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HERMITIAN SPIN SURFACES WITH SMALL
EIGENVALUES OF THE DOLBEAULT OPERATOR

by Bogdan ALEXANDROV (*)

1. Introduction.

It was proved by Friedrich in [7] that on a compact n-dimensional Rie-
mannian spin manifold M with positive scalar curvature s any eigenvalue
A of the Dirac operator satisfies the inequality

The limiting manifolds, i.e., the manifolds on which the first eigenvalue
satisfies the equality in (1.1), are Einstein and have holonomy SO(n). In
the simply connected case their classification has been completed by Bar

[2].
The fact that the holonomy of a limiting manifold is SO(n) implies,

for example, that (1.1) is strict on Kahler manifolds. For Kahler manifolds
a better estimate was found by Kirchberg [19,20]. In the 4-dimensional case

(*) Supported by SFB 288 "Differential geometry and quantum physics" and SPP 1154
"Globale Differentialgeometrie" of DFG and The European Contract Human Potential
Programme, Research Training Network HPRN-CT-2000-00101.
Keywords: Hermitian surface - locally conformally Kahler metric - ruled surface - Hopf
surface.
Math. classification: 53C55 - 32J15.
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(this is the dimension we are interested in in this paper) it reads as follows:

The limiting manifolds are characterized by having constant scalar curva-
ture and the existence of a Kahlerian twistor spinor [20]. It was shown by
Friedrich [8] that they are biholomorphically equivalent to Cpl x CP~ or
T x where T is a torus.

Now a natural question arises: Is it possible to generalize in a

reasonable way these results on Hermitian (non-Kahler) manifolds?

In [17] Hitchin showed that there is a bijective correspondence be-
tween the spin structures on a Hermitian manifold and the holomorphic
square roots ,S’ of its canonical bundle K. If the manifold is moreover

Kahler, then the Dirac operator coincides with the Dolbeault operator
+ of the corresponding square root S.

This shows that in order to capture better the existence of a complex
structure it would be perhaps reasonable to replace the Dirac operator on
a Hermitian manifold by the Dolbeault operator of S.

Indeed, the author together with Grantcharov and Ivanov proved in

[1] the following

THEOREM l.l. Let M be a compact Hermitian spin surface with

positive conformal scalar curvature k. Then for each eigenvalue A of 0

The first eigenvalue satisfies the equality in (1.3) iff k is constant and there
exists a non-identically zero section 0 E r(,S’* ) such that

In this case M is locally conformally Kähler.

The connection ~-3 is a member of the one-parameter family of
canonical Hermitian connections E R (see [13]), and (~-3)0,1 is

the (o,1)-part of ~-3. On a Kahler manifold V~ coincides with the Levi-
Civita connection, the conformal scalar curvature coincides with the scalar
curvature and a solution of (1.4) is just a holomorphic section of S*, i.e.,
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a Kahlerian twistor spinor. Thus Theorem 1.1 generalizes the above cited
result of Kirchberg.

In this paper we investigate the Hermitian surfaces on which the
limiting case in Theorem 1.1 occurs. From now on we call them limiting
surfaces.

In section 2 we prove that such a manifold is either a ruled surface
or a Hopf surface. In the next two sections we discuss these two cases
respectively.

A ruled surface of genus g is a holomorphic cp1-bundle over a
complex curve of genus g. It admits a Kahler metric and therefore every
locally conformally Kahler metric is globally conformally Kahler by a result
of Vaisman [27]. Thus, since the existence of a non-zero solution of ( 1.4) is a
conformally invariant condition, it is equivalent to the existence of a square
root S of the canonical line bundle such that 8* has a holomorphic section.
This property characterizes the limiting ruled surfaces as the existence of
a Hermitian metric with positive constant conformal scalar curvature is
ensured by the existence of a Kahler metric with positive scalar curvature
on each ruled surface, the latter being a special case of a theorem of Yau

[29]. The limiting ruled surfaces, together with the corresponding spin
structures, are described in Theorem 3.1. There are limiting ruled surfaces
of arbitrary genus. In particular, there are many more of them than in the
Kahler case. Even for genus g = 0 or 1 there are limiting surfaces other
than the trivial bundles Cp1 x CP~ and T x CP . For example, all even
Hirzebruch surfaces are limiting. It is also interesting to remark that some
ruled surfaces are limiting with only one of their spin structures, while
others are limiting with all of them.

