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A NOTE ON FUNCTIONAL EQUATIONS FOR ZETA
FUNCTIONS WITH VALUES IN CHOW MOTIVES

by Franziska HEINLOTH

Abstract. — We consider zeta functions with values in the Grothendieck ring
of Chow motives. Investigating the λ–structure of this ring, we deduce a functional
equation for the zeta function of abelian varieties. Furthermore, we show that
the property of having a rational zeta function satisfying a functional equation is
preserved under products.

Résumé. — Nous considérons les fonctions zêta à valeurs dans l’anneau de Gro-
thendieck des motifs de Chow. L’étude de la λ-structure de cet anneau, nous permet
d’obtenir une équation fonctionnelle pour la fonction zêta des variétés abéliennes.
En outre nous montrons que l’existence d’une telle équation fonctionnelle est une
propriété stable par produit.

1. Introduction

Let C be a geometrically irreducible smooth projective curve of genus g
over a field k. Kapranov in [13] considers the zeta function

ζµ(C, T ) =
∞∑

i=0

µ(Symi(C))T i,

where µ is a multiplicative Euler characteristic with compact support (i.e.,
an invariant of k-varieties with values in a ring A satisfying µ(X) = µ(X−
Y ) + µ(Y ) for Y ⊂ X closed and µ(X × Y ) = µ(X) · µ(Y )), and Symi(C)
denotes the i-th symmetric power of C. For example, if k is a finite field,
the number of k-valued points is such an invariant, and the associated zeta
function is the Hasse–Weil zeta function. Kapranov shows that if A is a

Keywords: zeta functions, Chow motives, functional equation.
Math. classification: 14G10, 14F42.



1928 Franziska HEINLOTH

field and Lµ = µ(A1) 6= 0, the zeta function of C with respect to µ is
rational and satisfies the functional equation

ζµ(C,
1

LµT
) = L1−g

µ T 2−2gζµ(C, T ).

Kapranov suggests that also zeta functions of higher dimensional smooth
projective varieties should be rational and satisfy a functional equation.

Larsen and Lunts in [17] and [18] for k = C construct a multiplicative
Euler characteristic with compact support µ such that the zeta function
with respect to µ of smooth projective surfaces of nonnegative Kodaira
dimension is not rational. (In their example, Lµ = 0.)

On the other hand, as they point out in [18], if A carries a λ–structure
σi such that A (with its opposite structure) is special (compare Section
2), and if µ(SymiX) = σi(µ(X)), the property of having a rational zeta
function is e.g., preserved under products.

In this note, we consider the value ring K0(CMk), the Grothendieck
ring of Chow motives over k with rational coefficients. It is the free abelian
group on isomorphism classes [M ] of Chow motives M modulo the relations
[M ⊕N ] = [M ] + [N ] and carries a commutative ring structure induced by
the tensor product of Chow motives. There is also the notion of the i-th
symmetric power SymiM of a Chow motive M , which is defined as the
image of the projector 1

i!

∑
σ∈Si

σ on M⊗i. The symmetric powers Symi

endow K0(CMk) with the structure of a λ-ring. The opposite structure
(Alti)i is induced by the projectors 1

i!

∑
σ∈Si

(−1)σσ and turns out to be
special (see Section 4 for details).

In characteristic zero, Gillet and Soulé as a corollary from [10] and
Guillen and Navarro Aznar as a corollary from [12] get a multiplicative
Euler characteristic with compact support µ with values in K0(CMk),
such that µ(X) = [h(X)] for a smooth projective variety X. Here h(X)
is the Chow motive of X . Note that µ(A1) is the class of the Lefschetz
motive L. It follows from a result of Del Baño and Navarro Aznar in [5]
that µ(SymiX) = [Symi h(X)] for a smooth projective variety X. Hence
the zeta function of X associated to µ equals

ZX(T ) =
∞∑

i=0

[Symi h(X)]T i.

This zeta function with values in K0(CMk) makes sense for any ground
field k. Note that for k finite one can still read off the Hasse–Weil zeta
function from it.
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As pointed out by André in Section 4.3 of [2] and Chapter 13 of [1],
varieties with a finite dimensional Chow motive in the sense of Kimura [14]
and O’Sullivan (i.e., whose Chow motive is the sum of two Chow motives
X+ and X− such that Alti(X+) = 0 for i � 0 and Symi(X−) = 0 for
i � 0) have a rational zeta function with coefficients in K0(CMk). More
precisely, as Alti is the opposite structure to Symi (compare Section 2),

(1.1) ZX(T ) =
P (T )
Q(−T )

in K0(CMk)[[T ]],

where P (T ) =
∑

i>0[Symi(X−)]T i and Q(T ) =
∑

i>0[Alti(X+)]T i are
polynomials and moreover Q(T ) is invertible in K0(CMk)[[T ]]. For exam-
ple, this holds for an abelian variety over k.

In Chapter 13 of [1], André writes: «Nous laissons au lecteur le plaisir
de spéculer sur d’éventuelles équations fonctionnelles. . .»

