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ON CONTACT P-SPHERES

by Mathias ZESSIN

1. Introduction and generalities.

Contact circles and contact p-spheres are families of contact forms
parametrized by the circle and the p-sphere respectively and have been
introduced by H. Geiges and J. Gonzalo in 1995 (see [4]). These authors
give a fundamental existence theorem for contact circles and closely study
a special class of contact circles with additional geometrical properties (see
also [5]). Their work is about 3-dimensional manifolds.

In the first part of this paper we are interested in invariant contact
circles and contact p-spheres on principal S1-bundles. In this specific
situation we adapt some methods developed by R. Lutz which have been
used to construct the first examples of contact forms on the 5-dimensional
torus (see [9]). They will be particularly helpful for the construction of new
classes of examples. In this work, we will see examples of invariant contact
circles and contact spheres on 3-dimensional principal S1-bundles. In the
second part, we examine the general situation in higher dimensions and
give examples of contact p-spheres there.

In paragraph 2 we start with some examples. In dimension 3, the
most natural ones are found on S3. In paragraph 3, we develop tools to

Keywords: Contact p-spheres, invariant contact forms, principal fibre bundles.
Math. classification: 53D10, 55R25, 58A15.



1168 Mathias ZESSIN

study invariant contact circles and contact spheres. In paragraphs 4 and
5 we state the main theorems of this first part. They solve the existence
problem of invariant contact circles and contact spheres on principal S1-
bundles over closed, connected and orientable surfaces. In paragraph 6 we
construct examples on all such principal S1-bundles where contact circles
might exist according to the theorems of paragraphs 4 and 5. In paragraph
7 we consider higher dimensions and prove that on manifolds of dimension
4n + 1, contact circles and contact p-spheres do not exist. In paragraph 8
we study round contact p-spheres, that is, contact p-spheres whose Reeb
vector fields are stable under linear combinations within the contact p-
sphere, and in paragraph 9 we give examples of contact p-spheres on the
spheres of dimension 4n − 1. In paragraph 10 we make a connection to
Sasakian geometry, which gives more examples of contact spheres.

Let us now give some definitions and preliminary results.

Let M be a (2n + 1)-dimensional manifold. A contact form on M is
a 1-form ω such that ω ∧ (dω)n is a volume form on M . The Reeb vector
field R associated to ω is defined by ω(R) = 1 and R� dω = 0.

DEFINITION 1. — The set of normalized linear combinations of p + 1
contact forms ω1, . . . , ωp+1

{ p+1∑
i=1

λi ωi |
p+1∑
i=1

λ2
i = 1

}

is called a contact p-sphere, if every element of this family is a contact

form. It will be denoted by Spc {ω1, . . . , ωp+1}.

Note that Geiges and Gonzalo call contact circle a pair (ω1, ω2) of
contact forms whose normalized linear combinations are still contact forms
and contact sphere a triple (ω1, ω2, ω3) of such forms. Here, however,
contact p-sphere will denote the whole family generated by these forms.

In this paper, a contact 1-sphere will be called a contact circle, and
a contact 2-sphere might simply be called contact sphere. Note that each
contact sphere contains contact circles and that in general each contact
m-sphere contains contact n-spheres for n � m.

Following Geiges and Gonzalo, a contact circle or a contact p-sphere
will be called taut, if all its elements generate the same volume form, that
is, if for any element ω = λ1 ω1 +λ2 ω2 of, say, a contact circle in dimension
3, the form ω ∧ dω does not depend on its coefficients λ1 and λ2.

ANNALES DE L’INSTITUT FOURIER



ON CONTACT P-SPHERES 1169

2. Examples on S
3 and on T

3.

We use a quaternionic representation of S3 to get the following natural
example of a contact sphere:

In the space of quaternions H, the forms



α̃ = < qi, dq > = q1 dq2 − q2 dq1 + q4 dq3 − q3 dq4

β̃ = < qj, dq > = q1 dq3 − q3 dq1 + q2 dq4 − q4 dq2

γ̃ = < qk, dq > = q3 dq2 − q2 dq3 + q1 dq4 − q4 dq1

induce three contact forms α, β and γ on the unit sphere S3, which are
independent and complementary in the sense that their Reeb vector fields
give an orthonormal basis of the tangent space TpS

3 at every point p ∈ S3

with respect to the induced Euclidean metric.

Any form

ω̃ = λ1 α̃ + λ2 β̃ + λ3 γ̃ with
3∑
i=1

λ2
i = 1

satisfies

ω̃ ∧ dω̃ ∧ (q1 dq1 + q2 dq2 + q3 dq3 + q4 dq4) = dq1 ∧ dq2 ∧ dq3 ∧ dq4,

which is non-zero everywhere. Hence the induced form ω = λ1 α+λ2 β+λ3 γ

is a contact form and ω ∧ dω = α∧ dα. This gives a taut contact sphere. It
is also round in a sense defined in paragraph 8.

We also observe that the forms α, β and γ are invariant with respect
to the vector field X induced by

q1
∂

∂q2
− q2

∂

∂q1
+ q3

∂

∂q4
− q4

∂

∂q3
,

which is the Reeb vector field of the contact form α̂ induced by < iq, dq >

on S3. The orbits of X are the fibres of a principal Hopf fibration of S3

over S2 with fibre S1 and connection form α̂. In this case, S2
c {α, β, γ} is an

invariant contact sphere on this S1-bundle.

S
3 ⊂ H

π(q)=q i q̄


 S
1

S
2

TOME 55 (2005), FASCICULE 4



1170 Mathias ZESSIN

Another quite natural example of contact circles can be found on T3,
with pseudo-coordinates (θ1, θ2, θ3). On this torus, consider the forms

{
ω1 = cos (n θ1)dθ2 + sin (n θ1)dθ3

ω2 = − sin (n θ1)dθ2 + cos (n θ1)dθ3,

for some non-zero integer n. Setting ω = λ1 ω1 + λ2 ω2, with λ2
1 + λ2

2 = 1,
we get

ω ∧ dω = −ndθ1 ∧ dθ2 ∧ dθ3.

Thus for any n, ω1 and ω2 generate a taut contact circle. We can observe
that ω1 and ω2 and thus all elements of the contact circle are invariant with
respect to the vector fields ∂

∂θ2
and ∂

∂θ3
. So these contact circles are even

invariant with respect to the corresponding T2-action.

3. Singular sets and knotted fibrations.

In this paragraph we develop tools to study invariant contact circles
and contact p-spheres on principal S1-bundles over connected closed man-
ifolds. We first examine singular sets associated to invariant contact forms
in this context and then consider these sets as knots of knotted fibrations.
This approach allows great insight into the topology of invariant contact
circles and contact p-spheres.

