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STABILITY OF HIGHER ORDER SINGULAR POINTS
OF POISSON MANIFOLDS AND LIE ALGEBROIDS

by Jean-Paul DUFOUR & Aïssa WADE (*)

Abstract. — We study the stability of singular points for smooth Poisson
structures as well as general Lie algebroids. We give sufficient conditions for stabil-
ity lying on the first-order approximation (not necessarily linear) of a given Poisson
structure or Lie algebroid at a singular point. The main tools used here are the
classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie
algebroids recently introduced by Crainic and Moerdĳk. We also provide several
examples of stable singular points of order k > 1 for Poisson structures and Lie
algebroids. Finally, we apply our results to pre-symplectic leaves of Dirac manifolds.

Résumé. — Nous étudions la stabilité des singularités de structures de Poisson
lisses et des algèbroïdes de Lie générales. Nous donnons des conditions suffisantes
de stabilité reposant sur la première approximation (pas nécessairement linéaire)
d’une structure de Poisson ou d’algèbroïde de Lie en un point singulier. Les prin-
cipaux outils utilisés ici sont la cohomologie de Lichnerowicz-Poisson classique et
la cohomologie de déformation introduite récemment par Crainic et Moerdĳk. De
plus, nous fournissons plusieurs exemples de points singuliers stables d’ordre k > 1
pour des structures de Poisson et des algèbroïdes de Lie. Finalement, nous appli-
quons nos résultats aux feuilles pré-symplectiques des variétés de Dirac.

1. Introduction and main results

Every bivector field on a smooth finite-dimensional manifold M will be
considered as a map Λ : M →

∧2
TM . We endow the set V2(M) of all

smooth bivector fields with the Cs-topology, i.e., the topology of uniform
convergence on compact sets for Cs-differentiable maps and their derivatives
up to order s. The integer s will be made more precise later on.

Keywords: Poisson structure, Lie algebroid, Lichnerowicz-Poisson cohomology, stable
point.
Math. classification: 53D17, 34Dxx, 37C15.
(*) Research partially supported by the Shapiro Funds of the Mathematics Department
at Penn State.



546 Jean-Paul DUFOUR & Aïssa WADE

A smooth Poisson structure on M is a bivector field π that satisfies the
equation [π, π] = 0, where [ , ] is the Schouten-Nĳenhuis bracket on multi-
vector fields (see [13]). A singular point of π is a point m ∈ M satisfying
π(m) = 0. Such a point m is said to be stable if every Poisson structure π̃,
which is close enough to π, has a singular point near m.

The following result, due to M. Crainic and R.-L. Fernandès, was an-
nounced at the 4th international conference on Poisson geometry (held in
Luxembourg, June 2004):

Theorem 1.1 ([4]). — Let g be the Lie algebra corresponding to the
1-jet of π at a singular point m0. If the second scalar cohomology group of
g vanishes then m0 is stable. Conversely, suppose g is a Lie algebra such
that, every singular point of a degenerate Poisson structure whose 1-jet at
that point corresponds to g is stable, then H2(g, R) = {0}.

After a quick reading of this result, one may think that H2(g, R) = {0} is
a necessary and sufficient condition for the stability of a singular point of a
Poisson structure. However, a curious phenomenon occurs: there are plenty
of stable singular points for Poisson structures having a zero 1-jet, hence
H2(g, R) 6= 0. In Section 2, we will establish a stability criterion for general
singularities which improves the one given by Crainic and Fernandès.

First, we recall some definitions. Two smooth maps from M to a man-
ifold N have the same k-jet at a point m ∈ M if they coincide at m and
the derivatives of their local expressions, relative to any local coordinate
system, agree at that point up to order k (k > 0). We denote by Jk

Φ(m) the
k-jet at m of a function Φ ∈ C∞(M,N). Precisely, Jk

Φ(m) is the equivalence
class of Φ under the equivalence relation “to have the same k-jet at m”.

