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COMPUTING LIMIT LINEAR SERIES WITH
INFINITESIMAL METHODS

by Laurent EVAIN

Abstract. — Alexander and Hirschowitz determined the Hilbert function of a
generic union of fat points in a projective space when the number of fat points is
much bigger than the greatest multiplicity of the fat points. Their method is based
on a lemma which determines the limit of a linear system depending on fat points
approaching a divisor.

Other Hilbert functions were computed previously by Nagata. In connection
with his counter-example to Hilbert’s fourteenth problem, Nagata determined the
Hilbert function H(d) of the union of k2 points of the same multiplicity m in the
plane up to degree d = km.

We introduce a new method to determine limits of linear systems. This general-
izes the result by Alexander and Hirschowitz. Our main application of this method
is the conclusion of the work initiated by Nagata: we compute H(d) for all d. As a
second application, we compute collisions of fat points in the plane.

Résumé. — Alexander et Hirschowitz ont calculé la fonction de Hilbert d’une
réunion générique de gros points du plan projectif sous l’hypothèse que le nombre
de gros points est très supérieur à leur multiplicité. Leur méthode est basée sur un
lemme permettant le calcul d’un système linéaire limite lorsque les gros points se
spécialisent sur un diviseur.

Nagata avait auparavant calculé d’autres fonctions de Hilbert. Lors de la construc-
tion de son contre-exemple au quatorzième problème de Hilbert, Nagata a déter-
miné la fonction de Hilbert H(d) d’une réunion de k2 gros points de même multi-
plicité m lorsque d 6 km.

On introduit une nouvelle méthode de calcul de systèmes linéaires limites, qui
généralise le résultat de Alexander et Hirschowitz. Notre principale application est
de compléter le résultat de Nagata: nous calculons H(d) pour tout d. Comme autre
application, nous décrivons des collisions de gros points dans le plan projectif.

1. Introduction

Fixing general points pi in a projective space, what is the dimension
d of the space of hypersurfaces of degree δ having multiplicity mi at pi

Keywords: Fat point, Hilbert function, Nagata, curve, singularities.
Math. classification: 14H20, 14H50, 14B05, 14B10, 14B20.



1948 Laurent EVAIN

for each i ? This simple question is related to numerous other problems:
Hilbert’s fourteenth problem, Waring’s problem, ample bundles on surfaces,
symplectic packing ... ([15], [17], [4], [13], [3]). Surprisingly, the question is
still open when the projective space has dimension at least two.

This problem is usually attacked using specialisation methods. There is
an expected dimension de with de 6 d. The points pi are moved to a special
position. One computes the dimension d′ in this special position and checks
d′ = de. By semi-continuity, de 6 d 6 d′ hence d = de. The difficulty with
this approach is to find a good specialisation. Possible methods are the
Horace method [12], collisions of fat points [7], or degenerations of the
projective space [6].

The drawback of all these methods is that they are hardly usable when
there are few points with high mutiplicities because of inevitable numerical
difficulties. In this article, we introduce a method of specialisation which
tackles the numerical difficulties appearing in these difficult cases. Then we
apply the method to complete a result by Nagata and to compute collisions
of fat points.

We put the problem in a general context. Let X be a (quasi-)projective
scheme, L a linear system on X and Z ⊂ X a generic 0-dimensional sub-
scheme of degree d, ie. a subscheme parametrised by a non closed point
pZ ∈ Hilbd(X). We address the problem of determining the dimension
dimL(−Z).

In this introduction, we suppose for simplicity that Z = Zt is the generic
fiber of a subscheme F ⊂ X × A1 flat and finite over A1 = Spec k[t]
and such that the support of the fiber F (t) approaches a divisor D when
t → 0. Our strategy is the following. We specialize Zt to the subscheme
Z0 = F (0) = limt→0 Zt. Accordingly, the linear system L(−Zt) specialises
to a system limt→0 L(−Zt). The subspace L(−Zt) ⊂ L is associated to a
(non closed) point pt in a Grassmannian G of subspaces of L. The limit
limt→0 L(−Zt) is by definition parametrised by the point p0 = limt→0 pt ∈
G. By construction, the dimension of the linear system is preserved under
specialisation: dim limt→0 L(−Zt) = dimL(−Zt). In particular, if we can
compute the dimension of the limit, we obtain the dimension of L(−Zt).

To illustrate this idea with an example, let L be the set of homogeneous
polynomials P ∈ k[x, y, z] of degree 15, D ⊂ P2 the line with equation
y = 0, p1, p2, p3 three points of D, p4(t) = [x4 : t : 1] ∈ P2 and p5(t) =
[x5 : t : 1] ∈ P2 two points which move to the line D when t tends to
0. Let L(−Zt) be the set of homogeneous P of degree 15 which vanish at
each of the points pi, i 6 5, with multiplicity four. The limit linear system
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COMPUTING LIMIT LINEAR SERIES WITH INFINITESIMAL METHODS 1949

limt→0 L(−Zt) parametrises the set of reducible curves C = 3D+C ′, with
C ′ a curve of degree 12 passing through the points p1, p2, p3, p4(0), p5(0).
The dimension of the limit is 86, hence dimL(−Zt) = 86 too.

One could naïvely hope that limt→0L(−Zt) = L(−Z0). This is not cor-
rect. There is a trivial inclusion

lim
t→0

L(−Zt) ⊂ L(−Z0)

but in general, this is a strict inclusion. For instance, in the above exam-
ple, dimL(−Z0) = dimL(−Zt) + 3. In other words, the dimension of the
linear system jumps when Zt moves to Z0. Our point is precisely to deter-
mine what could be the limit when the dimension jumps and the displayed
inclusion is not an equality.

Our result gives an estimate of the limit limt→0L(−Zt). More precisely,
we introduce a combinatorical procedure to construct a system L′⊂L(−Z0)
and we show an inclusion

lim
t→0

L(−Zt) ⊂ L′ (∗).

The system L′ has the following form : we find an integer r and a residual
scheme Zres ⊂ Z0 such that L′ = L(−rD − Zres).

With concrete examples (see the applications below), the inclusion (∗)
suffices to compute dimL(−Zt) using the same argument as above: There
is an expected dimension de which verifies

de 6 dimL(−Zt) = dim lim
t→0

L(−Zt) 6 dimL′ = de,

hence our analysis finally computes the limit linear system and the dimen-
sion of the initial linear system:

dimL(−Zt) = de and lim
t→0

L(−Zt) = L′.

The method to estimate the limit is infinitesimal in nature. It is based on
a study of deformations of a space of sections. There is a unique flat family
G over A1 whose fiber over the generic point t ∈ A1 is L(−Zt). Our theorem
is obtained by a careful analysis of the restrictionsG×A1Spec k[t]/(tni) ⊂ G

for well chosen integers n1, . . . , nr.
The inclusion (∗) generalizes the main lemma of Alexander-Hirschowitz

[1]. Their statement corresponds essentially to ours in the special case r = 1.
However, the proofs are different. When Alexander-Hirschowitz published
their theorem, our theorem did already exist in a weaker version where the
0-dimensional subscheme Z moving to the divisor had to be supported by
a unique point. The current version is a merge which contains both our
earlier version and Alexander-Hirschowitz version.
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1950 Laurent EVAIN

As an application, we extend results by Nagata relative to the Hilbert
functions of fat points in the plane. We recall that a consequence of
Alexander-Hirschowitz [1] is that the Hilbert function of a generic union of
k fat points in the plane of multiplicity m1, . . . ,mk is

HZ(d) = min(
(d+ 1)(d+ 2)

2
,

k∑
i=1

mi(mi + 1)
2

)

provided k >> max(mi). The “opposite” cases, those with a fixed number
of points (> 10) and big multiplicities, have been considered by Nagata.
As explained above, they are known empirically to be difficult cases. In
connection with his construction of the counter example to the fourteenth
problem of Hilbert, Nagata proved that the Hilbert function of a generic
union Z of k2 fat points of the same multiplicity m in P2 is HZ(d) =
(d+1)(d+2)

2 if the degree is not too big, namely if d 6 km. This result is
asymptotically optimal in m in the sense that it is sufficient to compute
the Hilbert function up to the critical degree d = km+ [k−3

2 ] to determine
the whole Hilbert function. Nagata was just missing the last [k−3

2 ] cases.
We compute the Hilbert function for every degree:

Theorem. — HZ(d) = min( (d+1)(d+2)
2 , k2m(m+1)

2 ).

