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REGULARITY PROPERTIES
OF THE EQUILIBRIUM DISTRIBUTION

by Hans WALLIN

1. Let R"1, m ̂  1, be the m-dimensional Euclidean space
with points x = [x1, . . ., a^*). It is well known that the equili-
brium distribution belonging to a compact set F and the kernel
r2^"1 if m > 2 and the kernel — log r if m == 2 is concentrated
on the boundary of F. This is no longer true if the interior of
F is non-empty and if we, instead of r2""* or — log r, consider
the kernel r-^^ where 0 < a < 2 if m > 2 and 0 < a < 1
if m •== 1. In fact, since j^"^"00 in this case is a strictly subhar"
monic function of x when x =/= 0 it is easy to prove that the
support of the equilibrium distribution (x^ contains every
interior point of F, a fact which is also a consequence of the
theorems below.

We shall here give some properties of (^ in the interior of F
and examine its behaviour near the boundary ^F of F when
0 < a < 2 if m > 2 and 0 < a < 1 if m = 1. We intend to
prove that the restriction of pi^ to the interior of F is absolutely
continuous and has a density which is analytic and may be
expressed by an explicit formula [the Theorems 1 and 2]
and which, when we approach ^)F, tends to infinity in the same

way as the distance to bF raised to the power — — 9 if2i
certain conditions of regularity are satisfied [the Theorems 1,
3 and 4].

The methods of the proofs will be based on the sweeping-out
process and a kind of inversion formula, [see the formula (11)
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below]. The formula (6) for the energy integral is related to
(11). A formula similar to (6) has been used by Beurling and
Beurling-Deny on several occasions. Compare [2] and [5].
Beurling has also indicated the usefulness of an inversion
formula of the type of (11) for the treatment of the problem
considered in this paper. Finally it may be noted that some
of the statements of Theorem 1 which we shall deduce by means
of the sweeping-out process can be obtained from the formula
(11) too.

2. We introduce some notations and definitions. For an
arbitrary set E we denote the complement by [ E and the
interior by E. F is a compact set with boundary ?)F, (x a positive
measure with compact support Sp, and a a number satisfying
0 < a < 2 i f m > 2 a n d 0 < a < l i f m = = l . S(^, r) is the
sphere determined by the set of points x which satisfy
\x — XQ\ < r.

The a-potential of a is denoted by u^ and defined by

^^Jirr-1^-'^'

and the energy integral of order a of pi is denoted by Ia(p1)?

W = ff ._1.-, dy.(y} dy.{x).

Here and elsewhere, the integration is to be extended over
the whole space, if no limits of integration are indicated. The
a-capacity of a bounded Borel set E, Ca(E), is defined as

C,(E)=^nfI,(^-1,

where the infimum is taken over the class of all positive
measures v with total mass 1 and Sy c E.

If Ca(F) > 0 we denote the equilibrium distribution of F
belonging to the kernel r""0""00 by (x^ and the equilibrium
potential by u^. We assume throughout the paper that [f^
is normalized so that ^(R"*) == 1- v^ ls ^e restriction of [f^
to F. We shall prove below that ^ is absolutely continuous;
the density of v^ is denoted by /^. We put ^<x(F) === {Ca(F)|-1.
M denotes different constants.
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3. The following lemma is a consequence of the sweeping-
cut process.

LEMMA 1. — Let Fi and Fg be two compact sets with Fi c Fg,
C<x(Fi) > 0. Then, for every Borel set E with E c Fi,

(1) i^(E) > [^(E).
Proof. — Let Ti and Tg be the restrictions of [x^ to Fi and

[ Fi respectively. Then there exists a positive measure T^
with ^(R"*) < T2(RW), S^ c Fi, such that u^{x) == u^{x) for
every x e F^ except on a subset of Fi of a-capacity zero and
^(^O ^S ^(^O everywhere. Since the a-potential of y^* is
constant on Fi except on a subset of Fi of a-capacity zero,
we have

(2) ^ = hi(R') + ^(R^J-^T, + T^).
^(R"*) < ^(Rm) and (2) give, if E is a Borel set, E c Fi,

^(E)>T,(E)=^(E),
which proves the lemma.