Consider a (2n + 1)-dimensional manifold M , which is a principal
S

1-bundle over a (2n)-dimensional manifold B with connection form α.
Assume that B is a compact, connected, orientable manifold without
boundary. Then for each invariant form ω on M , there is a form η and
a function ϕ on the base space B, such that

ω = π∗(η) + π∗(ϕ)α,

where π is the bundle map.

ANNALES DE L’INSTITUT FOURIER



ON CONTACT P-SPHERES 1171

We have the following technical lemma:

LEMMA 1. — Let Spc {ω1, . . . , ωp+1} be an invariant contact p-sphere

on M and assume that for each i,

ωi = π∗(ηi) + π∗(ϕi)α

for some forms and functions ηi and ϕi on B. Then for any coefficients

(λ1, . . . , λp+1) with
∑p+1
i=1 λ2

i = 1, the expressions

(1)
p+1∑
i=1

λi ϕi and

p+1∑
i=1

λi dϕi

do not vanish simultaneously at any point of B.

Proof. — This is an immediate consequence of the contact property
of linear combinations of the forms ω1, . . . ωp+1. Indeed, for ω =

∑p+1
i=1 λi ωi,

we have

ω∧(dω)n = (
p+1∑
i=1

λi ηi+
p+1∑
i=1

λi ϕi α)∧(
p+1∑
i=1

λi dηi+
p+1∑
i=1

λi dϕi∧α+
p+1∑
i=1

λi ϕi dα)n.

This term equals

(
p+1∑
i=1

λi ηi) ∧ (
p+1∑
i=1

λi dηi)n,

at points where the expressions (1) vanish simultaneously. But a (2n + 1)-
form on B2n is zero. This contradicts the assumption that Spc {ω1, . . . , ωp+1}
is a contact p-sphere and proves the lemma. �

Let us now define on the base manifold the singular set associated to
a given invariant contact form on M , following R. Lutz (see [8]).

DEFINITION 2. — Let ω = π∗(η) + π∗(ϕ)α be an invariant contact

form on an S1-bundle M over a manifold B. The singular set associated to

ω is the set Σω = ϕ−1(0) on B.

We now prove some fundamental properties of the singular sets of
invariant contact circles and contact p-spheres on a principal S1-bundle M

over a closed connected manifold B.

TOME 55 (2005), FASCICULE 4



1172 Mathias ZESSIN

PROPOSITION 1. —

i) The singular sets are submanifolds of B.

ii) If M admits an invariant contact circle, then each point of B lies on

the singular set of some element of this contact circle.

iii) The singular sets of two forms of the same contact circle or contact

p-sphere are isotopic.

iv) The singular set of an element of an invariant contact circle or contact

p-sphere is non-empty.

v) The singular sets of two different and non-opposite elements of an

invariant contact circle or contact p-sphere intersect transversally.

Proof. — According to R. Lutz ([8]) (or to Lemma 1 in the particular
case of p = 0), dϕ does not vanish on ϕ−1(0), if ω = π∗(η) + π∗(ϕ)α is
an invariant contact form on M . Thus the corresponding singular set is a
submanifold of B.

Let ω1 and ω2 generate an invariant contact circle on M . Writing, for
i = 1, 2,

ωi = π∗(ηi) + π∗(ϕi)α,

an arbitrary element of the contact circle will be

ω = sin (θ)ω1 + cos (θ)ω2

= π∗( sin (θ) η1 + cos (θ) η2) + π∗(( sin (θ)ϕ1 + cos (θ)ϕ2))α

= π∗(η) + π∗(ϕ)α.

Thus, for any values ϕ1(p) and ϕ2(p), there is some θ ∈ [0, 2π] such that
ϕ(p) = 0.

This argument shows also that in any contact circle there are elements
whose singular sets are not empty. On the other hand, according to
[6] (see also [10]), the contact structures associated to elements of one-
parameter-families of contact forms are isomorphic. Obviously, contact
circles are special one-parameter-families, so the corresponding structures
are isomorphic. The isomorphisms are equivariant, as explained in [8], so
the singular sets of elements of a contact circle are isotopic. Thus any
element of a contact circle has a non-empty singular set.

In contact p-spheres, p being an arbitrary dimension, any two different
and non-opposite elements generate a contact circle, so their singular sets
are non-empty and isotopic, too.

ANNALES DE L’INSTITUT FOURIER
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Finally, at a point where the singular sets of two different and non-
opposite elements ω1 = π∗(η1) + π∗(ϕ1)α and ω2 = π∗(η2) + π∗(ϕ2)α of
an invariant contact circle intersect, we have ϕ1 = ϕ2 = 0, so by Lemma
1, the forms dϕ1 and dϕ2 are linearly independent, hence the intersection
of Σω1 and Σω2 is transversal. �

One way to study singular sets and thus invariant contact p-spheres
is to consider their associated knotted fibrations. This viewpoint is due to
R. Lutz and generalizes J. Milnor’s open book constructions in the context
of invariant contact forms. It means the following (see [9]):

DEFINITION 3. — (B,ϕ,N) is a knotted fibration along N over Sk−1,

if

1. B is a connected, orientable, compact manifold

2. N is either empty or a closed codimension-k-submanifold in B

3. ϕ : B \N −→ S
k−1 is a locally trivial fibration

4. If N is non-empty, there exists an open neighborhood W of N and a

diffeomorphism h : N ×Dk −→ W , where Dk is the unit disk of Rk,

such that h(z, 0) = z on N ×{0} and such that the following diagram

commutes:
N ×

(
Dk \ {0}

) h−−−→ W \N

proj.


 ϕ



Dk \ {0}

�
‖�‖−−−→ S

k−1.

N will be called the knot and ϕ−1(p) will be called a fibre of the
knotted fibration, for any point p ∈ Sk−1.

As an example in dimension 3, we can consider singular sets associated
to invariant contact p-spheres on principal S1-bundles over surfaces in
different ways:

• Given one contact form ω = π∗(η) + π∗(ϕ)α, the singular set
Σω = ϕ−1(0) is a curve on the base space and defines a knotted
fibration over S0 with knot Σω and two fibres determined by the sign
of the function ϕ. These fibres are well defined (see [8]).

• For a contact circle generated by two invariant contact forms ω1 and
ω2, the intersection Σ of the associated singular sets Σω1 and Σω2 is

TOME 55 (2005), FASCICULE 4



1174 Mathias ZESSIN

finite. Σ is the knot of a knotted fibration of B over S1, whose fibres
are curves starting and ending at points of Σ.

• In the case of an invariant contact sphere with generating forms ω1, ω2

and ω3, there is no common singular set, which is due to Lemma 1,
but we can consider an associated knotted fibration of M over S2 with
empty knot and fibres which are finite subsets of B.

