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MAXIMAL INEQUALITIES AND RIESZ TRANSFORM
ESTIMATES ON Lp SPACES FOR SCHRÖDINGER

OPERATORS WITH NONNEGATIVE POTENTIALS

by Pascal AUSCHER & Besma BEN ALI (*)

Abstract. — We show various Lp estimates for Schrödinger operators −∆+V
on Rn and their square roots. We assume reverse Hölder estimates on the potential,
and improve some results of Shen. Our main tools are improved Fefferman-Phong
inequalities and reverse Hölder estimates for weak solutions of −∆ + V and their
gradients.

Résumé. — On montre des estimations Lp pour des opérateurs de Schrödinger
−∆ + V sur Rn et leurs racines carrées. Le potentiel est dans une classe Höl-
der inverse améliorant les résultats de Shen. On s’appuie sur une inégalité de
type Fefferman-Phong améliorée et des inégalités Hölder inverse pour des solutions
faibles de −∆ + V et leurs gradients.

1. Introduction and main results

Let n > 1 and V be a locally integrable nonnegative function on Rn,
not identically zero. The validity of the a priori Lp(Rn) inequality for
u ∈ C∞

0 (Rn)

(1.1) ‖∆u‖p + ‖V u‖p 6 C‖ −∆u+ V u‖p

with C independent of u has attracted many authors. Here, ‖ ‖p denotes
the norm in Lp(Rn). First, it allows to find the domain of the maximal
realization of −∆ + V on Lp(Rn). Second, it provides estimates on the

Keywords: Schrödinger operators, maximal inequalities, Riesz transforms, Fefferman-
Phong inequality, reverse Hölder estimates.
Math. classification: 35J10, 42B20.
(*) We thank B. Helffer for providing us with the unpublished reference [27] and also A.
Ancona for indicating the relevance of [22].
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fundamental solution (to be defined appropriately). It could well yield esti-
mates for semi-linear equations but we have not seen any such applications
in the literature and are not aware of any.

In this work, we search conditions, minimal in some sense, for this in-
equality to hold. Let us mention that to find the domain, it is enough to
obtain this inequality with V replaced by V + λ in the right hand side for
some large constant λ > 0 with C depending on λ. We are interested in the
possibility of having “homogeneous” inequalities (λ = 0) or, equivalently,
on inequalities for −∆ + V + λ for λ > 0 with constant independent of λ.

The case p = 1 is well-known. For u ∈ C∞
0 (Rn), real-valued, one has

(1.2) ‖∆u‖1 + ‖V u‖1 6 3‖ −∆u+ V u‖1

as a consequence of the contractive inequality ‖V u‖1 6 ‖ − ∆u + V u‖1

following either from work of Kato [25], or from work of Gallouët and
Morel in semi-linear equations [17] inspired by the seminal paper of Brezis
and Strauss [5] on semi-linear elliptic equations with L1 data. Nevertheless,
we shall give a simple account of this. This allows to define −∆ + V as an
operator on L1(Rn) with domain D1(∆) ∩ D1(V ), a fact that was known
before ([39]).

We turn to the Lp theory for 1 < p < ∞. Assume that V ∈ Lp
loc(Rn).

Then it is known that −∆ + V a priori defined on C∞
0 (Rn) is essentially

m-accretive in Lp(Rn) ([24, 25, 30]) and the domain of the m-accretive
extension contains Dp(∆) ∩ Dp(V ) = W 2,p(Rn) ∩ Lp(Rn, V p) as a dense
subspace. There are conditions to insure equality in [28, 39, 8, 34]. But this
is still not enough to assert the validity of (1.1). A remark is that, by stan-
dard Calderón-Zygmund theory, one can replace ‖∆u‖p by the equivalent
quantity ‖∇2u‖p as 1 < p <∞.

A natural question is which condition on V insures (1.1). An answer is
the following.

Theorem 1.1. — Let 1 < q 6 ∞. If V ∈ Bq then for some ε > 0
depending only on V , (1.1) holds for 1 < p < q + ε.

Here, Bq, 1 < q 6 ∞, is the class of the reverse Hölder weights with
exponent q: w ∈ Bq if w ∈ Lq

loc(Rn), w > 0 almost everywhere and there
exists a constant C such that for all cube Q of Rn,

(1.3)
(

1
|Q|

∫
Q

wq(x) dx
)1/q

6
C

|Q|

∫
Q

w(x) dx.

If q = ∞, then the left hand side is the essential supremum on Q. The
smallest C is called the Bq constant of w. Examples of Bq weights are
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the power weights |x|−α for −∞ < α < n/q and positive polynomials for
q = ∞. Note that Bq ⊂ Bp if p < q and w ∈ Bq implies w ∈ Bq+ε for some
ε > 0 depending on the Bq constant of w. Recall also that w ∈ Bq implies
that dν = w dx is a doubling measure, namely the existence of a constant
C such that ν(2Q) 6 Cν(Q) for all cubes Q of Rn, where λQ is the cube
that is concentric with Q and dilated by a factor λ > 0. Properties of Bq

weights presented here and used in the text are well-known facts among
the harmonic analysis communauty. Good references to which the reader is
referred to are [18, Chapter 9] or [38, Chapter 9] in order to keep the length
reasonnable. There is one known property that we do prove in Section 11
as it is not standard.

Our result extends the one of Shen obtained under the restriction that
n/2 6 q and n > 3 [31]. Prior to Shen’s work, this was proved for positive
polynomials when p = 2 in [27] and then when 1 < p < ∞ in [20, 19,
40].(1) It is somewhat surprising (as it was to us) that we can go below
the exponent n/2 which is critical for the regularity theory of the elliptic
operator −∆ + V .

Note that our result can be reformulated as : For 1 < p <∞, if V ∈ Bp

then (1.1) holds. Given the necessity of local Lp integrability, it is best
possible within the class of all reverse Hölder weigths, which is the same
as A∞, the class of all Muckenhoupt weights.

A second family of inequalities concerns the square root (see below for a
definition). We recall at this point the identity

‖∇u‖2
2 + ‖V 1/2u‖2

2 = ‖(−∆ + V )1/2u‖2
2, u ∈ C∞

0 (Rn).

The a priori inequalities

(1.4) ‖∇u‖1,∞ + ‖V 1/2u‖1,∞ . ‖(−∆ + V )1/2u‖1

and

(1.5) ‖∇u‖p + ‖V 1/2u‖p . ‖(−∆ + V )1/2u‖p

when 1 < p < 2 hold for u ∈ C∞
0 (Rn). Here, ‖ ‖p,∞ is the “norm” in the

Lorentz space Lp,∞(Rn). Here, . is the comparison in the sense of norms.
Actually, the first inequality is attributed to Ouhabaz (unpublished) and
the second one follows by interpolation. The proof of (1.4) uses the fact
that the heat kernel of −∆ + V is controlled pointwise by the one of −∆
and a theorem in [11]. See [12] where the needed estimates are proved and
[7] where a similar argument is done for Riesz transforms on manifolds. See

(1) After this work was completed, we learned of a new recent proof using representations
via Lie groups in [14], which also covers all positive fractional powers.
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also [33] for a different proof using finite speed of propagation for the wave
equation.

We are interested in pushing the range of p in (1.5) beyond 2 and also in
studying the converse inequalities, that is a priori validity for smooth u of

(1.6) ‖(−∆ + V )1/2u‖1,∞ . ‖∇u‖1 + ‖V 1/2u‖1

and of

(1.7) ‖(−∆ + V )1/2u‖p . ‖∇u‖p + ‖V 1/2u‖p.

Note that (1.5) for p implies (1.7) for the conjugate exponent p′. Hence,
(1.7) already holds in the range p > 2 and necessary for (1.5) to holds with
exponent p′. The statement summarizing our results is the following.

Theorem 1.2. —

(1) Let V ∈ Bq for some q > 1. Then (1.5) holds for 1 < p < 2(q + ε).
(2) If V ∈ A∞ = ∪q>1Bq, then (1.6) and (1.7) for 1 < p < 2 hold.
(3) Let V ∈ Bq for some q > 1 and q > n/2. Then ‖∇u‖p . ‖(−∆ +

V )1/2u‖p holds for 1 < p < q∗ + ε if q < n, and for 1 < p < ∞ if
q > n.

Here, q∗ = qn/(n − q) is the Sobolev exponent of q if q < n. Note that
q∗ > 2q exactly when q > n/2, hence item 3 improves over item 1 for the
gradient part. We note that Shen proved item 3 when n > 3 and item 1
when q > n/2 and n > 3 [31]. We shall fully prove this theorem, even item
3 with an argument of a different nature that is interesting in its own right.
The argument for (3) requires the proof of (2) first.

Note that one can also prove inequalities similar to (1.5) for fractional
powers (−∆ + V )s, 0 < s < 1, with range 1 < p < (q + ε)/s. We shall not
pursue this here.

Our results are satisfactory for reverse Hölder potentials as they make a
bridge with the known results for L1

loc nonnegative potentials. Let us list
some other consequences to illustrate this.

Corollary 1.3. — Let n > 1, 1 < p < ∞ and V ∈ Bp. Then the m-
accretive extension on Lp(Rn) of −∆ + V defined on C∞

0 (Rn) has domain
equal to Dp(∆) ∩ Dp(V ). In particular, for p = 2, −∆ + V defined on
H2(Rn) ∩ L2(Rn, V 2) is self-adjoint in L2(Rn).

This applies to power weights c|x|−α although this particular application
is known by other methods [28].

ANNALES DE L’INSTITUT FOURIER
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Corollary 1.4. — Let n > 1. Assume V ∈ A∞ and 1 < p < 2 or
V ∈ Bp/2 and 2 < p < ∞, then (−∆ + V )1/2 has Lp-domain equal to
Dp((−∆)1/2) ∩ Dp(V 1/2) = W 1,p(Rn) ∩ Lp(Rn, V p/2).

Further easy consequences are the following estimates. Set
p̂ = sup(2p, p∗) for 1 < p < ∞ with p∗ = ∞ if p > n and H = −∆ + V

with appropriate definition.

Corollary 1.5. — Assume that V ∈ Bq for some q > 1. Then for
ε > 0 depending only on V ,

(1) V 1/2H−1V 1/2 is bounded on Lp(Rn) for (2(q+ ε))′ < p < 2(q+ ε).
(2) V 1/2H−1 div is bounded on Lp(Rn) for (q̂ + ε)′ < p < 2(q + ε).
(3) ∇H−1V 1/2 is bounded on Lp(Rn) for (2(q + ε))′ < p < q̂ + ε.
(4) ∇H−1 div is bounded on Lp(Rn) for (q̂ + ε)′ < p < q̂ + ε.