Kimura shows in [14] that if a smooth projective variety X over an
algebraically closed field has a finite dimensional Chow motive X+ ⊕X−,
the minimal e such that Alti(X+) = 0 for i > e equals the dimension
of the sum of the even cohomology groups for any Weil cohomology, and
analogously for the minimal f such that Symi(X−) = 0 for i > f . Hence
it seems natural to expect the functional equations

P
( 1

LnT

)
= T−fL−

nf
2 P (T ) and Q

( 1
LnT

)
= T−eL−

ne
2 Q(T )

in K0(CMk)[T, T−1], where n is the dimension of X.
In this note, we consider functional equations for zeta functions with

coefficients in K0(CMk), where k is an arbitrary field. Using the well
known decomposition of the Chow motive of an abelian variety, we prove

Proposition 1.1 (Proposition 5.1). — Let A be an abelian variety
of dimension g over k, and denote by ZA(T ) =

∑∞
i=0[Symi h(X)]T i ∈

K0(CMk)[[T ]] its zeta function with values in K0(CMk). Then

ZA

( 1
LgT

)
= ZA(T ).

More precisely, ZA(T ) can be written as ZA(T ) = PA(T )
QA(−T )

as in Equa-
tion 1.1 in such a way that PA(T ), QA(T ) ∈ 1 +T K0(CMk)[T ] satisfy the
expected functional equations

PA
( 1

LgT

)
= T−fL−

gf
2 PA(T ) and QA

( 1
LgT

)
= T−eL−

ge
2 QA(T )

in K0(CMk)[T, T−1], where e = f = 22g−1.
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1930 Franziska HEINLOTH

Furthermore, in Proposition 6.1, we show that having a rational zeta
function satisfying a functional equation is preserved by taking products.

To this end, in Section 4, we investigate the λ–structure on K0(CMk).
Acknowledgments. I am indebted to Hélène Esnault for her invaluable

suggestions and comments and constant encouragement. I thank Niko Nau-
mann for interesting discussions. I am grateful for the support of the DFG–
Schwerpunkt “Globale Methoden in der Komplexen Geometrie”. I thank
the referee for helpful comments and corrections.

2. λ–Rings

We recall the notion of a λ–ring. For more details, see for example
Chapter I of Atiyah and Tall, [3].

A ring A endowed with operations λr for r ∈ N such that λ0(a) = 1,
λ1(a) = a and λr(a + b) =

∑
i+j=r λ

i(a)λj(b) is called a λ–ring. This
is equivalent to the datum of a group homomorphism λt : (A,+) −→
(1 + tA[[t]], ·), a 7→ 1 +

∑
r>1 λ

r(a)tr such that λ1(a) = a.
The opposite λ–structure onA is given by σt(a)=(1+

∑
r>1λ

r(a)(−t)r)−1.

Explicitely, σr is given recursively by

σr(a)− σr−1(a)λ(a) + · · ·+ (−1)rλr(a) = 0 for r > 1.

B = 1 + tA[[t]] itself carries the structure of a λ–ring:
Denote by σN

i the elementary symmetric polynomials in ξ1, . . . , ξN and
by sN

i the elementary symmetric polynomials in x1, . . . , xN . Let Pn(σN
1 ,. . . ,

σN
n , s

N
1 , . . . , s

N
n ) be the coefficient of tn in

∏
16i,j6N (1 + ξixjt), where

N > n, and Pn,r(σN
1 , . . . , σ

N
rn) the coefficient of tn in

∏
16i1<···<ir6N (1 +

ξi1 · · · ξir t), where N > rn.
Addition on B is given by multiplication, multiplication ◦ is given by(

1 +
∑
k>1

akt
k
)
◦

(
1 +

∑
l>1

blt
l
)

= 1 +
∑
n>1

Pn(a1, . . . , an; b1, . . . , bn)tn

with neutral element 1 + t, and the λ–structure is given by

Λr
(
1 +

∑
k>1

akt
k
)

= 1 +
∑
n>1

Pn,r(a1, . . . , arn)tn.

The λ–ring A is called special, if λt is a homomorphism of λ–rings.

Remark 2.1. — The λ–structure on B may be given in a more sophisti-
cated manner without writing down the universal polynomials Pn and Pn,r

explicitly, compare Section I.1 of [3]. But we will need the precise shape of
Pn and Pn,r in Sections 5 and 6.

ANNALES DE L’INSTITUT FOURIER



FUNCTIONAL EQUATIONS FOR MOTIVIC ZETA FUNCTIONS 1931

Remark 2.2. — A group homomorphism ϕ : A −→ B between λ–rings
is a homomorphism of λ–rings if there is a set of group generators S ⊆ A

such that ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ S and for all r ∈ N and a ∈ S we
have ϕ(λr(a)) = λr(ϕ(a)). Compare [18], Lemma 4.4.