A singularity of order k for a Poisson structure π on M is a point m ∈ M ,
where the (k − 1)-jet of π vanishes but not its k-jet (k > 0). We say that
such a singularity is k-stable if, for every neighborhood Ω of m in M, there
is a neighborhood W of π in V2(M) such that every Poisson structure in
W has a singularity of order k in Ω.

Associated to any singular point m of order k for a Poisson structure π,
there is a k-homogeneous Poisson structure on TmM which is determined,
up to isomorphism, by the kth-order terms of the Taylor expansion of π

at m. This new Poisson tensor π(k) will be called the k-homogeneous part
of π at m. We associate to π(k) the homogeneous Lichnerowicz-Poisson
cohomology complex (see [9]):

V(s−k+1)
1 (TmM)

∂
s−k+1
1−→ V(s)

2 (TmM)
∂

s

2−→ V(s+k−1)
3 (TmM) · · ·

ANNALES DE L’INSTITUT FOURIER



STABILITY OF HIGHER ORDER SINGULAR POINTS 547

where V(s)
r (TmM) is the space of s-homogeneous r-vector fields on TmM

(with V(s)
r (TmM) = {0} for s < 0), and the operators ∂`

r are defined by

∂`
r(A) = [π(k), A],

for all `-homogeneous multi-vector field A. The corresponding second co-
homology group is

H2,s
LP(π(k)) =

Ker
(
∂

s

2

)
Im

(
∂

s−k+1

1

) .

Under these notations, we have the following theorem, where V2(M) is
equipped with the C2k-topology.

Theorem 1.2. — Let m be a singularity of order k for a given Poisson
structure whose k-homogeneous part at m is π(k). If H2,s

LP(π(k)) = {0}, for
any s = 0, . . . , k − 1, then m is a k-stable singularity.

Our second main result concerns the stability problem for general Lie
algebroids. A Lie algebroid ([17]) is a triple (F, [ , ], %) formed by a vector
bundle F over a smooth manifold M together with a Lie bracket on the
space Γ(F ) of smooth sections of F , and a bundle map % : F → TM called
the anchor map such that

[X, fY ] = f [X, Y ] + (%(X) · f)Y, ∀X, Y ∈ Γ(F ), f ∈ C∞(M).

The distribution Im% induces a singular foliation on M which is called
the foliation of the Lie algebroid. A singular point for a Lie algebroid is,
by definition, a point m of the base manifold M where the leaf of the
associated foliation reduces to that point.

Our goal is to give a criterion for the stability of these singularities.
But first, we have to put a suitable topology on the set of Lie algebroid
structures on a given vector bundle. To do so and to present our results,
we begin by recalling that there is a one-to-one correspondence between
Lie algebroids and some special Poisson structures.

A fiber-wise linear Poisson structure on a vector bundle p : E → M is a
Poisson structure on E which has the following properties:
• The bracket of two fiber-wise linear functions is fiber-wise linear.
• The bracket of a fiber-wise linear function and a basic one is basic

(every basic function on E has the form f ◦p, where f is a function on M).
• The bracket of two basic functions vanishes.
A fiber-wise linear Poisson structure Π has the local form

Π =
∑

16i<j6r

fs
i,j(x)ys∂yi ∧ ∂yj +

∑
16i6r

∑
16j6d

gi,j(x)∂yi ∧ ∂xj ,

TOME 56 (2006), FASCICULE 3



548 Jean-Paul DUFOUR & Aïssa WADE

in any system of fibered coordinates (x, y), where x = (x1, . . . , xd) is a
coordinate system on the base manifold M and y = (y1, . . . , yr) consists of
functions that are linear on the fibers (∂z stands for ∂

∂z ).
It is well-known that there is a one-to-one correspondence between Lie

algebroid structures on a vector bundle F and fiber-wise linear Poisson
structures on the total space of its dual E = F ∗ (see for instance [17]).
Hereafter, we identify these two concepts: the concept of a Lie algebroid
will be sometimes employed instead of that of a fiber-wise linear Poisson
structure. In particular, the topology we put on the set of Lie algebroid
structures on a given vector bundle F is the one which corresponds to the
Cs-topology for bivector fields on the total space of the dual vector bundle
E = F ∗ (the integer s will be specified later on). A point m of the base
manifold M is a singular point of a Lie algebroid if and only if 0m, the origin
of the fiber over m, is a singular point of the associated fiber-wise linear
Poisson structure Π. In the above local expression of π, such a singular
point corresponds to a point x with gi,j(x) = 0.

