural G(E )-action fixing the reference point 0 ∈
D(E ).

(ii) The Zariski tangent space to 0 ∈ D(E ) is G(E )-equivariantly iden-
tified with Ext1OY

(E ,E ).
(iii) If M(E ) is a connected component of the moduli space of O(1)-

semi-stable sheaves on Y containing the point [E ], we have an iso-
morphism of germs

(0 ∈ D(E )//G(E )) ∼−→ ([E ] ∈ M(E )).

O’Grady observed that the deformation space D(E ) above is given by
an étale slice of the Quot scheme that we use to construct the moduli
space M(E ). The assumption that G(E ) is reductive is equivalent to the
closedness of the orbit of the point corresponding to E in the Quot scheme.
This also means that every point of D(E ) is represented by a semi-stable
sheaf on Y (for detail, see [7], §1.2).

Now we apply the proposition to our situation. We keep the notations
in §1. A point in BX\B′

X is represented by the polystable sheaf E = Il1 ⊕
Il2 where l1 and l2 are different lines on X. Since G(E ) = C∗, we can
apply the proposition for E . If we restrict E to S, we get E|S = IZ1 ⊕IZ2 ,
where Zi = S ∩ li (i = 1, 2). In particular, we have G(E|S) = C∗ and we
can also apply the proposition for E|S .

Now let us put EX,ij = Ext1OX
(Ili ,Ilj ), ES,ij = Ext1OS

(IZi ,IZj ). Then
we have

(2.1)
Ext1OX

(E ,E ) = EX,11 ⊕ EX,12 ⊕ EX,21 ⊕ EX,22,

Ext1OS
(E|S ,E|S) = ES,11 ⊕ ES,12 ⊕ ES,21 ⊕ ES,22.

By [7], Lemma 1.4.16, both of the C∗-actions on Ext1OX
(E ,E ) and on

Ext1OS
(E|S ,E|S) are given by

(e11, e12, e21, e22) 7→ (e11, λe12, λ−1e21, e22)

ANNALES DE L’INSTITUT FOURIER



AN INTEGRABLE SYSTEM OF BEAUVILLE 565

with respect to the decompositions (2.1). Therefore the natural map

Ext1OX
(E ,E ) → Ext1OS

(E|S ,E|S)

defined by restriction to S is C∗-equivariant so that we have a C∗-equivariant
morphism

ρ : D(E ) → D(E|S)

such that the GIT quotient of ρ by C∗ is nothing but the restriction map
r̄X near [E ] ∈ MX .

Next we determine the local models of D(E ) and D(E|S), where the
description of D(E|S) is given by O’Grady [7] and that of D(E ) is given by
Druel [2] along with the line of argument of O’Grady. We first treat D(E ).

Lemma 2.2 (Druel [2], Lemme 4.3). — For any two lines l1 and l2 on a
cubic threefold X, ExtiOX

(Il1 ,Il2) vanishes if i 6= 1. For i = 1,

Ext1OX
(Il1 ,Il2) =

{
C (l1 6= l2),

C2 (l1 = l2).

Corollary 2.3. — D(E ) is smooth, i.e., isomorphic to an open neigh-
borhood of 0 ∈ Ext1OX

(E ,E ).

We note that we can deduce the smoothness of MX along BX\B′
X using

this corollary: EX,11 ⊕ EX,22 is the tangent direction of BX and (EX,12 ⊕
EX,21)//C∗ ∼= C is the normal direction to BX ([2], Théorème 4.6).

On the other hand, D(E|S) is not smooth so that MS is singular along BS .
But the normal cone to D(E|S) can be described in terms of the Yoneda
square. This fact was one of the key observations of [7]. The Yoneda product
is just the composition morphism

Ext1OS
(E|S ,E|S)× Ext1OS

(E|S ,E|S) ∪−→ Ext2OS
(E|S ,E|S)

and define the Yoneda square Υ : Ext1OS
(E|S ,E|S) → Ext2OS

(E|S ,E|S)0 by

e 7→ Υ (e) = e ∪ e,

where Ext2OS
(E|S ,E|S)0 is the kernel of the trace map on Ext2OS

(E|S ,E|S).
Let E|S ∈ BS\B′

S , i.e., E|S = IZ1⊕IZ2 with Z1 6= Z2. Taking Serre duality
into account, we have

Ext2OS
(E|S ,E|S) = HomOS

(IZ1 ,IZ1)
∨ ⊕HomOS

(IZ2 ,IZ2)
∨ ∼= C2

where the last isomorphism is given by the trace map. Since the Yoneda
pairing on Ext1 is skew symmetric, the Yoneda square is given by

Υ (e) = (e12 ∪ e21, e21 ∪ e12), where e = e11 + e12 + e21 + e22

TOME 58 (2008), FASCICULE 2



566 Jun-Muk HWANG & Yasunari NAGAI

with respect to the decomposition (2.1). We define Ψ : Ext1OS
(E|S ,E|S) → C

by e 7→ Tr(e12∪e21). We also define Ψ : ES,12⊕ES,21 → C by the same cor-
respondence (e12, e21) 7→ Tr(e12∪e21). Note that dimES,11 = dimES,22 = 4,
dimES,12 = dimES,21 = 2 by Riemann-Roch and Serre duality.