4. By means of Lemma 1 we prove the following theorem:
9

THEOREM 1. — Let F be a compact set such that F is non-
empty. Then^ is absolutely continuous andf^ — properly defined
on a set of Lebesgue measure zero — is bounded from below
by a positive constant on F.

Let XQ be a boundary point of F belonging to the boundary
of a sphere S(a?i, 7*1) such that S(a?i, ri) c F and let V(o;o) be a
bounded right circular cone with vertex at XQ^ the line through
XQ and x^ as axis and V(a;o) c S(x^y 7*1). Then (1)

JX

(3) lim sup f^{x)\x — XQ\ 2 < M < oo, x -> XQ, x e V(a;o),

where M is a constant which may be chosen only depending on a,
m, ri and the generating angle of V(rro) and where f^ is properly
defined on a set of Lebesgue measure zero.

Proof. — According to a result by M. Riesz ([71, p. 16) the
equilibrium distribution of the sphere Sg == S(n;2, r^) belonging

(1) V(a;o) is a line segment when m == 1.
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to the kernel r^071"00 is absolutely continuous with density

(4) f^x)=M^rl-\x-x^, \x-x,\<^

for a certain constant M depending on a, m and rg.
We choose a?2 ^d r^ such that 82 c F and use Lemma 1 with

FI = 83 and Fg == F. If E is a Borel set, E c 83, we obtain

0<^(E)<^/1^)^,

which shows that the restriction of p^ to 82 is absolutely conti-
nuous. Hence v^ is absolutely continuous. The inequality
also proves that it f^ is properly defined on a set of Lebesgue
measure zero, then

(5) fW < f^{x) for every x e= 83.

From (4) and (5) we conclude, by an elementary calculation,
that (3) is true.

To show that f^ is bounded from below by a positive cons-
tant in the interior of F we choose a sphere 83, 83 ^ F, and use
Lemma 1 with Fi == F and Fg == 83. This proves the theorem.

5. We now prove the following formula : if

A(a, m) == 2-.. -(^). a. sin TO. F ("-") . F (^V
L \ L / \ Z /

then

(6) !.(,) = A(., ̂ ffW^+^W^y ̂

in the sense that if one member is finite then the other member
is finite too and the equality holds true (2).

We shall prove (6) by means of the Fourier transformation.
Let T == ^T denote the Fourier transform of a temperated
distribution T normed so that

f^) == f e-^- ̂ f{x) dx, {x, S;) = S ̂ J,
^ I

(a) The formula (6) is proved for the sake of completeness and due to its indepen-
dent interest in spite of the fact that it is not indispensable for our purpose.
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if fis in the Lebesgue class L^R7"). Since u^ is a convolution,

<= M^-^,

and (Schwartz [8], p. 113)

.?-.r(-|)
gi|:,]-t—.) = A,(a, m}\x\-, A,(a, m) = —————•^i,r^

we have, in the distribution sense,

(7) u£=Ai(a,7n).H-«.(l,

which shows that u£ is a function which is absolutely integrable
over every compact set. We also have (cf. Cartan-Deny [41
and Deny [6]):

(8) Ia(^)=Ai(a,m)/|^|-«|^)|2^.

According to the Parseval relation we get

f-^T.f 1"^ + ̂  - " l̂2 dx

=J-]^-,Jl^(^12•l^•(^)-112 ̂

-^^^w^^
A substitution in the integral shows that

r |p2w(y,?) __ A j 2

(9) J ' 1^4-a '-^ == A2(a, m).j^«,

where Aa(a, TO) is a constant which can be calculated explicitly
(cf. [I], p. 402):

2^(m+2+2a)/2

At('- "•' = r /«+2^/m+,\. .. "•T(~^r[~^~)'m^
(3) It may be noted that an easy calculation proves that the left member of (9)

is infinite if a "> 2 or a <' 0.
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An application of (7) now yields

/ĵ ^. '̂̂
= A,(a, m). |A,(a, m)^/]^-^)!2 ̂ .