A Hopf surface is a complex surface whose universal cover is ~2B0.
Every Hopf surface is finitely covered by ,S’1 x 83. Thus the first Betti
number is 1 and therefore there exists no Kahler metric. Nevertheless we

can describe the Hopf surfaces on which the ’holomorphic’ condition (1.4)
is satisfied. The description involves the cohomology class of the Lee form
of the metric and is given in Theorem 4.2. This theorem would give a
classification of the limiting Hopf surfaces if the possible Lee forms of locally
conformally Kahler metrics with positive conformal scalar curvature were
known. There are some restrictions on Hopf surfaces of class 1 coming from
the fact that they admit Vaisman metrics [14,5] and a result of Tsukada
[26]. But in general it is not even known whether each Hopf surface admits a
locally conformally Kahler metric with positive conformal scalar curvature.
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Still Theorem 4.2 allows us to obtain numerous examples of limiting Hopf
surfaces and also of such Hopf surfaces which cannot be limiting.

2. Preliminaries.

Let (M, h, I ) be a 2m-dimensional Hermitian manifold, i.e., I is an

(integrable) complex structure and h is a Riemannian metric such that
h(I ~, I.) = h. We denote by Q the Kahler form,

Let = (g) be the bundle of forms of type (p, q).
The canonical line bundle is K = 

It was proved in [17] that the spin structures on a Hermitian manifold
are in one-to-one correspondence with the set of holomorphic line bundles
,S’ such that 5’06’ == K. Given a spin structure S, the corresponding spinor
bundle is

We denote by 0 the Dolbeault operator of S,

Thus the Dirac operator D and the Dolbeault operator act on sections
of EM (in particular, on sections of A O,m M Q9 S = S*) and if the manifold
is Kahler, they coincide.

Recall that a Hermitian connection on a Hermitian manifold is a con-

nection with respect to which both the metric h and the complex structure
I are parallel. In particular, such a connection defines a connection in the
spinor bundle EM which preserves the decomposition (2.5). There is a 1-
parameter family V’, t E R, of distinguished Hermitian connections, the
canonical Hermitian connections (see [13]). They are defined as follows:

where i7° is the projection of the Levi-Civita connection in the affine

space of all Hermitian connections and Vl is the Chern connection, i.e., the
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unique Hermitian connection such that when considered as a connection
on the holomorphic tangent bundle T1,o M its (0, l)-part (V1)°,1 = 8Tl,OM.
On Kahler manifolds the canonical Hermitian connections coincide with the

Levi-Civita connection.

Although the following notions can be defined in arbitrary dimensions,
from now on we restrict our considerations to Hermitian surfaces, i.e., to

complex dimension m = 2.

In this case the wedge product with the Kahler form Q yields an
isomorphism between the spaces of 1-forms and 3-forms. The Lee form of
(M, h, I ) is defined to be the unique 1-form 0 such that

The conformal scalar curvature k is the scalar curvature with respect
to h of the canonical Weyl connection of (M, h, I). For our purposes it will
be enough to define it through the explicit formula

where s is the scalar curvature of h.

If we change the metric conformally, h = ef h, then

So we get the following straightforward consequences:

~ (M, h, I) is Kahler 0 and in this s.

~ (M, h, I) is globally conformally Kahler iff 0 is exact.

~ (M, h, I ) is locally conformally Kahler iff 0 is closed.

~ If k &#x3E; 0, then there exists a conformally equivalent metric with
positive constant conformal scalar curvature: if c &#x3E; 0, then h = j h
has k = c.

The next straightforward lemma (cf Lemma 4 in [1]) shows that the
existence of a non-zero solution of (1.4) is a conformally invariant property.

LEMMA 2.1. If V) E r(S*) is a solution of (1.4) for the metric h,
then e¡ 1/J is a solution of (1.4) for h = ef h.
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Thus, to find the limiting surfaces it will be enough to find the
Hermitian surfaces with positive (not necessarily constant) conformal scalar
curvature admitting a non-zero solution of (1.4).

