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DECAY OF VOLUMES UNDER ITERATION
OF MEROMORPHIC MAPPINGS

by Vincent GUEDJ

Introduction.

Let f : X - X be a meromorphic self-mapping of a compact Kahler
manifold X. In this note we address the following question:

How much can f decrease volumes ?

This does not make much sense if f is degenerate, so we assume
throughout the paper that f is dominating, i.e. that its jacobian deter-
minant does not vanish identically (in any local chart). The mapping f
is generically locally open and one-to-one, so that Vol(f (Q)) has approx-
imatively the same size as Vol(Q) for most (small) open subsets S2. This

does not necessarily hold however if SZ meets the critical set of f. Further
problems may arise when SZ contains points of the indeterminacy locus If
(the set of points where f is not holomorphic). For applications to complex
dynamics, we moreover need estimates that are both uniform in Q and
quantitative with respect to iteration: if Q does not meet the critical set

nor the indeterminacy locus, it may still happen that does, for some
j Our main result takes this into account and gives a rough asymp-
totic lower bound in terms of the "degrees" 81 (fj) 
where w is some Kahler form on X and k = dimC X.

Keyivords: meromorphic mappings - volume estimates - green current.
Math. classification: 32H50 - 58F23 - 58F15
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THEOREM 0.1.2013 Assume b1 ( f ~ ) -~ ~~ where A &#x3E; 1. Then Vj E N,
Q c X,

where C &#x3E; 0 is independent of j, Q.

Here bl ( f ~ ) ~ À3 means that is bounded from above.

The study of volume estimates has a long history in complex dynam-
ics. It has been used to construct and characterize invariant currents (see
[G 03a], [FJ 03], [CG 04] for references). A partial result was obtained
in [G 03a] in this direction. The present one has several advantages: it

concerns a more general frame ([G 03a] dealt with case X = in which

we do not assume either algebraic stability, or integrability of the loga-
rithm of the jacobian. We also avoid the use of the Green function made
in [G 03a]. In fact, the existence of the Green current is not known in this
quite general context and one may hope that volume estimates will help to
construct it. Indeed after establishing our main result in section l, we give
such a construction in section 2 under a mild cohomological assumption
(theorem 2.2). In the last section 3 we discuss our hypotheses and related
open questions.

Acknowledgement. - Part of this work was done while the author
was visiting Kyoto University. I would like to express my warm thanks to
the department of Mathematics and especially to professor M.Shishikura
for his friendly welcome and support. I am also grateful to the referee whose
suggestions helped to clarify the exposition.

1. Volume estimates.

In the whole paper we fix a Kahler form cv on X normalized by
= 1, where k denotes the (complex) dimension of X. All volumes

are computed with respect to the probability volume form wk.

1.1. Dynamical degrees.

Given a smooth real form 9 of bidegree (l, l), the pull-back of 9 by f
is defined in the following way: let r f C X x X denote the graph of f and
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consider a desingularization r f of r f . We have a commutative diagram

where are holomorphic maps. We set :- (7rl)*(7r2()) where we
push forward the smooth form 7r*O by 7r, as a current. Note that f*0 is
actually a form with L’,,-coefficients which coincides with the usual smooth
pull-back on X B If, thus the definition does not depend on the
choice of desingularization. In other words, f * 8 is the trivial extension, as
current, of through If. This definition induces a linear action on
the cohomology vector space which we denote again by f *:

Here denotes the de Rham cohomology class defined by the smooth
closed form 0, while f f *01 denotes the de Rham cohomology class defined
by the closed current 

Similarly one can define the push-forward of a form 0 by

This induces a linear action f * on cohomology which is dual to that of f * .
We set 

-

This "degree" is comparable to the spectral radius of the linear action
induced by f on Hl,l(X,JR). It does not necessarily behave well under
iteration, hence the following definition:

In this note we shall be mainly interested in the first dynamical degree
~ := Observe that for l = k = is the topological
degree of f (the number of preimages of a generic point) which we shall
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denote by dt = dt ( f ) . We refer the reader to [G 03b], [DS 04] for more
information on dynamical degrees.

1.2. The estimates.

Our main result is a consequence of the following proposition.

PROPOSITION 1.2. - There exists C &#x3E; 0 such that

for all j E N and for all Q G X.