From this formula and (8) we conclude that (6) is valid.

6. Let 9 be a function, defined everywhere in R7", which
is infinitely differentiable and has a compact support and
suppose that Ia(pQ < oo. By means of Schwarz's inequality
and (6) we get

(10) ff ̂ x + ̂  - ̂ .N^ + ̂  - ̂ 1 dy dx < oo.

We are going to prove that

(ii) fW)W __
= A(«, m) ff ̂ x + ̂  - ̂ y + ̂  - ̂ )) dy d.,

where A(a, m) is the constant occurring in (6). We observe that
the right member of (11) is absolutely convergent according
to (10).

For a fixed y we introduce the functions Vy and ^y by

Vy{x) = u^x + y) — u£(^), ^(x) = y(a; + y) — y(a;).

Since Vy defines a temperated distribution we obtain from the
definition of the Fourier transform :

/ ̂ WW dx=f ̂ )Vi) ̂  = f WW)\^ D - 1|2 ̂ .

If we divide the first and the last members of this formula
by ly^"^ and integrate over y the first member is — except
for the constant A(a, m) — transformed into the right member
of (11); the last member becomes by means of (7) and (9),
after simplification,

A,(a,m)A,(a,m)/9(^^)^,
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where A^(a, m) and Aa(a, m) are the constants occurring in
(7) and (9). By using the fact that

fW)W=fW)^d^

we finally obtain that (11) holds true.

7. We now use (11) to study the equilibrium distribution
(^ of a compact set F with non-empty interior.

Suppose that XQ e F. Choose r such that S(o?o, r) is a subset
of F and let ^ be the characteristic function of S(a;o, r). Let
j y ^ j be a uniformly bounded sequence of real- valued infinitely
differentiable functions with supports in a prescribed neigh-
borhood G of S(a;o? r) such that

lim ^n(x) = ̂ (rc), for every x.
ra>oo

If we choose the closure of G as a subset of F and use (11)
with 9 replaced by y^ and p. by p^ we obtain from Lebesgue's
theorem of dominated convergence, when n tends to infinity,
that (11) is true also with 9 replaced by ^ and pi by pi^. By a
substitution in the integral this can be written

( m ̂  (.,„) rr w - .̂ » ,teî i) ̂
^S{xo,r) JJ \y——X\ {

where /^ as usual denotes the density of the restriction of p^
to F. Since ^ is the characteristic function of S(a;o, r) we can
simplify this formula and get

(12) f fW dx = 2A(a, m) f dy C ̂ -^ dx.
*7 S(a?o, r) J S(a?o, r) J p —— 2/1

The fact that u^ is constant in F means that the function g
defined by ^-f^^^
is continuous and even analytic in F. By dividing both mem-
bers of (12) by the Lebesgue measure of Sfrco, r) and letting r
tend to zero we consequently obtain, if /^ is suitably defined
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on a set of Lebesgue measure zero,

ffW=2A(«,»)J-»^."|a<fc.

This formula shows that f^ is analytic in F. As u^{xo) == ^a(F)?
where ^a(F) = ̂ Ca(F)^"1, we may sum up the results in the
following way:

THEOREM 2. — Let F be a compact set with interior points.
If the density f^ of the restriction to F of the equilibrium distri-
bution of order a of F is properly defined on a set of Lebesgue
measure zero, then f^ is an analytic function in F which is given
by

(13) ^)=2A(^)J-i^^A,

for every x e F.
From now on we assume that f^ is defined and satisfies (13)

for all x e= F.

8. In order to be able to use (13) to get an estimate of f^
near ^)F we have to study ^a(F) —^(y) when y is a point of
| F which is situated near <)F.