Again, this result extends the ones of Shen in [31] obtained with the
restriction q > n/2 and n > 3. He also proved bounds for V 1/2∇H−1,
which we can recover by our methods under the same hypotheses (and for
n > 1 instead of n > 3). We therefore do not include such results.

We mention without proof that our results admit local versions, replacing
V ∈ Bq by V ∈ Bq,loc which is defined by the same conditions on cubes
with sides less than 1. Then we get the corresponding results and estimates
for H + 1 instead of H. The results on operator domains are valid under
local assumptions.

Our arguments are based on local estimates and this is fortunate because
there is no auxiliary global weight as in [31] (see Section 2). Our main tools
are

1) An improved Fefferman-Phong inequality for A∞ potentials.
2) Criteria for proving Lp boundedness of operators in absence of ker-

nels.
3) Mean value inequalities for nonnegative subharmonic functions against

A∞ weights.
4) Complex interpolation, together with Lp boundedness of imaginary

powers of −∆ + V for 1 < p <∞.
5) A Calderón-Zygmund decomposition adapted to level sets of the

maximal function of |∇f |+ |V 1/2f |.
6) Reverse Hölder inequalities involving ∇u and V 1/2u for weak solu-

tions of −∆u+ V u = 0.
The latter estimates are of independent interest and we give a rather

complete picture. This is more than necessary for applications to the in-
equality (1.5).

TOME 57 (2007), FASCICULE 6
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2. An improved Fefferman-Phong inequality

Usual Fefferman-Phong inequalities take the form∫
Rn

m(x)2|u(x)|2 dx 6 C

∫
Rn

|∇u(x)|2 + w(x)|u(x)|2 dx

for u ∈ C∞
0 (Rn) where m is a positive weight function depending on the

potential w. If w ∈ Bq and q > n/2, there is such a function m [31]. If
q < n/2, it is not clear how to define m in function of w. Nevertheless,
local inequalities on cubes Q still hold and depend on the scaling defined
by the quantity R2 avQ w (The notation avE v means 1

|E|
∫

E
v).

Lemma 2.1. — Let w ∈ A∞ and 1 6 p <∞. Then there are constants
C > 0 and β ∈ (0, 1) depending only on the A∞ constant of w, p and n

such that for all cubes Q (with sidelength R) and u ∈ C1(Rn), one has∫
Q

|∇u|p + w|u|p >
Cmβ(Rp avQ w)

Rp

∫
Q

|u|p

where mβ(x) = x for x 6 1 and mβ(x) = xβ for x > 1.

We recall that A∞ is the class of all Muckenhoupt weights and is also
the class of all reverse Hölder weights ([18, Chapter 9])

This lemma with β = 0 is already in [31] when p = 2. The improvement
occurs when Rp avQ w > 1 and is crucial for us in Section 8. Such an im-
provement has also applications to criteria for compactness of resolvents for
magnetic Schrödinger operators (personal communication of B. Helffer)(2) .

Proof. — We begin as in Fefferman-Phong argument (see [15] and also
[31]) we have ∫

Q

|∇u|p >
C

Rn+p

∫
Q

∫
Q

|u(x)− u(y)|p dxdy

and ∫
Q

w|u|p =
1
Rn

∫
Q

∫
Q

w(x)|u(x)|p dxdy.

Hence,

(2.1)
∫

Q

|∇u|p + w|u|p > avQ

[
min(CR−p, w)

] ∫
Q

|u(y)|p dy.

(2) Added in proof: compactness of the solution operator to ∂ in weighted L2-spaces,
preprint 2007, F Haslinger and B. Helffer.
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Now, we use that w ∈ A∞. There exists ε > 0, independent of Q, such that
E = {x ∈ Q ; w(x) > ε avQ w} satisfies |E| > 1

2 |Q|. Hence

avQ

[
min(CR−p, w)

]
>

1
2

min(CR−p, ε avQ w).

This proves the desired inequality when Rp avQ w 6 1.
Assume now that Rp avQ w > 1. Subdivide Q in a dyadic manner and

stop the first time that R(Q′)p avQ′ w < 1. One obtains a collection {Qi} of
strict dyadic subcubes ofQ which are maximal for the propertyRp

i avQi w <

1. Furthermore, since w(x) dx is a doubling measure and as the ances-
tor Q̂i of Qi satisfies (2Ri)p av bQi

w > 1, there exists A > 0 such that
Rp

i avQi w > A. The last observation is that the Qi form a disjoint covering
of Q up to a set of null measure. Indeed, for almost all x ∈ Q, avQ′ w con-
verges to w(x), and therefore R(Q′)2 avQ′ w to 0, whenever Q′ describes the
sequence of dyadic subcubes of Q that contain x and shrink to 0. Hence,∫

Q

|∇u|p + w|u|p =
∑

i

∫
Qi

|∇u|p + w|u|p

> C ′
∑

i

min(R−p
i , avQi w)

∫
Qi

|u|p

> AC ′
∑

i

R−p
i

∫
Qi

|u|p

> AC ′ min
i

(
R

Ri

)p

R−p

∫
Q

|u|p.

It remains to estimate mini

(
R
Ri

)p

from below. As w ∈ A∞, there exists
1 6 α < ∞ such that w ∈ Aα. This implies that for any cube Q and
measurable subset E of Q, we have(

avE w

avQ w

)
> C

(
|E|
|Q|

)α−1

.

Applying this to E = Qi and Q, we obtain,(
R

Ri

)p

=
(
Rp avQ w

Rp
i avQi w

)(
avQi

w

avQ w

)
> Rp avQ w

(
avQi w

avQ w

)
> CRp avQ w

(
Ri

R

)n(α−1)

.
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This yields mini

(
R
Ri

)p
> C(Rp avQ w)β with β = p

p+n(α−1) and the lemma
is proved. �

Remark 2.2. — If w ∈ Bq for q > n/p (as in [31] with p = 2), then
R/Ri is also bounded by C(Rp avQ w)p−n/q, that is R/Ri is logarithmically
comparable to Rp avQ w. No such thing is true if q < n/p. For example, if
w(x) = |x|−α with p < α < n (hence w ∈ Bq for q < n/α < n/p) then
it is easy to show that maxR/Ri can be unbounded. Furthermore, for all
x then Rp avQ(x,R) w tends to 0 as R → +∞, which is not the case when
0 < α < p. The case α = p is different in the sense that Rp avQ(x,R) w tends
to a non zero constant as R→ +∞.

3. Definitions of the Schrödinger operator

Recall that V is a nonnegative locally integrable function on Rn. The
definition of the Schrödinger operator associated to −∆ + V is via the
quadratic form method (See [9, Sections 1.3 & 1.8]. Let

V = {f ∈ L2(Rn) ; ∇f & V 1/2f ∈ L2(Rn)}.

Equipped with the norm

‖f‖V =
(
‖f‖2

2 + ‖∇f‖2
2 + ‖V 1/2f‖2

2

)1/2

it is a Hilbert space and C∞
0 (Rn) is dense in V. The sesquilinear form

Q(u, v) =
∫

Rn

∇u · ∇v + V u v

on V ×V is bounded below and non-negative and, therefore, there exists a
unique positive self-adjoint operator H such that

〈Hu, v〉 = Q(u, v) ∀u ∈ D(H) ∀ v ∈ V.

The Beurling-Deny theory implies that ε(H + ε)
−1 is a positivity-

preserving contraction on Lp(Rn) for all 1 6 p 6 ∞ and ε > 0. More-
over, if V ′ ∈ L1

loc(Rn) is another potential with 0 6 V ′ 6 V and H ′ is the
corresponding operator then one has for any ε > 0 and for any f ∈ Lp,
1 6 p 6 ∞, f > 0

0 6 (H + ε)−1f 6 (H ′ + ε)−1f.

This fact can be seen from [29, Theorem 2.4.7] on L2 for the semigroups
generated by −H and −H ′ by applying the Laplace transform or from
the Trotter-product formula [9, p. 49]. Passing from L2 to Lp is standard.
Taking V ′ = 0 yields the pointwise domination of the kernel of resolvent

ANNALES DE L’INSTITUT FOURIER
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of H by the kernel of the resolvent of the negative Laplacian (−∆ + ε)−1

which is a convolution operator with εn−1G(εx) for some G ∈ L1(Rn). Note
that if V is bounded below by some positive constant ε > 0, then H−1 is
bounded on Lp(Rn) for all 1 6 p 6 ∞ and is dominated by (−∆ + ε)−1.

Since D(H) is dense in V, there is a natural extension H̃ of H as a
bounded operator from V to V ′ (not identified with V). Further, for any
ε > 0, H̃+ε is invertible but this ceases at ε = 0 so it is useful to introduce
an “homogeneous” version of H as follows: Let V̇ be the closure of C∞

0 (Rn)
under the semi-norm

‖f‖V̇ =
(
‖∇f‖2

2 + ‖V 1/2f‖2
2

)1/2
.

By (2.1), there is a continuous inclusion V̇ ⊂ L2
loc(Rn) if V is not identically

0, which is assumed from now on, hence, this is a norm. The form Q is the
inner product on V̇ associated to this norm so that V̇ is a Hilbert space. But
if we choose not to identify V̇ and its dual, then there is a unique bounded
and invertible operator Ḣ : V̇ → V̇ ′ such that for all u, v ∈ V̇, 〈Ḣu, v〉 =
Q(u, v). Here, 〈 , 〉 is the duality (sesquilinear) form between V̇ ′ and V̇.
Note that since C∞

0 (Rn) is densely contained in V̇, this coincides with the
usual duality between distributions and test functions when v ∈ C∞

0 (Rn).
By abuse, we do not distinguish the two notations, which we write as an
integral when the integrand is integrable.

In concrete terms, if f ∈ V̇ ′ there exists a unique u ∈ V̇ such that

(3.1)
∫

Rn

∇u · ∇v + V u v = 〈f, v〉 ∀ v ∈ C∞
0 (Rn).

In particular, −∆u + V u = f holds in the sense of distributions. There is
a classical approximation procedure to obtain u for nice f .

Lemma 3.1. — Assume that f ∈ V̇ ′ ∩ L2(Rn). For ε > 0, let uε =
(H+ε)−1f ∈ D(H). Then (uε) is a bounded sequence in V̇ which converges
strongly to Ḣ−1f .

Proof. — By definition,∫
Rn

∇uε · ∇v + (V + ε)uε v =
∫

Rn

f v ∀ v ∈ V

and in particular ∫
Rn

|∇uε|2 + (V + ε)|uε|2 =
∫

Rn

f uε.

The boundedness of (uε) in V̇ follows readily using that |
∫

Rn f uε| 6

‖f‖V̇′‖uε‖V̇ and f ∈ V̇ ′.