These are special cases of the following fibration theorem which gives
this decomposition in full generality:

THEOREM 1. — Fibration theorem

Let M be a (2n+1)-dimensional principal S1-bundle over a closed con-

nected base manifold B2n with connection form α and let Spc {ω1, . . . , ωp+1}
be an invariant contact p-sphere on M . Write ωi as ωi = π∗(ηi)+π∗(ϕi)α,

for i=1,. . . ,p+1, and let Σ =
⋂p+1
i=1 ϕ−1

i (0) be the intersection of the singu-

lar sets of the generating forms. Then for r =
√∑p+1

i=1 ϕ2
i ,

(B, (
ϕ1

r
, . . . ,

ϕp+1

r
),Σ)

defines a knotted fibration over Sp.

Proof. — According to [9], it is enough to show that the map

Φ = (
ϕ1

r
, . . . ,

ϕp+1

r
) : B \ Σ→ S

p

is of rank p everywhere and that at any point of Σ, we have

dϕ1 ∧ . . . ∧ dϕp+1 
= 0.

The first condition is a consequence of Lemma 1. Indeed, we show
that if Φ is not of rank p, then there are coefficients (λ1, . . . , λp+1) with∑p+1
i=1 λ2

i = 1, such that

p+1∑
i=1

λiϕi = 0 and
p+1∑
i=1

λi dϕi = 0,

at some points of B \ Σ, which is excluded by Lemma 1.

ANNALES DE L’INSTITUT FOURIER
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On a point x ∈ B \Σ, at least one of the functions ϕi does not vanish.
Assume that ϕp+1 is non-zero. Then the rank of Φ is given by the rank of
the system (d( ϕ1

r ), . . . , d( ϕpr )).

Assume now that there is some point x ∈ B \ Σ and p real numbers
µ1, . . . , µp, such that

∑p
i=1 µid(

ϕi
r ) = 0. Differentiating this and using

dr = 1
r (

∑p+1
i=1 ϕidϕi), we get

0 =
1
r

(
p∑
i=1

µidϕi)−
p∑
i=1

µiϕi
r2

dr =
p+1∑
i=1

λi dϕi,

where we set λi = µi
r − (

∑p
j=1

µjϕj
r2 ) ϕir , for i = 1, . . . , p and λp+1 =

−(
∑p
j=1

µjϕj
r2 ) 1

r ϕp+1. With the same coefficients, we have now

p+1∑
i=1

λiϕi =
p∑
i=1

µiϕi
r
−

p∑
i=1

ϕ2
i

p∑
j=1

µj ϕj
r3

−
p∑
i=1

µi ϕi
r3

ϕ2
p+1

=
p∑
i=1

µi ϕi
r3

(r2 −
p+1∑
j=1

ϕ2
j )

= 0.

The second condition is another consequence of Lemma 1. As on Σ
the functions ϕi vanish, any expression

∑p+1
i=1 λi dϕi is non-zero by Lemma

1. Thus the forms {dϕi, i = 1 . . . p + 1} are linearly independent on Σ,
hence dϕ1 ∧ . . . ∧ dϕp+1 
= 0 on Σ. This completes the proof. �

COROLLARY 1. — Let S1
c {ω1, ω2} be an invariant contact circle on an

S
1-bundle M over a closed connected surface B with common singular set

Σ. Then B \ Σ fibres over S1.

This corollary is a useful tool in certain situations. It gives us some
additional information about the singular sets associated to invariant
contact circles on principal S1-bundles over surfaces, for example the
following properties.

PROPOSITION 2. —

a) The singular set Σω of an element ω of a contact circle generated by

ω1 and ω2 on a principal S1-bundle over S2 is a topological circle and

the singular sets of two different and non-opposite elements intersect

in two points.

TOME 55 (2005), FASCICULE 4



1176 Mathias ZESSIN

b) The singular set Σω of an element ω of a contact circle generated by

ω1 and ω2 on a principal S1-bundle over T2 is the union of an even

number of topological circles and the singular sets of two different

and non-opposite elements do not intersect.

Proof. — In the case B = S
2, it is enough to show that Σω1 is a

topological circle. As it is a non-empty submanifold of S2, it is a union
of topological circles. To see why Σω1 can not have several connected
components, we first observe that the common singular set Σ = Σω1 ∩Σω2

is the union of two points, as S2 \ Σ fibres over S1, and that the fibres are
non-closed curves starting and ending at different components of Σ. As the
fibration map is Φ = ( ϕ1

r , ϕ2
r ), where r =

√
ϕ2

1 + ϕ2
2, Σω1 \Σ is the union

of two fibres which are given by Φ−1(0, 1) and Φ−1(0,−1) and which meet
on Σ. Thus Σω1 is a topological circle.

In the case B = T
2, the common singular set Σ is empty, as T2 \ Σ

fibres over S1. So the singular sets of linearly independent elements of an
invariant contact circle over T2 do not intersect. As before, the singular set
of an element ω is non-empty and the number of its components is even,
because the sign of the corresponding function ϕ is different in adjacent
regions of T2 \Σω and because the components of Σω do not bound disks,
as there is an isotopy which carries any such component into itself, filling
the whole torus on the way. �

4. Invariant contact circles in dimension 3.

We are now looking for principal S1-bundles over orientable, con-
nected closed surfaces which admit invariant contact circles. It is in fact
the base manifold that carries all the information with respect to this ques-
tion. We have the following theorem:

THEOREM 2. — Let M be a principal circle-bundle over an orientable,

connected closed surface B. There exists an invariant contact circle on M

if and only if the base space B is either the 2-sphere or the 2-torus.

Proof (necessary part). — Here we prove that only principal S1-
bundles over S2 or T2 might carry an invariant contact circle. The converse
will be proved in a constructive way in paragraph 6.

ANNALES DE L’INSTITUT FOURIER
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Let ω1 and ω2 generate an invariant contact circle on M . The singular
sets Σω1 and Σω2 are unions of topological circles on B. By Corollary 1,
the complement of their intersection Σ fibres over S1.

If Σ is empty, B is an orientable, connected closed surface which fibres
over S1, thus the torus T2.

If Σ is non-empty, it is a finite union of points, as we have seen in
paragraph 3. According to the Fibration theorem 1, each component of Σ
has a neighborhood which is diffeomorphic to a disk and each radius of this
disk corresponds to a different fibre of the associated knotted fibration over
S

1. As each fibre starts and ends at two different components of Σ, Σ has
at least two components. B \ Σ is a locally trivial fibration over S1, so for
reasons of continuity all fibres starting at a given component of Σ end at
the same component of Σ. With these restrictions the fibred surface can
only be a twice punctured sphere, that is, B = S2. �

5. Invariant contact spheres in dimension 3.

For invariant contact spheres on principal circle-bundles over ori-
entable, connected closed surfaces, the possibilities are even more restricted,
as any contact sphere contains contact circles. In fact, contact spheres
do not exist on principal circle-bundles over 2-tori, only on those over 2-
spheres. We have the following theorem, analogous to the one in section 4:

THEOREM 3. — Let M be a principal circle-bundle over a connected,

orientable closed surface B. There exists an invariant contact sphere on M

if and only if the base space B is the 2-sphere.