Let us consider the exact sequence

coming from the exact sequence

For [w] E H1(M,CC) we denote by E([w]) its image in H1(M,CC*). Thus
E([w]) is a complex line bundle with constant transition functions and
therefore holomorphic. be a good open cover of M and 
dfa. Then fa - f, are constant on Ua n U (3 and the transition functions of
E([w]) with respect to are e 27ri (f,,, - fo)

PROPOSITION 2.2. - There exists a non-zero solution of (1.4) on a
compact locally conformally Kähler spin surface (M, h, I, S) with Lee form
0 i$’ H° (M, C7 (E( ~- 2~i e~ ) ® S* ) ) ~ 0.

Proof - be a good open cover of M, = dfa, s,
be non-zero holomorphic sections of S* Let 0 be a solution of (1.4),

Then’l/Ja = where are the transition functions of

,S’* determined by 

Since is a Kahler metric on Ua, Lemma 2.1 yields that
is a holomorphic section of S* over Ua. Hence

the functions cpa := are holomorphic. The transition func-

tions of are and obviously ’Po: =
- r- 1 -11 ’- -. -

Thus define a holomorphic section of E([- - 0]) Q9 o*, i.e.,

The converse is proved in the converse way. D

We remark that Proposition 2.2 could also be deduced from Remark 5
in [13].

PROPOSITION 2.3. - A compact spin Hermitian surface (M, h, I, S)
with positive conformal scalar curvature is biholomorphically equivalent to
a ruled surface or a Hopf surface.
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Proof. Since M is spin, (M, I) is a minimal complex surface.
Indeed, if C is an exceptional curve, then (ci(C) A cI(K))[M] = -1
which is impossible because cl (K) = 2CI (S). M is compact and therefore
there exists a Gauduchon metric in the conformal class of h, i.e., a metric
whose Lee form is co-closed (see [9]). The positivity of the conformal
scalar curvature is conformally invariant, so we can assume that is the
Gauduchon metric. Now (2.6) shows that the scalar curvature of h is also
positive. Hence, by Gauduchon’s Plurigenera Theorem [10] all plurigenera
of (M, I) vanish (see Proposition I.18 and Proposition I.19 in [12] or [28]).
Thus the Kodaira dimension of (M, I) is - oo .

The Kodaira-Enriques classification [3] combined with the results in
[22,18,6] shows that the minimal complex surfaces of Kodaira dimension
- oo are:

CP 2

surfaces Kahler type (bl even)
ruled surfaces J
Hopf surfaces (b2 = 0)

~ Inoue surfaces (b2 = 0) / non-Kahler type (b, = 1)
~ surfaces with b2 &#x3E; 0 j

It is well known that Cp2 is not spin.

Now we show that the Inoue surfaces do not admit metrics with

positive scalar curvature by applying Theorem 5.4 in [25]. More precisely,
we use its proof according to which a bundle over a torus with enlargeable
fibres is itself enlargeable. There are three types of Inoue surfaces [18].
The surfaces of the first type (SM) are diffeomorphic to 3-torus bundles
over a circle [18] and are therefore enlargeable. The second type consists
of the surfaces They are diffeomorphic to bundles over a circle
with fibres which are circle bundles over a 2-torus [18]. Thus the fibres are
enlargeable and therefore are enlargeable. Every surface of the

third type is double covered by an Inoue surface of second type
and is therefore also enlargeable. Hence all Inoue surfaces are enlargeable
and by a theorem of Gromov-Lawson [15,25] they do not carry metrics
with positive scalar curvature. In particular, they cannot have Hermitian
metrics with positive conformal scalar curvature.

Finally, let M be a surface of non-Kahler type with Kodaira dimension
-oo and b2 &#x3E; 0. By Theorem 3 in [21] b2 = 0, b2 = b2 and therefore the
signature a(M)  0. But on a spin manifold with positive scalar curvature
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the index of the Dirac operator D vanishes and so a(M) = -8ind(D) = 0.
Thus there are no surfaces with b2 &#x3E; 0 which satisfy the assumptions of
the proposition.

Hence (M, I ) is either a ruled surface or a Hopf surface. 0

This proposition shows that to find the limiting surfaces we need to
study the ruled surfaces and the Hopf surfaces.

3. Ruled surfaces.

DEFINITION [4,16]. - A complex surface M is a ruled surface of
genus g if it is a holomorphic CPl-bundle over a compact complex curve
C of genus g. This is equivalent to M being the projectivization P(E) of
some holomorphic vector bundle E of rank 2 over C.