3. Curves

As a motivation, let us briefly review the situation for curves.
First, we consider the zeta function associated to the universal Euler

characteristic with compact support. Let C be a geometrically irreducible
smooth projective curve of genus g over a field k. Denote its i-th symmetric
power by Symi(C). The zeta function of C is defined as

ζC(T ) =
∞∑

i=0

[Symi(C)]T i in K0(Vark)[[T ]].

Here K0(Vark) is the value group of the universal Euler characteristic with
compact support, i.e., the free abelian group on isomorphism classes of
varieties over k modulo the relations [X] = [X − Y ] + [Y ], where Y ⊂ X

closed. It carries a commutative ring structure induced by the product of
varieties. By abuse of notation, we denote the class of the affine line by L.
A stratification argument shows that we get the same Grothendieck ring if
we take classes of quasi-projective varieties.

If there is a line bundle of degree 1 on C, Kapranov shows that (1 −
T )(1− LT )ζC(T ) is a polynomial of degree 2g, and that the zeta function
satisfies the functional equation

ζC

( 1
LT

)
= L1−gT 2−2gζC(T )

in Mk((T )), where Mk := K0(Vark)[L−1].
Let us give a slight reformulation of Kapranov’s argument.
As pointed out by Larsen and Lunts in [18], the symmetric powers Symi

of quasi-projective varieties induce the structure of a λ–ring on K0(Vark)
and, since Symi(L[X]) = Li Symi([X]) (see Göttsche, [11]), also on Mk via
Symi(Lk[X]) := Lik Symi([X]). In these terms, ζX(T ) = λt([X]). Since λt

is a group homomorphism, we get

ζC(T ) =
( ∞∑

i=0

Symi([C]− [P1])T i
)
ζP1(T ).

TOME 57 (2007), FASCICULE 6
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As ζP1(T ) = ζ1(T )ζL(T ) = 1
1−T

1
1−LT , multiplying this equation by (1 −

T )(1−LT ) yields Symi([C]−[P1]) = [Symi(C)]−[Symi−1(C)][P1]+[Symi−2

(C)]L for i > 2.
If i > 2g, this expression vanishes, because for j > 2g − 2 the morphism

Symj(C) −→ Picj(C) ∼= Pic0(C) is a Zariski fibration with fiber Pj−g

(we still assume that there is a line bundle of degree 1 on C). Therefore,
(1− T )(1− LT )ζC(T ) is a polynomial of degree at most 2g.

For the functional equation we need to show for g 6 i 6 2g that
Symi([C] − [P1]) = Li−g Sym2g−i([C] − [P1]): Consider the morphism
Symj(C) −→ Picj(C). It is a piecewise Zariski fibration with fiber PH0(L)
over L. There is an isomorphism Pici(C) ∼= Pic2g−2−i(C), L 7→ ωC ⊗ L∨.
By Riemann–Roch, h0(L)− h0(ωC ⊗ L∨) = degL+ 1− g. Therefore,

[Symi(C)]− Li−g+1[Sym2g−2−i(C)] = [Pi−g][Pici(C)] for g 6 i 6 2g − 2.

Using Picj(C) ∼= Pic0(C) again and adding up we conclude Symi([C] −
[P1]) = Li−g Sym2g−i([C]− [P1]).

Actually, the equation ζP1(T ) = 1
1−T

1
1−LT can be rephrased by saying

that Alti(1) = Alti(L) = 0 for i > 2, where Alti is the opposite λ–structure
on K0(Vark).

Hence, [C] can be written as the sum of two terms x+ + x−, where
Alti(x+) = 0 for i � 0 and Symi(x−) = 0 for i � 0 and furthermore,
P x−(T ) =

∑
i Symi(x−)T i and Qx+

(T ) =
∑

i Alti(x+)T i satisfy the ex-
pected functional equations.

Remark 3.1. — If C carries a line bundle of degree d, a similar calcu-
lation shows that (1 − T d)(1 − LdT d)ζC(T ) is a polynomial and that the
functional equation still holds, as pointed out by Kapranov.

Now let us consider the zeta function of C with values in K0(CMk),

ZC(T ) =
∞∑

i=0

[Symi h(C)]T i.

The Chow motive of C has a decomposition

h(C) = 1l⊕ h1(C)⊕ L,

where h1(C) = h1(Pic0(C)) (compare Section 5 and Sections 1.2.3 and 3.3
in [4]). Therefore Symi h1(C) = 0 for i > 2g and Symi h1(C) ∼= Li−g ⊗
Sym2g−i h1(C). Hence the zeta function of C with values in K0(CMk) is
also rational and satisfies the expected functional equation. In character-
istic zero, this follows from the properties of the zeta function with values
in Mk (compare Section 4.3).

ANNALES DE L’INSTITUT FOURIER
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4. λ–Structures on the Grothendieck ring of Chow motives

For the rest of the paper, we will restrict ourselves to the study of
zeta functions with values in K0(CMk). In fact, the properties of the
λ–structure on K0(CMk) which we need hold for the Grothendieck ring of
any (pseudo-abelian) Q-linear tensor category.

