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COHERENT SHEAVES WITH PARABOLIC STRUCTURE

AND CONSTRUCTION OF HECKE EIGENSHEAVES

FOR SOME RAMIFIED LOCAL SYSTEMS

by Jochen HEINLOTH

Introduction.

Before explaining the main result (Theorem 2.5) of this article in
more detail, I would like to recall the setting of the geometric Langlands
correspondence as in [23].

Let C be a smooth projective curve over a finite field IFq. (As pointed
out in [11] and [23], a lot of the arguments carry over to the case

when C is defined over the complex numbers.) Then the Langlands
correspondence - as proven by Lafforgue [18] - provides a bijection between
irreducible I-adic local systems defined on some open subset U C C
and certain irreducible representations of GLn(A) contained in the

space C°° ( GLn(k( C))B GLn (A)) called the space of automorphic functions.
Here we denoted by A := the ring of adeles of the function
field k(C) of C, and by COO GLn (A) ) the space of functions
(with values in that are right invariant under some compact open
subgroup of GLn (A~) (for notations see Section 0). More precisely it is

known (see e.g. [22]) that for any representation 7rE corresponding to some
local system E there is a compact open subgroup K such that 7rE contains
a K-invariant function AE, often unique up to scalar. Further, this compact
subgroup is determined by the ramification of E. Finally, note that the
group GLn (A) does not act on the K-invariant functions, but the algebra

Keywords: Parabolic vector bundles - Automorphic sheaves - Geometric Langlands
correspondence.
Math. classification: llR39 - llF70 - llH60 - 22E55.
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of K-bi-invariant functions acts on these by convolution. This is the action
of the K-Hecke algebra. The function A E is an eigenvector for this action,
and it is determined by this condition.

Drinfeld noted [8] that this correspondence should have a geometric
interpretation. First consider the case K = Weil explained that the
double quotient GLn(A)/ GLn(O) can be identified with the
set of isomorphism classes of vector bundles on C (choose a trivialisation
at all local rings of C and at the generic point of C, the transition functions
give an adele):

Furthermore, Grothendieck explained that any complex A of I-adic sheaves
on a scheme X/Fq gives rise to a function on the set of its points by

and an irreducible perverse complex is determined by this function (see [21]).
Thus, Drinfeld expected that the above AE should be of the form

trAE for some irreducible perverse sheaf AE on the moduli space of vector
bundles on C. He proved this for unramified local systems of rank 2.

Later Laumon [20] gave a conjectural construction of AE for local systems
of arbitrary rank, and recently Frenkel, Gaitsgory and Vilonen [11], [13],
proved that by Laumon’s construction one indeed obtains a sheaf AE.

Moreover, the action of the Hecke algebra also has a geometric
interpretation in this case. Consider for example the characteristic function
of the double coset where 7rx is a local parameter
at some point x E C. For a vector bundle E the multiplication of the
corresponding adele by an element of this set produces a subbundle .6’ C S
such that the cokernel is k(x). Further, every such subbundle can be
obtained in this way. Drinfeld therefore considered the stack Hecke 1
classifying pairs of bundles S’ C S such that the cokernel has length 1,
i.e. deg(E’) = deg(S) - 1 =: d - 1. This has forgetful maps

With this definition the sheaf AE has the additional property that

and a similar definition works for more general Hecke stacks. One says
that AE is a Hecke eigensheaf.
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Drinfeld [9] also proved an analogous result for local systems of rank 2
with unipotent ramification at a finite set of points ,S’ C C(1Fq), this time
producing a complex AE on the moduli space of vector bundles of rank 2
with parabolic structure at S. The purpose of this article is to generalize
this result.

We will start with an irreducible local system E with unipotent
ramification at a finite set of points ,S’ C C(Fq), and we further have to
assume that the ramification group at these points acts indecomposably,
i.e. that the sheaf j* E (where j : C - S - C) has 1 dimensional stalks at all
points p G 5’. This additional condition is the reason why for the moment
we can only prove our main theorem for local systems of rank  3.

In this case the corresponding automorphic function should be defined
on the space GLn(A)/Ks, where

and Iwx C GLn(Ox) is the subgroup of matrices which are upper triangular
mod x. As before we can interpret this set as vector bundles with the
additional structure of a complete flag of subspaces of the stalks at all

points in S:

This is usually called the stack of vector bundles with (quasi-)parabolic
structure. Note that this can also be described as:

which has a simple generalization to coherent sheaves: one only has to
replace "C" by arbitrary maps "-" and to add the condition that the
induced maps S(?&#x3E;P) - are the natural ones. This reformulation

made our construction possible.

The first step of our construction is to recall that in principle a
candidate for the automorphic function AE is known, but we do not know
of an explicit calculation of this function. Therefore, we have to prove
an explicit formula (Proposition 1.2). This motivates a generalization of
Laumon’s construction, and - as a by-product of the notion of parabolic
torsion sheaf - we get a geometric interpretation of some Hecke operators
for the group K, i.e. of the Iwahori-Hecke algebra. Our main result is then
the following:
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THEOREM 2.5. - For any irreducible local system E of rank n  3

on C - S with indecomposable unipotent ramification at S there is an
irreducible perverse sheaf A E on Bunn, s which is an eigensheaf for the
Iwahori-Hecke algebra.

The strategy of the proof is the same as in ~11~, using parabolic sheaves
instead of coherent sheaves, but some additional problems arise from the
ramification of E. We reduce the theorem to an analogue (Proposition 7.1)
of the vanishing conjecture of loc. cit. In particular, we show that the above
theorem would follow for local systems of general rank if this analogue held
in general.

The structure of the article is as follows. We start with the calculation

of the Whittaker function for the Steinberg representation given in first
section. This is an elementary calculation which served as motivation for
our construction.

In the second section we introduce the notion of a coherent sheaf with

parabolic structure and prove the results needed to give an analogue of
Laumon’s "fundamental diagram" and of Laumon’s Whittaker sheaf 
As in the unramified situation we then define two candidates for an

automorphic sheaf. At the end of this section we define the geometric Hecke
operators corresponding to operators of the Iwahori-Hecke algebra which
are needed to give a precise formulation of our main Theorem 2.5.

After this short exposition of our results we try to clarify the notion of
parabolic sheaves in Section 3. We explain the general structure of parabolic
torsion sheaves. Further, we give an explicit description of the corresponding
moduli stack, and finally we note some semicontinuity results. We then use
these basic results to prove some properties of the Whittaker sheaf ,CE
(Section 4). Here we give a substitute for the Springer resolution in the case
of parabolic sheaves which can be used to calculate this sheaf, and we prove
a Hecke property of Ld . The problem arising in the proof of these results is
that in our situation the above resolution is not small and the ramification

of E also generates additional cohomology. By simultaneously proving the
Hecke property and the fact that ,C E can be calculated via the resolution
we see that the two effects cancel out.

In the fifth section we then compare the geometric construction of
Section 2 with the calculation of the Whittaker function. The key idea
here is to define an analogue of Drinfeld’s compactification as given in [11].
However, we can not copy the proofs of loc. cit., which use results on
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the affine Grassmannian for which we do not know the corresponding
statements for the affine flag manifold. Instead, we give an elementary
proof of a much weaker result, sufficient for our purpose.

With these results available we can follow the strategy of [11] again
and apply Lafforgue’s result to deduce the existence of a Hecke eigensheaf
on the moduli space of parabolic vector bundles whenever we know that
the two candidates constructed coincide. This is the content of Section 6.

In the last two sections we then prove a generalization of the vanishing
theorem of [11] for local systems of rank  3 and deduce the assumption
needed to prove our theorem in Section 6. This is again very similar to the

arguments in loc.cit., however we have to take care of the Iwahori-Hecke
operators, for example we have to prove that some of them are central
elements of the algebra (see Lemma 7.6).
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0. Notations and preliminary remarks.

We want to fix some notations used throughout this article.

0.1. The curve and its rings.

We fix a smooth projective, geometrically irreducible curve C defined
over a finite field = Fq and a finite (non-empty) set of points S C C. For
simplicity we will assume that these points are rational. This assumption is
not essential, since we could extend to make the points rational and then
descend the final result back to k. We denote by:

. the field of rational functions on C;

. Op (resp. 8p) the local ring (resp. the complete local ring) at a
point p E C;
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the ring of adeles of 

the sheaf of differentials on C.

0.2. Groups.

. We note by GLn the algebraic group of invertible n x n matrices;

. Bn C GLn the group of upper-triangular matrices;

. Nn C Bn the group of unipotent upper triangular matrices;

. P 1 C GLn the subgroup fixing the subspace spanned by the first
n - 1 base vectors and acting trivially on the quotient by this
subspace, i.e.

. Iwp C the group of matrices which are upper triangular
mod p.

We will further fix a non-trivial additive character Fq ~ ij;.
Choosing a meromorphic differential form w this defines

where is the i-th entry of the first upper diagonal of the matrix Up.
To avoid the choice of a meromorphic differential form we will (as

in [10]) often replace the group GLn x C/C by the group

More precisely, GLn x C = is the automorphism group of the tri-
vial vector bundle over C, since for any ring R the automorphisms of the
trivial rank n-bundle over Spec(R) are the same as elements of GLn (R) .
In the same way points of GLn are invertible matrices in which the

(i, j)-th entry is a section of n0j-i. In particular,
the choice of a meromorphic differential w induces a group isomorphism
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Denote by NO c GLO the upper triangular matrices, with diagonal
entries 1 C then T is given by the composition

where the first map is the restriction of the above isomorphism to unipotent
matrices and E Res is the sum of the residues of the upper diagonal entries.