This result was already proved when the number of points is a power of
four in [9] by methods relying on the geometry of integrally closed ideals
which we could not push much further.

Putting the result in perspective, there is a conjecture by Harbourne-
Hirschowitz relative to the Hilbert function of a generic union of fat points.
The above theorem is a new evidence for the conjecture as it involves cases
with few points and big multiplicities.

As a second application, we propose a method to compute collisions of
fat points in the plane. We recall that a collision of punctual subschemes
Z1, . . . , Zs ⊂ A2 is a subscheme obtained as a flat limit when the support
of the Zi’s approach the same point.

The collisions of at most three fat points are known [8]. When there are
four points or more, the situation is still largely open: some collisions have
been computed by Ciliberto and Miranda [5] and in [9], but most of them
remain to be described.

To illustrate our method, we compute the collisions of four fat points of
the same multiplicity which approach successivly the origin along a smooth
curve (theorem 6.3). Besides this illustration, it is clear from the proofs
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COMPUTING LIMIT LINEAR SERIES WITH INFINITESIMAL METHODS 1951

that it is possible using the same method to compute an infinite number
of collisions.

Our motivation for determining the collisions is the following. If Z =
Z1 ∪ · · · ∪ Zs is a generic union of fat points, the Hilbert function of Z
is determined by the collisions of the Zi’s. Indeed, there exist “univer-
sal” collisions C on which one can read off the Hilbert function of Z:
∀d, HZ(d) = HC(d) [7]. Determining all collisions of any number of fat
points is far beyond our knowledge. However, by semi-continuity it would
suffice to exhibit a collision with the expected Hilbert function to prove
the Harbourne-Hirschowitz conjecture for Z, hence the need to understand
the collisions. The computations of the present paper are a step in this
direction.

Acknowledgments. I thank the referee for constructive comments.

2. Statement of the theorem

An elementary example

As the statement of the theorem is somehow intricate, we start with an
elementary example to understand the kind of result we are looking for.
Precise and more formal statements will follow in the next sections.

Let L be the vector space whose elements are homogeneous polynomials
P (x, y, z) of degree 8 vanishing with order 2 on 4 points p1, . . . , p4 ∈ P2,
aligned on the line D with equation x = 0, and vanishing on a fifth general
point p5 with order 4. The order of contact betweenD and a curve C ∈ P(L)
is 8 = 4.2. By Bezout, if the contact was 9, then D would be a fixed
component of L. Though we miss 1 = 9 − 8 orders of contact to prove
it, suppose that D is a fixed component of L. An equation f ∈ L then
writes down f = xg where g has degree 7 and the curve Cg passes through
p1, . . . , p4. By Bezout again, we miss 4 = 8 − 4 orders of contact to show
that g vanishes on D. Summing up, we missed 5 = 1 + 4 orders of contact
to show that D is a fixed component with multiplicity 2.

Passing through p5 with multiplicity 4 is equivalent to containing a
scheme Z5 of length 10. We move Z5 = Z5(t) towards the line D when
the time t tends to 0. Then L = L(t) tends to a system L(0). We want
to prove that in the limit process, Z5 gives the missing orders of contact
to L, ie. L(0) will have D as a fixed component with multiplicity 2. If
C ∈ P(L(0)) − 2D is a curve of degree 6 in the moving part of the limit
linear system, C does not contain Z5 any more, but a subscheme Z ′5 ⊂ Z5

TOME 57 (2007), FASCICULE 6



1952 Laurent EVAIN

of length 5 = 10− 5 obtained in some sense by “taking off” the 5 orders of
contact from Z5 which have been given to L. To say it precisely, we want
to prove the existence of a subscheme Z ′5 of length 5 such that L(0) ⊂M,
where M is the set of polynomials f which decompose: f = x2g with g

vanishing on Z ′5.
To construct Z ′5, we represent Z5 with a combinatorical diagram and

taking off order of contacts corresponds to a suppression of slices in the
diagram (see the picture page 1954). In this example, one can prove that
the limit linear system P(L0) contains the curves C = 2D + E where E is
a curve of degree 6 with a cusp tangent to the line D.

It is possible to do the same analysis when several points approach a
divisor. But then the limit depends on the speed of each moving point. For
instance, if two punctual schemes Z1 and Z2 approach the same divisor
D and 5 orders of contact are needed to make D a fixed component, it
is possible to pick up a orders of contact from Z1 and b from Z2 with
a+ b = 5. Different choices for the numbers a and b are possible depending
on the speeds of the points Z1 and Z2.

In the following analysis, we use the language of generic points and spe-
cialisation (which is more precise and compact) rather than the language
of families and limits.

Notations

We fix a generically smooth quasi-projective scheme X of dimension d, a
locally free sheaf L of rank one on X and a sub-vector space L ⊂ H0(X,L).
Let Z ⊂ Xk(Z) be a 0-dimensional subscheme parametrised by a non closed
point of Hilb(X) with residual field k(Z). Let L(−Z) ⊂ L be the sub-vector
space of sections which vanish on Z (see the definition below). Our goal is
to give an estimate of the dimension dimL(−Z) under suitable conditions.

The generic point X(E)

A staircase E ⊂ Nd is a subset whose complement C = Nd\E verifies Nd+
C ⊂ C. We denote by IE the ideal of k[x1, . . . , xd] (resp. of k[[x1, . . . , xd]],
of k[[x1, . . . , xd]][t] . . . ) generated by the monomials xe11 . . . . .x

ed

d = xe whose
exponent e = (e1, . . . , ed) is in C. If E is a finite staircase, the sub-
scheme Z(E) defined by IE is 0-dimensional and its degree is #E. The
map E 7→ Z(E) is a one-to-one correspondence between the finite stair-
cases of Nd and the monomial punctual subschemes of Spec k[x1, . . . , xd].
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If E = (E1, . . . , Es) is a set of finite staircases, if X is irreducible and if
Z(E) is the (abstract non embedded) disjoint union Z(E1)

∐
. . .

∐
Z(Es),

there is an irreducible scheme P (E) which parametrizes the embeddings
Z(E) → Xs, where Xs ⊂ X is the smooth locus ([11] and [12]). Such an
embedding Z(E) → Xs determines a subscheme of X, thus there is a natu-
ral morphism f : P (E) → Hilb(X) to the Hilbert scheme of X. We denote
by X(E) the subscheme parametrised by f(p) where p is the generic point
of P (E). We call X(E) the generic union of the schemes Z(E1), . . . , Z(Es).

The linear system L(−X(E))

If Z ⊂ X is a subscheme, denote by L(−Z) ⊂ L the subvector space
which contains the elements of L vanishing on Z. If p is a non closed point
of Hilb(X) whose residual field is k(p), and if Z ⊂ X ×k Spec k(p) is
the corresponding subscheme, the definition of L(−Z) is as follows. Since
L ⊗ k(p) ⊂ H0(L ⊗ Spec k(p), X × Spec k(p)), it makes sense to consider
the vector space V ⊂ L⊗ k(p) containing the sections which vanish on Z.
Denoting by λ the codimension of V , we may associate with V a k(p)-point
g ∈ Grassk(p)(λ,L ⊗ k(p)) = Grassk(λ,L) × Spec k(p) ([10], prop.9.7.6).
In particular L(−Z) is well defined as a (non closed) point of Grassk(λ,L).
The goal of the theorem is to give an estimate of dimL(−X(E)).

Combinatorical constructions

To formulate the theorem, we need some combinatorical notations that
we introduce now. The τ th slice of a staircase E ⊂ Nd is the staircase
T (E, τ) ⊂ Nd defined by:

T (E, τ) = {(0, a2, . . . , ad) such that (τ, a2, . . . , ad) ∈ E}

If E = (E1, . . . , Es) is a s-tuple of staircases and τ = (τ1, . . . , τs), we set

T (E, τ) = (T (E1, τ1), T (E2, τ2), . . . , T (Es, τs)).