According to a theorem of Yau [29] every ruled surface carries a
Kahler metric with positive scalar curvature. Further, Vaisman [27] has
proved that if a complex surface admits a Kahler metric, then every
locally conformally Kahler metric on M is globally conformally Kahler.
Thus a locally conformally Kahler metric with positive conformal scalar
curvature on a ruled surface is globally conformal to a Kahler metric with
positive scalar curvature. The Lee form of a Kahler metric vanishes. Hence

Proposition 2.2 shows that the limiting ruled surfaces are those which
admit a holomorphic bundle S such that S2 = K (i.e., which are spin)
and H’(M, O(S*)) 54 0.

Let M = P(E) be a ruled surface and 7r : P(E) - C be the
projection. If L is a line bundle over C, then obviously P(E 0 L) = P(E)
(the converse is also true: if P(E’) - P(E), then E’ = E 0 L). Thus, if

e’ E Z has the same parity as deg E, we can represent M as P(E’) with
deg E’ = e’.

Let HE denote the tautological line bundle on P(E). Its fibre at

x E P(E) is the line in E7r(x) to which x corresponds. Notice
that HE depends on the choice of E: HE0L = HE 0 

The canonical bundle of P(E) is
KC is the canonical bundle of C.

where
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We are looking for line bundles S on P(E) such that S2 - K. Since
the Picard group of P(E) is generated by HE and the pull-back of the
Picard group of C, such an S has the form S = HE where ,S’1 is a

line bundle on C satisfying

As deg Kc = 2g - 2, such an exists iff deg E is even. Thus a ruled surface
is spin iff deg E is even and the number of its spin structures is equal to
the number of holomorphic square roots of a line bundle on C, i.e., to 229.
In fact, the ruled surfaces with even deg E are homeomorphic to the trivial
bundle C x S2 (and therefore are spin) while those with odd deg E are
homeomorphic to the non-trivial S2 -bundle over C.

We want also HO(M,O(S*)) ~4 0. Since S’* - HÊ Q9 by
Theorem 5.1 in [3] (or Lemma 2.4 in [16]) H° (M, O(S*)) = H° (C, O(E* Q9
,5’i ) ) . Thus we have to find all rank 2 bundles E and line bundles ,S’1 on C
which satisfy (3.7) and

By multiplying by a suitable line bundle we can always assume
that the bundle E defining the ruled surface has the following property:
H° (C, 0 (E’)) 54 0 but H° (C, 0 L)) = 0 for each line bundle L with
deg L  0. Such an E is called normalized [16]. It may be not unique but
e := deg E does not depend on the particular choice of a normalized E
and is therefore an invariant of the ruled surface. (Warning: Our notation
P(E) is as in [4] and [3]. The notation P(E) in [16] corresponds to our
1’(E*).)

From now on we assume that E is normalized. Thus (3.8) implies that
0. By (3.7) we obtain 1 - g. Hence

A rank 2 bundle over a complex curve C with g = 0 (i.e., over
Cpl) is decomposable. According to Theorem 2.12 in [16], if g &#x3E; 0 and

a normalized E is indecomposable, then e  2g - 2. Thus (3.9) shows that
in our case an indecomposable E could only occur if e = 2g - 2. It is

proved in Theorem 2.15 in [16] that if g = 1, then there exists a unique
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indecomposable normalized E with e = 0 and it is the unique non-trivial
extension

The same proof can be modified in a straightforward way to show that
if g &#x3E; 0, then there exists a unique indecomposable normalized E with
e = 2g - 2 and it is the unique non-trivial extension

Thus Ke and therefore by (3.7) Si = 1c . In particular, deg9i = 0.
From (3.10) we obtain an exact sequence

Now (3.8) implies or If

H°(C, O(Kê Q9 ,S’i )) 0, then 0  deg(K*C Q9 Si ) = 2 - 2g. Hence g = 1,
KC - 1 C and Q9 = This shows that in

any case 0 and therefore Si = lc since degS1 = 0. Thus

Now let us consider the case of a decomposable E. Since E is

normalized, it has the form E = L 0 1 C, where deg L &#x3E; 0. In particular,
A~E ~ L and therefore e ~ 0. By (3.7) this also implies L = 0 Kc.
We have Q9 ,s1 &#x3E;) = EB Q9 

