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THE RING OF MULTISYMMETRIC FUNCTIONS

by Francesco VACCARINO

Introduction.

Let R be a commutative ring and let n, m be two positive integers. Let
Ag(n,m) be the polynomial ring in the commuting independent variables
z;(j) withi=1,...,m;7=1,...,n and coefficients in R. The symmetric
group on n letters S, acts on Agr(n,m) by means of o(z;(j)) = z;(c(j))
forallo € S, andi=1,...,m;j=1,...,n. Let us denote by Ar(n,m)>»
the ring of invariants for this action: its elements are usually called
multisymmetric functions and they are the usual symmetric functions when
m = 1. In this case, Ar(n,1) & R[z1, 29, ...,7,], and R[z1,T2,...,2,]5"
is freely generated by the elementary symmetric functions eq, ..., e, given
by the equality

n n
(0.1) D e = [+ tay).
k=0 i=1
Here eg = 1 and t is a commuting independent variable (see [M]).
Furthermore one has

(0.2) er(x1,...,2n) = Z Ty Tiy * +* T,
11 <t2<...<ip<n

Unless otherwise stated, we now assume that m > 1. We first obtain
generators of the ring Ag(n,m)%.

Keywords: Characteristic-free invariant theory, symmetric functions, representations of
symmetric groups.
Math. classification: 05E05, 13A50, 20C30.



718 Francesco VACCARINO

Let Ar(m) := Rly1,...,Ym], where y1,..., 4, are commuting inde-
pendent variables, let f = f(y1,...,ym) € Ar(m) and define
(0.3) fG) = f(@1(G), - zm(5)) for 1 <j < n.

Notice that f(j) € Ar(n,m) for all 1 < j < n and that o(f(j)) = f(o(4)),
forallc € S, and j =1,...,n.

Define e, (f) :=ex(f(1), f(2),..., f(n)) ie.
(0.4) > trer(f) = [+ £ (),
k=0

i=1
where ¢ is a commuting independent variable. Then e (f) € Agr(n,m)".

One may think about the y; as diagonal matrices in the following
sense: let M, (Ar(n,m)) be the full ring of n X n matrices with coefficients
in Ag(n,m). Then there is an embedding

(0.5) pn s Ar(m) — M, (Agr(n,m))
given by
xi(l) 0 0
(0.6) Pn(yi) == 0 =(2) ... 0 fori=1,...,m.
Now (0.4) gives
(0.7) > tFer(f) = T+ tpn(f)s5) = det(1+tpa(f)),
k=0 j=1

where det(—) is the usual determinant of n X n matrices.

Let M,,, be the set of monomials in Ag(m). For u € M,, let 9;(u)
denote the degree of p in y;, for alli =1,...,m. We set

(0.8) ) := (01 () - - -, Om (1))

for its multidegree. The total degree of p is >, 9;(1t). Let M, be the set
of monomials of positive degree. A monomial p € M} is called primitive
it is not a power of another one. We denote by 90 the set of primitive
monomials. We define an S,, invariant multidegree on Agr(n,m) by setting
O(x;(j) =0(y;) e N forall 1 < j<nand 1 <i<m. If f € Ag(m) is
homogeneous of total degree I, then ey (f) has total degree ki (for all k£ and

We are now in a position to state the first part of our result (recall
that m > 1).

ANNALES DE IINSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 719

THEOREM 1 (generators). — The ring of multisymmetric functions
Ag(n,m)° is generated by the ey,(11), where p € 9k =1,...n and the
total degree of ey () is less or equal than m(n —1). If n = p® is a power of
a prime and R =7 or p-1g = 0, then at least one generator has degree
equal to m(n —1).

If R D Q then Ar(n,m)" is generated by the e1(u), where u € M,
and the degree of u is less or equal than n.
To obtain the relations between these generators, we need more

notation on (multi)symmetric functions.

The action of S, on Ag(n,1) = R[xy,x2,...,x,] preserves the usual
degree. We denote by A’f%m the R-submodule of invariants of degree k.

Let gy, : R[z1,22,...,2n] — R[z1,22,...,Tn_1] be given by z,, — 0
and x; — x;, for i = 1,...,n— 1. This map sends A}  to A¥ ;| p and it is

easy to see that A¥ o = A} , for all n > k. Denote by Af, the limit of the
inverse system obtained in this way.