TOME 57 (2007), FASCICULE 6
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Let us see first the weak convergence. Let u ∈ V̇ be a weak limit of
a subsequence (uεj

). One can take limits in the first equation when v ∈
C∞

0 (Rn) and we see that u satisfies (3.1). By uniqueness, u = Ḣ−1f and
(uε) converges weakly to u. Since f ∈ V̇ ′, we have∫

Rn

|∇u|2 + V |u|2 = 〈f, u〉.

Weak convergence implies∫
Rn

|∇u|2 + V |u|2 6 lim inf
∫

Rn

|∇uε|+ V |uε|2

6 lim sup
∫

Rn

|∇uε|2 + V |uε|2

6 lim sup
∫

Rn

|∇uε|2 + (V + ε)|uε|2

= lim sup
∫

Rn

f uε = 〈f, u〉.

Thus ‖uε‖V̇ → ‖u‖V̇ and together with weak convergence, this yields strong
convergence. �

Remark 3.2. — The continuity of the inclusion V̇ ⊂ L2
loc(Rn) has two

further consequences: first, we have that L2
comp(Rn), the space of compactly

supported L2 functions on Rn, is continuously contained in V̇ ′ ∩ L2(Rn).
Second, (uε) has a subsequence converging to u almost everywhere.

We continue with square roots. AsH is self-adjoint, it has a unique square
root H1/2, which is self-adjoint with domain V and for all u ∈ C∞

0 (Rn),
‖H1/2u‖2

2 = ‖∇u‖2
2 +‖V 1/2u‖2

2. This allows us to extend H1/2 from V̇ into
L2. If S denotes this extension, then we have S∗S = Ḣ where S∗ : L2 → V̇ ′
is the adjoint of S.

Our results are all about Ḣ or alternately about H + ε with a uniform
control of constants with respect to ε > 0. By abuse, we write H for Ḣ
and H1/2 for its extension S or its adjoint S∗. The context will make clear
which object is the right one.

4. An L1 maximal inequality

The following result is essentially a consequence of a result of Gallouët
and Morel [17] in the semi-linear setting or can be seen from [25]. We
present a simple and complete proof in this situation. We assume that V
is not identically 0
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Lemma 4.1. — Let f ∈ L∞comp(Rn), f > 0 and u = H−1f . Then u > 0,
V u and ∆u are in L1(Rn) with∫

Rn

V u 6
∫

Rn

f,∫
Rn

|∆u| 6 2
∫

Rn

f.

Furthermore, u ∈ W 1,1
loc (Rn) and for any measurable set E with bounded

measure, ∫
E

|∇u| 6 C(n)|E|1/n

∫
Rn

f,

and for all compact set K in Rn,∫
K

|u| 6 C(K,n, V )
∫

Rn

f.

Remark 4.2. — In fact, more is true. If n = 1, the estimate on u′′ tells
us that u′ is bounded. If n > 2, then u ∈W 1,q

loc (Rn) for 1 6 q < n
n−1 .

Proof. — For N > ε > 0, set Vε,N = inf(V + ε,N). Let f ∈ L∞comp(Rn),
f > 0 and set u = H−1f , uε = (H+ε)−1f and uε,N = H−1

ε,Nf where Hε,N is
associated to the potential Vε,N . By Lemma 3.1 we know that u ∈ L1

loc(Rn)
(with norm controlled by ‖f‖∞ which is not enough). From the preced-
ing section u, uε, uε,N > 0. Further, Vε,N 6 V + ε implies uε 6 uε,N and
(V +ε)ε>0 being non-decreasing implies that (uε)ε>0 is non-increasing with
uε 6 u. In addition, it follows from the remark after Lemma 3.1 that uε

converges almost everywhere to u as ε→ 0. Indeed, a subsequence already
converges almost everywhere to u, hence the family itself by monotonic-
ity. As a consequence, (uε) converges to u in L1

loc(Rn) by the monotone
convergence theorem. �

Let us see the estimate for V u. Since ε 6 Vε,N , the operator H−1
ε,N is

a bounded operator on L1(Rn) as it is dominated by (−∆ + ε)−1 (see
the preceding section). As Vε,N 6 N is bounded, Vε,NH

−1
ε,N is a bounded

operator on L1(Rn) and also ∆H−1
ε,N by difference. As uε,N ∈ L1(Rn) and

∆uε,N ∈ L1(Rn), an easy argument via the Fourier transform implies that∫
Rn ∆uε,N = 0, and so ∫

Rn

Vε,Nuε,N =
∫

Rn

f.

Next, we have 0 6 Vε,Nuε 6 Vε,Nuε,N , so Vε,Nuε is integrable and by
monotone convergence as N →∞, (V + ε)uε is integrable and∫

Rn

(V + ε)uε 6
∫

Rn

f.
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Finally, we have ∫
Rn

V uε 6
∫

Rn

(V + ε)uε 6
∫

Rn

f

and monotone convergence as ε→ 0 yields∫
Rn

V u 6
∫

Rn

f.

We turn to the term with ∆u. As (uε) converges to u in L1
loc(Rn), ∆u is

the limit of ∆uε in D′(Rn). If h ∈ C∞
0 (Rn), then

−
∫

Rn

∆uε h =
∫

Rn

∇uε · ∇h =
∫

Rn

fh−
∫

Rn

V uεh−
∫

Rn

εuεh.

As h has compact support, the last integral converges to 0, hence −∆u is
equal to f − V u ∈ D′(Rn) and its L1 control follows.

We turn to the gradient estimate. As uε ∈ L1(Rn) and ∆uε ∈ L1(Rn),
it can be shown (see [4, Appendix]) that if E is a measurable subset of Rn

with bounded measure and 1 6 q < n
n−1 ,∫

E

|∇uε|q 6 C(n, q)|E|1−
(n−1)q

n ‖∆uε‖q
1

hence

(4.1)
∫

E

|∇uε|q 6 C(n, q)|E|1−
(n−1)q

n ‖f‖q
1.

Next, recall that if Q is a cube, by (2.1) we have,

avQ

[
min(CR−1, V )

] ∫
Q

uε 6
∫

Q

|∇uε|+ V uε

hence

(4.2)
∫

Q

uε 6 C(Q,n, V )‖f‖1.

It follows easily from these two estimates and Poincaré inequality that
uε ∈ W 1,q

loc (Rn) for 1 6 q < n
n−1 and is bounded in that space. Thus, for

any 1 < q < n
n−1 , u ∈W 1,q

loc (Rn) by taking weak limits. The estimate (4.1)
passes to the liminf and by Hölder becomes true for q = 1. The estimate
(4.2) also passes to the limit by convergence in L1

loc(Rn). This finishes the
proof.

Let B = {u ∈ L1
loc(Rn) ; ∆u ∈ L1(Rn), V u ∈ L1(Rn)} equipped with the

topology defined by the semi-norms for L1
loc(Rn), ‖∆u‖1 and ‖V u‖1. We

have obtained
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Theorem 4.3. — The operator H−1 a priori defined on L∞comp(Rn)
extends to a bounded operator from L1(Rn) into B. Denoting again H−1

this extension, V H−1 is a positivity-preserving contraction on L1(Rn) and
1
2∆H−1 a contraction on L1(Rn).

Proposition 4.4. — Let f ∈ L1(Rn). There is uniqueness of solutions
for the equation −∆u + V u = f in the class L1(Rn) ∩ B. In particular, if
u ∈ C∞

0 (Rn) and f = −∆u+ V u, then u = H−1f .

Proof. — Since −∆u+V u = 0, then for ε > 0 we have −∆u+V u+εu =
εu. As u ∈ L1(Rn), we can write |u| 6 (−∆ + ε)−1(ε|u|) = (−ε−1∆ +
1)−1|u|. Using the explicit expression of the kernel of (−ε−1∆ + 1)−1 and
taking limits as ε→ 0 proves that u = 0. �

Corollary 4.5. — Equation (1.2) holds.

Proof. — If u ∈ C∞
0 (Rn) and f = −∆u + V u, then V u = V H−1f and

∆u = ∆H−1f by the proposition above. Applying Theorem 4.3 proves that
‖V u‖1 6 ‖ −∆u+ V u‖1 and ‖∆u‖1 6 2‖ −∆u+ V u‖1. �

Remark 4.6. — We have obtained existence in B and uniqueness in
B ∩L1(Rn), which is enough for our needs. Uniqueness can even be shown
in a larger space if n > 3 for any V and under some conditions on V if
n 6 2. See [17].

5. Lp maximal inequalities

The main sledge hammer is the following criterion for Lp boundedness
([3]). A slightly weaker version appears in Shen [32].

Theorem 5.1. — Let 1 6 p0 < q0 6 ∞. Suppose that T is a bounded
sublinear operator on Lp0(Rn). Assume that there exist constants α2 >

α1 > 1, C > 0 such that

(5.1)
(
avQ |Tf |q0

) 1
q0 6 C

{(
avα1 Q |Tf |p0

) 1
p0 + (S|f |)(x)

}
,

for all cube Q, x ∈ Q and all f ∈ L∞comp(Rn) with support in Rn \ α2Q,
where S is a positive operator. Let p0 < p < q0. If S is bounded on Lp(Rn),
then, there is a constant C such that

‖Tf‖p 6 C ‖f‖p

for all f ∈ L∞comp(Rn).
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Note that in this statement, f can be valued in a Banach space and |f |
denotes its norm. Also the space L∞comp(Rn) can be replaced by C∞

0 (Rn).

Fix an open set Ω. By a weak solution of −∆u + V u = 0 in Ω, we
mean u ∈ L1

loc(Ω) with V 1/2u,∇u ∈ L2
loc(Ω) and the equation holds in

the distribution sense on Ω. Remark that by Poincaré’s inequality if u is a
weak solution, then u ∈ L2

loc(Ω). A subharmonic function on Ω is a function
v ∈ L1

loc(Ω) such that ∆v > 0 in D′(Ω). It should be observed that if u is
a weak solution in Ω of −∆u+ V u = 0 then

(5.2) ∆|u|2 = 2V |u|2 + 2|∇u|2

and in particular, |u|2 is a nonnegative subharmonic function in Ω.
The main technical lemma is interesting on its own right. It states that

a form of the mean value inequality for subharmonic functions still holds if
the Lebesgue measure is replaced by a weighted measure of Muckenhoupt
type. More precisely,

Lemma 5.2. — Assume w ∈ A∞ and f is a nonnegative subharmonic
function in Ω, Q is a cube in Rn with 2Q ⊂ Ω, 1 < µ 6 2 and 0 < s <∞.
Then for some C depending on the A∞ constant of w, s, µ (and independent
of f and Q) and almost all x ∈ Q, we have

f(x) 6

(
C

w(µQ)

∫
µQ

wfs

)1/s

.