Suppose that the interior of the sphere S(a;i, 7i) belongs to
^ F and that y is an interior point of S(a?i, ri). The result of
sweeping the measure consisting of the mass 1 at the point
y onto the closure S* of | S (a;i, r-^) is, according to a result by
M. Riesz, ([7], p. 17) the measure \{x) dx, where

(14)
X^)=A3(a,m)(ri-|y-^2)t.(|^-^|2-^)"t|y-^|-m,

\y—^i\ < ̂  x^y,
and

A / \ ""(^+1) r»/ m \ . iraA 3 ( a , m ) = = T C V 2 ^ . r — — s m —
\ L / ^

We have

(15) f^\{x)dx=l,
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which may, for instance, be proved in the following way:
if y = x^ (15) easily follows by the introduction of polar
coordinates and a direct integration. If y =^= x^ we introduce
the sphere S(y, 7*0) and choose 7*0 so that S(y, ro) => S(o;i, r^).
The measure ^y(x) dx which we obtain by sweeping the measure
consisting of the mass 1 at the point y onto the closure of
(, S(y, 7*0) has total mass 1, according to the above, and it
may be obtained from \[x) dx by sweeping to the closure
of | S(y, To) the restriction to S(y, 7*0) of \{x) dx.

As the total mass does not increase by the sweeping-out
process, we get

1 =j[w^^ ̂ ^fy^yW ^< ̂

which proves (15) when y ^= x^.
The measure \{x) dx can be used to express the value of

the potential u^ at a point of the interior of S(;TI, 7*1) by means
of the values of u^ in S* ([7], p. 17) :

<{y} =fy <W\W dx if \y — x^\ < 7i.

This formula and (15) give together

(16) P,(F) - u^y} = Aa(a, m) ̂ -\y-x^

•^ (^(F) - uW) {\x - x^ - r^ . \y - ̂ -m dx

if \y—x^\ < ri.
9. By means of (13) and (16) it is easy to prove the following

theorem.

THEOREM 3. — Let XQ belong to ^F and the closure of F.
Suppose that there exists a closed sphere S with S c ( F such that
XQ is a boundary point of S. Then

JL
lim inf f^{x) .\x — XQ\ 2 > 0, .x —> XQ, x e F.

Proof. — Let V be a bounded right circular cone having
vertex at Xy, altitude ro, axis along the normal at XQ of the
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boundary of S and being contained, except the point XQ^ in S.
Suppose that S has center at the origin and radius ri, S == S(0,7*1).
There exists a constant M > 0, [cf. the formula (24) below],
such that

ri—|y|>M.|2/—XQ\ for y e V .

This and (16) give, with a new constant M > 0 which depends
on 7-1,

^-^(^M.ly-^, y ^ V .

Remembering (13) this gives, when x e F, with constants
M>0,

q

)̂>M;̂ _^L,|).̂
q

>k-^.Mj;'̂ .,,.r-A,

where a == 7*0 '\x—Xo\~1. This proves the theorem.

10. If we suppose that F satisfies certain conditions of
regularity in a neighborhood of a fix boundary point XQ, then
the Theorems 1 and 3 show that the expression

(17) fW\x—x^,

takes values between two strictly positive constants when x
tends to XQ inside some cone contained in F and having vertex
at XQ. We shall treat the problem to examine under what
conditions the limit of (17) exists when x tends to XQ. To keep
the calculations comparatively simple we shall be content with
the following theorem:

THEOREM 4. — Let XQ be a boundary point of F. Suppose
that there exist positive numbers ro and §9 such that for every
to e S(xo, 7*0) n 5F we can find two closed spheres with radii So —
spheres which we denote by S^o? §o) an(^ S^o, §o) — which have
to as a boundary-point^ the same tangent plane at to and are such
that S^o, §o) ls contained in F and the interior of S^o, §o) ln

( F. Let N(rCo) be the common normal ofS\Xo, So) and S^o, §o).