The ring Ag := D). A% is called the ring of symmetric functions
(over R).

It can be shown [M] that Ag is a polynomial ring, freely generated
by the (limits of the) ey, that are given by

o0

(0.9) itkek = H(l + tx;).
k=0

i=1
Furthermore the kernel of the natural projection 7, : Ap — A, g is

generated by the e, 41, where k > 1.

In a similar way we build a limit of multisymmetric functions. For
any a € N™ we set Ar(n,m,a) for the linear span of the monomials of
multidegree a. One has

(0.10) Ag(n,m) = @ Ag(n,m,a).
aeNm™

Let 7, : Ar(n,m) — Agr(n — 1,m) be given by

. 0 if j=n .
(0.11) T (xi(4)) = {%(J) it <1 for all 1.
Then (see (3.5)) we prove that, for all a € N™
(0.12) Tn(Ar(n,m,a)’") = Ag(n — 1,m,a)% 1.

TOME 55 (2005), FASCICULE 3



720 Francesco VACCARINO

For any a € N set
(0.13) Ag(oco,m,a) := lEnAR(n, m,a)°",
where the projective limit is taken with respect to n over the projective
system (Ag(n,m,a)%, m,).
Set
(0.14) Ag(co,m) = @ Ar(co,m,a).

aeN™

We set, by abuse of notation,

(0.15) ex(f) == liinek(f) € Agr(co,m)
with k € N and f € A(m)", the augmentation ideal, i.e.
(0.16) > tren(f) =TT +270).

k=0 j=1

Then e is a homogeneous polynomial of degree k. Now, if f =
Do pemt Aubt, we set

(0.16) ex(f) = Z)\aea

where o = (o), cpq Is such that a, € N, 37 o, < k and
A= H/JGM% A%,

We can now state the second part of our main result.

THEOREM 2 (relations). — (1) The ring Ar(oo0,m) is a polynomial

ring, freely generated by the (limits of) the ex(p), where p € M} and
ke N.

The kernel of the natural projection
Ag(co,m) — Ag(n,m)""
is generated as R-module by the coeflicients e,, of the elements
entk(f), where k > 1 and f € Ag(m)*.
(2) If R D Q then Agr(oo,m) is freely generated by the eq(u), where
we M.
The kernel of the natural projection is generated as an ideal by the

en+1(f), where f € Ag(m)™.

ANNALES DE IINSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 721

In Dalbec’s paper [D] generators and relations are found in the case
where R O Q. The relations found there are actually the same we find:
indeed what Dalbec calls monomial multisymmetric functions are exactly
those e, we introduced in (0.17), so that his Proposition 1.9 is a special
case of our Proposition 3.1(1) when R D Q. Another paper on this theme,
giving a minimal presentation when the base ring is a characteristic 2 field,
is [A]. Again, its main results on multisymmetric functions are a corollary
of ours when R is a characteristic 2 field.

The results of this paper were presented in 1997 at a congress on
algebraic groups representations in Ascona (CH) organized by H.P. Kraft.
They are published only now for personal reasons.

1. Notations and basic facts.

The monomials of Ag(n,m) form a R-basis, permuted by the action
of S,. Thus, the sums of monomials over the orbits form a R-basis of the
ring of multisymmetric functions. We now introduce some notation and
preliminary results concerning these functions and orbit sums.

Let k € N, we denote by f the sequence (f; ..., fx) in Ag(m) and
by « the element (asq,...,ax) € N¥, where Y a; < n . Let t1,...,t be
commuting independent variables, we set as usual t* := [], t". We define
elements e, (f) € Ag(n,m)%" by

(L1 3 % (f) == det (1 + Zthpn(fh)> -1I (1 + Zthfh(i)).
o h 3 h

=1

Example 1.1. — Let n =3 and f,g € Ar(m) then

en(f.g) = f(1)f(2)g9(3) + f(1)g(2)f(3) + g(1) f(2)f(3).
If n = 4 then
een(f,9) = f(1)f(2)g3) + f(1)g(2)f(3

=
+
Q
—~
—_
—
~
—~
)
—
~
~~
w
=

+ () f(2)g(4) + f(1)g(2)f(4) + g(1)f(2)f(4)