Here w(E) =
∫

E
w. As A∞ weights have the doubling property we have

avµQ w ∼ avQ w and the inequality above rewrites (the notation sup mean-
ing essential supremum)

(5.3)
(
avQ w

)(
sup
Q
fs
)

6 C avµQ(wfs).

Proof. — This is a consequence of a result of S. Buckley [6]. We give the
proof for the convenience of the reader. Since w ∈ A∞, there is t <∞ such
that w ∈ At. Hence for any nonnegative measurable function g, we have

avµQ g 6 C
( 1
w(µQ)

∫
µQ

wgt
)1/t

= C
(
avµQ(wgt)

)1/t( avµQ w
)−1/t

.

But subharmonicity of f in Ω implies for almost all x ∈ Q and all 0 < r <∞

(5.4) f(x) 6 Cr,µ

(
avµQ f

r
)1/r
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(See [16]. It can also be obtained from classical facts on weak reverse Hölder
weights [22, Theorem 2]). Applying this with r = s/t yields

f(x) 6 C
(
avµQ f

s/t
)t/s

6 C
(

avµQ(wfs)
)1/s(

avµQ w
)−1/s

.

�

Corollary 5.3. — Let w ∈ Br for some 1 < r 6 ∞ and let 0 < s <∞.
Then there is C > 0 depending only on the Br constant of w, s, µ such
that for any cube Q and any nonnegative subharmonic function f in a
neighborhood of 2Q we have for all 1 < µ 6 2(

avQ(wfs)r
)1/r

6 C avµQ(wfs).

Proof. — We have(
avQ(wfs)r

)1/r
6
(
avQ w

r
)1/r sup

Q
fs

6 C
(
avQ w

)
sup
Q
fs

6 C avµQ(wfs).

The second inequality uses the Br condition on w and the last inequality
is (5.3). �

Let us come back to the Schrödinger operator.

Theorem 5.4. — Let V ∈ Bq for some 1 < q 6 ∞. Then there is r > q

(or r = ∞ if q = ∞) such that V H−1 and ∆H−1, defined on L1(Rn) from
Theorem 4.3, extend to bounded operators on Lp(Rn) for 1 < p < r.

Proof. — By difference, it suffices to prove the theorem for V H−1. We
know that this is a bounded operator on L1(Rn). Let r > q be given by self-
improvement of the reverse Hölder inequalities of V . Fix a cube Q and let
f ∈ L∞(Rn) with compact support contained in Rn \ 4Q. Then u = H−1f

is well-defined in V̇ and is a weak solution of −∆u+ V u = 0 in 4Q. Since
|u|2 is subharmonic, the above corollary applies with w = V , f = |u|2 and
s = 1/2. It yields (5.1) with T = V H−1, p0 = 1, q0 = r, S = 0, α1 = 2 and
α2 = 4. Hence, T is bounded on Lp(Rn) for 1 < p < r by Theorem 5.1. �

Proof of Theorem 1.1. — Let u ∈ C∞
0 (Rn) and f = −∆u + V u.

We know that u = H−1f by Proposition 4.4. Now, using the hypothesis
V ∈ Bq, we have bounded extensions on Lp(Rn) of V H−1 and ∆H−1

for 1 < p < q + ε for some ε > 0 depending on V . We conclude that
‖V u‖p + ‖∆u‖p . ‖f‖p.
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6. Complex interpolation

We shall use complex interpolation to obtain item 1 of Theorem 1.2,
relying on the following result due to Hebisch [21].

Proposition 6.1. — Let V be a nonnegative locally integrable function
on Rn. Then for all y ∈ R, Hiy has a bounded extension on Lp(Rn),
1 < p < ∞, and for fixed p its operator norm does not exceed C(δ, p)eδ|y|

for all δ > 0.

Here, Hiy is defined as a bounded operator on L2(Rn) by functional
calculus. For V = 0, this is standard result for the singular integral operator
(−∆)iy. Actually, the operator norm can be improved but we do not need
sharp estimates.

Lemma 6.2. — The space D = R(H) ∩ L1(Rn) ∩ L∞(Rn) is dense in
Lp(Rn) for 1 < p <∞.

Proof. — It suffices to show that R(H) ∩ L1(Rn) ∩ L∞(Rn) is dense in
L1(Rn)∩L∞(Rn) for the Lp(Rn) norm. Let f ∈ L1(Rn)∩L∞(Rn). Since f ∈
L2(Rn), for ε > 0, fε = H(H + ε)−1f ∈ R(H). Also fε = f − ε(H + ε)−1f .
Thus fε ∈ L1(Rn) ∩ L∞(Rn) as |(H + ε)−1f | 6 (−∆ + ε)−1|f | and the
kernel of (−∆ + ε)−1 is integrable. It remains to see that fε converges to f
in Lp(Rn). But again |f − fε| 6 ε(−∆ + ε)−1|f | and the latter expression
is easily seen to converge to 0 in Lp as ε tends to 0.

We now prove the boundedness of ∇H−1/2 and V 1/2H−1/2 on Lp(Rn)
for 1 < p < 2(q + ε), which is half of item 3 of Theorem 1.2. Let f ∈ D,
g ∈ C∞

0 (Rn). We define for z ∈ S = {x+ iy ∈ C ; 0 6 x 6 1, y ∈ R},

A(z) = 〈(−∆)zH−zf, g〉

We shall use the Stein interpolation theorem for families of operators (see
[36, Chapter 5]).

Observe that for all z ∈ S, (−∆)z̄g ∈ L2 with ‖(−∆)z̄g‖2 6 C‖g‖H2

(the Sobolev space of order 2). Since f ∈ R(H), f = Hf̃ with M =
‖f̃‖2 + ‖Hf̃‖2 <∞. Hence,

‖H−zf‖2 = ‖H1−z f̃‖2 6 ‖H−iy‖2,2‖H1−xf̃‖2 6 C(δ)eδ|y|M.

Thus |A(z)| 6 Cδe
δ|y|M‖g‖H2 . It follows that A satisfies the admissible

growth condition. It is not difficult to establish continuity on S and ana-
lyticity on IntS of A. Then, for z = iy and 1 < p <∞, we have

|A(iy)| 6 ‖H−iyf‖p‖(−∆)−iyg‖p′ 6 C(δ, p)eδ|y|‖f‖p‖g‖p′ .
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And for z = 1 + iy and 1 < p < q + ε,

|A(1 + iy)| 6 ‖∆H−1H−iyf‖p‖(−∆)−iyg‖p′

6 ‖∆H−1‖p,pC(δ, p)eδ|y|‖f‖p‖g‖p′ .

Thus, for z = 1/2 and 1 < p < 2(q + ε), we obtain

|A(1/2)| 6 C(p)‖f‖p‖g‖p′ .

We conclude by a density argument that (−∆)1/2H−1/2 is bounded on
Lp(Rn) for 1 < p < 2(q + ε).

Similarly, for f ∈ D, g ∈ C∞
0 (Rn), we define for z ∈ S = {x + iy ∈

C ; 0 6 x 6 1} and fixed N > 0,

B(z) = 〈V z
NH

−zf, g〉,

with VN = inf(V,N). Then,

|B(z)| 6 C(δ, q′)eδ|y|M(‖g‖2 + ‖VNg‖2),

hence B has the admissible growth condition. It is also clearly continuous
on S and analytic on IntS. Then, for z = iy and 1 < p <∞.

|B(iy)| 6 ‖H−iyf‖p‖V −iy
N g‖p′ 6 C(δ, p)eδ|y|‖f‖p‖g‖p′ .

And for z = 1 + iy and 1 < p < q + ε,

|A(1 + iy)| 6 ‖VNH
−1H−iyf‖p‖V −iy

N g‖p′

6 ‖V H−1‖p,pC(δ, p)eδ|y|‖f‖p‖g‖p′ .

where we used that ‖VNH
−1‖p,p 6 ‖V H−1‖p,p as 0 6 VN 6 V almost

everywhere. Thus, for z = 1/2 and 1 < p < 2(q + ε), we obtain

|B(1/2)| 6 C(p)‖f‖p‖g‖p′ .

We conclude by a density argument that V 1/2
N H−1/2 is bounded on Lp(Rn)

for 1 < p < 2(q + ε) with a bound that is uniform with respect to N . By
monotone convergence, this yields the Lp(Rn) boundedness of V 1/2H−1/2

in the same range.
To finish the proof, fix 1 < p < 2(q+ε). Let u ∈ C∞

0 (Rn). The only thing
to establish is ‖∇u‖p+‖V 1/2u‖p 6 C(p)‖H1/2u‖p. Since u ∈ V, f = H1/2u

is well-defined. We assume that f ∈ Lp(Rn), otherwise there is nothing to
prove. Then, by Calderón-Zygmund theory and the above,

‖∇u‖p + ‖V 1/2u‖p 6 C(p)‖(−∆)1/2H−1/2f‖p + ‖V 1/2H−1/2f‖p

6 C ′(p)‖f‖p

and the proof is finished. �
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Remark 6.3. — This interpolation argument also gives us a proof of the
Lp boundedness of ∇H−1 and V 1/2H−1/2 for 1 < p < 2 for all non zero
V ∈ L1

loc(Rn).

7. Reverse Riesz transforms

This section is concerned with the proof of Theorem 1.2, item 2. We first
want to show that there exists C > 0 depending only on the A∞ constant
of V such that for all α > 0 and f ∈ C∞

0 (Rn) then

(7.1) |{x ∈ Rn ; |H1/2f(x)| > α}| 6 C

α

∫
|∇f |+ V 1/2|f |.

First, it is not too hard to show that if ε 6 V 6 N for some N > ε > 0 then
this inequality holds with C depending on ε,N (in fact, the next argument
gives this also). Let C1 be the best constant in this inequality with V

replaced by Vε,N = min(V + ε,N). We want to show that C1 is bounded
independently of ε and N . Assume it is the case, then for ε,N > 0, all
α > 0 and f ∈ C∞

0 (Rn)

|{x ∈ Rn ; |(−∆ + Vε,N )1/2f(x)| > α}| 6 C1

α

∫
|∇f |+ V

1/2
ε,N |f |

6
C1

α

∫
|∇f |+ (V + ε)1/2|f |.

Now, it is easy to show that (−∆+Vε,N )1/2f converges in L2 to (H+ε)1/2f

hence up to extraction of a subsequence, the above inequality passes to the
limit as N → +∞. Then, as f ∈ C∞

0 (Rn) ⊂ V = D(H1/2), (H + ε)1/2f

converges to H1/2f in L2(Rn) by functional calculus as ε tends to 0 and
we obtain (7.1) with C = C1.

Remark that if V ∈ A∞, then for all N > ε > 0, Vε,N is also in A∞
with constants that are uniform with respect to ε and N . So as long as
we only use the A∞ information, we are safe. Therefore, we assume that
ε 6 V 6 N but we do not use this information quantitatively.