4.1. Schur functors

Let us recall some facts from Deligne, [7], Section 1.
Let κ be a field of characteristic zero, let A be a κ-linear tensor category,

i.e., a symmetric monoidal category, which is additive, pseudo-abelian and
κ-linear such that ⊗ is κ-bilinear.

If V is a finite dimensional κ-vector space and X is an object of A, there
are objects V ⊗X and Hom(V,X) of A natural in V and X such that

Hom(V ⊗X,Y ) = Hom(V,Hom(X,Y ))

and
Hom(Y,Hom(V,X)) = Hom(V ⊗ Y,X).

There is a natural isomorphism Hom(V,X) ∼= V ∨ ⊗X. The choice of a
basis of V yields (non-canonical) isomorphisms Hom(V,X) ∼= X⊕ dim V ∼=
V ⊗X.

If a finite group G acts on X, we define XG as the image of the projector
1
|G|

∑
g∈G g ∈ End(X).

IfG acts on V and onX, it acts on Hom(V,X) and we define HomG(V,X)
as Hom(V,X)G. Note that Hom(Y,HomG(V,X)) = HomG(V,Hom(Y,X)).

If all irreducible representations of G over κ are already defined over κ we
have κ[G] ∼=

∏
Endκ(Vλ), where Vλ runs through a system of representa-

tives for the isomorphism classes of irreducible representations. Therefore,

(4.1) X ∼= HomG(κ[G], X) ∼=
⊕

Vλ ⊗HomG(Vλ, X),

where the G-action on X corresponds to the G-action on the outer Vλ on
the right hand side.

There is a natural isomorphism

HomG×H(V ⊗W,X ⊗ Y ) ∼= HomG(V,X)⊗HomH(W,Y ).

Under this isomorphism, the Sn-action on HomG(V,X)⊗n corresponds to
the Sn-action on HomGn(V ⊗n, X⊗n) induced by the actions on V ⊗n and
X⊗n.

TOME 57 (2007), FASCICULE 6
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Furthermore, if we have a short exact sequence of finite groups

1 −→ K −→ G −→ H −→ 1,

and V is a representation of H while W is a representation of G, which
also acts on X ∈ A, we have a natural isomorphism

HomG(V ⊗W,X) ∼= HomH(V,HomK(W,X)).

Finally, if G acts on X and V is a representation of a subgroup H < G,
we get the Nakayama relation (or Frobenius reciprocity)

HomH(V,X) ∼= HomG(IndG
H V,X).

If G is the symmetric group Sn and Vλ is an irreducible representation
of Sn, indexed by a partition λ of n = |λ|,

Sλ(X) := HomSn(Vλ, X
⊗n)

is called Schur functor. For the trivial representation Triv(Sn) we get

Symn(X) := S(n)(X) = im
( 1
n!

∑
σ∈Sn

σ
)
⊆ X⊗n,

for the alternating representation Sign(Sn) we obtain

Altn(X) := S(1n)(X) = im
( 1
n!

∑
σ∈Sn

(−1)σσ
)
⊆ X⊗n.

By 4.1, there is a canonical isomorphism

X⊗n ∼=
⊕
|λ|=n

Vλ ⊗ Sλ(X),

where the Sn–action on X⊗n corresponds to the action on Vλ on the right
hand side. Note that in particular

(4.2) Sλ(X) = 0 for λ 6= (n),

if Symn(X) = X⊗n.
If Vµi , i = 1, . . . , r are irreducible representations of Sni and Vλ is an

irreducible representation of Sn, where n =
∑
ni, we denote by

[λ : µ1, . . . , µr]

the multiplicity of
⊗
Vλi in ResSn∏

Sni
Vλ (which equals the multiplicity of

Vλ in IndSn∏
Sni

⊗
Vλi by Frobenius reciprocity).

ANNALES DE L’INSTITUT FOURIER
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With this notation, we get

Sµ(X)⊗ Sν(X) ∼= HomSm×Sn(Vµ ⊗ Vν , X
⊗m+n)

∼= HomSm+n(IndSm+n
Sm×Sn

Vµ ⊗ Vν , X
⊗m+n)(4.3)

∼=
⊕

|λ|=|µ|+|ν|

[λ : µ, ν]Sλ(X)(4.4)

Sλ(X ⊕ Y ) ∼=
⊕

|µ|+|ν|=|λ|

[λ : µ, ν]Sµ(X)⊗ Sν(Y )(4.5)

Sλ(X ⊗ Y ) ∼=
⊕

|µ|=|ν|=|λ|

[Vµ ⊗ Vν : Vλ]Sµ(X)⊗ Sν(Y )(4.6)

Furthermore, for a Sm–representation V and a G–representation W ,
(4.7)

HomSm(V,HomGm(W⊗m, X⊗m)) ∼= HomSmnGm(V ⊗W⊗m, X⊗m).