A staircase E ⊂ Nd is characterized by a height function hE : Nd−1 → N
which verifies: ∀a, b ∈ Nd−1, hE(a + b) 6 hE(a). The staircase E and hE
can be deduced one from the other via the relation: (a1, . . . , ad) ∈ E ⇔
a1 < hE(a2, . . . , an). The staircase S(E, τ) is defined by its height function:

hS(E,τ)(a2, . . . , ad) = hE(a2, . . . , ad) if τ > hE(a2, . . . , ad)

= hE(a2, . . . , ad)− 1 if τ < hE(a2, . . . , ad).

TOME 57 (2007), FASCICULE 6



1954 Laurent EVAIN

Intuitively, S(E, τ) is the staircase obtained from E after the suppression
of the tth slice, as shown by the following picture. If E = (E1, . . . , Es) is a

Suppression of slice number oneStaircase

family of staircases, and τ = (τ1, . . . , τs) ∈ Ns, we put:

S(E, τ) = (S(E1, τ1), S(E2, τ2), . . . , S(Es, τs)).

If (τ1, . . . , τr) ∈ (Ns)r, the recursive formula

S(E, τ1, . . . , τr) = S(S(E, τ1, . . . , τr−1), τr)

defines the s-tuple of staircases S(E, τ1, . . . , τr) obtained from the s-tuple
E = (E1, . . . , Es) by suppression of r slices in each Ei.

The generic point Xϕ(E, t, v)

Suppose that E is a staircase. We want to give an upper bound to
dimL(−X(E)). A specialisation Xϕ(E, t, v) of X(E) is introduced. By
semi-continuity, dimL(−X(E)) 6 dimL(−Xϕ(E, t, v)) thus it will suffice
to give an upper bound for dimL(−Xϕ(E, t, v)).

Whereas the generic point X(E) corresponds to a monomial subscheme
with staircase E which can move generically, Xϕ(E, t, v) is more special and
corresponds to a monomial subscheme which can move only in a prescribed
way with respect to a coordinate patch ϕ. We construct a family whose base
is Spec k[[t]] by explicit equations in the coordinate patch ϕ. The equations
depend on the time t and v is a control parameter for the velocity of the
moving subscheme. The subscheme Xϕ(E, t, v) is the generic fiber of this
explicit family.

To be precise, the subscheme Xϕ(E, t, v) is defined as follows. If p ∈
X is a smooth point, a formal neighborhood of p is a morphism ϕ :
Spec k[[x1, . . . , xd]] → X which induces an isomorphism between
Spec k[[x1, . . . , xd]] and the completion Ôp of the local ring of X at p.
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If p = (p1, . . . , ps) is a s-tuple of smooth distinct points, a formal neigh-
borhood of p is a morphism (ϕ1, . . . , ϕs) : U → X from the disjoint
union U = V1

∐
. . .

∐
Vs of s copies of Spec k[[x1, . . . , xd]] to X, where

ϕi : Vi → X is a formal neighborhood of pi. If D is a divisor on X, we say
that ϕ and D are compatible if D is defined by the equation x1 = 0 around
each pi (in particular, pi is a smooth point of D and X).
Consider the translation morphism:

Trv1 : k[[x1, . . . , xd]] → k[[x1, . . . , xd]]⊗ k[[t]]

x1 7→ x1 ⊗ 1− 1⊗ tv1

xi 7→ xi ⊗ 1 if i > 1

If E1 is a staircase, the ideal

J(E1, v1) = Trv1(I
E1)k[[x1, . . . , xd]]⊗ k[[t]] ⊂ k[[x1, . . . , xd]]⊗ k[[t]]

defines a flat family F1 of subschemes of Spec k[[x1, . . . , xd]] parametrised
by Spec k[[t]]. This corresponds geometrically to the family whose fiber
over t is obtained from Z(E1) by the translation x1 7→ x1 − tv1 . If ϕ1 is a
formal neighborhood of p1, F1 can be seen as a flat family of subschemes
of X via ϕ1, thus it defines a morphism Spec k[[t]] → Hilb(X). We de-
note by X(ϕ1, E1, t, v1) the non closed point of Hilb(X) parametrised by
the image of the generic point. The first coordinate does not play any
specific role. Thus more generally, if E = (E1, . . . , Es) is a family of stair-
cases, if ϕ = (ϕ1, . . . , ϕs) is a formal neighborhood of (p1, . . . , ps), if v =
(v1, . . . , vs) ∈ Ns, one defines similarly families Fi ⊂ X×Spec k[[t]] flat over
Spec k[[t]]. The disjoint union F = F1 ∪ · · · ∪Fs is still flat over Spec k[[t]]
and corresponds to a morphism Spec k[[t]] → Hilb(X). We denote by
Xϕ(E, t, v) the image of the generic point and by Xϕ(E) = Xϕ(E, 0, v) the
image of the special point (which does not depend on v).

Notation

We denote by [x] the integer part of a real x. If J is an ideal of a ring R,
and s ∈ R, we denote (J : s) = {r ∈ R, sr ∈ J}.

Statement of the theorem

We are now ready to state the theorem. By the above, L(−Xϕ(E, t, v))
corresponds to a morphism Spec k((t)) → G to a Grassmannian G, which
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extends to a morphism Spec k[[t]] → G by valuative properness. The the-
orem gives a control of the limit obtained under suitable conditions.

The formulation is more transparent when there is a unique point moving
towards the divisor (s = 1). The speed v of the point is chosen to be 1.

Theorem 2.1. — Let D be an effective divisor on a quasi-projective
scheme X, p ∈ X, ϕ a formal neighborhood of p compatible with D,
E a staircase with slices T0, T1, . . . . Let Tn1 , . . . , Tnr

be slices of E with
associated subschemes Zi = Xϕ(Tni

) and n1 > n2 > · · · > nr. Let
F = E \ Tn1 , . . . , Tnr

be the staircase obtained after suppression of the
slices Tni

in E. If

∀i, 1 6 i 6 r,L(−(i− 1)D − Zi) = L(−iD),

then
lim
t→0

L(−Xϕ(E, t, v = 1)) ⊂ L(−rD −Xϕ(F ))

In the more general version, there are several moving points and one
needs to be careful about the speed of each point to describe the limit.

Theorem 2.2. — Let D be an effective divisor on a quasi-projective
scheme X, p = (p1, . . . , ps) be a s-tuple of smooth points of X, ϕ a for-
mal neighborhood of p compatible with D, v = (v1, . . . , vs) ∈ Ns a speed
vector, E = (E1, . . . , Es) be staircases and Xϕ(E, t, v) the generic union of
subschemes defined by ϕ. Suppose that one can find integers n1 > · · · > nr
such that:

• ∀k, nk − nk+1 > max(vi),
• ∀i, 1 6 i 6 r, L(−(i− 1)D − Zi) = L(−iD)

where τi = ([ni−1
v1

], . . . , [ni−1
vs

]), Ti = T (E, τi) and Zi = Xϕ(Ti). Then

lim
t→0

L(−Xϕ(E, t, v)) ⊂ L(−rD −Xϕ(S(E, τ1, . . . , τr)))

Remark 2.3. — The main lemma 2.3 of [1] corresponds essentially to the
above theorem with r = 1. Our theorem also generalizes to the vertically
graded subschemes considered in [1] instead of monomial subschemes.

If X is irreducible, X(E) is well defined and it specializes to Xϕ(E, t, v).
Thus we get by semi-continuity the inequality

dimL(−X(E)) 6 dimL(−Xϕ(E, t, v)) = dim lim
t→0

L(−Xϕ(E, t, v)).

Combining this inequality with the theorem, we obtain the following esti-
mate of dimL(−X(E)) in terms of a linear system of smaller degree.

Corollary 2.4. — dimL(−X(E))6dimL(−rD −Xϕ(S(E, τ1, . . . , τr)))
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Remark 2.5. — In case L is infinite dimensional, the theorem still makes
sense since Grassmannians of finite codimensional vector spaces of L are
still well defined and the limit makes sense in such a Grassmannian.