Here again, we will only prove that the condition is necessary, whereas
the constructions in paragraph 6 will prove that it is also sufficient.

Proof of theorem 3 (necessary part). — By Theorem 2 it is clear that
the base space can only be S2 or T2. Let us see why it can not be the torus.

Assume that ω1, ω2 and ω3 generate an invariant contact sphere on
a principal circle bundle M over T2, with ωi = π∗(ηi) + π∗(ϕi)α, for
i = 1, 2, 3. We show that there exist two forms in the contact sphere whose
singular sets intersect, which contradicts Proposition 2.

TOME 55 (2005), FASCICULE 4
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Remember that the singular set of any element of the contact sphere
is a non-empty union of topological circles on B, as we have seen in
paragraph 3.

Let Γ be one connected component of Σω1 . By Proposition 2, the
singular sets of two elements of the contact sphere do not intersect, so
the function ϕ associated to an arbitrary element of the contact sphere is
everywhere non-zero on Γ, except for ϕ1 and −ϕ1. Let ω be an element of
S2
c {ω1, ω2, ω3} other than ω1 and −ω1 and let

(2) ϕ =
3∑
i=1

λi ϕi, where
3∑
i=1

λ2
i = 1 and λ1 /∈ {−1, 1},

be the associated function on the base space. We can assume that ϕ is
positive on Γ. Then there is a path on the unit sphere of triples (λ1, λ2, λ3)
relating the coefficients of ϕ in expression (2) to those of −ϕ which does
not take the values (1, 0, 0) or (−1, 0, 0), the coefficients of ±ϕ1. This path
corresponds to a path in S2

c {ω1, ω2, ω3} connecting ω and −ω and avoiding
ω1 and −ω1. Thus we continuously transform ϕ, which is positive on Γ, into
−ϕ, which is negative on Γ. Then there is an intermediate function ϕ̃, which
corresponds to some element ω̃ of S2

c {ω1, ω2, ω3} and which has zeros on
Γ. Thus Γ and Σω̃ intersect. �

6. Construction of examples.

In the preceding paragraphs we proved necessary conditions for the
existence of invariant contact circles and contact spheres on principal S1-
bundles over surfaces. We will now see that they are also sufficient. On any
manifold mentioned in Theorems 2 and 3, that is, on principal S1-bundles
over S2 or T2, examples can be constructed.

Consider a principal circle-bundle M over S2 with bundle map π and
connection form α and three functions ϕ1, ϕ2 and ϕ3 on S2 such that∑

ϕ2
i = 1 everywhere. We define the following 1-forms on M :




ω1 = π∗(ϕ2 dϕ3 − ϕ3 dϕ2) + π∗(ϕ1) k α

ω2 = π∗(ϕ3 dϕ1 − ϕ1 dϕ3) + π∗(ϕ2) k α

ω3 = π∗(ϕ1 dϕ2 − ϕ2 dϕ1) + π∗(ϕ3) k α,

where k is a real number.

ANNALES DE L’INSTITUT FOURIER
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LEMMA 2. — Consider the form ω = λ1 ω1 + λ2 ω2 + λ3 ω3 for some

λ1, λ2, λ3 such that
∑

λ2
i = 1. Then we have the formula:

ω ∧ dω = k π∗((
3∑
i=1

λi ϕi)(λ1 dϕ2 ∧ dϕ3 + λ2 dϕ3 ∧ dϕ1 + λ3 dϕ1 ∧ dϕ2))∧α

+k π∗(Φ∗(Ω)) ∧ α + k2 π∗((
3∑
i=1

λi ϕi)2)α ∧ dα

where Ω is the Euclidean volume form on S2 and Φ=(ϕ1, ϕ2, ϕ3) : S2 → S
2.

Proof. — This is an easy, though lengthy calculation using the iden-
tities

∑
λ2
i = 1,

∑
ϕ2
i = 1 and Φ∗(Ω) = ϕ3 dϕ1 ∧ dϕ2 + ϕ1dϕ2 ∧ dϕ3 +

ϕ2dϕ3 ∧ dϕ1 and the fact that dα is an horizontal form. The only form
involved which is not a pullback from S

2 is α. �

This lemma gives us the possibility to construct contact spheres on
principal S1-bundles over S2. Indeed, up to an adjustment of the connection
form α, the forms (ω1, ω2, ω3) given above generate a contact sphere for
the right choice of k and of the functions (ϕ1, ϕ2, ϕ3).

Consider a function triple (ϕ1, ϕ2, ϕ3) such that
∑3
i=1 ϕ

2
i = 1 and

which defines a knotted fibration of S2 over S2, i.e. the corresponding
common singular set

⋂3
i=1 ϕ

−1
i (0) is empty and Φ = (ϕ1, ϕ2, ϕ3) is of

rank two everywhere. As the structural group of the fibration is abelian,
the form dα is horizontal, thus there is a 2-form ν on the base space B,
such that dα = π∗(ν). Since Φ∗(Ω) is a volume form on S2, there is a
function f such that ν = f Φ∗(Ω) and some functions C1, C2, C3, such that
dϕ2 ∧ dϕ3 = C1 Φ∗(Ω), dϕ3 ∧ dϕ1 = C2 Φ∗(Ω) and dϕ1 ∧ dϕ2 = C3 Φ∗(Ω).
The right hand expression in Lemma 2 now becomes
(3)

k
(
π∗

((
1+k f (

3∑
i=1

λi ϕi)2 +(
3∑
i=1

λi ϕi)(λ1 C1 +λ2 C2 +λ3 C3)
)
Φ∗(Ω)

)
∧α

)
.

To make this form a volume form, we observe that the function
(
∑3
i=1 λi ϕi)(λ1 C1 + λ2 C2 + λ3 C3) is bounded on S

2 and that it is
thus sufficient to choose k large enough and of the right sign, if f is
a non-vanishing function of constant sign. Next, we notice that adding

the function h =

∫
S

2 f Φ∗(Ω)∫
S

2 Φ∗(Ω)
− f to f makes f a constant function.
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This is possible, for the following reason: the form η = hΦ∗(Ω) satisfies∫
S

2 η = 0, so π∗(η) is an exact form on M and there is a 1-form ξ such
that dξ = π∗(η). The fibration of M over S2 is characterized by the value
of

∫
S

2 ν, where π∗(ν) is the differential of the connection form, so α + ξ is
another connection form of the same fibration. Thus replacing α by α + ξ

changes f into a constant function, without modifying the fibration.

Now assume f to be constant. If f is not identically zero, choosing k

large enough and of the same sign as f makes the expression (3) a volume
form. If f ≡ 0, then the manifold M is equivariantly diffeomorphic to
S

2 × S1 and there are known examples of invariant contact spheres on
such manifolds (see [5], p.274). This gives us examples of invariant contact
spheres on all principal S1-bundles over S2.