Proof. Let Jac( f ) denote the complex jacobian of f with respect
to wk , defined by It satisfies the chain rule

A straightforward computation shows that log IJac(f)1 I can be written

as a difference of quasiplurisubharmonic (qpsh) functions. Let us recall
that a qpsh function is an upper semi-continuous (u.s.c.) function cp E

Ll (X, R U {2013oo}) which is locally given as the sum of a psh and a smooth
function. Thus is a well defined real current of bidegree (1,1) on X
which is bounded from below by a smooth form, in particular 
for some large A &#x3E; 0. Here d = 8 + 8 and dC [8 - 8].

Write log I Jac (f ) I = u - v, where u, v both are qpsh. Since u, v are
u.s.c. on X which is compact, we can assume without loss of generality that
u, v  0. By the change of variables formula, we get

where the last inequality follows from the concavity of the logarithm. Using
the chain rule and log u, we obtain
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Our lower bound is thus a consequence of the next proposition which is of
independent interest. 0

PROPOSITION 1.3. - There exists C &#x3E; 0 such that for all qpsh
function cp, -cv, and for all n E N,

Proof. Let cp be a qpsh function such that dd~cp &#x3E; -cv. We can

assume without loss of generality 0.

Fix 6 a smooth probability measure whose support is concentrated
near a point a which is neither critical, nor a point of indeterminacy. Thus

f is a local biholomorphism from a neighborhood of a (containing the
support of O) onto a neighborhood of f (a) (containing the support of f * O) .
Therefore is yet another smooth probability measure on X. Since X is
Kahler, we can find a smooth form R of bidegree ( l~ - 1, k - 1) on X such
that f*8 = 6 + ddcr. Adding a large multiple of we can further

assume Iterating the previous functional equation yields

is an increasing sequence of positive currents of bidimension ( 1,1 ) on X
whose is controlled by

It follows from Stokes theorem and (1) that

since wand Rn &#x3E; 0. Now 6 and wkare both smooth probability
measures, so we can fix S, a smooth form of bidegree (k - 1, k - 1) on X,
such that = e + and 0  S’  We infer
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The first term is controlled by (2) and (3). The second can be estimated
by using Stokes theorem again,

Using (2), (3), (4), (5) we obtain

for some large constant C3 &#x3E; 0. This concludes the proof. 0

We now specialize the previous estimates when the behaviour of
sequence (~i(/~)) is under control. Our assumptions will be discussed in
section 3.

THEOREM 1.4. - Assume S1 ( f ~ ) ~ À3 &#x3E; 1. Then 3C &#x3E; 0 such

that 
., -. ,

for all j E Nand 0 G X.

Proof. This is a straightforward consequence of the previous
proposition. Indeed grows at most like while d§~ &#x3E;
exp (2013~2~~) if C2 &#x3E; 0 is chosen large enough. Thus proposition 1.2 yields

for some appropriate constant c3 &#x3E; 1. The conclusion follows by observing
that a exp (-xla) &#x3E;- exp (-2x/a) for all a &#x3E; 0 and all x &#x3E; lie. El

1.3. Sharpness of the estimates.

Our volume estimates (theorem 1.4) are sharp in the sense that

(VolO)ÀJ for many mappings. Here is an elementary example:
consider f : (z, w) E ((:2 ~ f (z, w) - (Z B,w A) E ((:2, where A E N,
.À ~ 2. Then f gives rise to an holomorphic endomorphism of X = p2
with À = ~1 ( f ) . Simple computations show that
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where 02 (r) denotes the bidisk of radius (r, r) centered at the origin in ~C2 .
The interested reader may consult [FG 01], [FJ 03] for further examples.

However one expects to decrease much slower for "generic"
open sets SZ (or for "generic" mappings f). This is the point of view of [FG
01], [DF 01] where finer volume estimates are established (through a much
harder analysis) in case f is a 2-dimensional birational mapping.

2. Green current.

Our goal is now to show how volume estimates can be used to

construct the Green current of an algebraically stable mapping f.

2.1. Minimal singularities.

We start by recalling a few facts about the linear action induced by
f* on .

DEFINITION 2.1. - The mapping f : X - X is algebraically stable
if the linear actions ( f n ) * : H1 ~ 1 (X, I1~) -~ H1 ~ 1 (X,11~) satisfy

, for all

When f is algebraically stable, its first dynamical degree ~1 ( f ) equals
the spectral radius of f * : Hl ~ l (X, R) .