2.1. Comment on the conditions of the theorem and plan of the
proof

In this section, we explain the technical conditions nk−nk+1 > max(vi)
and τi = ([ni−1

v1
], . . . , [ni−1

vs
]) appearing in the statement of the theorem,

and we give a very rough plan of the proof.
Consider the example at the beginning of section 2. There is a subscheme

Z5(t) corresponding to a point of multiplicity 4, which moves towards the
line D as t tends to 0. When t 6= 0, Z5(t)∩D = ∅. When t = 0, Z5(0)∩D is a
scheme of length 4. To apply Bezout properly, we need to find a t such that
Z5(t)∩D is a scheme of length 1. Thus neither t = 0 nor t 6= 0 are suitable.
The idea is then to choose t 6= 0 but tn = 0, which rigorously corresponds
to a restriction over the base Spec k[t]/(tn). The point is to understand how
we choose n to get the required intersection. On this example, if t4 = 0,
Z5(t) ∩D “is” a scheme of length 1, as required.

What do we mean when we compute the intersection Z(t)∩D for tn = 0 ?
Consider a monomial ideal IE and make the change of variable x1 7→ x1−tv
to get the ideal J(t) of Xϕ(E, t, v). For instance, suppose that the staircase
E is defined by IE = (x2

1, x1x
2
2, x

3
2). In other words, E is made from two

slices T0, T1 corresponding to the subschemes with ideals IT0 = (x1, x
3
2) and

IT1 = (x1, x
2
2), and J(t) = (x1−2tvx1+t2v, (x1−tv)x2

2, x
3
2). When we work

over Spec k[t]/tn, formally, we replace ti by zero if i > n. It is easy to see
on our example that if tv = 0, J(t) ⊂ IT0 and if t2v = 0, then J(t) ⊂ IT1 .
Geometrically, this means that if t is in the infinitesimal neighborhood
Spec k[t]/(tn), n 6 (i + 1)v, then the intersection Xϕ(E,t,v) ∩ D contains
the subscheme associated with slice number i.

The general case is similar to this example: for any staircase E, if we
restrict to the infinitesimal neighborhood tn = 0, the trace Xϕ(E, t, v)∩D
contains the subscheme associated with the slice number [n−1

v ].
Consider finally the case with several staircases E1, . . . , Es and associated

subschemes Z(E1), . . . , Z(Es) moving with speed v1, . . . , vs towards the
divisor D, and Xϕ(E, t, v) = Xϕ1(E1, t, v1)

∐
. . .

∐
Xϕs(Es, t, vs). When

we make tni = 0, we see that Xϕ(E, t, v)∩D contains a union of subschemes
Zi = R1

∐
. . .

∐
Rs where Rk is defined by the slice number [ni−1

vk
] of Ek.

In other words, the coordinates of τi = ([ni−1
v1

], . . . , [ni−1
vs

]) are the index
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of the slices corresponding to the intersection Xϕ(E, t, v) ∩ D when we
consider the restriction tni = 0.

Now the condition n1 > n2 > n3... is clear. It comes from the fact
that our analysis uses smaller and smaller restrictions. We restrict over
Spec k[t]/(tn1) to get the required order of contact Xϕ(E, t, v)∩D and we
make an analysis of the situation. Then we restrict to a smaller infinitesimal
neighborhood Spec k[t]/(tn2) and so on.

To explain why the hypothesis required in the theorem is ni − ni+1 >
max(vi), which is a bit more than the natural inequality ni > ni+1, we
look more precisely at the plan of the proof.

Suppose that we have of family of sections s(t) of L vanishing on a
moving punctual subscheme Z(t) = Xϕ(E, t, v) whose support p(t) tends
to p(0) as t tends to 0. Using local coordinates around p(0), the sections of
L can be considered as functions and the vanishing on Z(t) translates to
s(t) ∈ J(t) where J(t) is the ideal of Z(t). Denote by Jn1 the restriction of
J(t) to the infinitesimal neighborhood Spec k[t]/tn1 of t = 0. As explained
above, we put tn1 = 0 in J(t) and we see that the functions in Jn1 vanish
on Z1. In particular, if tn1 = 0, s(t) is a family of sections vanishing on
Z1. Then it is a family of sections vanishing on D since by hypothesis a
section which vanishes on Z1 vanishes on D. If D is defined locally by the
equation x1 = 0, this means that s(t) = x1s

′(t) with s′(t) ∈ (Jn1 : x1).
Restrict now to the smaller infinitesimal neighborhood Spec k[t]/tn2 and
denote by (Jn1 : x1)n2 the restriction of (Jn1 : x1). The restriction of
s′(t) to Spec k[t]/tn2 is an element of (Jn1 : x1)n2 , and a computation
shows that it vanishes on Z2. Then by hypothesis, s′(t) vanishes on D.
Using local coordinates, this means that if tn2 = 0, s′(t) = x1s

′′(t), with
s′′(t) ∈ ((Jn1 : x1)n2 : x1) and s(t) = x1s

′(t) = x2
1s
′′(t). Then we put

t = 0 and we get s(0) = x2
1s
′′(0) where s′′(0) ∈ ((Jn1 : x1)n2 : x1)(0). A

computation shows that ((Jn1 : x1)n2 : x1)(0) = IS(E,τ1,τ2)). The control we
get in this way of any element s(0) ∈ limt→0 L(−Xϕ(E, t, v)) corresponds
to the inclusion

lim
t→0

L(−Xϕ(E, t, v)) ⊂ L(−2D −Xϕ(S(E, τ1, τ2)))

given by the theorem in the case r = 2.
For a general r, the proof follows the same lines. We simply do r re-

strictions instead of two and we need to control a more complicated ideal
(((Jn1 : x1)n2 : x1)....)nr : x1)) instead of ((Jn1 : x1)n2 : x1). The computa-
tion of the ideal (((Jn1 : x1)n2 : x1)....)nr

: x1)) is difficult in general, but it
simplifies if nk−nk+1 > max(vi). Thus the condition nk−nk+1 > max(vi)
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is a technical condition to make possible the computations of the ideals
involved in the proof.

3. Proof of theorem 2.2

In the context of the theorem, we are given a set of staircases E =
(E1, . . . , Es), a vector v = (v1, . . . , vs), a divisor D, a formal neighborhood
ϕ of (p1, . . . , ps) in which D is given by the equation x1 = 0 around each
pi, and integers n1, . . . , nr. For n > 0, we put Rn = k[[x1, . . . , xd]]s ⊗
k[[t]]/(tn) and R∞ = k[[x1, . . . , xd]]s ⊗ k[[t]]. The formal neighborhood
ϕ = (ϕ1, . . . , ϕs) is viewed as a map Spec R1 → X. We denote by ψnp :
Rn → Rp the natural projections, which exist for p 6 n 6 ∞. If J ⊂ R∞ is
an ideal, we define recursively the ideals Jnk

⊂ Rnk
and Jnk: ⊂ Rnk

(mind
the semicolon in the subscript) by the formulas

• Jn1 = ψ∞n1(J),
• Jnk: = (Jnk

: x1),
• Jnk

= ψnk−1nk
(Jnk−1:)

As explained before, the vector space L(−X(ϕ,E, t, v)) corresponds to a
morphism Spec k((t)) → G (where G is a Grassmannian of subvector spaces
of L) which extends to a morphism Spec k[[t]] → G. The universal family
over the Grassmannian G pulls back to a family Ũ ⊂ Spec k[[t]] × L. If
V ⊂ L is a subvector space, we can define its base locus BV ⊂ X. In
the relative situation, the flat family Ũ of subvector spaces parametrised
by Spec k[[t]] defines a family of base loci BŨ (t) ⊂ Spec k[[t]] ×X. Since
we are interested in the part of the base locus contained in the formal
neighborhood ϕ : Spec R1 → X, we consider the intersection BŨ (t) ∩
(Spec k[[t]]×Spec R1) which is defined by an ideal U ⊂ R∞. The theorem
will be proved if we show that the special fiber Ũ(0) contains only sections
vanishing r times on D and if, in local coordinates, U(0) is included in
xr1I

S(E,τ1,...,τr).
Let us denote by Ũni

⊂ Spec k[t]/tni ×L and Uni ⊂ Rni the restrictions of
Ũ and U over the subscheme Spec k[[t]]/tni . We show by induction that:

∀i > 1, Uni
⊂ xi1Jni:

where J = J(E1, v1) ⊕ · · · ⊕ J(Es, vs) ⊂ R∞. The proof relies on the
following two lemmas whose proof is postponed. These lemmas control the
ideal Jnk

and the restriction of Jnk: to the special fiber t = 0.