0.3. Fourier transform.

For the additive character 0: 0* chosen above we denote by L~
the Artin-Schreier sheaf on A . Let

be the Artin-Schreier covering with structure group Fg, then L~ is the

1b-isotypic component of AS* Qt. This is additive in the sense that for the
addition map + : ~1 x A I ---+ A1 we have +* Lp !2--- L~ 0 L~ .

For a vector bundle E ~ X of rank n on a scheme (or algebraic stack)
denote by p’ : EV ---+ X the dual bundle and by (.,.) : E x x E" -~ A’ the
contraction. The Fourier transform defined in [21] is given by

0.4. The trace function of a complex.

For a complex K of Q~-adic sheaves on a scheme (or algebraic stack) X
we denote by trK the function:

0.5. Algebraic stacks.

For the general theory of algebraic stacks we refer to the book of
Laumon and Moret-Bailly [24]. In particular, an algebraic stack will be a
stack that admits a smooth representable covering by a scheme.

We will view stacks as sheaves of categories for the fppf-topology.
Thus to define a stack Mover k, we usually give the category of T-valued
points of A4 for any scheme T over and denote this as .M(T) := (objects),
where we use the brackets ( ) instead of { } to denote the category of objects
in which the only morphisms are isomorphisms of the objects.
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Sometimes it is easier to give the T-valued points of a stack only for
affine schemes T over the given base, which is equivalent to the data for all
schemes by the descent condition for stacks. This point of view is used as
definition in loc. cit.

To use the usual operations on constructible sheaves and the

corresponding derived categories given in loc. cit. we need that our stacks
satisfy the Bernstein-Lunts condition, i.e. for every n E N we can find n-

acyclic presentations for these stacks.

In our case we will often know that our stacks have a presentation
as quotients [X/G], where G is a reductive algebraic group acting on
a scheme X. Stacks of this form satisfy the Bernstein Lunts condition
(see [24], 18.7.5). For the moduli stack of vector bundles over a curve this
is not true, but we have an ascending open covering U1 C U2 C ~ ~ ~ C Bun£
in which each of the [XilGil is a Bernstein-Lunts stack. For us this

will be sufficient, since our sheaves will be supported in such a subset.

0.6. Some remarks on generalized vector bundles.

Recall that for a flat algebraic group G acting on a scheme X there
is a quotient stack [XIG] classifying principal G-bundles together with
a G-equivariant morphism to X. In this section we will be concerned
with the particular case of two vector bundles Eo, El over some base and
a homomorphism of Oc-modules Eo We take G := Eo acting via q5
on X : El:

DEFINITION 0.1 (see [3]). - Let Eo ~ El be an °c-module homomor-
phism between two vector bundles on a scheme (or an algebraic stack) X.
Then the quotient stack [El /Eo] is called a generalized vector bundle over X.

LEMMA 0.1. - Let Eo I El be an Oc-module homomorphism
between two vector bundles on some scheme (or algebraic stack) X.
The stack [Ell Eo] can be described as follows. For any affine scheme

T = Spec(A) ~f X over X:

Moreover, any quasi-isomorphism of such complexes gives rise to an

equivalence of the corresponding stacks, thus the stack [Ell Eo] depends
only on the class of the complex Eo -~ El in the derived category of
coherent sheaves on X.
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Example. - Let be a smooth projective curve over some
noetherian base scheme X, and let ~1,~2 be coherent sheaves on C, flat
over X. By [16] the complex can be represented by a
homomorphism of vector bundles So - Si on X. By abuse of notation we
denote by the corresponding generalized vector bundle on X.

Note that this is well defined by the above lemma. The description
of the categories of sections given in the lemma tells us that this stack

classifies extensions 0 -~ .~’2 -~ .~’ -~ .i ’1 -~ 0, i.e. for any 

exact sequence on T).

Proof of Lemma 0.1. - First note that the claimed description of
defines a stack:

1) We can glue morphisms, because sections of Eo form a sheaf.

2) Any descent datum of objects is effective (i.e. we can glue objects):
let Ui be an affine covering of the affine scheme T. A descent datum
for this covering is a collection of objects si E together
with morphisms hij E such that = 

and + hij 
This implies that hij is a 1-cocycle, and since T is affine it must be a

coboundary, i.e. we can find hi E H° (Ui, f *E°) with hi - hj - hij on 
Therefore we may define s’ := s2 - 0(hi), and this collection of sections
glues to give s E H° (T, f *E1 ) with s2 .

Thus we may define a morphism of stacks

mapping a section T -~ Ei to the composition T 2013~ Ei - 

Since = 0 for any affine T, any s E [EllEo](T) is

isomorphic to some s’ E H°(T, Ei) and by definition any morphism
between two elements s, t in the image of this functor is given by a
section of H° (T, Eo). Thus the morphism is an equivalence of stacks.

The above description of the stack [Ei/Eo] also shows that a quasi-
isomorphism of complexes induces an equivalence of the categories of points
of the corresponding stacks. D
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LEMMA 0.2. - Let

be an exact sequence of (2 term-) complexes of locally free sheaves on some
(quasi-separated) scheme X. Denote by

the induced morphisms of the generalized bundles, and let s"
be a section. Then locally over X the stack

is isomorphic to More precisely such an isomorphism exists over
any U -~ X such that there is a lift s 1 E r(U,E1) with s" I U.

Remark. - We might state the above as "p-1 (s") is a principal
homogeneous space for More generally, we will call a morphism
of stacks a generalized affines space bundle if it can be factored into a

sequence of maps each of them locally (over the target space) isomorphic
to a generalized vector bundle.

Proof. We may assume that X = U, such that there exists s, in
s" (e.g. we can take U affine). Let f : T --~ U = X

be an affine U-scheme. Using the previous lemma, we find that 
is the category with:

Thus we define I by

and

This is essentially surjective, since for affine T and any h" E H° (T, 
there is an h E with po (h) = h", and therefore any

(s, h") ~ (s - 0(h), 0). Morphisms of two objects in the image of the above
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map are given by therefore the

above map is an equivalence of categories. D

Application. - We will apply this lemma in the following situation:
consider the morphism of stacks classifying diagrams (with exact lines and
columns) of torsion sheaves on a curve C:

where the degree of each torsion sheaf is fixed.

On the right hand stack the exact triangle of complexes

can be represented by an exact sequence of 2-term complexes of vector
bundles. There is a canonical s" of R Hom(T3’, Tl’) given by the extension
in the lower line, and the projection map from to the base stack is

the map forget t2 *

Thus, by the above lemma, we see that the fibres of this morphism
are isomorphic to the stack 7~). These stacks are generalized affine
spaces, in particular the 6tale cohomology of the fibres is one-dimensional.

0.7. A lemma used more than once...

The following general lemma is stated in ~11~, a similar calculation is
done in [6]. I would like to thank Sergey Lysenko for explanations about
this.

LEMMA 0.3. - Let be a (generalized) vector bundle, and
denote by the zero-section of E. Let further K E 

be a complex of 6tale sheaves on E such that the restriction of K to the
complement of the zero-section descends to the projective bundle 

(e.g. a Gm -invariant complex of sheaves on S) - Then

Proof. We may assume that £ is a vector bundle, since for a

generalized vector bundle the functor Rp* is defined via an acyclic
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representable covering of the bundle, i.e. by definition we may replace
by Let j : £0 := P 2013 So (X) - S be the inclusion. Then we have

an exact triangle

For the first K we have to prove that K = 0. If we

can show this we are done, since the lemma is true for the last term, and
the right hand map then gives the claimed isomorphism.

Write K° := j* K. Then by assumption proj*(K), where

proj : ~ 2013~ is the projection to the projectivized bundle and K
is a sheaf on P(.6). To get a relation between and I~(~) , blow-up the
zero-section of S, and denote the blow-up by 

Note that BIso(E) -+ is the line bundle C~(-1) over 
Let Bl,. (S) be the zero-section (i.e. the inclusion of the
special fibre of the blow-up). Since

we need to show that R(p o bl) * ( j, pro j *( K) ) = 0. But this is easy, since -
as before - there is an exact triangle on Blso (e)

and if we apply R prp(£) then the natural map induces

Thus R prp(g),. j! pro j * K = 0, and therefore R(p o pro j * K = 0,
since p o bl factors through I~(~) . 0
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1. The Whittaker function for the Steinberg
representation.

As indicated in the introduction, for any local system E of rank n
on C - ,S with indecomposable unipotent ramification at points in ,5’ there

is a particular function f E on GLn (A) which one expects to span the
automorphic representation corresponding to E.

In this section we will give a formula for this function, more precisely
we will give an explicit formula for a function WE from which f E may
be obtained by some explicit transformation. This formula served as

motivation for our construction, whereas it is not needed to define the

geometric construction. The reader might want to skip the simple, but
lengthy calculation.

1.1. The Whittaker space.

We will denote by the space of functions f on

GLn (A) with values in Qt such that there exists a compact open

subgroup K C GLN(A) (depending on f ) such that f(x) for

all x E GL(A), k E K. The same notation will be used for other locally
compact groups.