+FW)fB)g(4) + f(1)g(3)f(4) +g(1)f(3)f(4)

+ f(2)f(3)g(4) + f(2)9(3)£(4) + 9(2) f(3) f(4)
Let k¥ = m and f; = y; for j = 1,...,m, then the e,(y) =
€(ar,sam) YL, Ym) Where Y a; < n are the well-known elementary

TOME 55 (2005), FASCICULE 3



722 Francesco VACCARINO

multisymmetric functions. These generate Ap(n, m)°" when R D Q (see
[G] or [W]), and satisfy

(1L2) Yo tealy) =det (14+ 3 tipalyy)) =

n m
J 1=

(14+ D ta;()).

1 =1

LEMMA 1.2. — The multisymmetric function e, ... .a,)(f1,- - fx)
is the orbit sum (under the considered action of Sy,) of

AMAQ)-- filoa) falar +1) - falon + az) - fr( D om).
h

Proof. — Let E be the set of mappings ¢:{1,...,n}—{1,..., k+1}.
We define a mapping ¢ — ¢* of E into N**! by putting ¢*(i) equal to the
cardinality of ¢~1(4). For two elements ¢y, ¢ of E, to satisfy ¢ = ¢} it is
necessary and sufficient that there should exist o € S, such that ¢ = ¢100.
Set fry1 :=1r and E(o) :={¢p € E | ¢* = (o1,..., 00,0 — Y, ;) }, then
we have
(1.3) ea(f) = Z foy (W) fo@)(2) -+ fom)(n)

PEE(a)

and the lemma is proved. a

It iS Clea‘r that e(al,...,ak)(fla M) fk?) = e(a,r(l),...,a,r(k,))(f'r(l)v M fT(k))
for all 7 € Sg. If two entries are equal, say fi = fa, then, by (1.1)
(a1 + ao)!
041!042!

(14) e(al ..... Oék)(f17‘-‘7fk) = e(a1+a2,...,ak)(f17f3~~-7fk)'

Let N(Mi) be the set of functions M} — N with finite support. We
set

(15) lal= Y alw.

Let a € N(Mm, then there exist k¥ € N and py,...,ux € M, such
that a(p;) = a; 0 fori =1,...,k and a(u) = 0 when p # py, ..., .
We set

(]-6) €q = e(ozl,...,ozk)(lu’lw"?ukr)?
i.e. we substitute (u1, ..., ux) to variables in the elementary multisymmet-
ric function e(q, . o) (Y1, -+ Yk)-

ANNALES DE IINSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 723

Then

n

(1.7) 3 tven =[] (1 + 3 t#u(i)),

lo|<n i=1 peEME,
where ¢, are commuting independent variables indexed by monomials and
— (1)
(1.8) = ] o
HeEME,
for all @ € NM:).

If o € NMn) is such that a(u) = k for some p € M and a(v) =0
for all v € M}, with v # p, we see that e, = ex(u), the k-th elementary
symmetric function evaluated at ((1), u(2), ..., u(n)).

LEMMA 1.3. — Given a monomial u € Agr(n,m), there exist
i,y pon € Ar(m) such that p = pi(1)--- pun(n).

Proof. — Let p=[[;; z:(j)* then p; =[], yYfor j=1,...,n. O

PROPOSITION 1.4. — The set
By m.r = {ea:| a|<n}
is a R-basis of Ag(n,m)>".
The set
Brm.ar ={ea | a|<n and d(ey) = a}
is a R-basis of Ar(n,m,a)%, for all a € N,

Proof. — By Lemma 1.2 and (1.6), the e, are a complete system of
representatives (for the action of S,,) of the orbit sums of the products

{r (D p2(2) - pn(n) © py € My, i=1,...,n}.
So the first statement follows by Lemma 1.3.