It makes sense to speak of singularities of order k for a Lie algebroid.
By definition, these are singular points m such that 0m is a singularity of
order k for Π. The first non-zero terms in the Taylor expansion of Π at 0m

have the local form

Π(k) =
∑

f
(k−1),`
i,j (x)y`∂yi ∧ ∂yj +

∑
g
(k)
i,j (x)∂yi ∧ ∂xj ,

where g
(k)
i,j (resp. f

(k−1),`
i,j ) are k-homogeneous (resp. (k− 1)-homogeneous)

polynomials. When k = 1 we have

Π(1) =
∑

a`
i,jy`∂yi ∧ ∂yj +

∑
b`
i,jx`∂yi ∧ ∂xj ,

where a`
i,j are structure constants for a Lie algebra g and b`

i,j are constants.
It corresponds to the algebroid associated to a linear action of the Lie
algebra g on the tangent space of the base manifold at a given point (see
for example [17]).

As for general Poisson structures, the first homogeneous terms of the
Taylor expansion at 0m, denoted Π(k), determine a k-homogeneous Lie
algebroid. Moreover, we can see that Π(k) is a fiber-wise linear Poisson
structure on V = T0mE, viewed as a trivial vector bundle with base TmM

and fiber T0m
(p−1(m)) ' p−1(m). We say that the algebroid singularity m

is k-stable if, for every neighborhood Ω of m in M, there is a neighborhood
W of Π in V2(E) such that every fiber-wise linear Poisson structure in W
has a singularity of order k in Ω. Even though Lie algebroids can be viewed
as specific Poisson structures, the Lichnerowicz-Poisson cohomology used
in Theorem 1.2 is not suitable for the study of the stability problem for

ANNALES DE L’INSTITUT FOURIER



STABILITY OF HIGHER ORDER SINGULAR POINTS 549

Lie algebroids. One needs to use the deformation cohomology introduced
recently by Crainic and Moerdĳk (see [5]). This is also called the linear
fiber-wise Poisson cohomology for Lie algebroids (see [9]). Hereafter, we will
use a local and homogeneous version. We attach to Π(k) the deformation
complex

V(s−k+1)
1,lin (T0mE)

∂
s−k+1
1−→ V(s)

2,lin(T0mE)
∂

s

2−→ V(s+k−1)
3,lin (T0mE) · · ·

which is by definition the sub-complex of the Lichnerowicz-Poisson com-
plex. Precisely, we replace V(s)

r (T0mE) by its sub-space V(s)
r,lin(T0mE) formed

by s-homogeneous r-vector fields K which satisfies the following properties:
• K(df1 . . . , dfr) is fiber-wise linear if f1, . . . , fr, are fiber-wise linear,
• K(df1 . . . , dfr) is basic if f1, . . . , fr−1, are fiber-wise linear and fr is

basic,
• K(df1 . . . , dfr) = 0 if at least two of the fi are basic.
In any local coordinates (x, y) chosen as above, elements of V(s)

r,lin(V )
have the form∑

f
(s−1),u
i1...ir

(x)yu∂yi1 ∧ · · · ∧∂yir +
∑

g
(s)
j1...jr−1,t(x)∂xt ∧∂yj1 ∧ · · · ∧∂yjr−1

where g
(s)
j1...jr−1,t are s-homogeneous polynomials and f

(s−1),u
i1...ir

are (s − 1)-
homogeneous polynomials on TmM. Denote by H2,s

lin(Π(k)) the second group
of cohomology for the above cohomology complex.

Under these notations we have the following theorem, where V2(E) is
equipped with the C2k-topology.

Theorem 1.3. — Let m be a singularity of order k for the algebroid Π
and let Π(k) be its k-homogeneous part at m. If H2,s

lin(Π(k)) = {0}, for any
s = 0, . . . , k − 1, then m is a k-stable algebroid singularity.