Lemma 3.1. — Jnk
⊂ ITk
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Lemma 3.2. — Jnk:(0) = IS(E,τ1,...,τk).

The fibers of Ũ contain sections of L which vanish on Xϕ(E, t, v). Since
J is the ideal of Xϕ(E, t, v), this implies the inclusion U ⊂ J , hence
Un1 ⊂ Jn1 . By lemma 3.1, this inclusion implies that the fibers of Ũn1 are
elements of L which vanish on Z1, hence they vanish on D by hypothesis.
It follows that elements of Un1 are divisible by x1 and we can then write:
Un1 ⊂ x1Jn1:. Suppose now that Uni

⊂ xi1Jni: . Then Uni+1 ⊂ xi1Jni+1 .
By lemma 3.1, this inclusion implies that the fibers of Ũni+1 are elements
of L(−iD) which vanish on Zi+1, hence they vanish on D by hypothesis.
It follows that elements of Uni+1 are divisible by xi+1

1 and we can write
Uni+1 ⊂ xi+1

1 Jni+1:. This ends the induction on i. In particular, for i = r,
using lemma 3.2 for the last equality, we have the required inclusion:

U(0) = Unr (0) ⊂ xr1Jnr:(0) = xr1I
S(E,τ1,...,τr).

We now turn to the proof of the lemmas 3.1 and 3.2 on which the above
proof relies. Note that J = (J1, . . . , Js) and ITk = ((ITk)1, . . . , (ITk)s)
are defined componentwise, the component number i corresponding to the
study around the point pi. Thus lemmas 3.1 and 3.2 below can be proved
for each component and one may suppose s = 1 to prove them. We thus
suppose for the rest of this section that s = 1, that E = (E1, . . . , Es) is a
staircase given by a height function h, and that v = (v1, . . . , vs) ∈ N.
Let B (resp. C) be the set of elements m = (m2, . . . ,md) ∈ Nd−1 such that
h(m) 6= 0 (resp. h(m) = 0). Remark that B is finite due to the finitness of
E. We denote by

• C(t) ⊂ Rn the k[[x1]] ⊗ k[[t]] sub-module containing the elements∑
am1m2...md

xm1
1 xm2

2 . . . xmd

d ⊗ f(t), where f(t) ∈ k[[t]]/tn and
(m2, . . . ,md) ∈ C

• C(0) ⊂ R1 = k[[x1, . . . , xd]] the k[[x1]] sub-module containing the
series

∑
am1m2...md

xm1
1 xm2

2 . . . xmd

d where (m2, . . . ,md) ∈ C
• B(m) ⊂ Rn the k[[x1]]⊗k[[t]] sub-module generated by fm = (x1−
tv)h(m)xm2

2 . . . , xmd

d ,
• B(m, 0) ⊂ R1 = k[[x1, . . . , xd]] the k[[x1]] sub-module generated by
fm(0) = (x1)h(m)xm2

2 . . . , xmd

d ,
• Bnk

(m) ⊂ Rn the k[[x1]] ⊗ k[[t]] sub-module generated by the ele-
ments fm, t

αk−i+1fm

xi
1

, 1 6 i 6 k, where αi = max(0, ni− vh(m)) for
i > 0. In particular, for k = 0, Bnk

(m) = B(m).

To simplify the notations, we have adopted above the same notation for
distinct submodules (living in distinct ambiant modules). The following
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lemma says that the module Bnk
(m) is well defined as a sub-module of Rj

for j 6 nk.

Lemma 3.3. — Let j 6 nk. If i 6 k, the element tαk−i+1fm

xi
1

∈ Rj . In
particular Bnk

(m) ⊂ Rj is well defined for j 6 nk. If in addition, j 6 nk+1,
then tαk−i+1fm

xi
1

is a multiple of x1.

Proof. — First, if l < i, the coefficient of xl1 in tαk−i+1fm is a multiple of
tαk−i+1tv(h(m)−l). This term is zero in Rj since the exponent of t is at least
nk−i+1 − vl > nk + (i− 1)v − vl > nk > j. It follows that tαk−i+1fm

xi
1

∈ Rj
is well defined. A similar estimate shows that for l 6 i, the coefficient of
xl1 in tαk−i+1fm is zero in Rj for j 6 nk+1. Thus tαk−i+1fm

xi
1

is a multiple of
x1. �

Lemma 3.4. —

• As k[[x1]]-modules, IE =
⊕

m∈B B(m, 0)⊕ C(0) ⊂ k[[x1, . . . , xd]]
• As k[[x1]]⊗ k[[t]]-modules, J =

⊕
m∈B B(m)⊕ C(t) ⊂ R∞

Proof. — This is a straightforward verification left to the reader. �

Lemma 3.5. — We have the equality of k[[x1]]⊗ k[[t]]-modules:
• Jnk

=
⊕

m∈B Bnk−1(m)⊕ C(t) ⊂ Rnk

• Jnk: =
⊕

m∈B Bnk
(m)⊕ C(t) ⊂ Rnk

Proof. — Let us say that the index i of Jnk
and Jnk: is respectivly 2k−1

and 2k. We prove the lemma by induction on the index i. If i = 1, we get
from the preceding lemma the equality

Jn1 = ψ∞n1(J) =
∑
m∈B

ψ∞n1(B(m)) + ψ∞n1(C(t))

=
∑
m∈B

B(m) + C(t) in Rn1 .

The last sum is obviously direct, thus it is the required equality.
Suppose now that we want to prove the lemma for i = 2k − 1. This is
exactly the same reasoning as in the case i = 1, substituting Jnk

, Jnk−1:

and ψnk−1nk
for Jn1 , J , and ψ∞,n1 .

Consider now the case i = 2k. Taking the conductor from the expression
of Jnk

coming from induction hypothesis, we get:

Jnk: =
⊕
m∈B

(Bnk−1(m) : x1)⊕ (C(t) : x1)

The equality (C(t) : x1) = C(t) is obvious, so we are done if we prove
the equality (Bnk−1(m) : x1) = Bnk

(m) in the ambiant module Rnk
. The
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inclusion ⊃ is clear since for every generator g of Bnk
(m), x1g is a multiple

of one of the generators of Bnk−1(m). As for the reverse inclusion, if z ∈
(Bnk−1(m) : x1), one can write down

x1z =
∑

16i6k−1

Pi
tαk−ifm
xi1

+ x1P0fm +Q0fm (∗)

where Pi ∈ k[[x1]] ⊗ k[[t]] and Q0 ∈ k[[t]]. By lemma 3.3, the terms
tαk−ifm

xi
1

∈ Rnk
are divisible by x1, thus x1 divides Q0fm. It follows that the

coefficient Q0t
vh(m)xm2

2 . . . xmd

d of x0
1 in Q0fm is zero, which happens only

if Q0 is a multiple of tmax(0,nk−vh(m)) = tαk . Writing down Q0 = λtαk−1+1

and dividing the displayed equality (∗) by x1 shows that z ∈ Bnk
, as ex-

pected. �

Lemma 3.1. — Jnk
⊂ ITk

Proof. — In view of the previous lemma, and since the inclusion C(t) ⊂
ITk is obvious, one simply has to check that the generators of Bnk−1(m) ver-
ify the inclusion. If h(m) 6 [nk−1

v ], xm2
2 . . . xmd

d ∈ ITk . Since every generator
of Bnk−1(m) is a multiple of xm2

2 . . . xmd

d , it is in ITk . If h(m) > [nk−1
v ], then

x1x
m2
2 . . . xmd

d ∈ ITk . According to lemma 3.3, every generator of Bnk−1(m)
is a multiple of x1, hence is in ITk as a multiple of x1x

m2
2 . . . xmd

d . �

Lemma 3.2. — Jnk:(0) = IS(E,τ1,...,τk).