In particular, for |µ| = m and |ν| = n,

Sµ(Sν(X)) = HomSmnSnm(Vµ ⊗ Vν
⊗m, X⊗nm)

∼= HomSnm(IndSnm
SmnSnm

Vµ ⊗ Vν
⊗m, X⊗nm).

4.2. The λ–structure

Denote by K0(A) the free abelian group on isomorphism classes [X] of
objects ofAmodulo the relations [X⊕Y ] = [X]+[Y ]. It is the Grothendieck
group associated to the abelian monoid of isomorphism classes of objects
in A with direct sum. The tensor product of A induces a commutative ring
structure on K0(A). We call K0(A) the Grothendieck ring of A.

Note that for any X ∈ A with G–action we obtain a group homomor-
phism from the Grothendieck group of G–representations to K0(A) sending
a representation V to HomG(V,X).

Lemma 4.1. — The exterior powers Altn induce a special λ–ring struc-
ture on K0(A) with opposite λ–structure given by the symmetric powers
Symn.

Proof. — Due to Equation 4.5 and the Littlewood–Richardson rule (see
e.g., [9], Appendix A),

[X] 7→ 1 +
∑
n>1

[Altn(X)]tn

TOME 57 (2007), FASCICULE 6
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induces a λ–ring structure on K0(A). The fact that the opposite structure
is given by Symn follows from Equation 4.4 and the Littlewood–Richardson
rule or more precisely from the fact that for i, j > 1 we have

Symi(X)⊗Altj(X) ∼= S(i+1,1j−1)(X)⊕ S(i,1j)(X).

To show that the λ–structure given by Alti is special, we use an argument
by Larsen and Lunts from [18], Theorem 5.1, in a slightly more general
setting.

Recall one possible description of the free special λ-ring R on one gen-
erator: R =

⊕
n>0Rn, where Rn is the representation ring over κ of the

symmetric group Sn (with the convention that S0 is the trivial group and
R0 therefore is Z). It has a Z-basis consisting of the elements (n, Vν), where
Vν is an irreducible Sn-representation. The product is given by

(m,Vµ)(n, Vν) =
(
m+ n, IndSm+n

Sm×Sn
Vµ ⊗ Vν

)
,

while the λ-structure is is given by

λr(n, Vν) =
(
rn, IndSrn

SrnSnr
Sign(Sr)⊗ Vν

⊗r
)
.

Its generator as a λ-ring is (1, κ).
R ⊗Z R is the free special λ-ring on two generators. It has a Z-basis

consisting of the elements (n1, n2, Vν1 ⊗ Vν2), where Vνi is an irreducible
Sni-representation. The product is given by

(m1,m2, Vµ1 ⊗ Vµ2)(n1, n2, Vν1 ⊗ Vν2)

= (m1 + n1,m2 + n2, IndSm1+n1×Sm2+n2
(Sm1×Sn1 )×(Sm2×Sn2 )(Vµ1 ⊗ Vν1)⊗ (Vµ2 ⊗ Vν2)),

while the λ-structure is is given by

λr(n1, n2,Vν1⊗Vν2)=(rn1, rn2, IndSrn1×Srn2
Srn(Sn1

r×Sn2
r) Sign(Sr)⊗Vν1

⊗r⊗Vν2
⊗r).

Now let X1, X2 be two objects of A. Then, by 4.3 and 4.7,

(n1, n2, Vν1 ⊗ Vν2) 7→ Sν1(X1)⊗ Sν2(X2)

defines a λ-ring homomorphism R ⊗Z R −→ K0(A), hence every pair
[X1], [X2] is contained in a special λ-subring of K0(A).

Therefore, λt : K0(A) −→ 1 + tK0(A)[[t]] satisfies

λt(xy) = λt(x) ◦ λt(y)

and
λt(λrx) = Λr(λt(x))

for elements x = [X] and y = [Y ] and due to Remark 2.2 therefore for all
x, y ∈ K0(A). �
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We will need some more identities relating symmetric and exterior pow-
ers.

For a representation V of Sn, let V ′ := Sign(Sn)⊗ V . Note that

Sign(Smn)⊗IndSmn
SmnSnm

V⊗W⊗m ∼=

{
IndSmn

SmnSnm
V ′⊗W ′⊗m if n is odd

IndSmn
SmnSnm

V ⊗W ′⊗m if n is even,

because

(−1)ι(σ) =

{
(−1)σ if n is odd
1 if n is even,

where ι : Sm ↪→ Smn. Furthermore,

Sign(Sm+n)⊗ IndSm+n
Sm×Sn

V ⊗W ∼= IndSm+n
Sm×Sn

V ′ ⊗W ′.

Therefore, for n odd, we obtain the following equation in R:

IndSmn
SmnSnm

Triv(Sm)⊗ Triv(Sn)⊗m

= IndSmn
SmnSnm

Sign(Sm)′ ⊗ Sign(Sn)′⊗m

= Sign(Smn)⊗ Pm,n(Sign(S1), . . . ,Sign(Smn))

= Pm,n(Triv(S1), . . . ,Triv(Smn)).