Section 2 contains the proofs of our main results (Theorems 1.2 and 1.3).
In Section 3, we will give examples and shows why most of the singularities
of higher order are stable (at least in dimension 3). Section 4 gives a method
for generalizing the above results to singular leaves (not necessarily reduced
to a point).

2. Proofs of the main theorems

We will start by establishing Theorem 1.2. First, one can notice the
following:

TOME 56 (2006), FASCICULE 3



550 Jean-Paul DUFOUR & Aïssa WADE

Remark 2.1. — The hypothesis of Theorem 1.2 says that ∂s
2 are one-to-

one for s = 0, . . . , k − 2, and

Ker∂k−1
2 = Im∂0

1 .

Given a neighborhood Ω of m in M , we choose a local coordinate system
(x1, . . . , xn) defined on an open neighborhood U of m that is contained
in Ω. For any bivector field Λ on M and for any point p in U , we denote
by Λ(s)

p the s-homogeneous terms of the Taylor expansion of Λ at p in the
above coordinates. We can view Λ(s)

p as an element of V(s)
2 (Rn), then the

(k − 1)-jet extension of Λ is given by:

J k−1
Λ : U −→ V(0)

2 (Rn)× · · · × V(k−1)
2 (Rn)

p 7−→
(
Λ(0)

p , . . . ,Λ(k−1)
p

)
.

Accordingly π(k) = π
(k)
m may be thought of as an element of V(k)

2 (Rn) and
the associated linear map ∂0

1 sends V(0)
1 (Rn) into V(k−1)

2 (Rn). From now
on, we will use the notation

A = {0} × · · · × {0} × Im(∂0
1)

which is a subspace of V(0)
2 (Rn)× · · · × V(k−1)

2 (Rn). Then, one gets

Lemma 2.2. — The image of the differential of J k−1
π at m coincides

with A.

The proof of this lemma is straightforward. It is left to the reader.
Given a point p in U and a bivector field Λ on M, we define

Fp,Λ : V(0)
2 (Rn)× · · · × V(k−1)

2 (Rn) −→ V(k−1)
3 (Rn)× · · · × V(2k−2)

3 (Rn)

such that the components of Fp,Λ(v0, · · · , vk−1) are given by

F (`−1)
p,Λ (v0, · · · , vk−1) =

∑
i6`−k

[vi,Λ(`−i)
p ] +

1
2

∑
`−k<i,j6k−1, i+j=`

[vi, vj ],

for all k 6 ` 6 2k − 1, and where [ , ] is the Schouten-Nĳenhuis bracket.
One has:

Lemma 2.3. — Under the hypothesis of Theorem 1.2, A is the kernel of
the differential of Fm,π at the origin O.

Proof. — When k = 1, one gets Fm,π(v0) = [v0, π
(1)]. Differentiating,

one can easily check that Ker
(
(Fm,π)∗(O)

)
= Ker(∂

0

2) = Im(∂
0

1). Now,
assume that k > 1, then the equation(

(Fm,π)∗(O
))

(w0, . . . , wk−1) = 0

ANNALES DE L’INSTITUT FOURIER



STABILITY OF HIGHER ORDER SINGULAR POINTS 551

gives the system of equations

[w0, π
(k)] = 0, [w1, π

(k)] + [w0, π
(k+1)] = 0, . . . ,

[wk−1, π
(k)] + · · ·+ [w0, π

(2k−1)] = 0

The first equation of this system says that w0 ∈ ker(∂0
2). By Remark 2.1,

one gets w0 ∈ Im(∂1−k
1 ). Using the fact that Im(∂

1−k

1 ) = {0} for k > 1, one
obtains w0 = 0. By an iteration procedure, one gets

w0 = · · · = wk−2 = 0 and ∂
k−1

2 (wk−1) = 0, ∀ k > 1.

This shows that the kernel of the differential of Fm,π at O is exactly A. �

Proof of Theorem 1.2. — Once for all, we fix a complement subspace B

of A, i.e.,

V(0)
2 (Rn)× · · · × V(k−1)

2 (Rn) = A⊕B.