Proof. — According to lemmas 3.5 and 3.4, it suffices to show that
Bnk

(m, 0) ⊂ k[[x1]] is the submodule generated by x
h(m)−p(m)
1 xm2

2 . . . xmd

d

where p(m) is the number of τi’s verifying τi < h(m), 1 6 i 6 k. Since the
generators of Bnk

(m) are explicitely given, the lemma just comes from the
evaluation of these generators at t = 0. We have fm(0) = x

h(m)
1 xm2

2 . . . xmd

d .
By definition of p(m), for 1 6 i 6 k, τi > h(m) if and only if i 6 k−p(m). In
particular αi = 0 if and if i > k− p(m). We now evaluate the generators of
Bnk

(m) using this information on αi. If i 6 p(m), t
αk−i+1fm(0)

xi
1

= t0fm

xi
1

(0) =

x
h(m)−i
1 xm2

2 . . . xmd

d . If i > p(m), tαk−i+1fm(0)
xi
1

= 0. Thus Bnk
(m, 0) is gen-

erated by xh(m)−p(m)
1 xm2

2 . . . xmd

d as expected. �

4. The Hilbert function of k2 fat points in P2

In this section, we compute the Hilbert function of the generic union of
k2 fat points in P2 of the same multiplicity m.
We work over a field of characteristic 0.
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Definition 4.1. — If Z ⊂ P2 is a zero-dimensional subscheme of de-
gree deg(Z), we denote by Hv(Z) : N → N the virtual Hilbert function
of Z defined by the formula Hv(Z, d) = min( (d+1)(d+2)

2 , deg(Z)). The crit-
ical degree for Z, denoted by dc(Z) is the smallest integer d such that
Hv(Z, d) > deg(Z). We denote by H(Z) the Hilbert function of Z.

Theorem 4.2. — Let Z be the generic union of k2 fat points of multi-
plicity m in P2. Then H(Z) = Hv(Z).

Let us recall the following well known lemma:

Lemma 4.3. — If H(Z, d) > Hv(Z, d) for d = dc(Z) and d = dc(Z)− 1,
then H(Z) = Hv(Z).

Definition 4.4. — The regular staircase Rm ⊂ N2 is the set defined
by the relation (x, y) ∈ Rm ⇔ x + y < m. A quasi-regular staircase E
is a staircase such that Rm ⊂ E ⊂ Rm+1 for some m. A right specialized
staircase is a staircase such that ((x, y) ∈ E and y > 0) ⇒ (x+1, y−1) ∈ E.
A monomial subscheme of P2 with staircase E is a punctual subscheme
supported by a point p which is defined by the ideal IE in some formal
neighborhood of p.

Example 4.5. — A fat point of multiplicity m is a monomial subscheme
with staircase Rm.

Our first intermediate goal is lemma 4.7 which says that under suitable
conditions, if Z = L∪R ⊂ P2 is a subscheme with L included in a line, the
Hilbert function of Z is determined by that of R.

We recall that a collision of punctual subschemes Z1, . . . , Zs ⊂ A2 is a
subscheme obtained as a flat limit when the support of the Zi’s approach
the same point (see [7]).

Proposition 4.6. — Let Z be a generic union of fat points. The fol-
lowing conditions are equivalent.

• H(Z) = Hv(Z)
• there exists a quasi-regular right-specialized staircase E and a col-

lision C of the fat points which is monomial with staircase E.
• there exists a quasi-regular staircase E and a collision C of the fat

points which is monomial with staircase E.

Proof. — 1 ⇒ 2. Let ρt be the automorphism of P2 = Proj(k[X,Y,H])
defined for t 6= 0 by ft : X 7→ X

t , Y 7→ Y
t ,H 7→ H. Consider the collision

C = limt→0 ft(Z). It is a subscheme of the affine plane Spec k[x = X
H , y =

Y
H ] supported by the origin (0, 0). It is shown in [7] that if H(Z) = Hv(Z),
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then there is an integer m such that the ideal of C verifies IRm+1 ⊂
I(C) ⊂ IRm . Thus I(C) = V ⊕ k[x, y]>m+1 where k[x, y]>m+1 stands
for the vector space generated by the monomials of degree at least m+ 1,
and V ⊂ k[x, y]m. Let now gt : x 7→ x − ty, y 7→ y. Then the ideal of
D = limt→∞ gt(C) is I(D) = W ⊕ k[x, y]>m+1 where W = limt→∞ gt(V )
is a vector space which admits a base of the form ym, xym−1, . . . , xkym−k.
Thus I(D) = IE for some quasi-regular right-specialized staircase E. And
D is a collision of the fat points since it is a specialisation of the collision
C and since being a collision is a closed condition.
2 ⇒ 3 is obvious.
3 ⇒ 1. If there exists a collision C associated with a quasi-regular staircase
E, then by semi-continuity H(Z, d) > H(C, d) = min( (d+1)(d+2)

2 ,#E) =
min( (d+1)(d+2)

2 , deg(C)) = min( (d+1)(d+2)
2 , deg(Z)) = Hv(Z, d). Since the

well known reverse inequality Hv(Z, d) > H(Z, d) is always true, we have
the required equality Hv(Z, d) = H(Z, d). �

Lemma 4.7. — Let R ⊂ P2 be a generic union of fat points, D ⊂ P2

be a generic line, L ⊂ D be a subscheme whose support is generic in D.
Let Z = R ∪ L and suppose that the degree of L satisfies deg(L) 6 dc(R).
Then H(R) = Hv(R) implies H(Z) = Hv(Z).

Proof. — By the above lemma and its proof, there exists a quasi-regular
right specialized staircase E and a collision C of the fat points supported by
the origin of A2 = Spec k[x, y] such that the ideal of C ⊂ A2 is I(C) = IE .
By the genericity hypothesis, L can be specialized to the subscheme L(t)
with equation (y − t, xdeg(L)). Obviously L(t) is monomial with staircase
F = {(0, 0), (1, 0), . . . , (deg(L) − 1, 0)}. Let D = limt→0 C ∪ L(t). By [12],
I(D) = IG for some monomial staircase G. Moreover, the explicit descrip-
tion of G given in [12] ( G is the “vertical collision” of E and F ) and the
inequality deg(L) 6 dc(R) shows that G is quasi-regular. Since Z = R ∪ L
can be specialized to a scheme D defined by a quasi regular staircase,
H(Z) = Hv(Z). �

Lemma 4.8. — Let Z ⊂ P2 be a union of k2 fat points of multiplicity m
with k > 4. The critical degree dc(Z) verifies km+1 < dc(Z) 6 km+k−2.

Proof. — Direct calculation. �

Proof of theorem 4.2. — We show by induction on k that the Hilbert
function of the generic union Z of k2 fat points of multiplicity m is the
virtual Hilbert function Hv(Z). If k 6 3, this is known by [14]. So we
may suppose k > 4. According to lemma 4.3, we only need to check that
H(Z, d) > Hv(Z, d) for d = dc(Z) or d = dc(Z) − 1, and, by lemma 4.8,
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such a d verifies d = km + s for some s satisfying 0 6 s 6 k − 2. By
semi-continuity, it suffices to specialize Z to a scheme Z ′ with H(Z ′, d) >
Hv(Z, d). First, we choose a generic line D and generic points p1, . . . , p2k−1

on D. We divide the k2 fat points into three subsets E1, E2, E3 of respective
cardinal k, k−1, (k−1)2. We specialize the k fat points of E1 on the points
pk, . . . , p2k−1. We leave the generic (k − 1)2 + (k − 1) points of E3 ∪E2 in
their generic position. We denote by L the set of sections of O(d) vanishing
on the fat points of E1 ∪E3. Since the points of E1 have been specialised,
we have by semi-continuity the inequality:

(∗) H(Z, d) >
(d+ 1)(d+ 2)

2
− dimL(−X(E))

where

E = (Rm, . . . , Rm︸ ︷︷ ︸
(k−1) copies

).

We now make a further specialisation, moving the k−1 fat points of E2 on
the points p1, . . . , pk−1 using theorem 2.2. To this end, we fix the notations.
We choose a formal neighborhood ϕ of p = (p1, . . . , pk−1), a number N >>

0 and we take the speed vector

v = ( N, . . . , N︸ ︷︷ ︸
k−s−2 times

, N + 1, . . . , N + 1︸ ︷︷ ︸
s+1 times

).