Let us recall that one can define the pull-back of any positive closed
current ~S’ of bidegree (1, 1) on X. The mapping S - f *,S’ is continuous for
the weak topology of (positive) currents (see [S 99]). The induced property
on cohomology classes reads

where R) denotes the cone generated by pseudoeffective cohomol-
ogy classes, i.e. classes that can be represented by a positive closed current.
This cone is closed and strict (i.e. = ~0~) .
It follows from Perron-Frobenius theory that the spectral radius ~1 ( f ) of
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f* : H1,1 (~~ ~) ~ H1,1 (X, JR) is an eigenvalue of f * which dominates all
the other eigenvalues, and that there exists an eigenvector a E R)
with f *a = .À1 (f)a.

Our aim is now to construct a canonical positive closed current Ta
such that a and Fix 6 a smooth closed real

(1, l)-form with 101 - a and consider

is u.s.c. and

This is an extremal function with respect to the family of 0-psh functions
normalized by sup x p x 0 (see [GZ 04]). The function v is not necessarily
upper semi-continuous (u.s.c.), so we consider its upper semi-continuous
regularization,

The current Omin := 0 + CLv 0min is a positive closed current cohomologous
to 0 with "minimal singularities" (see theorem 1.5 in [DPS 01]): if ,S’ is any
positive closed current cohomologous to 0, then S’ writes ,S’ = 0 + dd’w,
where w - vo is bounded from above, so that w is more singular than
minv0min

Similarly if T a positive closed current cohomologous to 0 which is
invariant, f *T = we say that T has minimal singularities among
such invariant currents if whenever ,S’ is another invariant positive closed
current cohomologous to 0, the potential of S is dominated from above by
that of T (up to an additive constant).

We make the following assumption on the cohomology class a: Vt &#x3E; 0,

This is clearly an assumption on a rather than on 0: if 8’ is another smooth
closed real (1, 1)-form such that = a, then 0’ - 0 + dd’u with u

smooth hence bounded, so that vmin - is bounded on X (see [GZ
04]). The assumption (H~) will be discussed in section 3. Observe that
the integrability condition is satisfied if h grows fast enough to infinity, as
t ~ +00, e.g. if h(t) ~-- [log(l + t)~l+~, ~ &#x3E; 0.
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2.2. Construction of invariant currents.

THEOREM 2.2. - Assume f : X 2013~ X is algebraically stable with
~1 (f ~ ) ~ ~1 (f )~, Ai(/) &#x3E; 1. If a e satisfies = ~1 ( f )cx and
(Hx), then for any smooth representative 0 of a,

in the weak sense of currents,

where T, is a positive closed current such that = ~1 ( f )Ta, a.

The current T, has minimal singularities among invariant closed
currents whose cohomology class is a. It is extremal within the cone of
positive closed invariant (1,1)-currents whose cohomology class belongs to
the ray I~a.

Proof - Set for simplicity A = Al(f). Let 9 be a smooth closed
real (1, I)-form such that a. Let 9min = 9 + be

the corresponding positive current with minimal singularities. Since X is
Kahler, the invariance relation /*c~ = ~a reads

where y E L1 (X ) is locally given as the sum of a psh function and 
We normalize y by requiring Ix = 0. Observe that y  -vmin + C for
some constant C E R. Since f is algebraically stable, we can pull-back (6)
by f n and obtain this way

We want to show that (qn) converges in L~(~C). Observe that

and vn = are both decreasing sequences of L1-functions.
We show in lemma 2.3 below that (vn ) is a convergent sequence in 
It is therefore sufficient to get a lower bound on f X ’rnwk. We establish it
in the same vein as what was done in the proof of proposition 1.3. Observe
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first that it is sufficient to evaluate qn against a properly chosen smooth
probability measure 6. Indeed we can write w k = 8 + ddc S with S &#x3E; 0

smooth, so that

We choose 6 as in the proof of proposition 1.3 and use (1). Recall

that Rj = increasing sequence of positive currents of
bidimension ( 1,1 ) on X such that (fi),,6 - 6 + ddrj. Therefore

Adding these inequalities and observing that 0min A Rn &#x3E; 0, we infer

It follows that in L1 (X ), hence

The current T~ is positive (as a limit of positive currents) and invariant
since = ÀBn+1. It is obviously closed and cohomologous to 0min hence

= a. Observe also that A-~~)~ -~ Ta since o f n -~ ~ (by
lemma 2.3).

We now claim that Ta is the invariant current with minimal singu-
larities within the compact set of positive invariant closed ( 1,1 )-currents
,S’ with {S} = a. Indeed let ,S’ = 0min + 0 be such a current. Then

w x ~1 by definition of 2Jmin . Shifting w, we can assume C1 = 0.
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The invariance f *,S’ = reads on potentials

for some constant C2 E R. Therefore

Now hence

as claimed.