Notice that O(eqa) = 3 ,car @uO(p) to prove the second state-
ment. a

TOME 55 (2005), FASCICULE 3



724 Francesco VACCARINO

2. Generators.

Let us calculate the product between two elements en,eg € By m, g of
the basis By, m, g

THEOREM 2.1 (Product Formula). — Let k,h € N, fi..., fx,
91s---,9n € Ar(m) and ti,...,tg, S1,...,5, be commuting independent
variables. Set as in (1.1)

ea(f) = e(al,...,ak)(flv ceey fk) and eﬂ(g) = e(ﬂl,...,,@h)(gla cee 7gh)~
Then
g) = Z e’Y(fa ga fg)a
Y

where fg := (fig91, f192,-- ., fign, f291, ..., fogn, ..., frgn) and v := (710,
VKO YOLs - - - YOh> V115 Y12, - - - » Vkh) are such that

Yij eN

[v[|<n

Z;‘L:Ofyij = Q4 fOI“ Z'ZI,...,]{J

Z?:O’yij :ﬂ] for ]: 1,...,h.

Proof. — The result follows from
k h
(X TMen)( T ow)
Zajgnj:]' Z/Blgnl:l

_ (Zt“ea(f)> (ZS%B(%))

ﬁ(HZt £ )ﬁ(HZslgl )

=1 =1
n h
=H<1+Zt £+ sigii +Zt81fg )i (i )
—1 = =1
Introduce the new Varlables Ujp w1th j=1 ...,k and [ =1,...,h, then

:j:

( +thg +Zszgz +Zt sufi (1) gu(i )
<1 + thfj(i) + Z NUOEDS Ujl(i)gz(i)>
j=1 1=1 4.l

’Ye’Y(fa ga fg)

=1

Il
N i=F

ANNALES DE IINSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 725

where v is the cumulative variable ¢, s,u. Then substitute u;; = t;s; to
obtain

Z /U’Yeﬁ/(f7 g7 fg)

v

k h ko h
= Z (Htgao Hsg‘”’ H H tasp) ey (f g,fg))
Y b=1 a=1b=1

where fg = (f191, f192,---, fxg1,-- -, frgn) and ~ satisfy the condition of
the theorem.

Example 2.2. — Let us calculate in Ag(2,3)%?

e,1)(a,b)ea(c) = Z €(1—k,1—h,2—k—h,h,k) (@, b, ¢, ac,be) = e(1 1)(ac, be),
0<k,h<1

sincel—k+1—-h+2—k—h+h+k=4—-k—h<2

COROLLARY 2.3. — Letk € Nyay,...,ar€ Arp(m), a=(az,...,ax)
€ N* with > aj; <n. Then ey, .. a,)(ai,...,ax) belongs to the subring of
Ag(n,m) generated by the e;(11), wherei = 1,...,n and u is a monomial
in the aq,...,ak.

Proof. — We prove the claim by induction on ) ;0 (notice that
1 < k < 3 ;a;) assuming that a; > 0 for all 4. If 3, a; = 1 then
k =1 and e, . o (a1,...,a;) = e1(ar). Suppose the claim true for all

€(Br,pp) (D1, -, bp) With b1, by € Ar(m) and 30, 8; < 30, a;. Let
k,ai,...,ar,a be as in the statement, then we have by Theorem 2.1

€a1(A1)€(as,....ax) (@25 - - Q) = €(ay,....ar) (01, - - -, ak)
—I—Zey(al,...,ak,a1a27...,a1ak),

where
Y= (7]077017' -y YOh> V11,7125 - - - ;’Ylh)

with h =k — 1, Z?:O v1; = o1 with E?:l ~v1; > 0, and Yoj + V15 = @ for
j=1,... h. Thus

710+701+~-~+70h+711+---+')/1h:Zaj*Z’Ylj<ZO¢j.

Hence
e(al,...,ak)(ala ceey ak:) = €a;y (al)e(ag,...,ak)(aﬂa ceey ak:)

- E e’y(a17"’7ak7a1a27a1a37‘-‘7a1ak)7

TOME 55 (2005), FASCICULE 3



726 Francesco VACCARINO

where Z,,’S Yrs < Zj a;j. So the claim follows by induction hypothesis.

Example 2.4. — Consider e(3 1)(a,b) in Ar(3,m) as in Example 1.2,
then

e2,1)(a,b) = ea(a)er(b) — e 1)(a,ab) = ex(a)e1(b) — e1(a)ei(ab) + ey (a®b).

We now recall some basic facts about classical symmetric functions,
for further reading on this topic see [M].