Recall that we have chosen a particular additive character T on Nn (A)
(see 0.2). The space of functions

is called Whittaker representation of GLn (A) . A subrepresentation 7r of this
representation of GLn (A) is called a Whittaker model for the isomorphism
class of 7r.

Similarly let be the space of functions which

are and cuspidal (1) (see [10]). Recall the theorem of
Shalika [25], 5.9, as stated in loc.cit.:

THEOREM 1.1 (Shalika). - There is an isomorphism of representations
of GLn (A)

given by

~1~ A reader unfamiliar with this notion may ignore it for the moment, it will be ex-

plained again.
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Since the character T is a product of characters of the groups Nn (Kp),
we may construct functions in the Whittaker representation as products of
functions on GL,, (Kp) which satisfy the analogous transformation condition
for elements of Nn (Kp) . Thus, using Shalika’s theorem, the strategy to
construct automorphic functions has been to construct functions in the
Whittaker model, then to apply -1) and try to prove that the resulting
function is not only invariant under the action of Pi(k(C)) but really
invariant under the action of 

In this chapter we will only be concerned with the local question,
i.e. with representations of GLn (Kp) for one fixed prime p. The global
Whittaker function

for ,

corresponding to our local system will be given as the product of the
local functions WE,p. For all p E C - ,S’ these are given by the formula of
Shintani and Casselman, Shalika (see [10]), whereas for p E ,S’ the local
factor is the Whittaker function of the Steinberg representation (twisted
by the eigenvalue Ap of Frobp on the one-dimensional stalk (j* E)p) which
is calculated below.

1.2. The Steinberg representation.

Fix a point p E ,S’ C C and choose a local parameter 7r at p. Let

This may be viewed as a character of by applying 6x to the
diagonal entries of an element of In this interpretation 6x is the

modulus character multiplied by .À valuation(det).

The (twisted) Steinberg representation St x of GLn(.Kp) is the unique
irreducible subrepresentation of the induced representation

Here again denotes the Ql-valued functions which are

invariant under some compact open subgroup. For this representation
there is a unique (up to scalar) nontrivial Iw-invariant vector, which is an
eigenvector of the Iwahori-Hecke algebra [5]. We denote this vector by f IW .
Furthermore we know that this representation has a Whittaker model,
and we denote the Iw-invariant vector in the Whittaker model by WA and
normalize it by the condition that WA(1) = 1.
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1.3. The Whittaker function - statement of the formula.

For any d = ( d 1, ... , dn ) E Z’~ denote by

the diagonal matrix and by u the permutation matrix corresponding to the

permutation a (ei) = eo-(i) (where ei are the standard basis of 

PROPOSITION 1.2. - The unique Iw-invariant function W~, in the

Whittaker model of Sta, normalized by Wa(1) = 1, is given by

if di &#x3E; di+1 - 0 otherwise.

Here if i.e. the entry in
line right of the entry below and 0 otherwise;
the volume is normalized by vol(Iw) = 1.

Remark. - The proposition is sufficient to calculate Wx since

Example. - For GL2 we have

if

otherwise,

if

otherwise.

This is the formula used in Drinfeld’s article [9].

1.4. Eigenvalues of some Hecke operators on the

Steinberg representation.

To calculate Wx, we need to compute the eigenvalues of the Hecke

operators on the Iw-invariant vector in Stx. To this end we use the
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function fIW . For an element g E GLn (KP) we denote by T . the Hecke
operator given by convolution with the characteristic function of the double
coset Iw 9 Iw, i . e .

The Hecke operators given by the following particular matrices will be

very useful (2) :

The following - presumably well-known - lemma gives the eigenvalues
of some of the operators T9 on few :

LEMMA 1.3. - 1) For all d E Z’~ with dl 2 ... one has

2) for all E ,S’n .

Unfortunately, most of the results on Hecke algebras in the literature
are formulated only for semi-simple groups. However, the Iwahori-Hecke
algebra for GLn differs from the one for SLn only by the additional
element 

Proof. First we note that Borel shows in [5] that the eigenvalue
of Ta is

for

Further, we may assume /iw(l) = 1, since /iw(l) = 0 would imply that /iw
is identically 0 (see the calculations below), thus for u E Nn(K) and d E Z’

(2) In case i = n the corresponding operation on parabolic bundles is the upper
modification.
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We apply this in the case dl 2:: ... &#x3E; dn to calculate

Here we used that an element of Iw is a product of an element in Nn O)
and a lower diagonal matrix contained in Iw, and that for d1 &#x3E; ~ ~ ~ &#x3E; dn

Finally, to compute the eigenvalue of the operator Tt,, Z we first note that
by 2):

Further we need a description of the corresponding double coset
Iw ~ t 2 ~ Iw / Iw. Take an element E Iw and look 

Thus, the matrices of the form

form a set of representatives for We denote the right
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hand unipotent matrix by uv with v E and the permutation
CY’5:i :- (ti diag(7r-11 1, ... , 1)) then we have

1.5. The Whittaker function - proof of the formula.

First we show the vanishing assertion. For u E Nn(K), -y E Iw and
a permutation a we know that

Thus if ~ Iw then we must either = 1

or 0, i.e. if &#x3E; a-1 (i + 1) our function Wx can be
non-zero only if

that is di &#x3E; 1 and if o,-’(i)  a-I (i + 1), we need d2 &#x3E; This

gives the necessary condition for 0 claimed in the lemma.

Next, we note that our formula holds for diagonal matrices with
dl &#x3E; d2 &#x3E; ~ ~ ~ &#x3E; dn, because (as in the proof of Lemma 1.3)

Now we proceed by descending induction on the number i such that a(j) = j
for all j &#x3E; i : assume that a (j) = j for all j &#x3E; i and  i.

We apply the Hecke operator to express the value of

a) for elements a with a-1 (i) - i - k in terms of the

value of Wx at points with = i - k + 1, which we know by induction.
Since Wa is an eigenfunction for Tt  Z , with eigenvalue (20131)~"~A, we get
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In the proof of Lemma 1.3 we used representatives of Iw t~ i Iw / Iw given as

We write t i = a diag(7r, 1,...,1). Then the above equals

Where we used = cr(z). Now is a, unipotent
matrix in which all the entries of the first upper diagonal are zero (the non
trivial entries are in line which is  i and columns &#x3E; i). The character
V) vanishes on such elements. Therefore

Note that therefore by induction this last

expression is non-zero if or equivalently

which gives the sufficient condition for to be non zero. To

conclude we have to check that we get the right power of q in the induction
step:

and we have

2) Write and for Then

So these terms differ by a factor qn-i, which is what we needed to
show. 0
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2. An analogue of Laumon’s construction.

We fix an irreducible local system E of rank n on our curve C - S,
ramified at a finite set of points S C C(Fq), such that the ramification
group at any point acts unipotently and indecomposably. We will
state this condition as "E has indecomposable unipotent ramification at S".

We want to give a geometric construction for an irreducible perverse
sheaf corresponding to the Fourier transform 03A6 ( WE ) of the Whittaker
function WE, computed in the previous section. We will follow Laumon’s
construction closely, the only new ingredient needed for the construction
being the notion of a coherent sheaf with parabolic structure. We will also
need to prove generalizations of some results on vector bundles to the case
of quasi-parabolic vector bundles.

2.1. Parabolic vector bundles.

Denote by Bunn,s the moduli space (algebraic stack) of vector bundles
of rank n and degree d on C with a full flag at the points of S, i.e. for any
scheme T/ k :

Remark. - Usually one defines a vector bundle with full (quasi-)
parabolic structure to be a vector bundle E together with a full flag
Vl, p ~ ~ ~ ~ ~ vn,P = E 0 k(p) of subspaces of the stalk of ~ at p. This is

equivalent to the above definition - set
and conversely

From this reformulation we get a description of the points of v

Denote as before then (3)

3~ Recall that given a vector bundle E one can choose a trivialisation of E at the
generic point and at all complete local rings of C. The transition functions then give
an element of GLn A), the double quotient is obtained by forgetting the trivialisations,
keeping the flags at S.
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And the double quotient P1 (F)B GLn (A)/ K contains the points of the
bundle Hom inj O, £) - 

Notations.

1) We will write, I

2) Since 9 c C £(p) we also get C E(’,P)(p), thus a
parabolic bundle is a chain of vector bundles

where the cokernel of every inclusion is of length 1. For any integer E Z
we denote by := E(’,P) (kp).

Note furthermore that since the map ? 2013~ ~(p) is an isomorphism
on C - {p}, for two distinct points p, q C ,S’ the vector bundle

~(z,~°) ~- e(j,q) + q) is a vector bundle of degree d + i + j. We denote
it by ~(2’P)+(~,q) . Analogously we define £(i,S) 

Thus we can shift the whole complex to obtain parabolic structures
on the vector bundle £(i,p) for all i. This is called the i-th upper modification
of £8 .