Similarly, for n even, we get

IndSmn
SmnSnm

Sign(Sm)⊗ Triv(Sn)⊗m = Pm,n(Triv(S1), . . . ,Triv(Smn)).

Hence for every x = [X] ∈ K0(A) we get

Symm(Symn(x)) = Pm,n(Sym1(x), . . . ,Symmn(x)) if n is odd,(4.8)

Altm(Symn(x)) = Pm,n(Sym1(x), . . . ,Symmn(x)) if n is even.(4.9)

Now consider the two generators e1 = (1, 0, κ⊗ κ) and e2 = (0, 1, κ⊗ κ)
of R⊗Z R.

We know that

λn(e1e2) = Pn(λ1(e1), . . . , λn(e1), λ1(e2), . . . , λn(e2)),

where λi(e1) = (i, 0,Sign(Si)⊗ κ) and λi(e2) = (0, i, κ⊗ Sign(Si)). On the
other hand,

λn(e1e2) =
∑

|µ|=|ν|=n

[Vµ ⊗ Vν : Sign(Sn)](n, n, Vµ ⊗ Vν).

As [Vµ⊗Vν : Sign(Sn)] = [V ′
µ⊗V ′

ν : Sign(Sn)], applying Equations 4.4 and
4.3, for x = [X], y = [Y ] ∈ K0(A) we get

(4.10) Altn(xy) = Pn(Sym1(x), . . . ,Symn(x),Sym1(y), . . . ,Symn(y)).
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Similarly, as [Vµ ⊗ Vν : Triv(Sn)] = [V ′
µ ⊗ Vν : Sign(Sn)] = [Vµ ⊗ V ′

ν :
Sign(Sn)], we have

Symn(xy) = Pn(Sym1(x), . . . ,Symn(x),Alt1(y), . . . ,Altn(y))(4.11)

= Pn(Alt1(x), . . . ,Altn(x),Sym1(y), . . . ,Symn(y)).(4.12)

4.3. The Grothendieck ring of Chow motives

Everything in this section applies to the Q–linear tensor category CMk

of Chow motives over a field k with rational coefficients as in Manin, [19] or
Scholl, [20], where the equivalence relation on cycles is rational equivalence.
Note that Symn L = L⊗n and therefore Sλ(L) = 0 for λ 6= (n) due to
Equation 4.2. Hence it follows from Equation 4.6 that

(4.13) Sλ(L⊗M) ∼= L⊗|λ| ⊗ Sλ(X).

We denote the Grothendieck ring of CMk by K0(CMk). If k is of char-
acteristic zero, Gillet and Soulé as a corollary from [10] get a ring homo-
morphism from Mk to K0(CMk) such that for a smooth projective variety
X the class [X] of X is sent to [h(X)], where h(X) is the Chow motive of
X. Del Baño and Navarro Aznar have shown in [5] that for a finite group
G acting on X, the class [X/G] of the quotient is sent to [h(X)G], where
h(X)G is the image of the projector 1

|G|
∑

g∈G g in h(X). In particular,
the ring homomorphism Mk −→ K0(CMk) is actually a homomorphism
of λ–rings.

5. Abelian varieties

Let us recall some facts about the Chow motive of an abelian variety.
For more details and references, see for example [20].

Shermenev has established a decomposition of the Chow motive of an
abelian variety of dimension g as a sum

(5.1) h(A) ∼=
⊕

06i62g

hi(A),

where

(5.2) hi(A) ∼= Symi(h1(A))

(in particular, Symi(h1(A)) = 0 for i > 2g) and furthermore, h0(A) = 11
and h2g(A) = Lg.
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Using the Fourier transformation developed by Beauville in [6], Deninger
and Murre showed in [8] that there is a canonical decomposition of the
form (5.1) such that multiplication by n acts on hi(A) as ni. Künnemann
proved in [16] that this decomposition satisfies Relations (5.2), and in [15]
he obtained a hard Lefschetz theorem.

We use the canonical decomposition to prove the following

Proposition 5.1. — Let A be an abelian variety of dimension g over k,
and denote by ZA(T ) =

∑∞
i=0[Symi h(X)]T i ∈ K0(CMk)[[T ]] its zeta func-

tion with values in K0(CMk). Then ZA( 1
LgT ) = ZA(T ). More precisely,

ZA(T ) can be written as ZA(T ) = PA(T )
QA(−T )

, such that PA(T ), QA(T ) ∈
1 + T K0(CMk)[T ] satisfy the expected functional equations

PA
( 1

LgT

)
= T−fL−

gf
2 PA(T ) and QA

( 1
LgT

)
= T−eL−

ge
2 QA(T )

in K0(CMk)[T, T−1], where e = f = 22g−1.

Proof. — Due to Relations (5.1) and (5.2), the zeta function of A with
values in K0(CMk) equals

ZA(T ) =

∏
06n62g
n odd

PA
n (T )∏

06n62g
n even

QA
n (−T )

,

where

PA
n (T ) :=

∑
m>0

[Symm(Symn(h1(A)))]Tm,

QA
n (T ) :=

∑
m>0

[Altm(Symn(h1(A)))]Tm.