Finally, we let

ni = (N + 1)(m− i+ 1), 1 6 i 6 m.

Let us check that the conditions of theorem 2.2 apply. The condition
nk − nk+1 > max(vi) is obviously satisfied. As for the remaining condi-
tion, remark that L(−(i−1)D) is a set of sections of O(d− i+1) vanishing
on pm−i+1

k , . . . , pm−i+1
2k−1 . In particular, if Zi is a punctual subscheme of D

of degree d− i+2−k(m− i+1) = s+1+(i−1)(k−1) whose support does
not meet the union pk ∪ · · · ∪ p2k−1, then L(−iD − Zi) = L(−(i + 1)D).
In our case, Zi is a union of one-dimensional fat points of the line D. Let
us compute its degree. The subscheme Zi is supported by p1 ∪ · · · ∪ pk−1

and we denote by dj the degree of the part (Zi)pj
supported by pj . By

definition of Zi, dj is the cardinal m − [ni−1
vj

] of the slice T (Rm, [ni−1
vj

]).
Since N >> 0, dj = i−1 if j 6 k−s−2 and dj = i if k−s−1 6 j 6 k−1.
Thus deg(Zi) =

∑
dj = s+1+(i−1)(k−1). We can then apply theorem 2.2
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and its corollary. We conclude that:

(∗∗) dimL(−X(E)) 6 dimL(−mD −Xϕ(S(E, τ1, . . . , τm)).

The linear system L(−mD) is the set of sections of O(d−m) which vanish
on the union Z ′ of the fat points of E3. Moreover, Xϕ(S(E, τ1, . . . , τm)) is
the union L of the one-dimensional fat points pm1 ∩D, . . . , pmk−s−2 ∩D. It
follows that

(∗ ∗ ∗) dimL(−mD −Xϕ(S(E, τ1, . . . , τm))

=
(d−m+ 2)(d−m+ 1)

2
−H(Z ′ ∪ L, d−m).

By lemma 4.7 and the induction, we have

(∗ ∗ ∗∗) H(Z ′ ∪ L, d−m) = Hv(Z ′ ∪ L, d−m)

Now, by construction (or by an easy direct calculation),

(∗ ∗ ∗ ∗ ∗) Hv(Z ′ ∪ L, d−m)− (d−m+ 2)(d−m+ 1)
2

= Hv(Z, d)−
(d+ 2)(d+ 1)

2
Putting together the displayed equalities and inequalities (*). . . (*****)
yields the required inequality H(Z, d) > Hv(Z, d). �

5. Prospects and limits

In this section, we discuss the difficulties for the application of theo-
rem 2.2, in particular for the application of the method to more general
numbers of points.

First, one has to find a divisor D and a good specialisation. For instance,
consider the system L = H0OP2(13H − p4

1 · · · − p4
10) containing the equa-

tions of plane curves of degree 13 vanishing on ten generic fat points of
multiplicity 4. If the point p10 moves to the cubic C containing the points
p1, . . . , p9, it is not possible to compute the limit of the linear system using
theorem 2.2. To apply the theorem in a sensible way, one would need to
take subschemes Z1 and Z2 of length 3, or equivalently two slices of cardi-
nal 3 in the staircase of p4

10. However, there is only one slice of cardinal 3
in the staircase of the fat point p4

10. We could of course apply the theorem
with Z1 of length 3 and Z2 of length 4 and conclude that the limit system is
included in G = f2H0OP2(7H − p2

1 · · · − p2
10), where p1, . . . , p10 are located
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on the cubic C and f is the equation of C. But the inclusion limLt ⊂ G is
strict (dimG = dim limLt + 1).

Even if it is possible to find in the moving points the slices of the
required cardinal, it still happens that the inclusion limLt ⊂ G of the
theorem is strict because G is special. For instance, consider the system
L = H0OP2(19H − p6

1 − . . . p6
10). One can show that P(L) is empty. We

put the three points p1, p2, p3 on a line D with equation f = 0. Then, we
apply the theorem with the points p4 and p5 moving to D. The theorem as-
serts that the limit system is included in G = f6H0OP2(13H−p6

6 · · ·−p6
10).

There are too many conditions on the conic through p6, . . . , p10 and dimG =
dim limLt + 6.

However, the above problems are not real obstacles in the application of
the method. When the points are in general position, it is always possible
to find a suitable D and a well chosen number of points moving to D such
that the theorem gives a sensible candidate for the limit.

For instance, in the above case, one can move only p4 to the lineD instead
of p4 and p5. The theorem then says that the limit system is included in
G = f3H0OP2(16H − p3

1− p3
2− p3

3−Z4− p6
5 · · · − p6

10), where p1, p2, p3 ∈ D
and Z4 is a subscheme of length 9 (Z4 can be obtained as a collision of
two fat points of multiplicity 3 and 2 moving along D). Then, one can do
a further specialisation from G and move some other points to a curve.
However, in this new specialisation, p1, p2, p3, Z4 must move along D, not
freely.

At each step of the procedure, there are several possibilities ( application
of the theorem, collision of points, specialisation of curves, Cremona trans-
formations...). Thanks to this flexibility, on concrete examples, it always
seems to be possible to add a new step and to progress. However, if the
example is significant, the number of steps to reach a situation where one
can conclude is far too big in general. The author gave up some interesting
examples in view of the amount of calculation required. It is not possible
to progress step by step. One has to imagine a systematic procedure.

Thus, the difficulty is that we start with a general position and we end
up with a special position. It makes it hard to perform the computations in
a systematic way. This is the main reason why we dealt with k2 fat points:
under this condition, we could fine a systematic procedure.

Obviously, other results can be proved with theorem 2.2 and ad hoc
inductions. For instance, an exploration of the method will at least give a
bound for the smallest degree d of a curve passing through k general points
in the plane with multiplicity m. The limits of the method are not clear. Is
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it possible to find the exact value of d along these lines ? We don’t know
whether the difficulty is to find an induction with the tools developped so
far, or if some new tools will be necessary. Computing an example is tedious
by hand, and examples are missing to have a guess on this question.

6. Collisions of fat points

This section gives an other application of theorem 2.2: the computation
of collisions of fat points in the plane.

The collisions of at most three fat points are known [8]. When the number
of fat points is four or five, the general collisions where all points approach
the origin with the same order of speed have been computed by Ciliberto
and Miranda [5]. We want to discuss an other type of collision of fat points,
namely the collisions where the points approach the origin successivly. It
is in some sense the opposite cases compared to those studied by Ciliberto
and Miranda: for any pair of points, one of the two points approach the
origin infinitly faster than the other one.

We start with a definition of a generic successive collision of fat points in
A2. We proceed by induction. A generic successive collision of one fat point
pm is the fat point itself. Suppose defined the generic successive collision
Zm1...mk−1 of pm1

1 , . . . , p
mk−1
k−1 . Let C(d) be the generic curve of degree d

containing the support O of Zm1...mk−1 . Let

Zm1...mk
(d) = lim

p∈C(d), p→O
Zm1...mk−1 ∪ pmk .

Proposition 6.1. — There exists an integer d0 such that ∀d > d0,
Zm1...mk

(d) = Zm1...mk
(d0). We denote this subscheme by Zm1...mk

and
this is by definition the generic successive collision of pm1

1 , . . . , pmk

k .

We omit the proof of the proposition as it will be clear in our context:
the integers d0 which appear in the definition of Zmmmm will always be
equal to 1. In other words, it will be clear from the calculations that the
generic collision of four fat points will be shown to depend only on the
tangent directions of the approaching fat points.