Proposition 2.4 (O’Grady [7], §1.4). — Notations as above. Take E|S ∈
BS\B′

S and let ΣS ⊂ D(E|S) be the locus of sheaves of the form IZ1 ⊕IZ2

where Z1, Z2 ∈ Hilb2(S). We assume Z1 6= Z2 for every point of ΣS by
shrinking D(E|S) if necessary. Then,

(i) The tangent cone C0D(E|S) in Ext1OS
(E|S ,E|S) is given by

C0D(E|S) ∼= Υ−1(0, 0) = Ψ−1(0).

(ii) ΣS is smooth and C∗-invariant. The tangent space of ΣS is identi-
fied with ES,11 ⊕ ES,22.

(iii) The normal cone CΣS
D(E|S) is a locally trivial family of the affine

cone over smooth quadric in P3 given by

Ψ
−1

(0) ⊂ ES,12 ⊕ ES,21.

Remark 2.5. — Our ΣS in the proposition above corresponds to Σ◦
Q in

O’Grady’s notation (or rather, its restriction W = V ∩ Σ◦
Q to the étale

slice V ), [7], p.53, p61.

Now we can describe the local structure of O’Grady’s resolution µ :
M̃S → MS near a point [E|S ] ∈ BS\B′

S .

Proposition 2.6. — Let νS : D̃(E|S) → D(E|S) be the blowing-up of
ΣS ⊂ D(E|S). Then its GIT quotient ν̄S : D̃(E|S)//C∗ → D(E|S)//C∗ is
identified with the blowing-up µ : M̃S → MS along BS near the point
[E|S ] (the GIT quotient of D̃(E|S) is linearized by O(−FS) where FS is the
exceptional divisor of νS).

The key ingredient of this proposition is Kirwan’s blow-up of the GIT
quotient [4]. Here we only refer to [7], in particular §§1.1, 1.2, 1.8, for the
details. We analyze the set of stable and semi-stable points of D̃(E|S). Since
the points in D(E|S)\ΣS are represented by stable sheaves, we know that
every point in D̃(E|S)\FS is C∗-stable. Take a point x ∈ ΣS and consider
its fiber Fx = ν−1

S (x) ⊂ FS . Then, by the Hilbert–Mumford criterion of
stability, we have

F sx = F ssx = P{(e12, e21) ∈ ES,12 ⊕ ES,21 | e12 ∪ e21 = 0, e12 6= 0, e21 6= 0},

and the stabilizer of each point of F sx is Z/2Z (see [7], Lemma 1.6.1, Claim
1.8.8). Since F sS ⊂ D̃(E|S)s is a smooth Cartier divisor and D̃(E|S)\FS

ANNALES DE L’INSTITUT FOURIER



AN INTEGRABLE SYSTEM OF BEAUVILLE 567

is smooth, D̃(E|S)s is smooth. As the locus of the points with non-trivial
stabilizer is the smooth divisor F sS , Luna’s étale slice theorem implies that
D̃(E|S)//C∗ is smooth and FS//C∗ is a smooth divisor. In this way, O’Grady
showed that µ is a resolution (at least near the point [E|S ] from the argu-
ment above).

3. Proof of the main result

In this section, we prove Proposition 1.3, keeping the description in the
previous section in mind, and complete the proof of Theorem 1.2.

The proof of Proposition 1.3. Let ΣX ⊂ D(E ) the locus of points
represented by sheaves of the form Il1 ⊕ Il2 and take the blowing-up
νX : D̃(E ) → D(E ) along ΣX . Then we have a commutative diagram of
C∗-equivariant morphisms

D̃(E )
ρ̃ //

νX

��

D̃(E|S)

νS

��
D(E )

ρ // D(E|S).

Again by Kirwan’s theorem, the GIT quotient D̃(E )//C∗ is isomorphic to
the blowing-up of D(E )//C∗ along ΣX//C∗. But ΣX//C∗ is a divisor which
is identified with BX ⊂ MX , so the morphism D̃(E )//C∗ → D(E )//C∗

induced by νX has to be an isomorphism. This implies that r̄′X : M′
X → M′

S

lifts to a morphism r̄′X : M′
X → M̃′

S . Since r̄′X is obviously injective, it is
enough to show that the differential of r̄′X is injective at the points of
BX\B′

X to show that r̄′X is an embedding.