REGULARITY OF THE EQUILIBRIUM DISTRIBUTION 81

Then
q

(18) lim f^{x) ,\x — XQ\ 2 , x —> XQ, x e N(a;o) n F,

exists and is strictly positive and finite.
The fact that the limit is strictly positive and finite if it

exists, is an immediate consequence of the Theorems 1 and 3.
The limit depends on m, a, F and the position of XQ in a way
that will appear from the proof [cf. the end of § 14]. When
m = 1 the assumption shall be interpreted to mean that FQ
and §o may be chosen such that S(rco, ro) n ^)F = ^XQ\,
S^rCo? §o) n S^o, §o) = {XQ\^ S1^, §o) ls a subset of F and the
interior of S^o, So) of F.

We start the proof of Theorem 4 with some preliminary
considerations after which the proof is completed in §§ 11-14
using the same notations in all the paragraphs.

Let ^o be a number satisfying Q <. VQ <i — and let K be the
2i

infinite, two-sided cone of revolution — including the interior
of the cone — with vertex at XQ axis N(a;o) and generating angle
VQ [see Figure 1]. The plan of the proof is as follows. Using
(13) we shall estimate f^{x), x<= N(;To) n F. By means of the
results of § 11 we show in § 12 that u^ satisfies a Lipschitz
condition at XQ which is then used to prove that the contri-
bution to the integral occurring in (13), coming from the inte-

gration over ( K may be neglected if VQ is chosen near —•
- 2i

In §§ 13-14 we estimate the contribution to (13) coming from
the integration over K, a contribution which consequently
determines the limit (18).

We carry through the proof of the theorem only for the case
m ^> 2. However, when m = 1 a proof follows almost immedia-
tely from (13) and (16) depending on the fact that in this case
the complement of F u Se(xo, §o) ls situated at a positive dis-
tance from XQ. Thus, from now on we assume that m ̂  2. We
also suppose that §o <^ ^0/2 which we clearly may without
limitation. This will guarantee that all points from ^)F with
which we shall be concerned are situated in S(rCo? ^o)-

The part of ^)F which is situated in S(rco? ^o) ^as the following
properties :
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1° There exists a constant c such that if yo <= bF n S(rco, ^0)
and y is the angle between N(^o) and the common normal
of S1^, §o) and S'(i/o, §o)? then

y < cl^o—yol-

2° If 7*1 is strictly positive and less than a certain number
— which may be chosen equal to min ^§o/2? ^j^c\ where c is
the constant in 1° — then, for every te. S{xo, T-i/2), the inter-
section between ^)F n S{xo, r-^ and the line through ( parallel
to N(rro) consists of exactly one point, to.

1° is proved in [9], p. 112, for m = 3 and a certain class of
surfaces without being stated explicitly. However, the same
proof is valid for a general m and with the assumptions we
have made. To prove 2° we suppose that y-i < min |§o/2, Tc/4cj
and let I be the line through t, te S{xo, ri/2), which is parallel
to N(a;o). I n S(a;o? ^i) contains points both from the interior
of S^rco, §o) ^d the interior of S^o? §o)? lfe' points both from
the interior of F and from f F and, consequently, also at least
one point ty from bF. But the angle between I and the common
normal at (o of S^o, §o) and S^o, §o) ^s, according to 1°, less
than — as cr^ <; -—. This means that at least every point

from I n S(^o, §0)5 except to, is situated in the interior of S^o, §o)
or the interior of S^o, §o)- Hence

I n bF n S((o, So) = |<oj.

The distance from XQ to a point from I n OF, different from ^,
is thus larger than

§o — \to — ^ol > So — ^i > ^i?
which shows that

Zn^FnS^o,^ ) = ^oj

and so 2° is proved.
It is clear that ^)F has a unique tangent plane at every point

of bF n S(.z;o, To). N(a;o) is the normal of bF at XQ.
11. We start the proper proof of Theorem 4 by deducing

an upper bound of /^ in a neighborhood of XQ. Let ( be a fixed
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point belonging to F n S(a;o? ^o)- Let ^e^F be such that
V— ^ol == ^(^9 ^F)? where d(t, ^F) denotes the distance between
( and ^F. The facts that \t—XQ\ ̂  §o and §o < ro/2 imply
that to e ?)F n S(.z'o? ^'o) ^d consequently that S^o? §0) c F- ^s

the line through t'Q and ( contains the center of S^o? ^o) we may
use § 4 to conclude that there exists a constant M, only
depending on m, a and §oy such that

(19) fW^M[d{t^F)}^ for all (eS(^ ,§o)nF.