This notation might
be justified, because £?’P&#x3E; is of degree d + i = d + n(i/n) and for i = n

we get the canonical parabolic structure on the vector bundle P(p).
We now want to mimic Laumon’s construction of automorphic sheaves

for unramified local systems. Consider for example the case of bundles of
rank 2. We will view 4)(WE) as a function on vector bundles together with
a meromorphic section of Q. At a point Q - S such that n ~ £ and
~ 2013~ ~(l,s) are both maximal embeddings is defined as the sum

over all sections of with at most simple poles at S. But the line bundle
(£/n)(8) ~ thus we might equivalently sum over all holomorphic
sections of 

To apply a similar consideration to bundles of larger rank, our
calculation of WE suggests that we need to consider quotients of E*

by subsheaves which are not maximal. We therefore look for a notion
of coherent sheaves with parabolic structure(4) which allows the operation
T* F--+ F-( * S). This is easy with the above definition of parabolic structure.
(4) While I was thinking about this, Norbert Hoffmann explained to me that one can
formally adjoin quotients of vector bundles with parabolic structure to the category of
such bundles to obtain an abelian category. The definition below may be viewed as a

geometric interpretation of these quotients. I would like to thank him for the helpful
discussion.
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2.2. Parabolic coherent sheaves.

DEFINITION 2.1. - A coherent sheaf on C with n-step parabolic
structure at S - also called parabolic sheaf for short - is a collection of
coherent sheaves

together with morphisms - for i = 1, ... , n and
p E ,S’ (where := T(p)) such that in the resulting sequence

the composition of n maps.
morphism.

is the natural

Notes. - 1) If the sheaf T(’,P) is not torsion free at p for some i,
then the natural map -~ .~’~i~P&#x3E; (p) is not injective, so at least one of
the Ø8’S is not injective (see the examples below). However, by the same
argument we see that all 0(’,P) are isomorphisms on C - S, in particular
all the have the same generic rank, thus we define the rank of F8
as 

2) The degree of F8 is defined as the collection

3) We denote by the algebraic stack of coherent sheaves
of rank r on C with n-step parabolic structure at Sand (multi-)degree
d = Since we usually fix the curve C, we will omit it and
write Coh 4 to shorten this lengthy notation.r,s 

4) We denote by C the substack of torsion free sheaves,
i.e. the substack where all are vector bundles. Note that these stacks

include the stacks of vector bundles with partial parabolic structure at S,
in particular for constant degree d = (d, ... , d) this substack is the moduli
stack of vector bundles without additional structure.

Usually we will consider Bun4 s only in the case where = d + i
’r’ _

for some d C Z and r = n, but the other stacks will arise in connection with

Hecke operators.



2257

5) As in the case of vector bundles we define

(for the diagonal embedding of ,~’) . Note that this quotient is the sheaf

isomorphic to on C - q and isomorphic to on C - p. These

sheaves glue, since both are canonically isomorphic to .~’ on C - fp, q~ .
Analogously we define 

6) Again we define upper modifications as

Example. - In our case, given an injection SZ®~n-1~ ~---~ get an
induced parabolic structure on the quotient ~~SZ®~n-l~ . We only use that

to get

Note that we can view (or any coherent sheaf) as parabolic sheaf
by defining

for i = 0, ... , n - 1. With this definition the above diagram is an extension
of parabolic sheaves.

From this example we see that:

LEMMA-DEFINITION 2.1. - The category of (quasi-) coherent sheaves
with n-step parabolic structure is abelian.

We denote homomorphisms of parabolic sheaves by Hompara ( . , . ) , and
the same for Extl Para etc.

The category of quasi-coherent sheaves has enough injectives.

Proof. The kernel and cokernel of a morphism can be defined

componentwise. All compatibilities thus follow from the corresponding ones
for coherent sheaves and we conclude that the category of sheaves with

parabolic structure is abelian. Furthermore the above example shows that:
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Remark 2.2. - The stack Cohdk,C classifying coherent sheaves of
rank k and degree d on C can be embedded into the stack of parabolic
sheaves:

For a coherent sheaf .~ on C we will write (.F)’ for its The

functors ( . )’ and (. )(0,8) are adjoint functors:

For an injective sheaf I the adjunction property yields

Since the functor ( . ) ~’~-1 ~s~ is exact we conclude that Hom (. , (I)8) is exact.
Thus choosing embeddings ~ Zi,p into injective sheaves we get an

embedding g8 ~ ® (ZZ, p )’ ( n n-1 p) of C into an injective parabolic
sheaf. 

~ ~ ~ 

0

By the above we also have:

LEMMA 2.3. - The extensions of a parabolic by a line
bundle L are classified by :

Proof. By the above remark any injective resolution of ,C defines
an injective resolution of (,C)*, and to such a resolution we may apply the
adjunction formula. 0

Note that we could give another proof of this lemma, calculating the
Yoneda-Ext groups directly via the diagram (2.1). The only thing one has
to check is that in this diagram we have

COROLLARY 2.4. be a parabolic sheaf and be a line

bundle on C. Then we have by Serre duality
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Proof. This is just an application of the adjunction isomorphism to

The above version of Serre duality (Corollary 2.4) suggests to denote

and analogously Then we can put
to deduce from the corollary that

2.3. The fundamental diagram.

Reformulating the preceding calculations for families of parabolic
sheaves allows us to construct a variant of Laumon’s "fundamental diagram"
as follows. We will call a coherent parabolic sheaf F* good if

for all

By Serre duality this condition guarantees that

and moreover the same will be true for any quotient of 

We denote by and the open
substacks of good parabolic sheaves.

Denote by 6,*,.iv (resp. the universal parabolic sheaf on
xC (resp. on Coh n’S 0 xC) and let Z be the projection to

the i-th factor. 

We can view the sheaf as the classifying
stack for good parabolic vector bundles £8 together with a homo-

morphism f~’~"~ 2013~ £8. Denote this stack by

Write Hom"i for the open substack of Homn where 0 is injective.
Similarly write Extn for the stack classifying extensions of parabolic

sheaves by 
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Note that we defined the substacks of good bundles, to guarantee that
Homn and Ext) are vector bundles over 

As in Laumon’s construction we have:

1) To give a short exact sequence 0 - 08,n-l ~ ,~’’ -~ 0

it is sufficient to specify the datum 0 - SZ’ ~n-1 -~ .~’n . Furthermore, if XQ
is good, all of its quotients are good as well.

Thus if we denote by Ext 1,good n C Ext 1n the substack consisting of
extensions in which the middle term is a good parabolic sheaf, then have
an isomorphism In :

2) Over the bundles Homn and Ext 1n are dual vector

bundles. 

Since we want to construct a sheaf on the moduli stack of vector

bundles with full parabolic structure at S, we fix a parabolic degree d given
by = d + i for some fixed d E Z and define a fundamental diagram
(which we split into several diagrams):

Here the last line is the same as the first one with n replaced by n - 1.
Thus we can continue this to end up with Coh °) (we drop the superscript
"good", since all torsion sheaves are good). We have to keep track of the
degrees of the parabolic sheaves := d - ¿~=1 thus
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with ~ I In particular, continuing
the above diagram to the right, the last term will be I

Laumon’s construction started with a sheaf on Coh d, which

corresponds to the Whittaker function for unramified local systems. This
sheaf is pulled back to then one applies to the resulting
sheaf, after that one applies the Fourier transform for the bundles in (2.2)
and then continues with pull backs and intermediate extensions for the
maps jHom and jExt in the upper line of the diagram until one ends up with
a sheaf on Homn.

To do the same in our situation we need to find a sheaf on Coh 5,°8
that corresponds to the Whittaker function as calculated in Section 1. 

2.4. The Whittaker sheaf 

As noted in Section 2.2, there is an open embedding of torsion sheaves
of degree do on C - S to parabolic torsion sheaves:

The map j is open, since the condition that c C - S’ is open.

Furthermore we have Laumon’s Whittaker sheaf Cdo on

Recall the definition of let (C - ) be the do-
th symmetric product of C - ,S‘ and denote by

which is almost an embedding (see [20]). Let the symmetric
power of E restricted to the symmetric product of the curve C - S ,
then

DEFINITION 2.2. - We define the Whittaker sheaf corresponding to E
to be

We will prove some properties of the Whittaker sheaf justifying its
name in Section 4.
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2.5. Putting everything together: the Fourier transform of ££.
Now let quot : be the

quotient map and denote the Fourier transform (recalled in 0.3) by
D b(Ext’). Following the fundamental diagram (2.2)

from right to left we define:

DEFINITION 2.3. - We inductively define the sheaves and 

on the connected components of Homt which occur in the fundamental
diagram as

We define FkE and FkE,! t to be zero on all other connected components

of Hom)inj k.

Note that to keep track of the parabolic degrees we formulated
the construction of F~ on Hom/~ above a fixed connected component

c However, we will consider F~ and Hom/~ as defined
above all the connected components corresponding to the special degrees dk
that occur in the definition of the fundamental diagram together and for
convenience we defined F~ and F E,, to be zero on the other components.

The restriction of the sheaf F~ to the stack of vector bundles with a
section of will be our candidate to descend to an automorphic sheaf
on Bunn,s. By construction this is a perverse sheaf, which is irreducible
on all connected components of Hom k inj (because we assumed that E is

irreducible, therefore £,~ is an irreducible perverse sheaf and this property
is preserved by Four, jHom,j* and 

As in [19] we also define the sheaves F E,, , because it will be easy to
prove that these have a Hecke eigensheaf property, and finally (in Section 8)
we will show that they are isomorphic to F~ for k  n  3.

To end this section we want to state our main theorem. To do this

we need to define geometric Hecke operators for parabolic sheaves. We first
give an example indicating the relation between parabolic torsion sheaves
and the Iwahori-Hecke algebra:
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2.6. Parabolic torsion sheaves and Hecke operators.