Let us now construct examples of invariant contact circles on principal
S

1-bundles over T2. In this case we consider the following 1-forms on M :

{
ω1 = π∗( cos θ1 dθ2) + π∗( sin θ1) k α

ω2 = π∗(− sin θ1 dθ2) + π∗( cos θ1) k α,

θ1 and θ2 being pseudo-coordinates on T2,α a connection form for the
fibration of M over T2 and k a real number. Setting ω = λ1 ω1 + λ2 ω2, we
get the formula

(4) ω ∧ dω = −k dθ1 ∧ dθ2 ∧ α + k2(λ1 sin θ1 + λ2 cos θ1)2α ∧ dα.

Similarly to the previously discussed case, there is a function f such that
dα = f dθ1∧dθ2, and we can assume that f is constant, up to a modification
of α by addition of a 1-form whose differential comes from a basic 2-form
integrating to zero over the torus. Thus, (4) becomes

(5) ω ∧ dω = k(k f (λ1 sin θ1 + λ2 cos θ1)2 − 2) dθ1 ∧ dθ2 ∧ α.

It is now obvious that it is enough to choose k non-zero and such that k · f
is not positive to make ω ∧ dω a volume form, for any coefficients (λ1, λ2).

It may be interesting to see that a contact circle obtained by this
construction is taut only if f is identically zero, that is, for M = T3.

The above construction leads to the following proposition, which gives
examples of invariant contact circles and contact spheres on all manifolds
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mentioned in Theorems 2 and 3. Thus it finishes the proves of these two
theorems.

PROPOSITION 3. — Let M be a circle-bundle over S2 with connection

form α and ϕ1, ϕ2 and ϕ3 three functions on S2 such that
∑

ϕ2
i = 1

everywhere and which define a knotted fibration of S2 over S2. Then there

exist a real number k and a 1-form ξ on M , such that the 1-forms




ω1 = π∗(ϕ2 dϕ3 − ϕ3 dϕ2) + π∗(ϕ1) k(α + ξ)
ω2 = π∗(ϕ3 dϕ1 − ϕ1 dϕ3) + π∗(ϕ2) k(α + ξ)
ω3 = π∗(ϕ1 dϕ2 − ϕ2 dϕ1) + π∗(ϕ3) k(α + ξ)

generate an invariant contact sphere on M .

Similarly, if M is a circle-bundle over T2 with connection form α̃ and

pseudo-coordinates θ1, θ2 on T2, then there exist a real number k̃ and a

1-form ξ̃ on M , such that the 1-forms

{
ω1 = π∗( cos θ1 dθ2) + π∗( sin θ1) k̃ (α̃ + ξ̃)
ω2 = π∗(− sin θ1 dθ2) + π∗( cos θ1) k̃ (α̃ + ξ̃)

generate an invariant contact circle on M .

7. Non-existence of contact p-spheres in dimension 4n + 1.

We now consider the situation in higher dimensions. It quickly be-
comes obvious that in dimension 5 it is not easy to construct contact cir-
cles, although there are, of course, 5-manifolds admitting contact forms. In
fact, we prove the following:

THEOREM 4. — On 5-dimensional manifolds, and more generally

on (4n + 1)-dimensional manifolds, contact circles and a fortiori contact

p-spheres do not exist for p � 1.

Proof. — Let (ω1, ω2) be a pair of contact forms on a 5-dimensional
manifold M . It generates a contact circle if ω = λ1 ω1 + λ2 ω2 is a contact
form for any (λ1, λ2) with λ2

1 + λ2
2 = 1, that is, if

ω ∧ (dω)2 =
2∑

i,j, k=1

λi λj λk (ωi ∧ dωj ∧ dωk)

is everywhere non-zero.
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Now fix a point x ∈M and five linearly independent tangent vectors

(v1, . . . , v5) ∈ Tx(M)

and consider the function

R
2 −→ R

(λ1, λ2) �−→
2∑

i,j,k=1

λi λj λk (ωi ∧ dωj ∧ dωk)x(v1, . . . , v5),

which is a homogeneous polynomial function of degree 3. It has zeros on
the unit circle of R2 (if it is positive at some point of the circle, it is
negative at its antipode), so S1

c {ω1, ω2} cannot be a contact circle, as for
the corresponding coefficients (λ1, λ2), ω ∧ (dω)2 is not a volume form.

In general, pairs of contact forms in dimension 4n + 1 give us
polynomial functions of degree 2n + 1, which is odd, so they necessarily
vanish on the unit circle of R2. Thus, contact circles do not exist in these
dimensions.

On the other hand, in dimension 4n − 1, these polynomial functions
are of degree 2n, which is even, so there is no restriction to the existence
of contact circles in these dimensions. �

8. Round contact p-spheres.

Let us now consider contact p-spheres with a special regularity
property. H. Geiges and J. Gonzalo call a contact p-sphere taut if all
elements yield the same volume form. We introduce a more geometrical
property which is equivalent to tautness in dimension 3, as we shall see.

8.1. Definition and examples.

DEFINITION 4. — Let {ω1, . . . , ωp+1} generate a contact p-sphere

and let R1, . . . , Rp+1 be the corresponding Reeb vector fields. Then

Spc {ω1, . . . , ωp+1} is called a round contact p-sphere if any form
∑p+1
i=1 λi ωi

with
∑p+1
i=1 λ2

i = 1 admits
∑p+1
i=1 λiRi as its Reeb vector field.

So the Reeb vector field of a linear combination of elements of a round
contact p-sphere is the corresponding linear combination of the Reeb vector
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fields of these elements. This is a strong restriction and quite useful for
computations.

We have the following characterization of round contact p-spheres:

LEMMA 3. — Let {ω1, . . . , ωp+1} generate a contact p-sphere on some

manifold M and let R1, . . . , Rp+1 be the corresponding Reeb vector fields.

Then Spc {ω1, . . . , ωp+1} is round if and only if the following conditions are

satisfied:

i) ωi(Rj) + ωj(Ri) = 0, for i, j ∈ {1, . . . , p + 1}, i 
= j

ii) Ri� dωj + Rj� dωi = 0, for i, j ∈ {1, . . . , p + 1}.

Proof. — Consider a contact form ω =
∑p+1
i=1 λi ωi with normalized

coefficients. R =
∑p+1
i=1 λiRi is the corresponding Reeb vector field if and

only if

a) (
∑p+1
i=1 λi ωi)(

∑p+1
i=1 λiRi) = 1

b) (
∑p+1
i=1 λiRi)�(

∑p+1
i=1 λi dωi) = 0.