(19) will be used to prove the existence of a constant M such
that if p^(^o? r) ls the value of [x^ tor the sphere S{xo, r), then

2m—a

(20) (x^o^XMr 2 , for all r > 0.

It is enough to prove (20) for all r less than an arbitrarily
chosen positive number. We suppose that 2r <; min i §o/2? it/4c{,
where c is the constant in 1°. Let te F n S(a?o, r). According
to 2° the intersection between ^F n S(^o? 2r) and the line I
through ( parallel to N(.2^) consists of exactly one point <o*
The angle between I and the normal of ^F at t^ is less than
iT/4 according to 1°. Combined with

Q^

\t—^\ < \t—^\ + |^o —<ol < r + 2r < -j°,

this gives that ^ belongs to the right circular cone which is
contained in S^o? ^o)? has axis along the normal to ^)F at ^o?

qo
vertex at (09 altitude —° and generating angle TC/4. As the

distance from t to the boundary of S^o? §o) ls ^ess than or equal
to d{t, ^)F), we conclude, [cf. the formula (24) below], that there
exists a number M > 0, only depending on §o? such that

(21) d{t, ^)F) > M|( — to\, t e F n S(a;o, r).

In order to estimate p-S^o? r) we suppose for a moment that
the coordinate-system is chosen with the origin at XQ and the
a^-axis along N(rco). (19) and (21) give then

^o, .) =f^,fW dt^Mf^\t-^dt
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and if we evaluate the last integral by means of repeated one-
dimensional integration, we obtain

<{^ r) < Mr"1-1. F \^\^ dx1 = Mr^.v '"~2r

(20) now follows from this estimate and the following lemma :

LEMMA 2. — Let the assumptions in Theorem 4 be satisfied.
Then

(^F n S(a;o, r)) = 0, for some r > 0.

Proof of Lemma 2. — If r is small enough the following
discussion is valid for all sufficiently small £. Let to e oF n S(^o? r).
For a fixed §1, 0 <; §1 << S^, we introduce the closed sphere
S^o, §1) which is a subset of S^o, §o)? has radius §1 and <o
as a boundary point. Let Sg(to, §1), £ > 0, be the translation
the distance £ of S^o, §1) along the outer normal of ^F at <o-
The union of the interior Sg(^o, §1) of all the spheres Sg(<o, §1),
to <= ^F n S(^o? y*)? covers bF n S(a;o, r). We choose a finite subcover
of open spheres Ss(to, §1) and let K(s) be the closure of the
union of these spheres. Let F(e) = K(s) u F. Then p.̂  does
not distribute any mass on OF n S(rco, r). As we, except for
a constant factor, obtain ^ from pi1^ by sweeping to F the
restriction to [ F of ^(£), it is clearly enough to prove that

[^([F^O when £-> 0.

However, by another application of the sweeping-out process
we can realize that [^(bF^^F) == 0. In fact, if this was
not the case we could, due to the construction of K(&), find
a closed sphere S c K(&) with p^^S) > 0 and by sweeping
to S the restriction to f S of ^(£) we would get p^(bS) > 0
which is wrong [cf. the formula (4)]. By combining the above
facts we obtain that if G(&) = F(e)\F it is enough to prove
that

^)(G(s)) -> 0 when £ -> 0.