Assume for the moment that n = 2, ,S = {p}, and consider the
stack Coh ’I’. Take any ’T’ E Coh"". If supp(T) = q # p, then T’ ~--" 
where kq is the residue field at q. But if supp(T) = p, then T- is isomorphic
to exactly one of the following sheaves:

We want to relate these sheaves to some Hecke operators of the
Iwahori-Hecke algebra at p, acting on parabolic vector bundles of rank 2.
To do this, we consider torsion free extensions of a parabolic vector
bundle £’ by the first complex:

The middle map in the lower sequence is 0, therefore cjJ2 factors

through £(I,p) -~ E(0,P)(p). Since all the bundles ~(2~~°) are locally free this
map is injective, and since the two bundles have the same degree it is an
isomorphism.

The same argument shows that 0’ does not factor through ~’( 1 ~p) ,
so the upper line is given by a parabolic structure on the vector bundle
~(l,p) N different from the canonical structure ~*(p). Thus
extensions of this type are the set indexing the summation of the Hecke-
Operator o According to Lemma 1.3 this operator acts with
eigenvalue trace(Frobp, ( j* E) p) on the Whittaker function. Analogously we
find that summing over extensions of parabolic bundles by the second
torsion sheaf calculates T(,o ,0 1) o T(o 1 0 1). Finally the third torsion sheaf gives
the Hecke operator T(,o 0 1) which acts with eigenvalue - trace(Frobp, ( j* E)P)
on the Whittaker function. Note that this torsion sheaf is a point of
codimension 2 in and thus the perverse sheaf will have some H1
at this point. The minus sign of the eigenvalue will come from taking the
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trace of Frob on this cohomology group of odd degree (see Corollary 4.5).
Therefore we define generalized Hecke operators as follows.

Fix non negative degrees d = d1-f- d2, and let be the stack

classifying extensions of parabolic sheaves of degree d2 by torsion sheaves
of degree dl, i.e.

The forgetful maps give rise to a correspondence

DEFINITION 2.4. - The generalized Hecke operator H4 - is defined as

To define operators on parabolic vector bundles which correspond to
the action of the Iwahori-Hecke algebra on functions on we

have to forget the scalar automorphisms of our sheaves as follows:

Let e be a parabolic degree satisfying (o, ... , 0)  E  ( 1, ... ,1 ) .
(Here E  (1, ... ,1) is a short hand for the condition that for any torsion

sheaf T* of degree E we have  1 for all i, j E Z, p, q E S.
In case that = 1 this is equivalent to  1 for all i, p,
but if = 0 we add the condition

Note that on every non-trivial parabolic sheaf we have a free action
of scalar automorphisms. In the language of stacks this means that Gm
acts freely by 2-automorphisms on Coh6 s. We can quotient out these
automorphisms (see ~1~ ) and we denote the quotient stack by

Coh6,s := Coh6,s /diagonal Gm-automorphisms.
In our situation this stack can also be defined as follows: choose

( io, Po) with fio ,Po = 1 then we have

The morphism is given by

For different choices of the resulting stacks are canonically
isomorphic (tensor with 
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The morphism supp : C which maps a sheaf T8 to its

support (for our choice of 6 all are either zero or concentrated in a

single point which does not depend on (i, p)), factors through a morphism
supp : C.

We define more Hecke correspondences:

DEFINITION 2.5. - The Hecke operator HE is defined by

For we set

Finally note that the sheaf descends to a sheaf £~ on Cohl
Denote by jc : C - S - C the inclusion. We will prove the following:

THEOREM 2.5. Let E be an irreducible local system on the curve
C - S with indecomposable unipotent ramification at S and assume

n = rank( E)  3. Then

2) F~ descends to a nonzero perverse sheaf

3) AE good extends to a Hecke eigensheaf A E on i.e. there is a

unique extension AE of to Bunn ~ s such that

and the isomorphism

is S2-equivariant.
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Note that we have chosen to define the operators HE in such a way
that they correspond to the usual Hecke operators for functions whereas
in [11] the operators are normalized such that they preserve perversity.
Furthermore we defined non zero F~ and thus AE only on the connected
components of Bun4, satisfying d(?’P) = + i for all i, p, i.e. which

parameterize vector bundles with full parabolic structure at S. The Hecke
property for the operators HE justifies the definition of F~ and AE to be
zero on the other components.

We will show (Corollary 4.5) that the theorem implies that the
function trAE is an eigenfunction for the action of the Iwahori-Hecke

algebra. Indeed, by the example given above we have already seen that
the points of Cohl’s give a set of generators for the Iwahori-Hecke

algebra (the invertible element corresponding to 0(9( ~p) and the operators
corresponding to the transpositions in ,S’n generate the algebra).

To emphasize which part of the proof depends on the assumption
n = rank( E)  3, we divide it into several parts. Proposition 6.7 proves
the above theorem under the assumption that F~ = F n In Section 8 we
deduce this assumption from a vanishing theorem 7.1. All this works for
general n, but the proof of this vanishing theorem given in Section 7 relies
on the assumption n  3.

3. Some properties of parabolic sheaves.

This section is an attempt to clarify the notion of parabolic sheaves.
First we give a description of the isomorphism classes of parabolic torsion
sheaves, then we prove some lemmata concerning homological algebra of
parabolic sheaves. At the end of this section we give an explicit description
of the moduli space of torsion sheaves on A’ with parabolic structure at 0.
All these results are simple, but for completeness they are collected in this
paragraph.

3.1. The structure of parabolic torsion sheaves.

The structure theorem for modules over principal ideal domains shows
that any torsion sheaf on a curve is a direct sum of sheaves of the form

0/(p’) =: Odp for some prime ideals p. A similar result holds for parabolic
torsion sheaves. The constituents of a sheaf T8 supported in p e 5’ will be

of the form (we only give the sequence
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More precisely these are isomorphic to
for some 0  k  i E N (in the sequence above d = [k /n] is the smallest

integer bigger than k /n) . We call

the total degree of a parabolic torsion sheaf.

First we consider parabolic torsion sheaves supported at a single point
p G *9 and we choose a local parameter 7r at p. Then the complete local
ring at p is 0", ~-- k[[7r]]. To simplify the original argument G. Faltings
remarked that in this situation a parabolic torsion sheaf T* supported at p is
the same as the Z/nZ-graded k[[T = 7rIln]] module M :=E)n-1 T(i,p) with
multiplication by T given by Here the structure of 

modules implies that every cyclic submodule k[[T]]/(Tl) C M of maximal
length is a direct summand. Further any such submodule may be used

to define a graded inclusion ~ M and any splitting of this
inclusion as also gives rise to a graded splitting. Translating
this back into a statement of parabolic sheaves we get:

LEMMA 3.1. Let T* be a parabolic torsion sheaf supported in pES,
and let further ~ To be an inclusion such that the total degree

is maximal. Then there is a splitting D

From this lemma we get:

PROPOSITION 3.2 (Structure of parabolic torsion sheaves). 1) Any
parabolic torsion sheaf is a direct sum of sheaves of the form

and sheaves supported outside S.

2) Any parabolic torsion sheaf T’ has a filtration T’ c C - - - C

T8 such that the filtration quotients 7j+l/7j8 are isomorphic to one of the
following:

(a) (k(q)) and q rt ,S’;

(b) there is a po c S and 0  io  n such that
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3) any parabolic torsion sheaf T* of constant degree deg T* --
(d, ... d) has a filtration

(i, ... ,i).
such that

Proof. - Since for any torsion sheaf T we have a canonical

decomposition T = Oc,p, we may assume that T* is a

parabolic torsion sheaf concentrated in a single point q, i.e. = q

for any (i, p) .

S, we know that all the are isomorphic because the
functor is the identity functor on sheaves supported in C - S.
Hence 7"’ = (T(°,P) )° and for torsion sheaves without extra structure the
lemma holds.

For torsion sheaves supported in ,S’ the previous lemma implies 1) and
the sheaves Okp/n( *p) have a filtration satisfying 2).

To prove 3) by induction on d pick a summand of T’ .

Shifting T~’ we may assume that i = 0 . If j /n &#x3E; 1 then this has a submodule

of degree ( 1, ... ,1 ) and we are done. Otherwise a complement T’. to this
summand will have degree d’ with

for I

for.

But then the map - must have a non zero kernel. Take

a summand of T’ contributing to this kernel. Again unless
j’  n - j this contains a subsheaf of degree (0,..., 0,1, ... 1) where 1 is
repeated n - j times. Thus, doing one more induction we find a subsheaf 7-1*
ofT* of degree ( 1, ... ,1 ) . 0

Finally note that for an arbitrary parabolic sheaf the torsion

subsheaves are always a direct summand:

Remark 3.3. - Let Fe be a parabolic sheaf on Then
= .6* ED T*, where Te is a parabolic torsion sheaf and all 6(’,P) are

torsion free.

Proof. We know that T’ := C X° is a parabolic torsion
sheaf and .~(°~s) ^_-’ reO,S) And since the 0(’,P) are isomorphisms over
the generic fibre of C the images can be used to define maximal

torsion free subsheaves of ,~’(Z~p), these define the desired decomposition. 0
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3.2. Homological algebra of parabolic sheaves.

LEMMA 3.4. - For coherent parabolic sheaves on Clk the functors
Ext ipara vanish for i &#x3E; 1.