It follows easily that Ta is extremal among invariant positive closed

(1, 1)-currents whose cohomology class belongs to Ra. Indeed let ,5’ be a

positive closed current such that and {S} = aa
where 0  a  1. Then ,S’ writes

Similarly one can fix u E u.s.c. such that S’ . := Ta - ,S’ -

( 1 - + ddcu &#x3E; 0 with u + v = gg. Note that u is bounded from
above on X , u  C3. We infer

Now 0 by construction, hence so does which yields

so that ,S’ actually equals aTa, as claimed. 0

LEMMA 2.3. - Assume cx satisfies and 61 ( f ~ ) ~ &#x3E; 1. Then

converges in
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Proof. For fixed j E &#x3E; 0, we set

and

Observe that so that by theorem 1.4 and (Ha),

hence

It follows that

Using an elementary change of variables, we infer

The double sum is comparable to

which is finite by (HoJ. D

Remark 2.4. - When X - the complex projective space of
dimension k, then all our assumptions are trivially satisfied. Indeed if we
take w = the Fubini-Study Kahler form, then 81 (fj) = À3 , a = f WFS I
is Kahler hence vmin - 0 for 0 = WFS (so (Ha ) becomes trivial). In this
case the Green current has been constructed by N.Sibony in [S 99] and our
theorem 2.2 provides an alternative proof of his result. See also [FG 01],
[Ca 01], [G 02] for related constructions.



2381

3. Concluding remarks.

3.1. Growth of 61(fi).

Throughout this article we assumed that ~1 ( f ) &#x3E; 1. When = 1,
it follows from concavity properties of the dynamical degrees that f is

bimeromorphic with topological entropy zero (see §1 in [G 03b], [DS 04]).
The assumption &#x3E; 1 is therefore dynamically significant.

We moreover assumed 61(fi) )B1 (f)j. In general there may be a
further polynomial growth, 61(f3) as the following example
shows:

Example 3.1. Let X = l~l x pI and f be the compactification of
the following polynomial endomorphism of ~2,

The linear action induced by f * on H1,1(X, 1R) ~ R2 is given by the 2-by-2

matrix and we obtain in this case

Observe that f has topological degree dt ( f ) _ .À2 &#x3E; ~ = Al(f).

However in all known examples such that s &#x3E; 1, the mapping f
preserves a fibration. This motivates the following

QUESTION 3.2. - Assume f does not preserve any fibration. Is it true
then 

The question makes sense even when = 1. When dimc X - 2,
J.Diller and C.Favre [DF 01] gave a positive answer to this question when
f is bimeromorphic. They also observed that a bimeromorphic mapping
can not preserve a fibration when al ( f ) &#x3E; 1. More generally one can ask
the following

QUESTION 3.3. - Assume ~1 ( f ), the first dynamical degree, strictly
dominates all the other dynamical degrees. Is it true then that ~i(/~) ~
al(f)3 ?

When f preserves a fibration, one can show that the first dynamical
degree is not the largest dynamical degree. The construction of the invariant
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current Ta is of crucial importance precisely when the first dynamical
degree is the largest.

3.2. Properties of invariant cohomology classes.

We have considered in section 2 a psef class a such that f**a = Al ( f )a.
There may be several (linearly independent) eigenvectors ai , a2,... :

Exam pl e 3.4. - Let be the direct

product of two rational mappings gi : Pl --4 P1 of the same degree A &#x3E; 2.
Then ~1 ( f ) = a and there are two eigenvectors ozi, a2 associated to ~1 ( f )
which are given by the fibers of the two natural fibrations 7ri : I~1 x Pl

(projection onto the ith factor). The corresponding invariant current Ta2
is then the pull-back of the Lyubich measure of gi : I~1 -~ I~1 under the

projection 
Observe that here again the topological degree dt(f) _ .À2 strictly

dominates the first dynamical degree = A.

However when dimC X = 2 and the first dynamical degree is the

largest dynamical degree (i . e. ~ 1 ( f ) &#x3E; dt ) , J.Diller and C.Favre have proved
that the eigenspace associated to Ai(/) is one-dimensional (see remark 5.2
in [DF 01]). One expects similar results to hold true in higher dimension.

We now discuss further positivity properties of the invariant class a.
Let H,,,,f(X, R) and H big (X, R) denote the cones generated respectively
by nef and big cohomology classes. Recall that a class a is numerically
eventually free (nef for short) if a + Efwl is a Kdhler class for all E &#x3E; 0. The

class a is big if it contains a Kahler current, i.e. if there exists a positive
closed (1, I)-current T on X such that {T} = a and T &#x3E; EOW for some

Eo &#x3E; 0. These notions coincide with the corresponding classical notions in
algebraic geometry when X is projective and a C H2 (X, ~) . We refer the
reader to [D 90] for more information on these positivity conditions.