Denote by σN
1 , . . . , σ

N
N the elementary symmetric functions in ξ1, . . . , ξN .

From the commutativity of the diagram

Z[σK
1 , . . . , σ

K
K ] //

� _

��

Z[σk
1 , . . . , σ

k
k ]� _

��
Z[ξ1, . . . , ξK ] // Z[ξ1, . . . , ξk]

where k 6 K, σK
l 7→ 0 for k < l 6 K and to σk

l for l 6 k and ξl 7→ 0 for
k < l 6 K under the horizontal maps, it follows that

qg
n(t) :=

∑
m>0

Pm,n(σ2g
1 , . . . , σ2g

2g , 0, . . . , 0)tm =
∏

16i1<···<in62g

(1 + ξi1 · · · ξint)
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is a polynomial of degree bgn =
(
2g
n

)
. For convenience, let us denote σ2g

2g by
σ. The polynomial qg

n(t) satisfies

qg
n

( 1
σt

)
=

∏
16i1<···<in62g

(
1 + ξi1 · · · ξin

1
σt

)
=

( 1
σt

)bgn ∏
16i1<···<in62g

ξi1 · · · ξin
∏

16i1<···<in62g

(
1 +

σ

ξi1 · · · ξin
t
)

=
( 1
σt

)bgn
σ
b
g
nn

2g qg
2g−n(t).

(For the last step, note that
∏

16i1<···<in62g ξi1 · · · ξin is a symmetric mono-

mial of degree bgnn, therefore it must equal σ
b
g
nn

2g .) Hence, for n odd, it
follows from 4.8 that PA

n (T ) is a polynomial of degree bgn and

PA
n

( 1
LgT

)
=

( 1
LgT

)bgn
L
b
g
nn

2 PA
2g−n(T ).

In particular, PA(T ) :=
∏

06n62g
n odd

PA
n (T ) satisfies PA( 1

LgT ) = T−fL−
gf
2

PA(T ).
On the other hand, for n even, we deduce from 4.9 that QA

n (T ) is a
polynomial of degree bgn =

(
2g
n

)
and satisfies

QA
n

( 1
LgT

)
=

( 1
LgT

)bgn
L
b
g
nn

2 QA
2g−n(T ),

henceQA(T ) :=
∏

06n62g
n even

QA
n (T ) satisfiesQA( 1

LgT ) = T−eL−
ge
2 QA(T ). �

Remark 5.2. — If A is the Jacobian of a curve C, we have ZC(T ) =
PA1 (T )

(1−T )(1−LT ) (compare Section 3).

Remark 5.3. — An easy calculation using Equation 4.13 and the decom-
position of the motive of a blow–up as e.g., in [19], Section 9, shows that
the property of having a rational zeta function satisfying a functional equa-
tion is closed under blow–ups along smooth centers satisfying a functional
equation.

More precisely, suppose that X is an n–dimensional smooth projective
variety such that [h(X)] = [X+] + [X−], where [Alti(X+)] = 0 for i >
e(X+) and [Symi(X−)] = 0 for i > f(X−). Let QX+

(T )=
∑

i>0[Alti(X+)]
T i and PX−(T ) =

∑
i>0[Alti(X−)]T i. Suppose furthermore that

QX+
( 1

LnT

)
= T−e(X+)L−

ne(X+)
2 QX+

(T ) in K0(CMk)[T, T−1]
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and

PX−
( 1

LnT

)
= T−f(X−)L−

nf(X−)
2 PX−

(T ) in K0(CMk)[T, T−1],

and likewise for a smooth closed subvariety Y of X of pure codimension
d. Then the same holds for the blow–up BlY X of X along Y , where
(BlY X)+ = X+ ⊕

⊕d−1
i=1 Li ⊗ Y +, (BlY X)− = X− ⊕

⊕d−1
i=1 Li ⊗ Y −,

e((BlY X)+) = e(X+) + (d − 1)e(Y +) and f((BlY X)−) = f(X−) + (d −
1)f(Y −).

Remark 5.4. — For Kummer surfaces X, an explicit calculation of
[h(X)] (we know how multiplication by −1 acts on the Chow motive of an
abelian variety) yields [Alti(h(X))] = 0 for i > 24 and the expected func-
tional equation Qh(X)( 1

L2T ) = T−24L−24Qh(X)(T ) in K0(CMk)[T, T−1].

6. Products

In this section, we investigate zeta functions of products of varieties
whose zeta functions satisfy a functional equation.

For the class of a Chow motive x ∈ K0(CMk), we define Qx(T ) :=∑
i>0 Alti(x)T i and P x(T ) :=

∑
i>0 Symi(x)T i.