We have another distinguished kind of functions in Ar beside the
elementary symmetric ones: the power sums.

For any r € N the r-th power sum is

Dr 1= me

i>1

Let g € Ag, set g-p, = g(a7,25,...,2},...), this is again a symmetric
function. Since the e; generate Ar we have that g - p, can be expressed as
a polynomial in the e;. In particular,

P :=ep - pr

is a polynomial in the e;.

PROPOSITION 2.5. — For all f € Agr(m), and k,h € N, e (f*)
belongs to the subring of Ag(n,m) generated by the e;(f).

Proof. — Let f € Agr(m) and consider e (f*) € Ag(n,m)%~, we
have (see Introduction)

eh(fk) = eh(f(l)k7 ceey f(n)k) = Ph,k(el(f(l)’ . 7f(n))7 .. 'aen(f(l)v
-5 f(n)))

and the result is proved.

We are now ready to prove Theorem 1 stated in the introduction.

Proof of Theorem 1. — Recall that a monomial p € M} is called
primitive if it is not a power of another one and we denote by 9} the set
of primitive monomials. The elements e, € By, m, g, that form a R-basis by
Proposition 1.4, can be expressed as polynomials in e;(u) withi=1,...,n
and u € M by Corollary 2.3. If u = v* with v € M}, then e;(u) can
be expressed as a polynomial in the e;(v), by Proposition 2.5. Since for all
p € M there exist k € N and v € 9} such that p = v*, we have that

ANNALES DE IINSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 727

A(n,m) is generated as a commutative ring by the e;(v), where v € M},
and j=1,...,n.

The theorem then follows by the following result due to
Fleischmann [F]: the ring Ag(n,m)%" is generated by elements of total
degree ¢ < m(n — 1), for any commutative ring R, with sharp bound if
n = p° a power of a prime and R = Z or p-1g = 0. If R O Q then the
result follows from Newton’s Formulas and a well-known result of H.Weyl

(see [G], [W]). O

3. Relations.

We write a generating series for the orbits of monomials
(3.1) Ga(t):=]] <1 + Ztuu(i)> = Y t%a(n),
=1 M, a,lal<n
where v € NM) and t%eq(n) = 0 when a = 0.
Recall the map m, : Ag(n,m) — Ar(n — 1, m) defined by
52w - {

Then we have of course that 7, (G, (t)) = G,—1(t), so that

0 if j=n

20) i j<n—1 for all 3.

if |al<n
3.3 w((ea)) =3 !
(3:3) ma((¢a)) {0 otherwise.

Thus, by Proposition 1.4, for all a € N the restriction
(3.4) Tna : Ar(n,m,a) — Ar(n —1,m,a)
is such that
(3.5) Ton.a(Ar(n,m,a)") = Ag(n — 1,m,a)"
and then (Agr(n,m,a)", 7,.,) is a projective sytem.

For any a € N™ set
(3.6) Agr(co,m,a) := liinAR(n, m,a)°",

where the projective limit is taken with respect to n over the above
projective system and set

(3.7 Tna : Ar(co,m,a) — Ag(n,m,a)"

TOME 55 (2005), FASCICULE 3



728 Francesco VACCARINO

for the natural projection.

Set
(3.8) Ag(co,m) := @ Ag(co,m,a)
aeNm
and
(3.9) T = @ Tra-
aeN™

Similarly to the classical case (m = 1) and recalling (3.1), (3.3) we
make an abuse of notation and set

eq :=1im eqy(n),
—

for any o € NMn)_ In the same way we set e;j(f) ==lm e;(f) with
j € N, where f € Ar(m)T is homogeneous of positive multidegree, so that
Jo(f) =

PROPOSITION 3.1. — Let a € N™.

(1) The R-module ker 7, , is the linear span of

{ea € Ar(co,m,a) :| o |> n}.

(2) The R-module homomorphisms 7, o :Ag(co,m,a)— Ar(n,m,a)"»
are onto for allm € N and Agr(co,m,a) = Ag(n,m,a) for alln >|a|.

(3) The R-module Ar(oco,m,a) is free with basis

{eq : O(eq) = a},
(4) The R-module Agr(o0,m) is free with basis

{ea 1 € N(Mm}.