Proof. Let X° be a parabolic sheaf. We prove that Ext’ :F8) = 0
for i &#x3E; 1 by descending induction on the rank and degree of F*

For a line bundle ,C on C the functor Hompara ( . , (~)*(~9)) coincides
with a Hom-functor on coherent sheaves, and for Exti oc the lemma holds.
By induction, we may therefore assume that :F8 is a parabolic torsion sheaf.
By Proposition 3.2 giving the structure of parabolic torsion sheaves, we
may further assume that F8 is a quotient of a line bundle by a subsheaf,
both of arbitrarily high degree, which establishes the claim. 11

LEMMA 3.5. - Let Y8 be a parabolic torsion sheaf and £8 a parabolic
vector bundle. Then:

1) E*)) and dim(Hompara(£8,T8)) only depend on
rank(£8), deg(£8) and deg(T8).

2) More precisely, for T(i,p) = k(po) if (i,p) = (io,po) and Y(i,p) = 0
otherwise, we have

3) If deg(T’ ) _ (d) is constant, u~e get

Proof. We give a proof of the statements on Extl Para, the case of
homomorphisms is even simpler. Since £. is torsion free, is

zero. Thus for any exact sequence 0 -a 7~* 2013~7"’2013~’7" * 2013~ 0 the sequence

is exact as well.

To prove the lemma, apply this remark to the filtration T’ C T8
constructed in Proposition 3.2 1) and reduce to the case = k(po)
if (i, p) _ (io, po) and T(i,p) = 0 otherwise. We may shift E*, T8 and assume
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that io = 0. Write for some line bundle £ and for

simplicity choose deg(£) « 0 such that (£, £?&#x3E;P) ) = 0 for all p E S,
-1  i  n. Then

3.3. The moduli stack of parabolic torsion sheaves.

First let us consider the moduli stack of torsion sheaves on l~1 with

parabolic structure at p = 0 as an example:

This stack classifies sequences of torsion sheaves (5):

with the property that the induced maps T --~ Ti (p) are the natural ones.

Recall that a single torsion sheaf T on A’ can be described by giving its
vector space of global sections T) together with the endomorphism
given by multiplication by the coordinate t of A~1 = Hence we

get a presentation of the moduli space of torsion sheaves of degree d on A~:

where GLd acts on Matd,d by conjugation. (Under this identification the
support of a sheaf is given by the eigenvalues of the corresponding matrix,
and the length of the indecomposable summands is given by the Jordan
decomposition.)

For torsion sheaves with parabolic structure we can define a similar
presentation as follows: The coordinate t induces isomorphisms T

and under this identification the natural map T? - Ii(p) is given
by the multiplication by t. Thus for any collection (qi : --~ )i
we may define T3 by and with