Lemma 2.3 implies that the differential of Fm,π at the origin is one-to-one,
when restricted to B. Applying the implicit function theorem, one gets
that Fm,π is an injective immersion when it is restricted to a neighborhood
B0 of the origin in B. Note that Fp,Λ depends continuously on Λ in the
C2k-topology. A classical singularity technique (see Lemma A, p. 61, [11])
implies that there is a neighborhood B1 ⊂ B0 of the origin in B, a neigh-
borhood Ω1 ⊂ U of m, and a neighborhood W1 of π in V2(M) such that,
for every p in Ω1 and for every Λ in W1, Fp,Λ is one-to-one when restricted
to B1.

It follows from Lemma 2.2 that the map J k−1
π is transversal to B at

the origin. By transversality, there is a neighborhood W2 of π in V2(M)
such that, for every Λ in W2, J k−1

Λ intersects (transversally) B1 at a point
p ∈ Ω1. Set W = W1∩W2. Now pick a Poisson structure Λ in W. We know
that there is a point p in Ω1 where J k−1

Λ (p) intersects B1. Considering the
equation [Λ,Λ] = 0, we can notice that the terms of order k− 1, . . . , 2k− 2
in the Taylor expansion of [Λ,Λ] at that point p give

Fp,Λ(J k−1
Λ (p)) = 0.

The injectivity of (Fp,Λ)|B1 implies

J k−1
Λ (p) = 0.

If necessary, we may replace W by a smaller neighborhood of π to ensure
that the k-jet of Λ at p is non-trivial. So, p is the singularity point for Λ
we sought. This completes the proof of Theorem 1.2. �

TOME 56 (2006), FASCICULE 3



552 Jean-Paul DUFOUR & Aïssa WADE

Remark 2.4. — In our study there is no need for the singularity to be
isolated. In fact, from the proof of Theorem 1.2, one sees that the set of
singularities of order k for Poisson structures Λ sufficiently close to π is
(locally) formed by points p such that J k−1

Λ (p) ∈ B1, for each k fixed. So,
this set is, by transversality, a sub-manifold of codimension r = dim(A).
One can also notice that this manifold depends continuously on Λ, in a
natural sense.

The proof of Theorem 1.3 is a direct adaptation of that of Theorem 1.2.
Essentially, one replaces the symbol V(s)

u by V(s)
u,lin and

J k−1
Λ : U −→ V(0)

2 (Rn)× · · · × V(k−1)
2 (Rn)

p 7−→ (Λ(0)
p , . . . ,Λ(k−1)

p )

by
J k−1

Λ : U −→ V(0)
2,lin(Rd × Rr)× · · · × V(k−1)

2,lin (Rd × Rr).

p 7−→ (Λ(0)
0p

, . . . ,Λ(k−1)
0p

),

where d and r are the dimensions of the base manifold and the fiber, re-
spectively.

3. Examples

3.1. Singularities of Poisson structures in dimension 2

In dimension 2, singularities of Poisson structures are singularities of
functions for which there are specific classical techniques (see [14]). For
instance, singularities of topologically stable Poisson structures in Radko’s
sense (see [16]) are 1-stable.

3.2. Singularities of order 1 for Poisson structures

Let m be a singularity of order 1 for a Poisson structure π. Denote by g

the Lie algebra corresponding to the linear part of π at m. In this case, the
hypothesis of Theorem 1.2 reduces to H2,0

LP (π(1)) = {0}. A straightforward
calculation shows that this condition is equivalent to H2(g, R) = 0. This is
exactly the condition given by Crainic and Fernandès (see Section 1).

On can notice that if the Lie algebra associated to the linear part of π

at m is strongly rigid in the sense of Bordemann, Makhlouf, and Petit (see
[1]) then m is 1-stable.

ANNALES DE L’INSTITUT FOURIER
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3.3. Singularities of order 2 for Poisson structures

It is shown in [6] that Poisson structures on a vector space V having the
form

π(2) =
∑

ai,jxixj∂xi ∧ ∂xj

are generic among quadratic Poisson structures on V . We consider such
a Poisson structure π(2). It is known that the ai,j are invariants for this
Poisson structure (see [8]). Set λi =

∑
j ai,j .