We also define Cp as the best constant C such that for 1 < p < 2 and
f ∈ C∞

0 (Rn)

‖H1/2f‖p 6 Cp(‖∇f‖p + ‖V 1/2f‖p).

By extension, we can take f to be in the closure of C∞
0 (Rn) for the norm

defined by the right hand side. Since V is bounded below and above, this
is the usual Sobolev space W 1,p(Rn).
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We know that C2 = 1. We shall prove that for some numbers C,M under
control, we have

(7.2) C1 6 CC2
2 +M = C +M.

This will require the use of a specific Calderón-Zygmund decomposition on
f adapted to level sets of |∇f |+ V 1/2|f |.

The Marcinkiewicz interpolation theorem would give us

(7.3) Cp . C
2
p−1

1

provided it applies. But it is not known whether the spaces defined by
the seminorms ‖∇f‖q + ‖V 1/2f‖q, 1 6 q 6 2, interpolate by the real
method(3) . If we use the assumption ε 6 V 6 N , then we may interpolate
but the constants would depend on ε,N . Instead, we prove (7.3) by adapt-
ing Marcinkiewicz theorem argument using again our Calderón-Zygmund
decomposition.

Lemma 7.1. — Let n > 1, 1 6 p < 2, V ∈ A∞ and f ∈ C∞
0 (Rn), hence

‖∇f‖p + ‖V 1/2f‖p < ∞. Let α > 0. Then, one can find a collection of
cubes (Qi), functions g and bi such that

(7.4) f = g +
∑

i

bi

and the following properties hold:

(7.5) ‖∇g‖2 + ‖V 1/2g‖2 6 Cα1−p/2(‖∇f‖p + ‖V 1/2f‖p)p/2,

(7.6) supp bi ∈ Qi and
∫

Qi

|∇bi|p +R−p
i |bi|p 6 Cαp|Qi|,

(7.7)
∑

i

|Qi| 6 Cα−p

∫
Rn

|∇f |p + |V 1/2f |p,

(7.8)
∑

i

1Qi 6 N,

where N depends only on dimension and C on dimension, p and the A∞
constant of V . Here, Ri denotes the sidelength of Qi and gradients are
taken in the sense of distributions in Rn.

We remark that the decomposition is on f while the control is on |∇f |p+
|V 1/2f |p.

(3) Added in proof: this has been shown recently by N. Badr: Real interpolation of
Sobolev spaces associated to a weight, preprint 2007, Orsay.
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Proof. — Let Ω be the open set {x ∈ Rn;M(|∇f |p + |V 1/2f |p)(x) > αp}
where M is the uncentered maximal operator over cubes of Rn. If Ω is
empty, then set g = f and bi = 0. Otherwise, the maximal theorem gives
us

|Ω| 6 Cα−p

∫
Rn

|∇f |p + |V 1/2f |p.

Let (Qi) be a Whitney decomposition of Ω by dyadic cubes: Ω is the
disjoint union of the Qi’s, the cubes 2Qi are contained in Ω and have the
bounded overlap property, but the cubes 4Qi intersect F = Rn \ Ω.(4) As
usual, λQ is the cube co-centered with Q with sidelength λ times that of
Q. Hence (7.7) and (7.8) are satisfied by the cubes 2Qi. We remark that
since V ∈ A∞, we have V p/2 ∈ A∞ when 1 6 p 6 2 (see Section 11). Hence
we have by Lemma 2.1∫

2Qi

|∇f |p + |V 1/2f |p > Cmin(av2Qi V
p/2, R−p

i )
∫

2Qi

|f |p.

We declare Qi of type 1 if av2Qi
V p/2 > R−p

i and of type 2 if av2Qi V
p/2 <

R−p
i .
Let us now define the functions bi. Let (Xi) be a partition of unity on

Ω associated to the covering (Qi) so that for each i, Xi is a C1 function
supported in 2Qi with ‖Xi‖∞ +Ri‖∇Xi‖∞ 6 c(n). Set

bi =

{
fXi, if Qi is of type 1,

(f − av2Qi f)Xi, if Qi is of type 2.

If Qi is of type 2, then it is a direct consequence of the Lp-Poincaré
inequality that ∫

2Qi

|∇bi|p +R−p
i |bi|p 6 C

∫
2Qi

|∇f |p.

As
∫
4Qi

|∇f |p 6 αp|4Qi| we get the desired inequality in (7.6).
If Qi is of type 1,∫

2Qi

R−p
i |bi|p 6

∫
2Qi

R−p
i |f |p 6 C

∫
2Qi

|∇f |p + |V 1/2f |p.

As the same integral but on 4Qi is controlled by αp|4Qi| we get∫
2Qi

R−p
i |bi|p 6 Cαp|Qi|. Since ∇bi = Xi∇f + f∇Xi we obtain the same

bound for
∫
2Qi

|∇bi|p.
Set g = f−

∑
bi where the sum is over both types of cubes and is locally

finite by (7.8). It is clear that g = f on F = Rn\Ω and g =
∑

2 (av2Qi f) Xi

(4) In fact, the factor 2 should be some c = c(n) > 1 explicitely given in [35, Chapter 6].
We use this convention to avoid too many irrelevant constants.
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on Ω, where
∑

j means that we are summing over cubes of type j. Let us
prove (7.4).

First, by the differentiation theorem, V 1/2|f | 6 α almost everywhere on
F . Next, since V ∈ A∞ and p < 2 implies V p/2 ∈ B2/p (see Section 11)
and av2Qi V 6 C(av2Qi V

p/2)2/p. Hence∫
Ω

V |g|2 6
∑

2

∫
2Qi

V | av2Qi f |2

6 C
∑

2
(
(av2Qi V

p/2)| av2Qi f |p
)2/p

|Qi|.

Now, by construction of the type 2 cubes and the Lp version of Fefferman-
Phong inequality,

(av2Qi V
p/2)| av2Qi f |p 6 C av2Qi(|∇f |p + |V 1/2f |p) 6 Cαp.

Hence, ∫
Ω

V |g|2 6 C
∑

2 α2 |Qi| 6 Cα2−p

∫
Rn

|∇f |p + |V 1/2f |p.

Combining the estimates on F and Ω, we obtain the desired bound for∫
Rn V |g|2. We finish the proof by estimating ‖∇g‖∞ and ‖∇g‖p. First, it

is easy to see that the inequality ‖bi‖p
p 6 CαpRp

i |Qi| together with the fact
that Whitney cubes have sidelength comparable to their distance to the
boundary, imply that

∑
bi converges in the sense of distributions in Rn

(not just in Ω, which is a trivial fact!), hence ∇g = ∇f −
∑
∇bi. It follows

from the Lp estimates on ∇bi and the bounded overlap property that∥∥∥∑∇bi
∥∥∥

p
6 C(‖∇f‖p + ‖V 1/2f‖p),

therefore the same estimate holds for ‖∇g‖p. Next, a computation of the
sum

∑
∇bi leads us to

∇g = 1F (∇f) +
∑

2 (av2Qi f) ∇Xi.

By definition of F and the differentiation theorem, |∇g| is bounded by
α almost everywhere on F . It remains to control ‖h2‖∞ where h2 =∑

2 (av2Qi
f)∇Xi. Set h1 =

∑
1 (av2Qi

f)∇Xi. By already seen arguments
for type 1 cubes, | av2Qi

f | 6 CαRi. Hence, |h1| 6 C
∑

1 12Qi
α 6 CNα

and it suffices to show that h = h1 + h2 is bounded by Cα. To see this,
observe that

∑
i Xi(x) = 1 on Ω and 0 on F . Since it is a locally finite sum

we have
∑

i ∇Xi(x) = 0 for x ∈ Ω. Fix x ∈ Ω. Let Qj be the Whitney cube
containing x and let Ix be the set of indices i such that x ∈ 2Qi. We know
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that ]Ix 6 N . Also for i ∈ Ix we have that C−1Ri 6 Rj 6 CRi (see [35]).
Therefore, we may write

|h(x)| =

∣∣∣∣∣∑
i∈Ix

(av2Qi f − av2Qj f)∇Xi(x)

∣∣∣∣∣ 6 C
∑
i∈Ix

| av2Qi f − av2Qj f |R−1
i .

But 2Qi and 2Qj are contained in CQj for some C > 4 independent of j.
Hence, the Poincaré inequality and the definition of Qj yields

| av2Qi
f − av2Qj

f | 6 CRj(avCQj
|∇f |p)1/p 6 CRjα.

We have finished the proof. �

Proof of item 3 in Theorem 1.2. — First, we prove (7.2). Let f ∈
C∞

0 (Rn). We use the following resolution of H1/2:

H1/2f = c

∫ ∞

0

He−t2Hf dt

where c = 2π−1/2 is forgotten from now on. It suffices to obtain the result
for the truncated integrals

∫ R

ε
. . . with bounds independent of ε,R, and then

to let ε ↓ 0 and R ↑ ∞. For the truncated integrals, all the calculations are
justified. We thus consider that H1/2 is one of the truncated integrals but
we still write the limits as 0 and +∞ to simplify the exposition.

Apply the Calderón-Zygmund decomposition of Lemma 7.1 with p = 1
to f at height α and write f = g +

∑
i bi.

Concerning g, we have∣∣∣∣{x ∈ Rn; |H1/2g(x)| > α

3

}∣∣∣∣ 6 9
α2

∫
|H1/2g|2

6
9
α2

∫
|∇g|2 + V |g|2

6
C

α

∫
|∇f |+ |V 1/2f |

where we used (7.5).
The argument to estimate H1/2bi will use the Gaussian upper bounds of

the kernels of e−tH which are valid for all potentials V > 0. Let ri = 2k

if 2k 6 Ri < 2k+1 (Ri is the sidelength of Qi) and set Ti =
∫ ri

0
He−t2H dt

and Ui =
∫∞

ri
He−t2H dt. It is enough to estimate

A = |{x ∈ Rn; |
∑

i

Tibi(x)| > α/3}|

and
B = |{x ∈ Rn; |

∑
i

Uibi(x)| > α/3}|.
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First,

A 6 | ∪i 4Qi|+
∣∣∣∣{x ∈ Rn \ ∪i4Qi;

∣∣∣∣∑
i

Tibi(x)
∣∣∣∣ > α

3

}∣∣∣∣,
and by (7.7), | ∪i 4Qi| 6 C

α

∫
|∇f |+ |V 1/2f |.