PROPOSITION 3.5. - The cone is preserved by f * .

If dime X = 2, then is also preserved by f * .

The proof is an easy application of proposition 4.12 in [B 02] and
proposition 1.11 in [DF 01].

Since the cone R) is closed and strict, it follows from the

Perron-Frobenius theory that the invariant class a is nef when dimr X = 2.



2383

The same argument does not apply to (X, R) because the latter is not
closed. It seems however reasonable to expect a being big when X is e.g.
rational. For 2-dimensional bimeromorphic mappings, a is not big precisely
when f is conjugate to an automorphism (see theorem 0.4 in [DF 01]): this
rarely happens on a rational surface (see [Ca 01]). It would be interesting to
establish similar facts for non invertible mappings and/or in any dimension.

3.3. Volumes of sublevel sets.

Let cp be a quasiplurisubharmonic function (qpsh for short) on X,
i.e. a function that is locally given by the sum of a psh and a smooth
function. We let denote its Lelong number at point x 
It follows from Skoda’s integrability theorem [Sk 72] that exp (-cp) E

L1 (X ) when  2. Thus, by homogeneity of p - x),
exp (-2p/[e + SUPxEX v(cp, X)I) E L1(X) for all E &#x3E; 0. It follows therefore

from the Chebyshev inequality that for all E &#x3E; 0, there exists C, &#x3E; 0 such

that for all t &#x3E; 0,

This observation was first done by C.Kiselman [K 00]. When cp has zero
Lelong number at every point of X this can be reformulated as

where h : JR+ -7 R+ is such that h(t) = +oo. Observe that this
is always satisfied when p is a potential with minimal singularities of a big
and nef cohomology class.

LEMMA 3.6. - be a smooth closed real (1,1)-form such that
a = f 01 E Then vmin has zero Lelong number at
every point.

This is well-known to complex geometers, at least when a = cl (L)
is the first Chern class of a big and nef holomorphic line bundle L on X

(see proposition 1.6 in [DPS 01]). We nevertheless include a proof for the
reader’s convenience.

Proof. - Since cx is big, we can fix a positive closed current ,S’ of

bidegree ( 1, 1 ) on X such that f Sl = a and S &#x3E; coW for some Eo &#x3E; 0. Thus
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S - coW is still a positive current. Fix Q E an u.s.c. function such

that S - coW = 0 - coW + 0; we normalize 0 by 0.

Since a is nef, Na + Eofw I is Kahler for all N e N. Fix 1/J N smooth
functions such that &#x3E; 0 and normalized by sUPx 1/JN = 0.
We set These are u.s.c L1-functions such that

whence vmin’ is smooth so that

We infer 0 for all x E X. D

Our hypothesis (H,) asks for more precise information than lim h(t) _
+oo. It would be satisfied if e.g. h(t) ~- (log[1 + t~)1+a, S &#x3E; 0. This is

trivially true in all cases considered so far:

~ When a is semi-positive (i.e. when it can be represented by a smooth
closed non-negative form), then (Ha) is trivially satisfied: indeed

~x E  2013~} is empty for t &#x3E; 0 large enough, hence

h(t) =- for t » 1. This is the case considered in [S 99],
[FG 01], [G 02]: when X is a complex homogeneous manifold (i.e.
when the group of biholomorphisms Aut(X) acts transitively on X),
every psef class is actually semi-positive (X = I~~ in [S 99] and
X = pk, x ~ ~ ~ x pks in [FG 01]). There are psef classes that are
not semi-positive on a Hirzebruch surface (the situation considered
in [G 02]), however every nef class is semi-positive on these minimal
rational surfaces.

~ When f is holomorphic (i.e. when If = 0), a admits a positive closed
representative with continuous potential, so (Ha ) is trivially satified
again (this is the situation considered in [Ca 01]). Indeed one can
write in this case

where 0 is smooth. Therefore
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where is uniformly convergent hence continu-
ous. It follows that is bounded from below on X.

QUESTION 3.7. - Is (Ha) always satisfied ?

This may be a question of interest, even for complex geometers. In-
deed the notion of metric with minimal singularities is of crucial importance
in complex geometry (see [DPS 01]), but it is yet poorly understood. One
may hope that complex dynamics will provide interesting examples where
the corresponding potentials vmin can be accurately described.
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