Our goal is to compute the generic collision Zmmmm of 4 fat points of
multiplicity m 6.2 and more generally the successive collsions of four fat
points moving along smooth curves 6.3.
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We will describe Zmmmm as a pushforward via a blowup π : S̃ → A2,
where π is the blowup defined by the following Enriques diagram

q5

q3

q4

q2

q1

q0

q6 q7

The meaning of the Enriques diagram is explained in [9], but we recall
for convenience what this means on this particular example. Let q0 ∈ A2,
q1, q2, q3 be three distinct tangent directions at q0. Let

η : S1 → S0 = A2

be the blowup of q0, and Q0 ⊂ S1 the exceptionnal divisor. Let

S2 → S1

be the blowup of (q1 ∪ q2 ∪ q3) ⊂ Q0, and Q1, Q2, Q3 ⊂ S2 the respective
exceptional divisors. If Qi ⊂ Sni

is an exceptional divisor, and if Sj → Sni

is a sequence of blowups, we still denote by Qi ⊂ Sj (resp. we denote by
Ei ⊂ Sj) the strict transform (resp. the total transform) of Qi in Sj . With
this convention, let q4 = Q0 ∩Q2 ∈ S2, q5 = Q0 ∩Q3 ∈ S2. Let

S3 → S2

be the blowup of q4 ∪ q5, Q4, Q5 the corresponding exceptionnal divisors.
Let q6 = Q3 ∩ Q5 ∈ S3, S4 → S3 the blowup of q6, Q6 its exceptional
divisor. Let q7 = Q6 ∩ Q3 ∈ S4 and S̃ = S5 → S4 the blowup of q7. We
denote by

ρ : S̃ → S1 and π : S̃ → A2

the compositions of the blowups introduced above. As explained, each point
qi defines a divisor Ei ⊂ S̃. If (m0, . . . ,m7) ∈ N8, the ideal

π∗(OS̃(−
∑

miEi))
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defines a punctual subscheme supported by q0 which we will represent
graphically with a label mi at the point of the Enriques diagram corre-
sponding to qi. For instance, the subscheme π∗(OS̃(−8E0 − 2E1 − E2 −
E4 − 3E3)) is associated with the following diagram.

8

2

1

1

3

0 0 0

Theorem 6.2. — Let q0 ∈ A2, q1, q2, q3 three distinct tangent direc-
tions at q0 and C1, C2, C3 be three smooth curves passing through p0 with
tangent direction q1, q2, q3. Let Zmmmm be the collision of the fat points
pm0 , p

m
1 , p

m
2 , p

m
3 where:

• p0 is located at q0,
• p1 moves on the curve C1 (resp. p2 on C2, p3 on C3).

Then Zmmmm is defined by the following Enriques diagram, which depends
on m modulo 4.

k

k

k

3k 1+

7k + 4

k + 1 k k

k

k

k

3k + 2

k k k

7k + 6

k

k

k

3k 1+

kk k−1

7k + 2

m = 4k + 2 m = 4k + 3m = 4k + 1m = 4k

k

k

k k k

k

3k

7k

Besides theorem 6.2, many collisions are computable using the same
method (in fact, an infinite number). For instance, consider the succes-
sive collisions of four fat points pm1 , .., pm4 in the plane, ie. the collisions
obtained in four steps by moving successivly each of the fat points pmi to
the origin of A2 along a curve Ci. It is possible to compute all the successive
collisions when the curves Ci are smooth at the origin. The following array
sums up the results.

Theorem 6.3. — The successive collisions of four fat points pn1 , . . . , pn4
moving along smooth curves C1, . . . , C4 are defined by integrally closed
ideals and the corresponding Enriques diagrams are:
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Enriques diagram Equations of curves which realise the collision

2n/3

2n/3

5n/3

n/3 n/3 n/3

C1, C2, C3 : y = 0

C4 : x = 0

2n/3

n/3 n/3 n/3

4n/3 4n/3

C1, C2, C3 : y = 0

C4 : y = x2

n
n

n
n C1, C2, C3, C4 : y = 0

n/4 n/4

7n/4 n/4

3n/4

n/4 n/4 n/4
C1, C2 : y = 0

C3 : x = 0

C4 : y = x

n/6 n/6

2n/6 2n/6

10n/6

5n/6

3n/6

C1, C2, C4 : y = 0

C3 : x = 0

3n/2

n/2

n

n/2 n/2

C1, C2 : y = 0

C3, C4 : x = 0

Remark 6.4. — To avoid too many cases, we supposed that the numbers
n
2 ,

n
3 ,

n
4 ,

n
6 appearing above are integers. Of course, it is possible to write

down slightly different formulas when these numbers are not integers as in
theorem 6.2.

Since the proof of theorem 6.3 use the same arguments as theorem 6.2,
we just prove theorem 6.2 for brevity.
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Proof. — All cases are similar and we only consider the case m = 4k.
We choose a formal neighborhood ξ of p = (q1, q2, q3) ∈ (S1)3 such that
Q0 ⊂ S1 is defined by the equation x1 = 0 around each qi and such that C3

is defined by x2 = 0 around q3 (this is possible since C3 is smooth). Let n =
(m−1,m−5, . . . , 3). Let Fm be the staircase defined by the height function
hFm(d) = hRm([d2 ]), and let Gm = S(Rm, n) be the staircase obtained from
Rm by suppression of the slices indexed by n. Let Xξ(Rk, Fk, Gm) ⊂ S1

be the subscheme defined by the formal neighborhood ξ and the staircases
Rk, Fk, Gm. According to the correspondance between complete ideals and
monomial subschemes formulated in [9], if the mi’s are the integers defined
in the Enriques diagram,

ρ∗OS̃(−
∑

miEi)) = OS1(−m0Q0 −Xξ(Rk, Fk, Gm))) (∗)

Let J(p3) denote the ideal of Zmmm ∪ pm3 . I claim that we are done if we
prove the inclusion

lim
p3→p0

η∗J(p3) ⊂ H0(OS1(−m0Q0 −Xξ(Rk, Fk, Gm)) (∗∗).

Indeed, we would then have the inclusions

IZmmmm ⊂ η∗η
∗IZmmmm = η∗η

∗ lim
p3→p0

J(p3)

⊂ η∗ lim
p3→p0

η∗J(p3)

⊂ η∗H
0(OS1(−7kQ0 −Xϕ(Rk, Fk, Gm)) by (∗∗)

⊂ H0(η∗(OS1(−7kQ0 −Xϕ(Rk, Fk, Gm))

⊂ H0(η∗ρ∗OS̃(−
∑

miEi)) by (∗)

⊂ IZ where IZ = π∗OS̃(−
∑
miEi).

According to [2], since the Enriques diagram defining Z is unloaded,
deg(Z) =

∑ mi(mi+1)
2 which is immediately checked to be 4 4k(4k+1)

2 =
deg(Zmmmm). Summing up, Z and Zmmmm are two punctual subschemes
of the same degree with IZmmmm

⊂ IZ , thus they are equal.
It remains to prove the displayed inclusion (∗∗) using our theorem. By [8]
or [16],

η∗IZmmm
= H0OS1(−6kQ0 −Xψ(R2k, F2k))

where ψ is the formal neighborhood of (q1, q2) induced by the formal neigh-
borhood ξ of (q1, q2, q3). Thus

lim
p3→p0

η∗J(p3) = lim
t→0

L(−Xϕ(Rm, t, v = 1))

where ϕ is the formal neighborhood of q3 induced by the formal neighbor-
hood ξ of (q1, q2, q3) and L = H0(OS1(−6kQ0 −Xψ(R2k, F2k))). To apply
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theorem 2.2 with X = S1, s = 1,D = Q0, and n = (m,m − 4, . . . , 4),
the verification L((−i + 1)D − Zi) = L(−iD) is needed. Elements of
L((−i+ 1)D − Zi) are sections of OS1((−6k − i+ 1)Q0) vanishing on

Xψ(R2k−i+1, F2k−i+1)∪Zi = Xξ(R2k−i+1, F2k−i+1, T (Rm,m−1−4(i−1))).

Since the intersection

Q0 ∩Xξ(R2k−i+1, F2k−i+1, T (Rm,m− 1− 4(i− 1)))

has degree 3(2k− i+ 1) + (4i− 3) greater than the degre 6k+ i− 1 of the
restriction OS((−6k − i+ 1)Q0)|Q0 , it follows that any section of L((−i+
1)D − Zi) vanishes on D. Thus we can apply the theorem and we get:

limt→0 L(−Xϕ(Rm, t, 1)) ⊂ L(−kQ0 −Xϕ(S(Rm, n)))
=

H0(OS1(−7kQ0 −Xψ(Rk, Fk)−Xϕ(S(Rm, n))))
=

H0(OS1(−m0Q0 −Xξ(Rk, Fk, S(Rm, n))),

which concludes the proof. �
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