For the other term, we have∣∣∣∣{x ∈ Rn \ ∪i4Qi;
∣∣∣∣∑

i

Tibi(x)
∣∣∣∣ > α

3

}∣∣∣∣ 6 C

α2

∫ ∣∣∣∣∑
i

hi

∣∣∣∣2
with hi = 1(4Qi)c |Tibi|. To estimate the L2 norm, we dualize against u ∈
L2(Rn) with ‖u‖2 = 1: ∫

|u|
∑

i

hi =
∑

i

∞∑
j=2

Aij

where

Aij =
∫

Cj(Qi)

|Tibi||u|, Cj(Qi) = 2j+1Qi \ 2jQi.

Using the well-known Gaussian upper bounds for the kernels of tHe−tH ,
t > 0, and ri ∼ Ri, we obtain

‖He−t2Hbi‖L2(Cj(Qi)) 6
C

tγ+2
e−

c4jr2
i

t2 ‖bi‖1

where γ = n
2 . By (7.6), ‖bi‖1 6 cαRi|Qi|, hence, by Minkowski integral

inequality, for some appropriate positive constants C, c,

‖Tibi‖L2(Cj(Qi)) 6
∫ ri

0

‖He−t2Hbi‖L2(Cj(Qi)) dt

6 Cαe−c4j

|Qi|1/2.

Now remark that for any y ∈ Qi and any j > 2,(∫
Cj(Qi)

|u|2
)1/2

6

(∫
2j+1Qi

|u|2
)1/2

6 (2n(j+1)|Qi|)1/2
(
M(|u|2)(y)

)1/2
.

Applying Hölder inequality, one obtains

Aij 6 Cα2nj/2e−c4j

|Qi|
(
M(|u|2)(y)

)1/2
.

Averaging over Qi yields

Aij 6 Cα2nj/2e−c4j

∫
Qi

(
M(|u|2)(y)

)1/2
dy.
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Summing over j > 2 and i, we have∫
|u|
∑

i

hi 6 Cα

∫ ∑
i

1Qi(y)
(
M(|u|2)(y)

)1/2
dy.

Using finite overlap (7.8) of the cubes Qi and Kolmogorov’s inequality, one
obtains ∫

|u|
∑

i

hi 6 C ′Nα
∣∣ ∪i Qi

∣∣1/2‖|u|2‖1/2
1 .

Hence∣∣∣∣{x ∈ Rn \∪i4Qi;
∣∣∣∣∑

i

Tibi(x)
∣∣∣∣ > α

3

}∣∣∣∣ 6 C
∣∣∪iQi

∣∣ 6 C

αp

∫
|∇f |+ |V 1/2f |

by (7.8) and (7.7).
It remains to handling the term B. Using functional calculus for H one

can compute Ui as r−1
i ψ(r2iH) with ψ the holomorphic function on the

sector | arg z | < π
2 given by

ψ(z) =
∫ ∞

1

e−t2zz dt.

It is easy to show that |ψ(z)| 6 C|z|1/2e−c|z|, uniformly on subsectors
| arg z | 6 µ < π

2 .
Let q = 2 if n = 1 and q = 1∗ = n

n−1 for n > 2. By Poincaré-Sobolev
inequality, bi ∈ Lq and

‖bi‖q 6 cR
1−(n−n

q )

i ‖∇bi‖1 6 CαR
1+ n

q

i .

We invoke the estimate

(7.9)

∥∥∥∥∥∑
k∈Z

ψ(4kH)βk

∥∥∥∥∥
q

.

∥∥∥∥∥∥
(∑

k∈Z
|βk|2

)1/2
∥∥∥∥∥∥

q

.

Indeed, by duality, this is equivalent to the Littlewood-Paley inequality∥∥∥∥∥∥
(∑

k∈Z
|ψ(4kH)β|2

)1/2
∥∥∥∥∥∥

q′

. ‖β‖q′ .

For q = 2, this is a simple estimate using Borel functional calculus on L2

since H is self-adjoint. For q 6= 2, this is a consequence of the Gaussian
estimates for the kernels of e−tH , t > 0 (this was first proved in [2] using
the vector-valued version of the work in [11]. See [1] for a more general
argument in this spirit or [26] for an abstract proof relying on functional
calculus).
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To apply (7.9), observe that the definitions of ri and Ui yield∑
i

Uibi =
∑
k∈Z

ψ(4kH)βk

with

βk =
∑

i,ri=2k

bi
ri
.

Using the bounded overlap property (7.8), one has that∥∥∥∥∥∥
(∑

k∈Z
|βk|2

)1/2
∥∥∥∥∥∥

q

q

6 C

∫ ∑
i

|bi|q

rq
i

.

Using Ri ∼ ri, ∫ ∑
i

|bi|q

rq
i

6 Cαq
∑

i

|Qi|.

Hence, by (7.7)∣∣∣∣{x ∈ Rn;
∣∣∣∣∑

i

Uibi(x)
∣∣∣∣ > α

3

}∣∣∣∣ 6 C
∑

i

|Qi| 6
C

α

∫
|∇f |+ |V 1/2f |.

We turn to the proof of (7.3). Fix 1 < p < 2 and f ∈ C∞
0 (Rn). Choose

0 < δ < 1 so that 1 < pδ. Let α > 0 and apply the Calderón-Zygmund
decomposition of Lemma 7.1 to f with exponent pδ and threshold α. We
may do this since ‖∇f‖pδ + ‖V 1/2f‖pδ < ∞. Of course we do not want
to use its value in a quantitative way. We obtain that f = gα + bα with
bα =

∑
i bi.

Write

‖H1/2f‖p
p = p2p

∫ ∞

0

αp−1|{x ∈ Rn; |H1/2f(x)| > 2α}| dα

6 p2p

∫ ∞

0

αp−1|{x ∈ Rn; |H1/2gα(x)| > α}| dα

+ p2p

∫ ∞

0

αp−1|{x ∈ Rn; |H1/2bα(x)| > α}| dα

6 I + II

with

I = Cp2p

∫ ∞

0

αp−1 ‖∇gα‖2
2 + ‖V 1/2gα‖2

2

α2
dα = Ig + Iv

and

II = Cp2p

∫ ∞

0

αp−1 ‖∇bα‖1 + ‖V 1/2bα‖1

α
dα = IIg + IIv,

TOME 57 (2007), FASCICULE 6



2000 Pascal AUSCHER & Besma BEN ALI

where Ig and IIg denote the gradient term in I and II respectively. To
estimate these integrals, we need to come back to the construction of gα

and bα.
Set Tf = (|∇f |pδ + |V 1/2f |pδ)1/pδ. Write Fα as the complement of Ωα =

{M(Tfpδ) > αpδ}. Then recall that ∇gα = 1Fα
(∇f) + 1Ωα

h where |h| 6
Cα and |∇f | 6 α on Fα. Thus Ig splits into Ig1 + Ig2 according to this
decomposition. The treatment of Ig1 is done using the definition of Fα,
Fubini’s theorem and p < 2 as follows:

Ig1 =
Cp2p

2− p

∫
|∇f |2

(
M(Tfpδ)

) p−2
pδ

6
Cp2p

2− p

∫
|∇f |p,

where we used

|∇f |2 = |∇f |p |∇f |2−p 6 |∇f |p (Tfpδ)
2−p
pδ 6 |∇f |p

(
M(Tfpδ)

) 2−p
pδ

almost everywhere. For Ig2, we use the bound of h to obtain

Ig2 6 Cp2p

∫ ∞

0

αp−1|Ωα| dα

= C2p

∫ (
M(Tfpδ)

) 1
δ

6 C

∫
|∇f |p + |V 1/2f |p

by the strong type ( 1
δ ,

1
δ ) of the maximal operator.

Next, we turn to the term IIg. We have ∇bα = 1Ωα
(∇f)−1Ωα

h so that
IIg 6 (IIg1 + Ig2) and Ig2 is already controlled. For IIg1 we have by using
Hölder’s inequality and the strong type ( 1

δ ,
1
δ ) of the maximal operator

IIg1 =
Cp2p

p− 1

∫
|∇f |

(
M(Tfpδ)

) p−1
pδ

6
Cp2p

p− 1

(∫
|∇f |p

)1/p(∫ (
M(Tfpδ)

)( p−1
pδ )p′

)1/p′

6 C

∫
|∇f |p + |V 1/2f |p.

It remains to look at Iv and IIv. Recall that gα = f on Fα and gα = hα on
Ωα, and we have proved

∫
V |hα|2 6 Cα2|Ωα|. Hence, Iv splits as Iv1 + Iv2.
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First,

Iv1 =
Cp2p

2− p

∫
|V 1/2f |2

(
M(Tfpδ)

) p−2
pδ

6
Cp2p

2− p

∫
|V 1/2f |p.

with the similar argument as for Ig1. Next,

Iv2 6 Cp2p

∫ ∞

0

αp−1|Ωα| dα

= C2p

∫ (
M(Tfpδ)

) 1
δ

6 C

∫
|∇f |p + |V 1/2f |p.

Now, bα = f − gα = f − hα on Ωα and bα = 0 on Fα. Hence, IIv 6
IIv1 + Iv2 and

IIv1 =
Cp2p

p− 1

∫
|V 1/2f |

(
M(Tfpδ)

) p−1
pδ

6
Cp2p

p− 1

(∫
|V 1/2f |p

)1/p(∫ (
M(Tfpδ)

)( p−1
pδ )p′

)1/p′

6 C

∫
|∇f |p + |V 1/2f |p.

This concludes the proof of item 3 of Theorem 1.2. �

8. Estimates for weak solutions

In this section, Q denotes a cube, R its radius, and u a weak solution of
−∆u+V u = 0 in a neighborhood of 2Q. Recall that under the assumption
V > 0, we have the mean value inequality

(8.1) sup
Q
|u| 6 C(r, n, µ)

(
avµQ |u|r

)1/r

for any 0 < r < ∞ and 1 < µ 6 2. And we have also shown a mean value
inequality against arbitrary A∞ weights.

We state some further estimates that are interesting in their own right
assuming V ∈ A∞. By splitting real and imaginary parts, we may suppose u
real-valued. All constants are independent of Q and u but they may depend
on V through the constants in the A∞ condition or the Bq condition when
assumed.
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Lemma 8.1. — For all 1 6 µ < µ′ 6 2 and k > 0, there is a constant C
such that

avµQ |u|2 6
C

(1 +R2 avQ V )k

(
avµ′Q |u|2

)
.

and

avµQ(|∇u|2 + V |u|2) 6
C

(1 +R2 avQ V )k

(
avµ′Q(|∇u|2 + V |u|2)

)
.

Lemma 8.2. — For all 1 < µ 6 2 and k > 0, there is a constant C such
that

(R avQ V )2 avQ |u|2 6
C

(1 +R2 avQ V )k

(
avµQ(V |u|2)

)
.