Condition a) means that
∑
i<j λiλj(ωi(Rj) + ωj(Ri)) = 0. If

Spc {ω1, . . . , ωp+1} is a round contact p-sphere, this equality is true for any
normalized (p+1)-tuple of coefficients (λ1, . . . , λp+1). Considering the left-
hand side as a homogeneous polynomial on Sp, we conclude that all coef-
ficients must be zero, that is, condition i) is satisfied. The converse is of
course true.

The equivalence of conditions b) and ii) is proved in the same way. �

Remark. — This lemma shows that a contact p-sphere is round if
and only if every contact circle it contains is round. The same is true for
tautness. So to show that a contact p-sphere is round or taut, it is enough
to examine contact circles for this property.

Examples. —

1. We have mentioned an example of a round contact 2-sphere on S3

in paragraph 2. Indeed, consider S3 as the unit sphere of the group
of quaternions H and the contact sphere generated by ω1, ω2 and ω3

induced on S3 by 


ω̃1 = < iq, dq >

ω̃2 = < jq, dq >

ω̃3 = < kq, dq > .
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The corresponding Reeb vector fields are



R1 = iq

R2 = jq

R3 = kq.

Using Lemma 3, we can check that this contact sphere is indeed round:

In this example, the Reeb vector fields of ω1, ω2 and ω3 are also their
dual vector fields, so ωi(Rj) = δij . So condition i) is satisfied.

On the other hand, as dω̃1 = −dq̄∧ idq and dω̃2 = −dq̄∧ jdq, we have

R2� dω̃1 = q̄ j i dq + dq̄ i j q

R1� dω̃2 = q̄ i j dq + dq̄ j i q

= −(q̄ j i dq + dq̄ i j q).

So R2� dω1 + R1� dω2 = 0 and the remaining relations of condition
ii) are obtained in the same way.

2. There is also an example of a round contact circle on T3. Indeed, the
forms {

ω1 = cos θ1 dθ2 + sin θ1 dθ3

ω2 = − sin θ1 dθ2 + cos θ1 dθ3

generate a contact circle and their Reeb vector fields are respectively
{
R1 = cos θ1

∂
∂θ2

+ sin θ1
∂
∂θ3

R2 = − sin θ1
∂
∂θ2

+ cos θ1
∂
∂θ3

.

Once again, we have ωi(Rj) = δij , for i, j = 1, 2. So condition i) of
Lemma 3 is satisfied. Moreover, we have

{
dω1 = − sin θ1 dθ1 ∧ dθ2 + cos θ1 dθ1 ∧ dθ3

dω2 = − cos θ1 dθ1 ∧ dθ2 − sin θ1 dθ1 ∧ dθ3,

so R1�dω2 = dθ1 = −R2�dω1 and condition ii) is also satisfied.

8.2. Round ⇔ taut in dimension 3.

We now prove that in dimension 3, roundness is indeed equivalent to
tautness. This gives us the possibility to have different viewpoints on the
same property. Let us first prove the following lemma:
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LEMMA 4. — The Reeb vector fields of two generating elements of a

contact circle are everywhere linearly independent.

Proof. — Let ω1 and ω2 generate a contact circle and let R1 and
R2 be the corresponding Reeb vector fields. Assume that in some point p,
(R1)p and (R2)p are parallel. Then dω1(R1)p = 0 and dω2(R1)p = 0, so
dω(R1)p = 0, for any linear combination ω of ω1 and ω2. Thus the Reeb
vector fields of all elements of the contact circle are parallel to R1. Now,
the Reeb vector field of −ω1, which is an element of the contact circle, is
−R1, and as the Reeb vector field depends continuously on the coefficients,
there must be some form in the contact circle with a Reeb vector field of
length zero. This is of course impossible. �

THEOREM 5. — On a 3-dimensional manifold M , a contact circle (resp.

a contact sphere) is taut if and only if it is round.

Proof. — Let us first see that taut contact circles are round. Let
S1
c {ω1, ω2} be a taut contact circle, that is, satisfying

(6)
{
ω1 ∧ dω1 = ω2 ∧ dω2

ω1 ∧ dω2 = −ω2 ∧ dω1

and let R1 and R2 be the corresponding Reeb vector fields. Applying the
first equation of (6) to the couple of vectors (R1, R2), we get

R1� dω2 + R2� dω1 = 0,

which is the second condition of roundness of Lemma 3. Applying the
second equation of (6) to the couple (R1, R2) and using the previous
relation, we get

(R1� dω2)(ω1(R2) + ω2(R1)) = 0,

which gives us the first condition of roundness of Lemma 3, if we are sure
that R1� dω2 never vanishes. But this is granted by Lemma 6. So taut
contact circles are round.

It is now immediate that taut contact spheres are round, because
the roundness conditions of Lemma 3 carry on pairs of generating contact
forms. So if two generating forms of a contact sphere satisfy the tautness
condition (6), then they also satisfy the roundness condition, as we have
just seen.
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Let us now see that round contact spheres are taut. Let (ω1, ω2, ω3)
generate a round contact sphere and consider an element ω =

∑3
i=1 λi ωi.

By assumption, the corresponding Reeb vector field is R =
∑3
i=1 λiRi,

where Ri is the Reeb vector field of the form ωi. Thus non-trivial linear
combinations of R1, R2 and R3 never vanish, so R1, R2 and R3 are
everywhere linearly independent vector fields, hence a coordinate system
on M . To prove that S2

c {ω1, ω2, ω3} is taut, it is enough to show that
ω ∧ dω(R1, R2, R3) is independent of the coefficients (λ1, λ2, λ3). An
evaluation of the relation R2� dω1 + R1� dω2 = 0 on the vector field R3

yields
dω1(R2, R3) = dω2(R3, R1),

and by an analogous evaluation we get

dω1(R2, R3) = dω3(R1, R2).

So we have

ω ∧ dω(R1, R2, R3) = (λ1 ω1 + λ2 ω2 + λ3 ω3)

∧ (λ1 dω1 + λ2 dω2 + λ3 dω3)(R1, R2, R3)

= λ2
1dω1(R2, R3) + λ2

2dω2(R3, R1) + λ2
3dω3(R1, R2)

= dω1(R2, R3),

where the second step is due to the preceding relations and Lemma 3. This
expression does not depend on the coefficients (λ1, λ2, λ3).

It remains to show that round contact circles are taut in dimension
3. So let ω1 and ω2 generate a round contact circle and let R1 and R2

be the corresponding Reeb vector fields. By Lemma 4, R1 and R2 are
everywhere linearly independent, so we can find a third vector field X

to make (R1, R2, X) a basis of the tangent bundle. An evaluation of the
relation R1� dω2 + R2� dω1 = 0 on X gives us

dω1(R2, X) = dω2(X, R1).

Now an analogous calculation as in the case of contact spheres shows that
the contact circle is taut. �
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8.3. Round vs taut in higher dimensions.