Thus, by (3.8), 0 or HO(C,O(L* 0 ,5’1 )) ~ 0. Let

Q9 ,5’i )) ~ 0. Then 0 ~ deg(L* Q9 Si ) = -~e + 1 - g. Thus
0  e  2 - 2g, = 0 or 9 = 1. If g = 0, then 0

as deg S’i &#x3E; 0. If g = 1, then Kc = lc and therefore L* Q9 81. So

0, whence 6’i = 1 C since degS1  0. Thus in any case we
have O(Si)) # 0. This implies, in particular, that either deg 8i &#x3E; 0

(i.e., e &#x3E; 2g - 2) or 5’i = Ie. In the latter case e = 2g - 2 ~ 0 and

We summarize the obtained results in the following
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THEOREM 3.1. - A compact Hermitian spin surface (M, h, I, S) with
even first Betti number is a limiting surface iff M = P(E) is a ruled surface
over a complex curve C of genus g, h = csoho, where c is a positive constant,
ho is a Kamer metric with positive scalar curvature so, and E and S are
given by one of the following three disjoint cases:

1) g &#x3E; 0, E is the unique non-trivial extension of lc by Kc, S = HE.
In this case E is indecomposable.

2) g &#x3E; 0, E = Kc (1) lc , S=HE.

3) g is arbitrary, where N is a

line bundle over C with deg N &#x3E; 0 and H° (C, C~(N) ) ~ 0.

We note that all bundles E in this theorem are normalized. In fact,
for all ruled surfaces appearing in it there exists a unique normalized E.
There is also no repetition of pairs (E, S) and thus a ruled surface appears
more than once if it has more than one spin structure with which it is

limiting. The surfaces in cases 1) and 2) are limiting with only one of their
spin structures. At the other extreme, the surfaces P (N2 0 Kc EB Ie) with
deg N &#x3E; g are limiting with all of their 229 spin structures. Furthermore,
every ruled surface of genus 0 which is spin appears in the above list, i.e.,
the even Hirzebruch surfaces with their unique spin structure are limiting.

Finally, the results in [8] show that the Kahler limiting surfaces, i.e.,
the limiting manifolds for Kirchberg’s estimate (1.2), are CP x CP’ (which
comes from 3) with g = 0 and N = K~ p 2 ) and C x CP’, where C is
a torus (this comes from 2) with g = 1 ) . Thus there exist many more
limiting manifolds for Theorem 1.1 than in the Kahler case. This is not
surprising since the existence of a Kahler metric with positive constant
scalar curvature implies strong restrictions on the automorphism group of
the complex surface.

4. Hopf surfaces.

DEFINITION [22]. - A Hopf surface is a compact complex surface
whose universal cover is (C2 Bo. A primary Hopf surface is a Hopf surface
whose fundamental group is Z.
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It was shown in [22] that every Hopf surface is finitely covered by a
primary one and the primary Hopf surfaces are of the form M = ((~2 Bo) / 
q &#x3E;, where

a1 ~

A primary Hopf surface is said to be of class 1 if A = 0 (and we denote it
by Mal,(2) and of class 0 if A fl 0, a1 = a2 (we denote it by 
It is clear that M’1,12,M,.B and are biholomorphically equivalent
for arbitrary A # 0, It 0. Furthermore, a primary Hopf surface is

diffeomorphic to ,S’1 x ,S’3 [22]. An explicit diffeomorphism can be obtained
in the following way:

Let and t : (~2 B0 - R be the function defined
by the equation

Define through

Here we have fixed so that aj I e"P3 and aj := laj 
for r E R, j = 1, 2. Then g is q-invariant and covers a diffeomorphism
g : M - S1 x ,S’3, i.e., g = g o 7r, where 7r : (C2B0 - M is the projection.
Notice also that t(7(z)) = t(z) + 1.

Let wo = + xdy) be the form generating HI (31 , Z). Then
w = g*wo generates Z). We have 1r*W = g*wo = dt.