Lemma 8.3. — For all 1 < µ 6 2, k > 0 and sup(n, 2) < p < ∞, there
is a constant C such that

(R avQ V )2 avQ |u|2 6
C

(1 +R2 avQ V )k

(
avµQ |∇u|p

)2/p
.

Lemma 8.4. — Assume V ∈ Bq and set q̃ = inf(q∗, 2q). For all 1 < µ 6
2 and k > 0 there is a constant C such that(

avQ |∇u|q̃
)1/q̃

6
C

(1 +R2 avQ V )k

(
avµQ(|∇u|2 + V |u|2)

)1/2
.

Lemma 8.5. — Assume V ∈ Bq. For all 1 < µ 6 2, if n/2 6 q < n then
there is a constant C such that(

avQ |∇u|q
∗)1/q∗

6 C
(
avµQ |∇u|2

)1/2
,

and if q > n then there is a constant C such that

sup
Q
|∇u| 6 C

(
avµQ |∇u|2

)1/2
.

Lemma 8.6. — Assume V ∈ Bq. For all 1 < µ 6 2 and k > 0, if
n/2 6 q < n then there is a constant C such that(

avQ |∇u|q
∗)1/q∗

6
C

R(1 +R2 avQ V )k

(
sup
µQ

|u|
)
.

and if q > n then there is a constant C such that

sup
Q
|∇u| 6 C

R(1 +R2 avQ V )k

(
sup
µQ

|u|
)
.

Lemma 8.7. — Assume V ∈ Bq with q > 1 and q > n/2. For all 1 <
µ 6 2 and k > 0 there is a constant C such that

(R avQ V )2 avQ |u|2 6
C

(1 +R2 avQ V )k

(
avµQ |∇u|2

)
.
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Lemma 8.8. — In Lemma 8.5, the constant C can be replaced by C(1+
R2 avQ V )−k for any k > 0.

Let us postpone the proofs and make some remarks concerning these
inequalities.

Remark 8.9. —

1) Lemma 8.5 is a weak reverse Hölder inequality for the gradient of
weak solutions. It improves over Lemma 8.4 in the fact that the
right hand side does not have terms involving V |u|2 but this is
under the assumption q > n/2. Using self-improvement of weak
reverse Hölder inequalities (see [22, Theorem 2]), we may replace
the exponent 2 in the right hand sides by any 0 < p < 2.

2) We do not know if Lemma 8.5 holds for q < n/2.
3) In Lemma 8.4, note that q̃ = q∗ < 2q when q < n/2 and it would

be natural the estimate holds for the larger exponent 2q.
4) Lemma 8.7 is a Poincaré type inequality for weak solutions. As

supQ |u| can be compared to
(
avQ |u|2

)1/2, we see that it is a con-
verse to the Caccioppoli inequality in the regime R2 avQ V > 1.

5) Except for Lemma 8.1 and 8.6 which are closely related to Lemma
4.6 and Remark 4.9 in [31], these lemmata appear to be new.

Proof of Lemma 8.1. — There is nothing to prove if R2 avQ V 6 1
and we assume R2 avQ V > 1. The well-known Caccioppoli type argument
yields for 1 6 µ < µ′ 6 2

(8.2)
∫

µQ

|∇u|2 + V |u|2 6
C

R2

∫
µ′Q

|u|2.

The improved Fefferman-Phong inequality of Lemma 2.1 and the fact that
the averages of V on µQ with 1 6 µ 6 2 are all uniformly comparable tell
us for some β > 0,

1
R2

∫
µQ

|u|2 6
C

(R2 avQ V )β

∫
µQ

|∇u|2 + V |u|2.

The desired estimates follow readily by iterating these two inequalities. �
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Proof of Lemma 8.2. — Using Lemma 8.1 with k > 1 and 1 < µ′ < µ

and then Lemma 5.2, we have,

(R avQ V )2 avQ |u|2 6
C avQ V avµ′Q |u|2

(1 +R2 avQ V )k−1

6
C avµ′Q V supµ′Q |u|2

(1 +R2 avQ V )k−1

6
C avµQ(V |u|2)

(1 +R2 avQ V )k−1
.

�

Proof of Lemma 8.3. — Of course, if avµQ |∇u|p = ∞ there is nothing
to prove. Assume, therefore, that avµQ |∇u|p < ∞. Let 1 < ν < µ and η

be a smooth non-negative function, bounded by 1, equal to 1 on νQ with
support on µQ and whose gradient is bounded by C/R and Laplacian by
C/R2. Integrating the equation −∆u+ V u = 0 against uη2, we find∫
|∇u|2η2 + V |u|2η2 = 2

∫
∇u · ∇η uη 6

C

R

(∫
µQ

|∇u|2
)1/2(∫

|u|2η2

)1/2

,

hence
X 6 C (R2 avQ V )1/2|µQ|1/2 Y 1/2 Z1/2

where we have set X = (R2 avQ V )
∫
V |u|2η2, Y =

(
avµQ |∇u|p

)2/p and
Z = avQ V

∫
|u|2η2. By Morrey’s embedding theorem, u is Hölder contin-

uous with exponent α = 1− n/p and for all x, y ∈ µQ,

|u(x)− u(y)| 6 C

(
|x− y|
R

)α

R
(
avµQ |∇u|p

)1/p = C

(
|x− y|
R

)α

RY 1/2.

We pick y ∈ Q such that |u(y)| = infQ |u|. Then

Z = avQ V

∫
|u|2η2

6 2(avQ V ) inf
Q
|u|2

∫
η2 + 2(avQ V )

∫
|u(x)− u(y)|2η2(x) dx

6 2
(
avQ(V |u|2)

) ∫
η2 + C(avQ V )R2Y

∫ (
|x− y|
R

)2α

η2(x) dx

6 C
(
avQ(V |u|2)

)
|Q|+ C(avQ V )R2Y |µQ|

6 C

∫
V |u|2η2 + C(avQ V )R2Y |µQ|,

where, in the penultimate inequality, we used the support condition on η

and 0 6 η 6 1, and in the last, η = 1 on Q. Using the previous inequalities,
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we obtain

X 6 C|µQ|1/2 Y 1/2
(
CX + C(R2 avQ V )2|µQ|Y

)1/2

which, by 2ab 6 ε−1a2 + εb2 for all a, b > 0 and ε > 0, implies

X 6 C(1 +R2 avQ V )2 |µQ|Y.

Next, let 1 < ν′ < ν. Using η = 1 on νQ, Lemma 5.2 and Lemma 8.1,∫
V |u|2η2 >

∫
νQ

V |u|2

> C avν′Q V

∫
ν′Q

|u|2

> C(avQ V )(1 +R2 avQ V )k

∫
Q

|u|2,

hence

X > C(R avQ V )2(1 +R2 avQ V )k

∫
Q

|u|2.

The upper and lower bounds for X yield the lemma. �

Proof of Lemma 8.4. — First note that if q 6 2n
n+2 then q̃ 6 2 and the

conclusion (useless for us) follows by a mere Hölder inequality. Henceforth,
we assume q > 2n

n+2 . Also, by Lemma 8.1, it suffices to obtain the estimate
with k = 0. Let us assume µ = 2 for simplicity of the argument. Let v be
the harmonic function on 2Q with v = u on ∂(2Q) and set w = u − v on
2Q. Since w = 0 on ∂(2Q), we have

(av2Q |∇w|2
)1/2

6 (av2Q |∇u|2
)1/2

.

By elliptic estimates for harmonic functions, we have for all 2 6 p 6 ∞,
and in particular for p = q̃,(

avQ |∇v|p
)1/p

6 C(av2Q |∇v|2
)1/2

6 2C(av2Q |∇u|2
)1/2

.

Let 1 < µ < 2 and η be a smooth non-negative function, bounded by
1, equal to 1 on Q with support contained in µQ and whose gradient is
bounded by C/R and Laplacian by C/R2. As ∆w = ∆u = V u on 2Q, we
have

∆(wη) = V uη + 2∇w · ∇η + w∆η on Rn.

Hence, if n > 2 by Green’s representation for the Laplace equation

∇(wη)(x) =
∫

Rn

∇Γ(x− y)
[
(V uη)(y) + 2∇w(y) · ∇η(y) + w(y)∆η(y)

]
dy

= I + II + III
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where Γ is the fundamental solution of ∆ so that |∇Γ(x)| 6 C|x|1−n. Since
q̃ 6 q∗, we have (

avQ |∇w|q̃
)1/q̃

6
(
avQ |∇w|q

∗)1/q∗

so that it suffices to bound the latter integral. Using support conditions on
η, we obtain the pointwise bounds for x ∈ Q,

II 6 C av2Q |∇w| 6 C
(
av2Q |∇w|2

)1/2
6 C

(
av2Q |∇u|2

)1/2

and

III 6
C

R
av2Q |w| 6 C

(
av2Q |∇w|2

)1/2
6 C

(
av2Q |∇u|2

)1/2

where we used Poincaré inequality for w on 2Q as w = 0 on the boundary.
By the Lq − Lq∗ boundedness of the Riesz potential(∫

Rn

Iq∗
)1/q∗

6 C

(∫
Rn

|V uη|q
)1/q

6 C

(∫
µQ

|V |q
)1/q

sup
µQ

|u|.

Normalizing by taking averages and using the Bq condition on V yields

(8.3)
(
avQ I

q∗
)1/q∗

6 CR avµQ V sup
µQ

|u|.

Now, if µ < µ′ < 2, subharmonicity of |u|2 and Lemma 5.2 yield

R avµQ V sup
µQ

|u| 6 CR avµ′Q V
(
avµ′Q |u|2

)1/2

which by Lemma 8.2 is bounded by C
(
av2Q(V |u|2)

)1/2
. Gathering the

estimates obtained for ∇v and ∇w, the lemma is proved when n > 2.
When n = 1, we have

(wη)′(x) = −
∫ ∞

x

V uη + 2w′η′ + wη′′

and we obtain readily for x ∈ Q,

|w′(x)| 6 CR(avµQ V ) sup
µQ

|u|+ C
(
avµQ |w′|2

)1/2
.

The rest of the proof is as before. �

Proof of Lemma 8.5. — Assume n/2 < q < n. The previous lemma
shows that avµ′Q |∇u|q̃ < ∞ for all 1 < µ′ 6 µ. As q̃ = 2q > n, Lemma
8.3 applies and using it with k = 0 instead of Lemma 8.2 in the previous
argument, we obtain,(

avQ |∇w|q
∗)1/q∗

6 C
(
avµQ |∇u|2q

)1/2q
.
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As the similar estimate holds for v in place of w, we obtain(
avQ |∇u|q

∗)1/q∗

6 C
(
avµQ |∇u|2q

)1/2q
.