Proposition 6.1. — The property of having a rational zeta function
with values in K0(CMk) satisfying a functional equation is closed under
products. More precisely, suppose that X is an n–dimensional smooth
projective variety such that [h(X)] = [X+] + [X−], where [Alti(X+)] = 0
for i > e(X+) and [Symi(X−)] = 0 for i > f(X−). Suppose furthermore
that

QX+
( 1

LnT

)
= T−e(X+)L−

ne(X+)
2 QX+

(T ) in K0(CMk)[T, T−1]

and

PX−
( 1

LnT

)
= T−f(X−)L−

nf(X−)
2 PX−

(T ) in K0(CMk)[T, T−1],

and likewise for a smooth projective variety Y . Then the same holds for
X×Y , where (X×Y )+ = X+⊗Y +⊕X−⊗Y −, (X×Y )− = X+⊗Y −⊕
X−⊗Y +, e((X×Y )+) = e(X+)e(Y +)+f(X−)f(Y −) and f((X×Y )−) =
e(X+)f(Y −) + f(X−)e(Y +).

We start with a special case.
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Lemma 6.2. — Suppose that x ∈ K0(CMk) is the class of a Chow
motive satisfying

degQx = e and Qx(
1

LmT
) = T−eL−

me
2 Qx(T )

and that y ∈ K0(CMk) is the class of a Chow motive satisfying

degQy = f and Qy(
1

LnT
) = T−fL−

nf
2 Qy(T ).

Then the class xy ∈ K0(CMk) satisfies

degQxy = ef and Qxy(
1

Lm+nT
) = T−efL−

(m+n)ef
2 Qxy(T ).

Proof of Lemma. — Denote the elementary symmetric functions in ξ1,

. . . , ξe by σi and the elementary symmetric functions in x1, . . . , xf by si.
Consider the following commutative diagram

Z[ξ1, ξ−1
1 , . . . , ξe, ξ−1

e , s1, . . . , sf , L, L−1, t, t−1]
ψ′ // K0(CMk)[ξ1, ξ−1

1 , . . . , ξe, ξ−1
e , T, T−1]

K0(CMk)[σ1, . . . , σe, T, T−1]
?�

OO

��
Z[σ1, . . . , σe, s1, . . . , sf , L, L−1, t, t−1]

ϕ //

33ggggggggggggggggggggg

++WWWWWWWWWWWWWWWWWWWW
?�

OO

_�

��

K0(CMk)[T, T−1]

K0(CMk)[s1, . . . , sf , T, T−1]

OO

_�

��
Z[σ1, . . . , σe, x1, x−1

1 , . . . , xf , x−1
f

, L, L−1, t, t−1]
ψ′′ // K0(CMk)[x1, x−1

1 , . . . , xf , x−1
f

, T, T−1]

where ϕ(t) = T , ϕ(σi) = Alti(x), ϕ(sj) = Altj(y) and ϕ(L) = L.
We know that

qx(t) :=
∏

16i6e

(1 + ξit)

qy(t) :=
∏

16j6f

(1 + xjt)

qxy(t) :=
∏

16i6e
16j6f

(1 + ξixjt)
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are mapped by ϕ to Qx(T ), Qy(T ) and Qxy(T ), and similarly, qx( 1
Lmt ) is

mapped to Qx( 1
LmT ), and so on.

Now

qxy
( 1
Lm+nt

)
=

∏
16i6e

qy
( ξi
Lm+nt

)
=

∏
16i6e

qy
( 1
Lnti

)
,

where ti = Lmt
ξi

.
We know that

ψ′
(
qy

( 1
Lnti

))
= ψ′

(
t−f
i L−

nf
2 qy(ti)

)
and

qy(ti) =
∏

16j6f

(1 + xjti) = tfi
∏

16j6f

xj

∏
16j6f

(
1 +

1
xjti

)
.

Therefore,

ψ′(qy
( 1
Lnti

)
)

= ψ′
(
L−

nf
2

∏
16j6f

xj

∏
16j6f

(
1 +

ξi
Lmxjt

))
and hence

ϕ
(
qxy

( 1
Lm+nt

))
= ϕ

(
L−

nef
2

( ∏
16j6f

xj

)e ∏
16i6e

∏
16j6f

(
1 +

ξi
Lmxjt

))
= ϕ

(
L−

nef
2

( ∏
16j6f

xj

)e ∏
16j6f

qx
( 1
Lmθj

))
,

where θj = xjt. As

ψ′′
(
qx

( 1
Lmθj

))
= ψ′′(θ−e

j L−
me
2 qx(θj)),

we conclude that

ϕ
(
qxy

( 1
Lm+nt

))
= ϕ

(
L−

nef
2 L−

mef
2 t−ef

( ∏
16j6f

xj

)e ∏
16j6f

x−e
j qx(θj)

)
= ϕ

(
t−efL−

(m+n)ef
2 qxy(t)

)
.

�

Now due to Equations 4.10, 4.11 and 4.12 we have the same behavior
for Qxy(T ) if P x(T ) and P y(T ) fulfill similar conditions, and likewise for
P xy(T ) given the conditions for P x(T ) and Qy(T ) or for Qx(T ) and P y(T ).
This establishes the Proposition.
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