Proof. — (1) By (3.3) and (3.5), for all a € N™, the following is a
split exact sequence of R-modules

S

00— kerwn’a — A(n)m’ a)Sn Tr"_a) A(?’L _ 17m7a) n-1 __, 0,

and the claim follows.

(2) It Z;nzl a; < n, then ker 7, , = 0, indeed

d(eq) = Z a, 0(p) =a=la |<Zaj<n

neEM;,

ANNALES DE IINSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 729

Hence A(h,m,a)%" = A(b,m,a)> where b := Z;nzl aj, forall h > E;nzl a;
and the claim follows by (3.5).

(3) follows from (1) and (2).
(4) follows from (3) and (3.8) 0

Remark 3.2. — Notice that Ar(m)®" = Ag(n,m) as multigraded
Spn-algebras by means of
(3.10) f1@ @ fo = fi(1)f2(2) - fu(n)
for all fi,...,fn € Agr(m). Hence Ag(n,m) = TS"(Agr(m)), where

~

TS™( — ) denotes the symmetric tensors functor. Since T'S™(Agr(m)) =
R TS"™(Az(m)) (see [B]), we have

(3.11) Ag(n,m)%" 2 R® Az(n,m)"
for any commutative ring R.
We then work with R = Z and we suppress the Z subscript for the

sake of simplicity.

Remark 3.3. — The Z-module A(co,m) can be endowed with a
structure of N™-graded ring such that the m, are N™-graded ring homo-
morphisms: the product e,eg, where o, 8 € N(Min), is defined by using the
product formula of Theorem 2.1 with no upper bound on | 7 |, where 7
appears in the summation.

PRrROPOSITION 3.4. — Consider the free polynomial ring

C(m) = @ C(m,a) := Z[ei,u]ieremi
acNm

with multidegree given by 0(e; ) = 0(p)i.
Then the multigraded ring homomorphism
Om : Z[ei,u]ieN,uem; — A(o0, m)

given by
Om € ei(p), foralli e N, pe mh

is an isomorphism, i.e. A(co,m) is freely generated as a commutative ring
by the e;(u), where i € N and p € M.

Proof. — Since we defined the product in A(co,m) as in Theo-
rem 2.1, it is easy to verify, repeating the reasoning of the previous section,

TOME 55 (2005), FASCICULE 3



730 Francesco VACCARINO

that A(oco,m) is generated as a commutative ring by the e; (1), where i € N,
€ M. Hence o, is onto for all m € N.

Let a € N™ and consider the restriction oy,,, : C(m,a) —
A(oo,m,a). It is onto as we have just seen. A Z-basis of C'(m,a) is

{ T en: > iko(w) = a}.

ieN,keN, pedt;, ieN,keN, e,
On the other hand, a Z-basis of A(co,m,a) is

{ea : Z a, O(p) = a}.

a, €N pe M,

Let 1 € M, then there are an unique k¥ € N and an unique v € 9},
such that p = v*. Hence

Z a, O(pn) = Z a, ko(v),
a,eN,pe M, keN,a, eN,veInt

so that C'(m,a) and A(oco, m,a) have the same (finite) Z-rank and thus are
isomorphic via oy, 4. O

COROLLARY 3.5. — Let R D Q then Ar(co,m) is a polynomial ring
freely generated by the ei(u), where p € M.

Proof. — By Proposition 3.4 and Theorem 1. g

Proof of Theorem 2. — (1) As before we set R = Z and the result
follows by Remark 3.2, Proposition 3.4. and Proposition 3.1.

(2) By Proposition 3.1 the kernel of
A(oco,m) In, A(n,m)5»

has basis {eq :| @ |> n}. Let V} be the submodule of A(co, m) with basis
{eq | & |= k}. Let Ay be the sub-Z-module of Q ® Vj, generated by the
er(f) with f € A(m)". Let g : Q ® Vi — Q be a linear form identically
zero on Ay. Then

Ozg(ek(f)):g@( Y u)) = ( > (10 Azu)g(e@),

pEME, lal=k pemft
for all 35 vt Aw pt € A(m)™. Hence g(eq) = 0 for all e, with | a |= k;
thus ¢ = 0. If R D Q the result then follows from Newton’s formulas and
Corollary 3.5. O
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