Let I be a line parallel to N(^o) such that I n G(&) is non-empty.
We obserwe that if Sg(^, §1) c K(s) then we have, as §1 < §o
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and S^o, So) c F? that the part of Sg(<o, §1) which belongs to
I F is situated inside any chosen, fixed neighborhood of io.
This means that if r^ is a fixed number chosen as indicated
in 2° in § 10 then I n S{xo, ri/2) is non-empty and, according
to 2°, that the intersection between I and bF n S(a;o, ^i) consists
of exactly one point y^ It also means that there exists at
least one point z/i e I n (bF(£)\bF). ?/i is situated on the boundary
of at least one sphere Sg(<i, §1) c K(s), ti e ^)F n S(;TO? ^)- Finally
it means that the angle between the normal n(yi) of Sg((i, §1)
at 2/1 and the normal of ^)F at (i is arbitrarily small and hence,
according to the property 1° in § 10, also that the angle between
n(t/i) and I (or N(a;o)) is less than any prescribed, fixed positive
number. Accordingly we get that yo e= V(yi) where V(yi) c Sg((i, §1)
is a bounded right circular cone with vertex at y^ and axis
n(t/i) having an altitude only depending on §1 and a generating
angle which is an absolute constant. Simple arguments now
prove that 2/1 is the only intersection between I and bF(&)\6F,
that there exists a function A, defined on the positive numbers,
such that /i(&) tends to zero when £ tends to zero and

l2/o—2/i |<^(£) ,

and, finally, that there exists a number M not depending
on yo, 2/1 and £ such that (cf. § 4) for all y lying on the line-
segment between 2/0 and z/i,

^(yXMIy-yil^2.

If for a moment we suppose that the coordinate-system is
chosen with the a^-axis along N(a;o) ^nd use the estimates
obtained we get by repeated one-dimensional integration

[^(G^)) < Mr"-1./^ l^]-^2 cte1,

which tends to zero when £ tends to zero. The proof of the
lemma is complete.

Remark. — Lemma 2 gives us a general class of sets F such
that (JL^F) = 0.

12. We need the following lemma :

LEMMA 3. — pi is a positive measure with compact support.
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Suppose that, for some point x^ in R7" and for some (3, 0 < ? < 1,

[ î, r) < const. ̂ -^P, for all r > 0.
TAen

^S(^i) — ^S(^) < const. \x^ — x\^ for all x e Fl".

Remark. — We have in this paper throughout assumed that
0<a<2, but the lemma is true for all a satisfying 0<a^w.
It is also true for m = 1.

The lemma has been proved by Carleson ([3], pp. 15-16)
for a = 2 in a somewhat different form. It is, however, pos-
sible to use his method of proof also for a general a and in the
form we have formulated the lemma.

The formula (20) and Lemma 3, used with ^ = XQ and
^ = f^» give, as u^{xo) = ^c(F),

(22) ^(F) — u^y) < const. \x, — y\^ for all y .

Put

BM = lin, ,up |, - ̂  . J^ î ^ A,,

x -> XQ, x e N(^o) n F.

Using (22) we shall prove that

(23) lim B(^) = 0.
(/<»•> w/2

To have a suitable reference in § 14 we give a detailed proof
of (23). For an arbitrary y ̂  ̂ , let 0 be the angle between
a vector directed along the outer normal to bF at XQ and the
vector from XQ to y [see figure 1]. If x^ S1'̂ , §o) n N(a;o)
we have

1^ — 2/12 =\x— Xo\2 + 2^ — XQ\ . |̂ o — y|cos 0 + \XQ — y\\

Using (22) and introducing polar coordinates (r, 0, 01, . . ., O7"-2),
r == l^o —y|? in the integral occurring in the expression B(^)
we obtain, if x e S^o, §o) n N(^o),

0 < B(^o)
Jl. /v» /^W—Co Y

<M.limsupb-a;o|2 ( __________r-—————————
Jo J^ [r2+2r|.r—a•o|cos0+|a;—a;o|2]<'a+a>/2

•r'"-1 sm'»-20 drdQ,
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and putting r= \x—Xo\'t we get the majorant M(TC
when ^o->ii/2. This proves (23).

N(^)

87

2^o)

FIG. l.