In dimensions higher than 3, roundness and tautness are not equiva-
lent. In fact, from dimension 7 on, there is an essential difference between
the two notions, due to the powers of the differentials which appear in the
definition of tautness and not in the definition of roundness. To illustrate
this difference, let us consider the situation in dimension 7.

A contact circle S1
c {ω1, ω2} defined on a 7-dimensional manifold is

taut if the following four equalities are satisfied:

(7)




ω1 ∧ (dω1)3 − ω2 ∧ (dω2)3 = 0
3ω2 ∧ dω2 ∧ (dω1)2 + 3ω1 ∧ dω1 ∧ (dω2)2 − 2ω1 ∧ (dω1)3 = 0
ω1 ∧ (dω2)3 + 3ω2 ∧ dω1 ∧ (dω2)2 = 0
ω2 ∧ (dω1)3 + 3ω1 ∧ dω2 ∧ (dω1)2 = 0.

On the other hand, if S1
c {ω1, ω2} is taut and round, we have the

following equalities, which are necessary, but not sufficient:

(8)
{

(dω1)3 − 3 dω1 ∧ (dω2)2 = 0
(dω2)3 − 3 dω2 ∧ (dω1)2 = 0.

This can be seen as follows: Let ωθ = cos θ ω1 + sin θ ω2 be an element
of S1

c {ω1, ω2} and note Ω = ω1 ∧ (dω1)3. As S1
c {ω1, ω2} is taut, we have

ωθ ∧ (dωθ)3 = Ω, and thus (dωθ)3 = Rθ�Ω, where Rθ is the Reeb vector
field of ωθ. This relation leads to the conditions (8).

The systems (7) et (8) are not of the same nature, as the equations
of the first one are of degree 7 and those of the second one are of degree
6. So in general, a contact circle which satisfies (7) will not satisfy (8). In
dimension 3, the corresponding equations of (8) are trivial, this is why we
have equivalence of tautness and roundness in dimension 3.

The following counter-examples prove that in dimension 7 there is no
implication between tautness and roundness:

1. The contact circle on R7 generated by the forms
{
ω1 = x1 dx2 + x3 dx4 + x5 dx6 + dx7

ω2 = −(x5 + x6) dx3 − x5 dx4 + (x1 + x3) dx6 + x1 dx7 − dx2

is round and not taut.

TOME 55 (2005), FASCICULE 4



1188 Mathias ZESSIN

2. The contact circle on R7 generated by the forms

{
ω1 = x1 dx2 + x3 dx4 + x5 dx6 + dx7

ω2 = x5 dx4 − x3 dx6 + (x1 + x3) dx7 − dx2

is taut and not round.

9. Examples of contact p-spheres in higher dimensions.

We have seen that contact circles do not exist on manifolds of
dimension 4n + 1. In the other odd dimensions, however, many interesting
examples of contact p-spheres can be found. A first family of manifolds
where contact p-spheres are likely to be found easily are the spheres of
dimension 4n− 1.

On the spheres, we have a natural upper bound of the size of contact
p-spheres, given by Adams’ formula. According to Adams, there do not
exist more than ρ(n) continuous unitary vector fields on Sn−1, which are
everywhere linearly independent, where

ρ(n) = 2c + 8d− 1, with n = odd · 2c+4d, c � 3.

This means of course that there can not be more than ρ(n) everywhere
linearly independent contact forms neither. So on S4n−1, contact p-spheres
can only exist for p � (ρ(4n)− 1).

On the other hand, there are works of B. Eckmann, relying on ideas
of A. Hurwitz and J. Radon, leading to the following theorem:

THEOREM 6. — On S4n−1, there exists a contact (ρ(4n)− 1)-sphere,

for n � 1.

Proof. — According to B. Eckmann (see [7]), there exist, for each in-
teger n, ρ(4n) antisymmetric matrices A1, . . . , Aρ(4n) of O(4n,R), such that
the vectors (A1x)x, . . . , (Aρ(4n)x)x are linearly independent everywhere on
the unit sphere of R4n, that is, Eckmann gives a realization of the maximum
number of such vector fields given by Adam’s formula. The same matrices
can also be used to construct a contact (ρ(4n)− 1)-sphere on S4n−1, as we
will see now.

ANNALES DE L’INSTITUT FOURIER



ON CONTACT P-SPHERES 1189

The matrices A1, . . . , Aρ(4n) satisfy the relations

(9)
{
AiAj + AjAi = 0, i 
= j

A2
i = −Id, i = 1, . . . , ρ(4n),

that is, they generate a Clifford algebra.

Now define ρ(4n) 1-forms on R4n by

(ω̃i)x =< Aix, dx >=
4n∑

r,s=1

airsxsdxr,

where Ai = (airs)r,s=1...4n.

These forms induce some forms ωi on S4n−1, which are contact forms:
as each matrix Ai is orthogonal and antisymmetric, there is an orthogonal
basis of R4n in which Ai becomes

(10)




0 −1
1 0

.

.

0 −1
1 0




.

In this basis, we have

< Aix, dx >=
2n∑
i=1

(x2i−1dx2i − x2idx2i−1),

which induces a contact form on S4n−1.

Moreover, and quite surprisingly, these ρ(4n) contact forms generate
a (ρ(4n)− 1)-contact sphere on S4n−1. Each matrix

ρ(4n)∑
i=1

λiAi with
ρ(4n)∑
i=1

λ2
i = 1

is indeed antisymmetric and it is orthogonal as well, as

t(
ρ(4n)∑
i=1

λiAi)(
ρ(4n)∑
i=1

λiAi) = −
ρ(4n)∑
i=1

λ2
iA

2
i −

∑
i<j

λiλj(AiAj + AjAi)

= Id.
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So the corresponding 1-form <
∑ρ(4n)
i=1 λiAix, dx > induces a contact

form, as we have already seen. �

This theorem gives us examples of contact p-spheres on S4n−1 with
p � 2 for any n � 1. According to Adams’ formula, we have ρ(4n) =
2c + 8d− 1, where 4n = odd · 2c+4d, c � 3. In our situation, we have c � 2
or d � 1 and in both cases ρ(4n) � 3, which means that on S4n−1, there is
a contact p-sphere generated by at least 3 contact forms.

It may be interesting to see that these examples are round and taut.

Indeed, if we consider a contact circle S1
c {ω1, ω2} which is contained

in one of these examples on some sphere S4n−1, the Reeb vector field of a
form ωi induced by (ω̃i)x =< Aix, dx > on S4n−1 is (Ri)x = (Ai x)x. Then
we have


ω̃1(R2) = < A1 x,A2 x > = < −A2 A1 x, x > = 0
ω̃2(R1) = < A2 x,A1 x > = < −A1 A2 x, x > = 0
(R2� dω̃1)x = txA1 A2 dx = − txA2 A1 dx = −(R1� dω̃2)x,

so S1
c {ω1, ω2} is round.