Lemma 3.1. — If λi 6= 0 for every i, and λi + λj 6= 0 for i < j. then
H2,s

LP(π(2)) = {0}, for s = 0 and s = 1.

Note that the hypothesis in the above lemma may occur only when the
dimension is at least 3. The proof of this lemma can be found in [14].
This lemma and Theorem 1.2 imply that that singularities of order 2 of
quadratic Poisson structures are, in general, stable (in dimension > 3).

3.4. Singularities of Poisson structures in dimension 3

Let ω be a volume form on a 3-dimensional manifold M . The map
π 7→ α = iπω establishes a one-to-one correspondence between Poisson
structures and integrable 1-forms (i.e., 1-forms α such that α ∧ dα = 0).
On the open set U where α is nonzero, the distribution formed by vector
fields X satisfying iXα = 0 defines a regular foliation of codimension 1. If U

is strictly contained in M , we may impose that the leaves are single points
outside U . Then, we get a singular foliation on M which coincides with
the symplectic foliation of π. In [2], Camacho and Lins-Neto proved that
singularities of order k for these integrable forms are, in general, stable.
Hence, the same conclusion holds for Poisson structures in dimension 3.

In fact, the proof of Theorem 1.2 is inspired by methods used for in-
tegrable 1-forms. We will interpret, in terms of Poisson structures, two
results for integrable 1-forms obtained by Camacho and Lins-Neto. First,
recall that a vector field X = X1∂x + X2∂y + X3∂z on R3, which van-
ishes at the origin, has an algebraically isolated zero at the origin if the
ideal generated by the germs of its components X1, X2 and X3 has a finite
codimension in the space of germs of functions of x, y and z at the origin.

Lemma 3.2. — Let π(k) be a k-homogeneous Poisson structure on R3.

Suppose its modular vector field X(k−1) with respect to ω = dx ∧ dy ∧ dz

has an algebraically isolated zero at the origin. Then the hypothesis of
Theorem 1.2 (i.e., H2,s

LP(π(k)) = {0}, for any s = 0, . . . , k − 1) holds true.

TOME 56 (2006), FASCICULE 3



554 Jean-Paul DUFOUR & Aïssa WADE

Hence any order k singularity, with π(k) as in this lemma, is k-stable.

Lemma 3.3. — Under the hypothesis of Lemma 3.2 and for all k > 2,
we have

π(k) =
1

k + 1
I ∧X(k−1),

where I = x∂x + y∂y + z∂z is the Liouville vector field.

This last lemma allows to construct many examples of k-stable singular-
ities for k > 2. For instance, the origin is a k-stable singularity for

π=(xyk−1−yxk−1)∂x∧∂y+(yzk−1−zyk−1)∂y∧∂z+(zxk−1−xzk−1)∂z∧∂x.

3.5. Singularities of order 1 for Lie algebroids

We recall that if m is a singularity order 1 for a Lie algebroid then the
linear part of this algebroid at that singularity is a Lie algebroid corre-
sponding to a linear action of a Lie algebra g on a vector space V. We will
see that, in this case, the condition of stability of Theorem 1.3 is equivalent
to H1(g, V ∗) = 0.

Consider a fiber-wise linear Poisson structure that corresponds to an ac-
tion Lie algebroid gnV . Suppose that it is given by the following expression
in a fibered coordinate system (x1, . . . , xd, y1, . . . , yr):

Π(1) =
∑

k

ak
i,jyk∂yi ∧ ∂yj +

∑
`

b`
p,qx`∂yp ∧ ∂xq,

where ak
i,j are structure constants of the Lie algebra g and b`

p,q are constants
which determine the action g on V . Set

µ =
∑

µu,v∂yu ∧ ∂xv,

where the µu,v are constants. Consider the equation [Π(1), µ] = 0. In this
equation, the coefficient of ∂xq ∧ ∂yi ∧ ∂yj gives

(1)
∑

v

(
µi,vbv

j,q − µj,vbv
i,q

)
−

∑
u

au
i,jµu,q = 0.