this definition the 0’ automatically define homomorphisms ~z-1 ~ T’
of OA1-modules. This proves:

~~~ I drop the upper index p since we have assumed that ,S = ~p~ _ 101.
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LEMMA 3.6. - There is an isomorphism

where an element operates on

COROLLARY 3.7. - For any smooth curve C and any finite set

S C C(k) the stack Coh 0 4, s is smooth. In case d is constant it is of

dimension 0.

Proof. To show the lifting property for smoothness at a point
T* e Coh O’si 4 we only need to consider sheaves on 
But for a smooth curve we know that k[[t]] ~ and therefore

it is sufficient to prove the corollary in case C = A’ and S’ _ 101, which is
proven in the previous lemma. 0

In case one does not want to consider deformations of parabolic
sheaves one could use the above lemma and the fundamental diagram to
get smooth presentations of the stacks 

COROLLARY 3.8. - For any smooth curve C and any finite set

S C C(k) the stacks Coh 4, s are smooth algebraic stacks. 0

4. Properties of the Whittaker sheaf Ld
Our main goal in this section is to prove a Hecke property of the

sheaf defined in 2.2 (Proposition 4.8). In the case of unramified local
systems Laumon [19] proved this in two steps: first he introduced a small
resolution of the stack of torsion sheaves, defined as the stack classifying
torsion sheaves, together with a full flag of subsheaves. Thereby he obtained
a geometric description of the Whittaker sheaf, which he then used to prove
the Hecke property.

Translating this into our situation we encounter two problems. The
first one is that is already a complex of sheaves. The second problem
is that the analogue of Laumon’s resolution is not small in the case of

parabolic torsion sheaves.
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Since is a perverse sheaf on the moduli stack of parabolic torsion
sheaves and most of the questions are local in the 6tale topology we will
often be able to reduce to the case that our curve is Al and our local system
is ramified only at the point 0. Therefore our first aim is to calculate in

this case. After translating these results into the general situation we then
proceed with Laumon’s strategy as described above. Here we simultaneously
prove that the Hecke property of holds and that we can give a geometric
description (Lemma 4.10) of .ci.

4.1. Calculation of the sheaf on 

Consider the case C = A1 and S = {0}. Let En be the n-dimensional
local system on Gem, ramified at 0, such that the ramification group acts

unipotently and indecomposably - i.e. the invariants under the ramification
group are 1-dimensional - constructed as follows: we have

and therefore there is a canonical nontrivial extension E2 of the sheaf

Q£ ( -1) by the constant sheaf The long exact cohomology sequence
corresponding to this extension gives E2) = Qf (-2), thus we can
repeat this argument to define En, filtered by Q£ = El c E2 C ... C

C En with subquotients + 1). Alternatively we
could describe this as Symn-l(E2).

Since Coh6,Grn - the stack of torsion sheaves of length 1 on Cm - is
isomorphic to [Gm /Gm] for the trivial action of Gem on the sheaf En
descends to a sheaf on Coh6,Grn which we denote again by En.

We want to calculate the middle extension with respect to
the inclusion j : Cohl --~ (where the stack

of torsion sheaves with k-step parabolic structure - in this section we
allow n # k). Because of the theorem on smooth base change it is sufficient
to do this on a smooth representation of these stacks. We will use the

presentation CohO,Al,101 given by the quotient construction in

Lemma 3.6. This fits into a cartesian square
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where m is the multiplication map. So we are left calculating j! * m* En
on 1~~ and to simplify notations we will often denote m* En again by En.

We use the standard notations Di := ~~2 - 0) C Ak and for

a subset I C {1,...,~} define DI . := Finally denote by
Ui := Ak - This stratification of the complement of G) gives
rise to open immersions ji : Ui - Ui+1:

And (this is a

definition in Intersection Homology II [14] and a proposition (2.1.11) in
Faisceaux Pervers [4]).

For k = 1 we have

if p = 1 on A~.
if and

Therefore on A~’~ the stalk at 0 is

and this isomorphism is compatible with the action of the Galois group.
The isomorphism ( * ) holds, because En is an extension of constant sheaves,
for which the two cohomology groups are canonically isomorphic.

To calculate the latter cohomology group, we can factor m into
an isomorphism G~ 2013~ G~, (a2) H (IIa2, a2, ..., an), followed by the

projection onto the first factor, to obtain:

Analogously we get a formula for the stalk of RP j * En at a point lying
on exactly r of the divisors:

If the terms of weight &#x3E; 2n did not appear, then the truncation functors T~i
used in the definition would be trivial and Rj* En would "be an
irreducible perverse sheaf" . But these terms do disappear if we pass to the
inductive limit of all the En ~ - .... Therefore define
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PROPOSITION 4.1. For n &#x3E; k there is an exact triangle of complexes
on A k:

Proof (inductively calculating - We use the shorthand

j2...1 := ji 0 ... 0 ji. We start with the exact sequence of sheaves on G~:

Applying we get on U2

Using the previous calculation = Rji,* Eo and jl,* = jl,~* we get

Now is an extension of r) with r &#x3E; 0,
thus to do the induction we will need to calculate We use

the resolution 

where is the constant sheaf on DI . (We will often use this shorthand:
for a closed subscheme Z E X and a sheaf K on X we write K j z := i * i * K.)

Restricting this resolution to all terms QTIDI with |I| ( &#x3E; i dis-

appear and thus on we have a resolution

LEMMA 4.2. - For any m &#x3E; i &#x3E; 0 the complex
is quasi-isomorphic to
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Proof. For i = 0 there is nothing to prove, so we may assume i &#x3E; 0.

Note that

if

if

otherwise.

because adds a smooth boundary of codimension i + 1 - III to DI.
Therefore looking at the spectral sequence calculating 
via our resolution of we see that the only terms appearing
in cohomological dimension  i + 1 are as claimed. This proves the

lemma for m = i + 1. Inductively we may apply the same argument
for m to see that in our spectral sequence the cohomology in degrees p
with i + 1  p  2(m - i) - 1 + i = 2m - (i + 1) vanishes. D

We will use the last statement of the above proof again:

LEMMA 4.3. For m &#x3E; i + 1 we have

To finish the proof of Proposition 4.1, we still have to calculate

By our calculation (Lemma 4.2)
we know that

Considering the long exact cohomology sequence for

this calculation implies that the map

must be zero because the weights of the two sheaves are distinct (here we
use n &#x3E; k &#x3E; i + 1). Thus we have proven the proposition. 0

Later we will need the following description of which is

implicit in the above:
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LEMMA 4.4. the morphism

induces an isomorphism
if n &#x3E; k we have

Therefore

and more generally

Proof. For the first statement consider jDl : Ul ~ Di
and j’: Di ~ U2. This induces an exact sequence

We therefore have to show that 0. Again we
first show that the stalk at 0 vanishes. We know that

because this is true for the other two sheaves in the sequence above (for the
middle term we proved this to calculate The cartesian diagram

shows that

because = 0 (we know that
that Eo is an extension of constant sheaves) .

and

Analogously we get that the fibre of the above complex at a

point lying on Dl and exactly c other divisors is isomorphic to

So we have proven, the first part
of the lemma. The second part is then immediate using Proposition 4.1.
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The description of follows, because by the second part we
only have to prove that

Now Di f1 U2 ’~’ and thus this is an easy statement for the direct

image the constant sheaf on under j : (~~ 1 ~ 0

COROLLARY 4.5. - For an arbitrary curve C, let E be a rank n

local system with indecomposable unipotent ramification at a finite set of
points ,S’ C C. Let I C ~ 1, ... , I~~ and let D1,p C be the substack

defined by = 0)ie I (i.e. for C = A~ this is the substack defined by
D1 C and denote by D7,p the substack defined by ~~~’P&#x3E; ~ 0 for j g I.
Finally let pr : Coh6, T~’ H be the projection. Then the

follouring llolds: 
’

1) For 0  1~ = 0.

2) There is a canonical isomorphism where

j : C - S - Coh6 is the inclusion.

3) 1] for any I and again the
isomorphism is canonical. 

Proof. In the special case (C, S) = (A , {0}) the corollary follows
from Lemma 4.4 which shows that

is constant and

Combining these formulas we see that on DI, we have

for 0  1~. This follows using the Künneth formula and the fact
that for j : A~ we have H~ (1~1, = 0.

Now to prove the first part of the corollary we can base change the
map pr by the map Coh6,Al and restrict this to the fibre above 0:
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We have to show that Since

the spectral sequence calculating the cohomology of a stack from the
cohomology of a presentation gives this result. The second assertion follows
because by 1) the cohomology restricted to the complement of the
section T H (~)’ vanishes. This follows because there is a resolution

and we just saw that - 0 for all D, occurring in this
resolution.

Moreover this proves (still assuming C = A’) that the canonical
morphism j!* En --t given by the section Coh 1, is an
isomorphism. 

To prove 3) we note that and

compare (4.1) with the Leray spectral sequence for

Thus, and therefore

Again this isomorphism is induced from the canonical map

restricted to l)-th co-

homology.

The general case follows from these calculations, because the state-
ments are local in the 6tale topology on Coh"c (= Therefore

it is a problem which is local in the 6tale topology on C, thus to check
that the morphisms given above are isomorphisms we may assume that
C = Cpsh is strictly henselian and ,S’ _ {p}, i.e. (C,p) ~ (A~’~° , 0). In this case
any irreducibly ramified sheaf on is isomorphic to our sheaf En. 0

Fq
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Remark. - Part 3) of this corollary implies that for any parabolic
torsion sheaf T* of degree one is the

eigenvalue of the Hecke operator corresponding to T* applied to the
Whittaker function WE, i.e. writing p = this is

To end this section we will prove two more corollaries to the above

calculations. First we take up the situation of Proposition 4.1, i.e. (C, ,S’) =
(A 1 , {0}), and we keep the notations,
and j

We have the following description of j~* Em for m  k:

COROLLARY 4.6. - For any 0  m  k:

1) On there is a distinguished triangle of

complexes

2) For all m + r we have

Moreover, there is an exact triangle

Proof. The first part of the corollary has been proven above.
We may also recover it by comparing the triangle from Proposition 4.1
for Ek with the one for Em .

To prove the second part, recall that by Lemma 4.3

Combined with Lemma 4.2 this implies that this complex has no

cohomology in degrees m ~ 1, ... m --~ 2r + 1.

Now we use induction on m: for m = 1 the sheaf El is constant, thus
the claim is true. By 1) we have an exact triangle on 
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Apply to this complex. Then by induction we know that the left
hand term has no cohomology in degrees m, m + 1 and the right hand term
has no cohomology in degree m + 1. Thus - since jm+l,!* = 
- we get that the following sequence is still exact:

Furthermore by induction the three functors u
and give the the same result if we apply them to the left or right
hand term of the triangle, thus the same is true for the middle term and
again by induction we are done. 0

Finally we note that there is a - perhaps surprising - analogue of
Corollary 4.5 for the tensor product j!* En which will be needed

later on:

COROLLARY 4.7. - Let (C,S) be a curve together with a finite set
of points, and let be local systems of rank m  k and k + n
on C - S with indecomposable unipotent ramification at all points in S.
Let pr : Coh 6 be the map forgetting the k-step parabolic
structure of the torsion sheaves, and denote by j : Coh’ 0, c the
inclusion. Then

Proof. We have to show that Q9 is the (middle)
extension of its restriction to Coho,c-s to prove the corollary. This is a
local problem on C, thus we may assume as before that (C, S’) _ (A , {0})
and that Em and Ek +n are the unipotently ramified sheaves on Gm defined
at the beginning of this section. ~6&#x3E; We use the filtration

given by the previous corollary. We tensor this with j~* and apply R pr,
to prove the corollary by induction on m.

For the right hand term we use Lemma 4.2 to replace

(6) In this case note that j* (Em 0 ®i’’ ol j* This is just the
Jordan decomposition for a tensor product (see for example [12], Exercise 11.11).
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by the complex

By Corollary 4.5 we know that Q9 0 for

0  III  m  k. Therefore

Now we apply the induction hypothesis to the right hand term of the
filtration of j~* Em to get an exact triangle

This proves that the middle term is a sheaf and that its dual its dual is a

sheaf as well, thus it is a perverse sheaf which is the middle extension of its
restriction to Coh6,c-s. D

4.2. A Hecke property on 

Consider as before See and a rank n local system E on C - S
with indecomposable unipotent ramification at S. To reduce the number of
constants we will assume that we are looking at n-step parabolic sheaves

(it would be sufficient to assume that rank( E) &#x3E; length of structure).

Using the Definition 2.4 of the generalized Hecke operators the aim of
this section is to prove:

PROPOSITION 4.8. is a Hecke eigensheaf on i. e. for