13. The object of this paragraph is to put ^a(F)—^(y)?
y e K n ( F , in a form [see (26)] which is suitable for the final
estimation of f^.

We suppose from now on that the coordinate system is
chosen so that the origin is the center of the sphere S^o, §o)? l•e•
S^o, §o) == S(0, §o) an(! \XQ\ = §o- Simple geometric conside-
rations show that, for a fixed ^o?

(24) lim , N ~ l^1 . = 1,
\XQ—t/|.cos9 y — x o , ye K n S(0,§o)?

where 6 is defined immediately after the formula (23).
If we introduce the notation

3{y) -XoiJ^-^) W-^^y-^dx,
for all y, then we have, according to (16),

(25) P,(F)-u^)=A3(a,w)(|^|2-|y|2)i.J(y) for \y\<^.

Using (25), (24) and (22) we find
lim sup J ( y ) <oo, y -» Xy, y e K n S(0, §0).



88 HANS WALLIN

However, by a standard argument,

lim sup J { y ) ̂  J(^o)? V -> ^o? y e K n S(0, §o)

and accordingly the integral J(^o) ls convergent. From (24)
it follows that the integrand of J(y) is majorized by a constant
times the integrand of the convergent integral 3{xo) when
t / e K n S ( 0 , §o) ^d \y—XQ\ is small enough. Hence, by
Lebesgue's theorem of dominated convergence,

lim J ( y ) = J(;ro), y - > X Q , y e K n S(0, So).

This, combined with (25) and (24), proves the existence of
a function Y) such that r\(y) —> 0 when y—>XQ, y e K n S(0, §o)
and

(26) ^(F) — ul(y) = As(a, m). (2So)i . {\x, —y\ cos 6)^. J(^o)

+l^-2/|'t.Yi(2/), yeKnS(0 ,§o ) .

14. We finish the proof of Theorem 4 by means of (13), (23)
and (26). Suppose that x e S1^, §o) n N(a;o) a^d let po be a
positive number.

/>^).^r-^|f=2A(a,m).|^-^|i^^(F)~<^^^^j |.r—t/| ^

=2A(a,^l.-^|^^,+/^^^+/^^^J=I+II+III.

According to (23) I becomes arbitrarily small when x tends
to XQ if we choose ^o sufficiently near iT/2. When VQ has been
fixed we choose po so small that

|KnS(^,po)|\FcS(0,§o).
We observe that we only have to integrate over ( F in the
integrals above. When we use (26) the second term of the right
member of (26) gives a contribution to II which has the following
majorant: M.supYj(y) where the supremum is taken over all
y e= ^ K n S(a;o, po) j \F and where the constant M does not depend
on po- This is proved by calculations which are analogous to those
of the proof of (23). Hence, the contribution to II which comes
from the second term of the right member of (26) is small,
independently of x, if po is small. For a fixed po, III tends to
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zero when a? tends to XQ and accordingly it only remains to
estimate the contribution to II which, using (26), comes
from the first term of the right member of (26). This contri-
bution is, if

A4 = 2A(a, 7n).A3(a, m) (2So)'j"•J(^) -
and

R(p,)= |KnS(a-o,?o)^\F,
-°L -a

A \x—x\^ C \x»—y\2'cos2 Q ^
^ ' } x xo} ' J ^ {x-y^ dy-

This becomes after simplification if we introduce polar coor-
dinates in the same way as in the proof of (23) and if

A5=2A4. i i 2 • in^———)^ and p == po-|^—^ol~\
( \ z /)

-a .°LAt r r (.- + 2. 'cX6i)<-^- • '•"sm'"M"'9-
If ^o was chosen sufficiently near it/2 this expression is, when
\x—XQ\ is small enough, arbitrarily near a certain constant.
Together with the other estimates in this paragraph this shows
that the limit (18) exists.

Added 8/10/65. Prof. L. Hormander has informed me that
the fact that f^ is infinitely differentiable in F also may be
obtained as a consequence of results for certain general classes
of operators.
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