But, if V ∗ is identified with the vector space of constant vector fields gen-
erated by the vector fields ∂xi, then the dual action % : g → End(V ∗) is
given by

%(yi)(∂xj) = −
∑

v

bj
i,v∂xv.

Furthermore, if we set
µi =

∑
u

µi,`∂x`,
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we obtain that Equation (1) can be expressed as

〈%(yi)(µj)− %(yj)(µi), dxq〉 =
∑

u

au
i,jµu,q.

More precisely, Equation (1) says that µ corresponds to a 1-cocycle for the
representation %. This shows that constant 2-cocycles for the deformation
cohomology complex can be identified with 1-cocycles relative to the rep-
resentation %. Similarly, 2-coboundaries for the deformation cohomology
complex can be identified with 1-coboundaries relative to the representa-
tion %. There follows that

H2,0
lin (Π(1)) ∼= H1(g, V ∗).

In particular, when Π(1) is the fiber-wise Poisson structure induced by the
natural action of g on itself, then H2,0

lin (Π(1)) ∼= H1(g, g∗). As R.-L. Fer-
nandès points out (private communication), one can notice that, in this
case, the hypothesis of Theorem 1.3 is stronger than that of Theorem 1.2.
More precisely, the natural inclusion H2(g, R) ↪→ H1(g, g∗) is not onto,
in general (since H2(g, R) can be viewed as the skew-symmetric part of
H1(g, g∗)). Consequently, the fact that m is a 1-stable singular point for a
Poisson structure whose 1-jet at m corresponds to g does not guaranty that
it is 1-stable for the associated Lie algebroid. For instance, if g = aff(1) (i.e.,
the Lie algebra of affine transformations on R2) then the origin O is 1-stable
for the associated Lie-Poisson structure on g∗ since H2(aff(1), R) = {0}.
But, the origin is not 1-stable for the corresponding Lie algebroid.

Furthermore, one can notice that, in the particular case where g is re-
ductive and the Xi =

∑
b`
ikx`∂xk are diagonal, the Hochschild-Serre fac-

torization theorem (see [12]) gives H2,0
lin (Π(1)) = {0}⇐⇒H1(g, R)={0}.

3.6. Singularity of order 2 for Lie algebroids

Consider Rn+1 (n > 1) with the standard coordinates (x0, x1, . . . , xn)
and the function ρ = x2

0 + · · ·+ x2
n. Let Π be the fiber-wise linear Poisson

structure on R2n+2 given by

Π(2) = (ρ− 1)
n∑

i=0

∂xi ∧ ∂yi +
∑
i<j

(xiyj − xjyi)∂yi ∧ ∂yj .

This is the Lie algebroid attached to (ρ − 1), in the sense of Monnier
(see [15]). Every point lying on the unit sphere is singular. It follows from
results proven in [14] that H2,s

lin (Π(2)) vanishes for all s (see Lemma 5.4.3
and Proposition 6.1.2 in [14]). Therefore, the unit sphere is 2-stable.
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4. Application: stability of non-trivial leaves

In this section, we will apply our previous results to Dirac manifolds
and non-trivial leaves of Lie algebroids. Let M be a smooth n-dimensional
manifold. We consider the vector bundle TM ⊕ T ∗M together with the
Courant bracket defined by

[(X1, α1), (X2, α2)]C = ([X1, X2],LX1α2 − iX2dα1),

for any (X1, α1), (X2, α2) ∈ Γ(TM ⊕ T ∗M). Recall that a Dirac struc-
ture on M (see [3]) is a sub-bundle L ⊂ TM ⊕ T ∗M of rank n which is
closed under the Courant bracket and which is isotropic with respect to
the bilinear symmetric operation given by

〈(X1, α1), (X2, α2)〉 =
1
2
(iX2α1 + iX1α2),

for any (X1, α1), (X2, α2) ∈ Γ(TM ⊕ T ∗M). In this case, (M,L) is called
a Dirac manifold. It is known that every Dirac manifold admits a foliation
by pre-symplectic leaves (see [3]). We also know that the dimensions of the
leaves have the same parity (see [7]).