Lemma 3.1. — l1, l2 be (not necessarily distinct) lines on a cubic three-
fold X. Then

Ext1OX
(Il1 ,Il2(−2)) = 0.

Proof. — Since we have Ext1OX
(Il1 ,Il2(−2)) ∼= Ext2OX

(Il2 ,Il1)
∨ by

Serre duality, the lemma follows from Lemma 2.2. �

Lemma 3.2. — Let X be a cubic threefold containing a K3 surface S
and l1, l2 (not necessarily distinct) lines on X. Assume l1 and l2 are not
contained in S. Then the restriction map

γ : Ext1OX
(Il1 ,Il2) → Ext1OS

(Il1OS ,Il2OS)

is injective.

TOME 58 (2008), FASCICULE 2



568 Jun-Muk HWANG & Yasunari NAGAI

Proof. — Note that we have an injective map

Ext1OS
(Il1OS ,Il2OS) → Ext1OX

(Il1OS ,Il2OS).

Consider the diagram
(3.1)

Ext1OX
(Il1 , Il2 )

γ

��

α // Ext1OX
(Il1 , Il2OS)

Ext1OS
(Il1OS , Il2OS) // Ext1OX

(Il1OS , Il2OS)
β // Ext1OX

(Il1 , Il2OS).

For an extension class

η : 0 −→ Il2
ϕ−→ E −→ Il1 −→ 0,

α(η) is given by

0 −→ Il2OS −→ E /ϕ(Il2(−2)) −→ Il1 −→ 0.

β sends an extension class

0 −→ Il2OS −→ F
ψ−→ Il1OS −→ 0

to the class

0 −→ Il2OS −→ F̃
pr2−→ Il1 −→ 0,

defined by

F̃ = {(m, f) ∈ F ⊕Il1 | ψ(m) = π(f)}

where π : Il1 −→ Il1OS is the natural surjection. By these explicit formu-
lae, we can easily check that the diagram (3.1) is commutative. To show the
injectivity of γ, it is enough to prove that α is injective. But the long exact
sequence for Ext’s and Lemma 3.1 imply that α is actually injective. �

Since the C∗-actions on EX,11 ⊕ EX,22 and ES,11 ⊕ ES,22 are trivial,
the differential of the map d(r̄′X|BX

) : T[E ]BX → T[E|S ]BS is injective by
Lemma 3.2. The injectivity of EX,12 ⊕EX,21 → ES,12 ⊕ES,21 implies that
any non-zero tangent vector either tangent to the orbit direction in ν−1

X ([E ])
or normal direction to the exceptional divisor FX of νX : D̃(E ) → D(E )
has non-zero image under dρ̃. This implies the injectivity of the differential
of r̄′X = ρ̃//C∗ on the normal space to FX//C∗. This completes the proof of
Proposition 1.3.

ANNALES DE L’INSTITUT FOURIER



AN INTEGRABLE SYSTEM OF BEAUVILLE 569

Conclusion of the proof of Theorem 1.2. Let U be the open subset
of Π consisting of smooth cubic threefolds containing S. Then, we have a
family of intermediate Jacobians J = J (X /U) → U , where X → U is the
tautological family. There exists a closed subset Z ⊂ J of codimension not
less than 2 such that any fiber of J \Z over X ∈ U is isomorphic to M′

X .
Proposition 1.3 implies that we have a morphism r : J \Z → M̃′

S which
smoothly embeds every fiber of J \Z → U . By Beauville’s construction, we
already know that r is a birational morphism onto its image.

Claim. — Fix a point p ∈ M̃′
S . Then, the locus of cubics X ∈ U such

that r̃′X(M′
X) 3 p is discrete.

Proof. — If not, there exists a one-dimensional family {Xt}t∈∆ of cu-
bic threefolds containing S such that p ∈ r̃′Xt

(M′
Xt

) for every t ∈ ∆.
We can assume that the corresponding infinitesimal deformation class θ ∈
H0(M′

X0
, N

r′
X0

(M′
X0

)/M̃ ′
S

) is non-zero and vanishes at p. Since r′X0
(M′

X0
)

is a Lagrangian sub-manifold in the symplectic manifold M̃ ′
S , we have

N
r′

X0
(M′

X0
)/M̃ ′

S

∼= Ω1
M′

X0
so that we can regard θ as a holomorphic 1-form

on M′
X0

. However M′
X0

can be regarded as an open subset of an Abelian
variety J(X0) and the codimension of the complement is not less than 2.
This implies that the 1-form θ extends to a non-zero holomorphic 1-form
on J(X0) which vanishes at a point. This is absurd. �

The claim implies that r contracts no curve. Therefore r must be an
isomorphism to its image, after shrinking U if necessary, by Zariski’s main
theorem and this completes the proof of Theorem 1.2.
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