It is well known [23] that on a Hopf surface M =

H’(M, C*) and if M is furthermore primary, then H 1 ( M, ~ * ) ^--J (C * . This

isomorphism can be realized by an explicit construction:

LEMMA 4.1. - Let M be a primary Hopf surface. Then there exists
an isomorphism C* ~ assigning to s E C* a bundle L(s) E

= with the following properties:
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Proof. The proof is a straightforward generalization of those given
in [24,11] for Ma,a :

The bundle L(s) is defined by

where (~y(z), s~). Conversely, given L E then

L ~ L(s), where s E C* is obtained in the following way:
Since HI (C2B0, C*) is trivial, we can fix a trivialization 

(~C2~0) x C. Let
and

Then

Let us apply this construction to K. We have 7r* K = KC2BO which
is trivialized by dZ1 A dz2. Let p E K1r(z), = dz2 ) z ,
(’~* ~),y(z) which yields

ala2 , i.e., I~ = L( ai 2 ).
Now consider a closed I-form 9 on M. Then for some

function f on C~B0. We have ~r* E( ~8~ ) = E([Jr*9]) and using this it is

straightforward to see that E([9]) = L(e2’~Z(f(~(z))-f(z))) for arbitrary
z E C~)0. Since 7r*W = dt, we obtain = 

.

A holomorphic section of L(s) is pulled back to a holomorphic
section of (((:2B0) x C which is identified with a holomorphic function

C~B0 --~ (C such that

By Hartogs theorem cp extends to a holomorphic function on CC2. It can

be written as a power series and (4.11) gives
equations for Cklk2 which have non-zero solutions only if s = with

nl, n2 E No. D

Remark. - For an arbitrary Hopf surface one can define in a similar
way an explicit isomorphism H1 (M, (C* ) ^--’ Hom(,7r, (M), (C* ) .

This lemma shows in particular that on a primary Hopf surface there
are only two spin structures S. The corresponding ,S’* are 

where ýala2 is a fixed square root of Thus Proposition 2.2 and
Lemma 4.1 yield
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THEOREM 4.2. - Let (M, h, I) be a primary Hopf surface with locally
conformally Kiihler metric h with positive conformal scalar curvature. Let
p E R* be determined by [01 = [pw], where 0 is the Lee form of h. Then
there exists a spin structure S with which (M, h, I, S) is a limiting surface
iff there exist nl, n2 E No such that

Recall that there is a particular class of locally conformally Kahler
manifolds, the generalized Hopf (or Vaisman) manifolds. These are Hermi-
tian manifolds whose Lee form is parallel with respect to the Levi-Civita
connection. It was proved in [5] that a Hopf surface admits a Vaisman met-
ric only if it is of class 1. For primary Hopf surfaces of class 1 an explicit
Vaisman metric was constructed by Gauduchon-Ornea [14]. It is defined

by its Kahler form Q through

is the Kahler form of a Kahler metric on CC2Bü for4 ’

the Lee form we obtain

and therefore 0 - -lnlala21 w.

According to a result of Tsukada [26], given a compact complex
manifold (M, I ) with Vaisman metric with Lee form 0, then there exists a
locally conformally Kahler metric with Lee form f)1 such that [01] = [p9] iff
p &#x3E; 0. This implies, in particular, that for primary Hopf surfaces of class
1 we have p &#x3E; 0 in Theorem 4.2.

Let us now recall the construction which gives the existence part of
Tsukada’s result.

Let (M, h, I ) be a Hermitian surface with Vaisman metric h with
Lee form 9 and conformal scalar curvature k. Let v E R. Define h, =

h + 0 f) + 7~ 0 7~). Then it is straightforward to see that h, is a

Vaisman metric iff v &#x3E; - Wr- (otherwise h, is not positive) and its Lee
form and conformal scalar curvature are

We apply this construction to the metrics of Gauduchon-Ornea. They
have
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Now it is straightforward to see that kv &#x3E; 0 iff

This and v &#x3E; - 4 imply 21nla2l  i.e., )ct2 ) We have

so the corresponding is

Therefore

which yields the following possibilities for n1 and n2:

Thus for the following values of cxl and a2 the corresponding Hopf surfaces
of class 1 admit metrics with which they become limiting surfaces:

On the other hand, there are infinitely many Hopf surfaces which do
not admit such metrics, for example those for which aînl -1 oz 2 212-1 is never
real. And there are also pairs cxl, a2 such that there exist M, n1, n2 with

= c- 2P but there is no known locally conformally Kähler
metric with k &#x3E; 0 and [0] = [pw] on them.

Thus it is clear that to complete the classification of the limiting
surfaces one needs to answer the following question:

Given a Hopf surface, which are the values of IL E R so that there
exists a locally conformally Kahler metric with positive conformal scalar
curvature and Lee form 
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The only restrictions we know are 0 (since the Hopf surfaces
do not admit Kahler metrics) and that p &#x3E; 0 in case of a Hopf surface of
class 1.
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