A pre-symplectic leaf S of (M,L) is singular if every neighborhood of
S intersects leaves of higher dimension. We say that the singular leaf S is
stable if, for any small neighborhood U of S, there is a neighborhood W of
L|U such that all Dirac structures in W admit a pre-symplectic leaf that
has the same dimension as S. Here, we endow the set of Dirac structures
on M with the topology induced by the C2-topology on sections of the
associated bundle of Grassmanians of n-planes in each fiber of TM⊕T ∗M ,
where n = dim(M).

Let S be a pre-symplectic leaf of (M,L), it is proven in [7] that if N ⊂ M

is an embedded submanifold that intersects transversally S at m0 (in the
sense that Tm0M = Tm0S ⊕ Tm0N) then L induces a Poisson structure on
N which vanishes at m0. Moreover, this transverse Poisson structure does
not depend on m0: it is unique up to Poisson isomorphisms. This is called
the transverse Poisson structure along S.

Proposition 4.1. — Assume that S is an embedded singular pre-sym-
plectic leaf of a Dirac manifold (M,L) and m0 ∈ S is a stable singular
point for the transverse Poisson structure. Then S is stable.

Proof. — Consider a tubular neighborhood of S that corresponds to the
vector bundle p : E → S. Denote by π

V
the transverse Poisson structure

defined on an open neighborhood U ⊂ Em0 of m0 with π
V
(m0) = 0.

We set N = Em0 . Any Dirac structure L′ sufficiently close to L|E has
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pre-symplectic leaves S′ near S that intersect N with the transversality
relation:

TmE = TmS′ + TmN

at points m ∈ U ⊂ N . A priori, the above sum is not direct. Using the
transversality relation and the local normal form of L′ given in [7], one
deduces that L′∩(TN⊕T ∗M) has a constant rank near m0. It follows that
L′ induces a Dirac structure L′

V
in a neighborhood of m0 in N . Moreover,

the fact that L′ is chosen to be very close to L|E implies that L′
V

is the
graph of a Poisson structure π′

V
which is close to π

V
on U (if necessary,

we replace U by a smaller open set). Since m0 is stable for π
V

, the Poisson
structure π′

V
has a singular point in U . Obviously, singular points for π′

V

are located on leaves of the Dirac manifold (E,L′) that have the same
dimension as S. �

Remark 4.2. — In the above proof, the singular leaf S′ associated with
L′ is not, in general, diffeomorphic to the original leaf S (specially, when
S is non-compact). For instance, let M be the product of R2 by the torus
T2 and suppose that Lπ is the graph of the Poisson structure π given by

π = y
∂

∂x
∧ ∂

∂y
+

∂

∂θ1
∧ ∂

∂θ2
,

where (x, y) are coordinates of R2 and (θ1, θ2) coordinates of T2. The sub-
manifolds given by equations x = x0, y = 0 are singular leaves of (M,Lπ).
By Proposition 4.1, each of these leaves is stable. Note that they are dif-
feomorphic to T2. Now, we consider

πε = y
∂

∂x
∧ ∂

∂y
+

( ∂

∂θ1
+ ε

∂

∂x

)
∧ ∂

∂θ2
,

where ε ∈ R is a deformation parameter. For ε 6= 0, every 2-dimensional
symplectic leaf of πε is (globally) diffeomorphic to S1 ×R. Hence, it is not
(globally) diffeomorphic to the torus.

We should mention that Crainic and Fernandès have obtained (private
communication) results on stability of compact leaves of Poisson structures
in a stronger sense, i.e., S diffeomorphic to S′.

Using the notion of transverse Lie algebroid structure along a leaf (see,
for instance, [10]) and the above techniques, one can similarly show the
following proposition:

Proposition 4.3. — Let S be an embedded singular leaf of the base
manifold of a Lie algebroid. If m ∈ S is a stable singularity of the transversal
algebroid structure along S, then S is stable.
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