Note that this inequality holds not just for Q but for all cubes Q′ with 2Q′

contained in the open set where u is a weak solution. As q∗ > 2q, this set
of inequalities self-improves with 2q replaced by any 0 < p < 2q (see [22])
and, in particular,(

avQ |∇u|q
∗)1/q∗

6 C
(
avµQ |∇u|2

)1/2
.

If q > n and n > 2, then we may as well consider q > n. Then (8.3) becomes

sup
Q
I 6 CR avµQ V sup

µQ
|u|

so that the pointwise bound for ∇u follows by Lemma 8.3. If n = 1,
we already obtained a pointwise bound for ∇u and again Lemma 8.3
applies. �

Proof of Lemma 8.6. — It suffices to incorporate the Caccioppoli in-
equality (8.2) in the inequalities of Lemma 8.6. �

Proof of Lemma 8.7. — It suffices to combine Lemma 8.3 and
Lemma 8.5. �

Proof of Lemma 8.8. — It suffices to see the case R2 avQ V > 1. Then,
combine Lemma 8.6, the mean value inequality (8.1) with r = 2 and
Lemma 8.7. �

9. Riesz transforms

This section is concerned with the proof of Theorem 1.2, item 3. We
present an argument inspired by [32] which also gives us a second proof of
part of item 1(5) .

9.1. A reduction

We know that it suffices to establish the boundedness of ∇H−1/2 and
of V 1/2H−1/2 on Lp for the appropriate ranges of p. As already observed,
the case 1 < p 6 2 is already taken care of with no assumption on V . We
henceforth assume p > 2 and V ∈ A∞.

(5) In this section, Lp denotes either Lp(Rn, C) or Lp(Rn, Cn).
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By duality, we know that H−1/2 div and H−1/2V 1/2 are bounded on Lp.
Thus, if ∇H−1/2 is also bounded on Lp, we obtain that ∇H−1 div and
∇H−1V 1/2 are bounded on Lp.

Reciprocally, if ∇H−1 div and ∇H−1V 1/2 are bounded on Lp, then their
adjoints are bounded on Lp′ . Thus, if F ∈ C∞

0 (Rn,Cn),

‖H−1/2 divF‖p′ = ‖H1/2H−1 divF‖p′

6 C(‖∇H−1 divF‖p′ + ‖V 1/2H−1 divF‖p′) 6 C‖F‖p′

where the first inequality follows from item 2 of Theorem 1.2. Hence, by
duality, ∇H−1/2 is bounded on Lp.

The same treatment can be done on V 1/2H−1/2. We have obtained

Lemma 9.1. — If V ∈ A∞ and p > 2, the Lp boundedness of ∇H−1/2

is equivalent to that of ∇H−1 div and ∇H−1V 1/2, and the Lp boundedness
of V 1/2H−1/2 is equivalent to that of V 1/2H−1V 1/2 and V 1/2H−1 div.

It suffices therefore to establish part of Corollary 1.5 namely,

Proposition 9.2. — Assume that V ∈ Bq for some q > 1. Then for
2 < p 6 2(q+ ε), for some ε > 0 depending only on V , f ∈ C∞

0 (Rn,C) and
F ∈ C∞

0 (Rn,Cn),

‖V 1/2H−1V 1/2f‖p 6 Cp‖f‖p, ‖V 1/2H−1 divF‖p 6 Cp‖F‖p.

Proposition 9.3. — Assume that V ∈ Bq for some q > 1. Then for
2 < p 6 q∗ + ε for some ε > 0 depending only on V , f ∈ C∞

0 (Rn,C) and
F ∈ C∞

0 (Rn,Cn),

‖∇H−1V 1/2f‖p 6 Cp‖f‖p, ‖∇H−1 divF‖p 6 Cp‖F‖p.

The interest of such a reduction is that this allows us to use properties
of weak solutions of H.

Note that Proposition 9.3 is void if q 6 2n
n+2 as q∗ 6 2. Note also that

q∗ < 2q exactly when q < n/2. In this case, this statement yields a smaller
range than the interpolation method in Section 6.

Proof of Proposition 9.2. — Fix a cube Q and and let f ∈ C∞
0 (Rn)

supported away from 4Q. Then u = H−1V 1/2f is well defined on Rn with
‖V 1/2u‖2 + ‖∇u‖2 6 ‖f‖2 by construction of H and∫

Rn

V uϕ+∇u · ∇ϕ =
∫

Rn

V 1/2fϕ

for all ϕ ∈ L2 with ‖V 1/2ϕ‖2 + ‖∇ϕ‖2 < ∞. In particular, the support
condition on f implies that u is a weak solution of −∆u+ V u = 0 in 4Q,
hence |u|2 is subharmonic on 4Q. Let r such that V ∈ Br and note that
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V 1/2 ∈ B2r (see section 11). By Lemma 5.3 with w = V 1/2 f = |u|2 and
s = 1/2, we have(

avQ(V 1/2|u|)2r
)1/2r

6 C avµQ(V 1/2|u|).

Thus, (5.1) holds with T = V 1/2H−1V 1/2, q0 = 2r, p0 = 2 and S = 0. By
Theorem 5.1, V 1/2H−1V 1/2 is bounded on Lp for 2 < p < 2r.

The argument is the same for V 1/2H−1 div. This finishes the proof. �

Proof of Proposition 9.3. — We assume q > 2n
n+2 , that is q∗ > 2. other-

wise there is nothing to prove. We consider first the operator ∇H−1V 1/2.
Assume q < n/2. Fix a cube Q and and let f ∈ C∞

0 (Rn) supported
away from 4Q. Let u = H−1V 1/2f . As before, the support condition on f

implies that u is a weak solution of −∆u+V u = 0 in 4Q. Thanks to Lemma
8.4, (5.1) holds with T = ∇H−1V 1/2, q0 = q∗ and S = V 1/2H−1V 1/2. As
S is bounded on Lq∗ by Proposition 9.2 and 2 < q∗ 6 2q, Theorem 5.1
implies that ∇H−1V 1/2 is bounded on Lp for 2 < p < q∗. Finally, by the
self-improvement of reverse Hölder estimates we can replace q by a slightly
larger value and, therefore, Lp boundedness for p < q∗ + ε holds.

Assume next that n/2 6 q < n. In this case, q∗ > 2q. Again, we may
as well assume q > n/2. Then, Lemma 8.5 yields, this time, (5.1) with
T = ∇H−1V 1/2, q0 = q∗ and S = 0. Hence, Theorem 5.1 implies that
∇H−1V 1/2 is bounded on Lp for 2 < p < q∗. Again, by self-improvement
of the Bq condition, it holds for p < q∗ + ε.

Finally, if q > n, then, Lemma 8.5 yields (5.1) for any 2 < q0 <∞ with
T = ∇H−1V 1/2 and S = 0. Hence, Theorem 5.1 implies that ∇H−1V 1/2

is bounded on Lp for 2 < p <∞.
The argument is the same for ∇H−1 div and this finishes the proof. �

10. Lp Domains of H and H1/2

Proof of Corollary 1.3. — It is known that −∆ +V defined on C∞
0 (Rn)

is essentially m-accretive on Lp(Rn) if V ∈ Lp
loc(Rn). The domain of its

extension is {u ∈ Lp(Rn) ; −∆u + V u ∈ Lp(Rn)} with norm ‖u‖p + ‖ −
∆u+ V u‖p. By (1.1) this norm is equivalent to ‖u‖p + ‖∆u‖p + ‖V u‖p on
C∞

0 (Rn) when V ∈ Bp. The result follows. �

Proof of Corollary 1.4. — Let Ep(Rn) = Dp(∇) ∩ Dp(V 1/2)
= W 1,p(Rn) ∩ Lp(Rn, V p/2). Let us begin with the following lemma. �

Lemma 10.1. — If 1 < p < ∞ and V p/2 ∈ L1
loc(Rn), then C∞

0 (Rn) is
dense in Ep(Rn).
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Indeed, for p = 2 this is a well-known fact as C∞
0 (Rn) is a core of the

form domain of −∆ + V . The proof of this fact (see, for instance, [10, pp.
157-158]) adapts to any p with 1 < p <∞.

We also remark that under the assumption V ∈ L1
loc, −∆ + V has a

bounded holomorphic functional calculus on Lp(Rn) for 1 < p <∞ ([13]),
and in particular, ‖(−∆ + V + 1)1/2u‖p ∼ ‖(−∆ + V )1/2u‖p + ‖u‖p for all
u ∈ C∞

0 (Rn). Thus, it suffices to find the domain of (−∆ + V + 1)1/2.
Now, assume V ∈ A∞ and 1 < p < 2 or V ∈ Bp/2 and 2 < p < ∞. We

have shown that ‖(−∆ + V )1/2u‖p ∼ ‖∇u‖p + ‖V 1/2u‖p for u ∈ C∞
0 (Rn).

Thus, using this and the lemma, (−∆+V +1)1/2 has a bounded extension
from Ep(Rn) to Lp(Rn) and this extension is invertible. This proves the
result.

Remark 10.2. — It is not hard to show that the Lp-domain (1 < p <∞)
of (−∆ + V )1/2 coincides with the domain of the square root of (minus)
the infinitesimal generator of the semigroup (e−tH)t>0 seen as an analytic
and C0-semigroup on Lp.

11. Some facts about A∞ weights

That V ∈ A∞ implies V s ∈ B1/s for 0 < s < 1 was first observed
implicitely in [37]. See also [23]. We give a direct proof for convenience.

Proposition 11.1. — Let V be a nonnegative measurable function.
Then the followings are equivalent:

(1) V ∈ A∞.
(2) For all s ∈ (0, 1), V s ∈ B1/s.
(3) There exists s ∈ (0, 1), V s ∈ B1/s.

Proof. — If V s ∈ B1/s for some s ∈ (0, 1), then by the self-improvement
property of the Bq class, V s ∈ Bε+1/s for some ε > 0. Hence, V ∈ B1+sε,
which implies V ∈ A∞. Thus, (2) implies (3) implies (1).

Assume V ∈ A∞ and s ∈ (0, 1). Since A∞ weights satisfy a reverse
Hölder inequality, there is r > 1 such that V ∈ Br. Hence, for A > 1 and
any cube Q, the set EQ = {x ∈ Q ; V s(x) > A avQ V

s} satisfies∫
EQ

V∫
Q
V

6 C

(
|EQ|
|Q|

)1/r′

.

Since |EQ| 6 A−1|Q| by Tchebytchev’s inequality, we obtain
∫

EQ
V 6

CA−1/r′
∫

Q
V .
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Choose A such that CA−1/r′ 6 1/2. We have∫
Q

V =
∫

Q\EQ

V +
∫

EQ

V 6 (A avQ V
s)1/s|Q|+ 1

2

∫
Q

V

which yields
avQ V 6 2(A avQ V

s)1/s.

�
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