Now consider an element of the contact circle

ω = λ1 ω1 + λ2 ω2 with λ2
1 + λ2

2 = 1.

ω is induced by (ω̃)x =< (λ1 A1 + λ2 A2)x, dx >. There is an orthogonal,
thus volume preserving coordinate change which transforms the matrix
λ1 A1 + λ2 A2 into the matrix (10). Thus ω defines the same volume form
as ω1 and S1

c {ω1, ω2} is taut.

10. Contact spheres and Sasakian 3-structures.

Another way to find examples of contact spheres on higher dimen-
sional manifolds is to consider Sasakian geometry, and more precisely
Sasakian 3-structures. As a Sasakian 3-structure is defined by three contact
forms with special properties, we can ask if all non-trivial linear combina-
tions of these forms are still contact forms, that is, if they define a contact
sphere. In that case, we can study the regularity properties of such a con-
tact sphere. Proposition 4, which has been suggested to me by the referee,
answers these questions. Let us first recall the definition of a Sasakian 3-
structure (see [2]).

ANNALES DE L’INSTITUT FOURIER



ON CONTACT P-SPHERES 1191

Let (M, g) be a Riemannian manifold which carries a contact form ω

and let R be the Reeb vector field associated to ω. We define the tensor
field ϕ of type (1, 1) by

g(X,ϕ(Y )) =
1
2
dω(X,Y ).

ω is a metric contact form if it satisfies

g(ϕ(X), ϕ(Y )) = g(X,Y )− ω(X)ω(Y ),

or equivalently {
ϕ2 = −I + ω ⊗R

ω(Y ) = g(R, Y ), for any Y.

(ϕ, R, ω) defines a Sasakian structure if it satisfies

[ϕ,ϕ] + dω ⊗R = 0,

where [·, ·] is the Nijenhuis bracket, defined by

[T, T ] (X,Y ) = T 2 [X,Y ] + [TX, TY ]− T [TX, Y ]− T [X,TY ] .

Three given Sasakian structures ω1, ω2 et ω3 on M define a Sasakian
3-structure if for even permutations (i, j, k) of (1,2,3) the following proper-
ties are satisfied:

(11)




ϕk = ϕi ϕj − ωj ⊗Ri = −ϕj ϕi + ωi ⊗Rj
Rk = ϕi(Rj) = −ϕj(Ri)
ωk = ωi ◦ ϕj = −ωj ◦ ϕi,

where Ri is the Reeb vector field associated to ωi.

PROPOSITION 4. — If a manifold M of dimension 4n − 1 admits a

Sasakian 3-structures given by three forms ω1, ω2 and ω3, then these forms

generate a contact sphere which is both round and taut.

Proof. — Let R1, R2 and R3 be the Reeb vector fields associated to
ω1, ω2 and ω3. We define the tensor fields ϕi by g(X,ϕi(Y )) = 1

2 dωi(X,Y ).
Then for i = 1, 2, 3, (ϕi, Ri, ωi) defines a Sasakian structure and ω1, ω2
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and ω3 define a Sasakian 3-structure. Therefore we have:



g(X,ϕi(Y )) = 1
2 dωi(X,Y )

g(ϕi(X), ϕi(Y )) = g(X,Y )− ωi(X)ωi(Y )

ϕ2
i = −I + ωi ⊗Ri

ωi(Y ) = g(Ri, Y ), for any Y

[ϕi, ϕi] + dωi ⊗Ri = 0,

for i = 1, 2, 3 and (11) is satisfied for even permutations (i, j, k) of (1,2,3).

As ωi(ϕi(X)) = g(Ri, ϕi(X)) = dωi(Ri, X) = 0, we know that the
image of ϕi is in Ker(ωi), for any i. Furthermore, as for any X,Y ∈ Ker(ωi)
we have ϕ2

i (X) = −X and g(ϕi(X), ϕi(Y )) = g(X,Y ), ϕ defines an
isometry of Ker(ωi) with g(X,ϕi(X)) = 0. For even permutations (i, j, k)
of (1,2,3) we also have ωj(ϕi(X)) = −ωk(X), so ϕ preserves the intersection
Σ of the kernels of ω1, ω2 and ω3.

The Reeb vector fields R1, R2 and R3 are everywhere linearly inde-
pendant. Indeed, for even permutations (i, j, k) of (1,2,3), we have:

(12) ωi(Rj) = ωj(ϕk(Rj)) = g(Rj , ϕk(Rj)) = 1
2 dωk(Rj , Rj) = 0,

so R1, R2 and R3 are orthogonal, as ωi(Rj) = g(Ri, Rj). None of
these vectors is in Σ and the dimension of Σ is 4n − 4. Thus, for a
given point p ∈ M , there is a basis of TpM which can be written as
(R1, R2, R3, X4, . . . , X4n−1), where the Xi are elements of Σ. It is pos-
sible to choose them in such a way that for k = 4m we have Xk+1 =
ϕ1(Xk), Xk+2 = ϕ2(Xk) and Xk+3 = ϕ3(Xk).

We set ω =
∑3
i=1 λi ωi, with

∑3
i=1 λ

2
i = 1. Then we have

ω ∧ (dω)2n−1(R1, R2, R3, X4, . . . , X4n−1) = 22n−2 (2n− 2)!.

This is due to the equations

ωi(Yj) = δij , for Ri = Yi and Xj = Yj

dωi(Rj , Rk) = 1, if (i, j, k) is an even permutation of (1, 2, 3)

dωi(Rj , Xk) = 0

dωi(Xj , Xk) = 0, if Xk 
= ϕiXj

dωi(Xj , ϕiXj) = −2.

Thus, ω1, ω2 and ω3 generate a taut contact sphere.
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Furthermore, we have (12) and for any vector field X

Ri� dωj(X) = 2ωk(X) = −Rj� dωi(X).

So by Lemma 3, the contact sphere generated by ω1, ω2 and ω3 is round. �

This proposition yields new classes of examples of round and taut
contact spheres in dimension higher than 3. According to Boyer, Galicki
and Mann (see [3]), the homogeneous manifolds which carry Sasakian 3-
structures are the following:

Sp(n + 1)
Sp(n)

∼= S4n+3,
Sp(n + 1)
Sp(n)× Z2

∼= RP 4n+3,

SU(m)
S(U(m− 2)× U(1))

,
SO(k)

SO(k − 4)× Sp(1)
,

G2
Sp(1)

,
F4

Sp(3)
,

E6

SU(6)
,

E7

Spin(12)
,

E8

E7
,

for m � 3 and k � 7. The named authors also prove the existence of
infinitely many compact, simply connected and strongly inhomogeneous
manifolds of dimension 7 which carry Sasakian 3-structures and which are
homotopically distinct.
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Université de Mulhouse
Laboratoire de Mathématiques
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