all non-negative degrees d == 4’ + d" with d = (d, ... , d) we have

if d’, d" are constant

otherwise.

To prove this, we need an analogue of Laumon’s description of the
~ d 

Whittaker sheaf L d. Let Coh d 0,s be the stack classifying parabolic torsion
sheaves on (C, ,5’) together with a complete flag of subsheaves:
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We have maps

where

And define the sheaf

on Note that the map forget flag is projective but not small (nor
semi-small) in general.

PROPOSITION 4.6. For any decomposition d = d’ + d" we have

if d’ - (d’ , ... , d’ ) is constant,
otherwise.

Proof. - Extend the diagram used to define the Hecke-operators as
follows:

Using the base change theorem for the proper map forget flag, we see that

The fibre product Hecke.’ classifies
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For every such collection of torsion sheaves we can pull back the
filtration of T’ to T’8, and by fixing the degrees d’ of the resulting torsion
sheaves we obtain a stratification of the above stack

where the substacks off are defined as

. Fisrt case: d2 - (di, ... , di ) is constant for all i. - We have a

commutative diagram

Where forget Ext maps c 7"’, T’’, T"’) to the induced filtrations
on T’ and 7" *. By Lemma 0.2 the map forget Ext is smooth, the
fibres being generalized affine spaces. These are of dimension 0,
since both stacks are smooth of dimension 0, thus

- Second case: d2 not a constant sequence for some i. - Let 
be the stack, classifying torsion sheaves T’ of degree d’ together
with a flag of subsheaves Ti’* of degree ( di)i=1,...,d. Then we can still
factor the restriction of gre.t to the corresponding stratum into
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As in the first case the map forget Ext is smooth, and the fibres are
generalized affine spaces: for a fixed point
the fibre of forgetExt over this point consists of extensions

Let Then we may factor into

where Ext (gri T~~’, gri T"*) is the generalized vector bundle over x

classifying extensions of the filtration quotients. Furthermore
Lemma 0.2 shows that gr Ext is a generalized affine space bundle, which can
be factored into maps with fibres Ext (gri T" , ~~1).

Since gr flag also factors through grExt’ the sheaf is constant

on the fibres of gr Ext and thus by the Kfnneth formula it is sufficient to

prove that for d = 1 and any non-trivial decomposition

we have Ho ’ a~~ ,C E - 0. But here we can apply the calculation of 
given in Corollary 4.4 to establish the claim.

Now we have shown that Hõ’- Li has a filtration such that the
subquotients are isomorphic to the sheaves Furthermore we

know that over the substack where U supp(T *) consists of d
distinct points, this extension splits. The proof of the following lemma will
only use this fact to show that all these sheaves are perverse sheaves which
are the middle extension of their restrictions to any open subset. Therefore

the filtration splits globally. D
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LEMMA 4.10. - The complex li = R forget, is a perverse
sheaf which is the intermediate extension of its restriction to Coh § c_ s : v

In particular, it carries a natural action of the symmetric group Sd and

Again we denoted by j : the inclusion.

Proof of Lemma 4.10. By Laumon’s results [19] we know that the
restriction of £ E to is indeed a perverse sheaf which is the middle

extension of its restriction to every open subset.

Since the question is local on Coh o s we may assume that our local
system E is pure. Then .ck is pure (it is irreducible and perverse) and
thus, by Deligne’s theorem (see [7], 6.2.6) /~ is also pure. Therefore

we may apply the Decomposition Theorem (see [4], 5.4.6) to decompose

We prove the lemma by induction on d. Assume that rest~’ = 0 for
all k  d. (By definition of the statement is true for d = 1.) By the
induction hypothesis and the fact that the restriction of /~ to Coho,C-s is
perverse we furthermore know that supp(restd) C (T8’ 
The preceding proposition shows a Hecke property of and this implies
in particular that H6,(d)-irestd = 0 for all i &#x3E; 0.

Choose T8 E supp(restd) such that the degree of a maximal

indecomposable summand of T8 is maximal. Write T8 = T’’ ~
such that ~p) is a direct summand of maximal degree (this is possible
by Lemma 3.1). Note that T’ ~ °dp since the latter sheaf has a unique
filtration with subquotients of degree ( 1, ... ,1 ) . Now define d’ : = deg(T’ )
and look at the fibre F of the Hecke-correspondence Hecke o’’ ’ over the
point Then T’ is the only sheaf
contained in supp(resta) n F, because every non-trivial extension of the two
sheaves contradicts our maximality assumption (again by Lemma 3.1).

Therefore if 0 then 0, contradicting our
assumption that all the are irreducible perverse sheaves for k  d. 0

Proof of Proposition 4.8. - This now follows from the above lemma
by taking ,S’d-invariants in the Hecke property of 0
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5. The sheaf FE,, corresponds to the function 

The aim of this section is to explain the relation between the

function trfn and Shalika’s definition As in the case of

unramified local systems, the problem to compare the two functions stems
from the fact that the interpretation of Laumon’s diagram in terms of adeles
does not immediately correspond to the definition of lll . The main ingredient
needed to solve this problem is an analogue of Drinfeld’s compactification
as defined in [11]. This moduli space is on the one hand related to the
fundamental diagram and on the other hand its points have a simple adelic
description. All this follows easily from [11].

However, to prove that the function tr f, , is indeed a non-zero multiple
of the we cannot copy the proof of [10], since this argument
uses results on the affine Grassmannian for which we do not know analogous
statements for the affine flag manifold. We will use an elementary approach
instead to obtain an inductive argument to calculate the function trf, ,
on a subset of its support which is sufficiently big to conclude the proof of
our main theorem once we have calculated the whole function for n -1. We

will then give a calculation for n  2.

5.1. An analogue of Drinfeld’s compactification.

First we rewrite the inductive definition of F~ , as in the appendix
of [19] and [11]:

Denote by C £8) the stack classifying

We may define maps

quot :

and

ext :

(here we used Lemma 2.3 to identify the Extpara-group with
and denote this residue map by Res);
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forget :

Then by definition of F~ , we have

where c is the dimension of the fibres of forget.

Remark. - We have an adelic description of the points of the stack

(Q- Ext C £8):

We will not need this (it is the same as in [10], Section 3), but note that
this is not the set which is used in the definition of the function 4D(WE).

To define a moduli space whose points will be a subset of

we argue as in [11] and define a moduli space classifying parabolic vector
bundles together with a full flag of subspaces of the generic fibre of the
bundle, satisfying some regularity condition:

For a parabolic vector bundle £8 we denote by £8 its k-th exterior

power, which is defined as the collection of the sequences of vector bundles

Analogously, denote for parabolic bundles El* Q9 £2 the tensor product taken
componentwise, together with the natural maps.

DEFINITION 5.1 (Drinfeld’s compactification). - The stack Q-Pifcker
classifies 

,

such that the si satisfy the Pliicker relations.
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Recall that the Pliicker relations are given by the condition that over
the generic point of C the maps si define a full flag of subspaces of one (or
equivalently In particular we have a map

Furthermore if all the si are maximal embeddings (i.e. if the cokernel of si
is torsion free in every degree (j, p) ), then the s2 define a full flag of 9* at
every point of the curve, i.e. the s2 define a full flag of subbundles of £8.

Therefore the points of this stack have a simple description in terms
of the zero divisors of the maps si : we call a formal sum

(only finitely many np # 0) a parabolic divisor, i.e. it is a divisor, but the
coefficients of points in ,S’ are allowed to lie in 1 Z. For a parabolic divisor D
we call its degree. In the same way as usual divisors, parabolic
divisors of a fixed degree d form a sheaf Div4 S, and the subsheaf of effective_ c ,

parabolic divisors is represented by a symmetric product of the curve.

LEMMA-DEFINITION 5.2. - The stack Q-Pliicker has a stratification by
locally closed substacks indexed by degrees of parabolic divisors dl , ..., dn.
The strata are given by

such that the si are maximal embeddings and satisfy the Plücker relations,
and Di is effective for n,

For fixed parabolic divisors D1, ... , Dn denote by the

corresponding substack of the above stack. 1:1
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Note that the above description of the strata of SZ-Pl;.ker can also be
used to describe the map forgetTor. Namely, for a point (~’, (,~2 )2=1,...,n)
in (0 - Ext C £8) its image under for g et Tor is (~,(J~~)),=i,...~) )
where C £8 is the subbundle defined by But this is only a
pointwise description.

Remark 5.2. The points of the stack SZ-Plucker can be described as
a subset:

Proof of Remark 5.2. - This is the same as Weil’s description of
vector bundles (see also [10]). However to compare the function WE with a
sheaf on Q-Pliicker we will need a precise form of the inclusion, therefore we
will recall the construction of the map.

Given a point E we define an element

of GL~(A) as follows: let N := -(n - 1)2 be the shift in the definition
of Q*,n-1 - Thus if all Di = 0 then the is equipped with a
filtration with subquotients S2®n-Z (-(2 - I)S). Recall that in 0.2 we have
chosen an identification of with GL~(A), i.e. we decided to use

o 00i as standard bundle instead of the trivial one. Thus denote by r~
the generic point of C and choose a trivialization

such that the image of is the subspace defined by 

Further, for p E C - S choose a trivialization

again compatible with the filtration induced by the si. Then o f ~ E
will be an element of the form Np - diag(dn,p, ... , dl,p), where Np

is a unipotent upper triangular matrix and the second term is a diagonal
matrix such that the valuations of the entries are given by the p-part of the
divisors Di . 

_

Caution: in the definition of the adelic double quotient we divided

by Nn(k(C)) from the left and we want this to correspond to the

flag at the generic point given by the si. Thus the transition function

of E GLn(Kp) is also given by multiplication from the left, i.e. an

element of ®2 o is represented by a line-vector; the n-th component
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given by the coordinate of n0n-l. Therefore the last entry of the diagonal
matrix given above is indeed d1,p.

For p E S’ we choose an isomorphism

compatible with the filtration of the stalk (g) k(p), i.e. we choose fp
such that the induced map factors

through ker I

Again define e GLn (Kp ) . To describe this element, let

Di = with p g supp(D) and 0  I2  n, and choose a local

parameter 7rp at p. Then is contained in the 8p-submodule

equivalently in the last line of the matrix the first k1 entries are of

the form with u e Ô*, the k1 + lth is for some u E Ô* and

the others lie in (7r~) . To apply a similar consideration to recall that

~®n-i ( _ (2 _ ~ Thus contained in the

subspace generated by and either

for ki  n - i or otherwise

Note that in this way we get an element of for which we

have calculated the value of the Whittaker function in Proposition 1.2. And
the shift in the definition of SZ2~’ assures that the support of the Whittaker
function is the subset of f2-Plücker where Dl  D2  ...  0

The map forget factors through f2-Plücker:

By Proposition 1.2 the intersection of the support of the Whittaker
function WE with the points where Dl &#x3E; 0 lies in Q-Plucker(Fq), and
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therefore the summation in the definition is the same as the

summation over the points in the fibres of forget’. Thus, to prove that trFn
equals ( WE ) up to a scalar, it is sufficient to prove that (up to a scalar)

Our first aim is to show that the left hand side of the last equation
defines an element of the space of Whittaker functions (Proposition 5.3).

We denote by Q- the preimage 

Note that whenever we have 0  Di  D2  ~ ~ ~  Dn, we can define
a sheaf = L’lf via

Let [Djj be the biggest divisor smaller than the parabolic divisor Dj and
denote by dj its degree. Then we also have a map

sending To

simplify notations we will denote the restriction of div to 
by the same symbol.

The aim of this section is to prove:

PROPOSITION 5.3. - Let Dl , ... ,Dn be parabolic divisors and

assume 0  D1. Then:

1) If Di f for some i, then

R forgetTor, ! 0 ext * Lp)) Dn - O.

then there is a sheaf W E on
and a constant c such that

The sheaf W E and the constant c depend on the parabolic degrees of the

and will be defined explicitly in the proof.
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Note that the first assertion is the geometric reformulation of the
support condition for the Whittaker function given in 1.2 and the second
implies that the function y defines an element°r&#x3E;. E

in 

Proof. We may assume that all Di’s are effective, since otherwise
the fibres of forgetTor above Q-PlilckerD,,...,D,, are empty.

To study the fibres of the map forgetTor, we note that this map factors
through the stack which we define as the stack

classifying

such that Jk C E* is a maximal embedding and C £8 lies above

Consider the case = 1 and denote by

forget
the forgetful map, which maps

being the subbundle defined by ~l .
A point in the latter stack can alternatively be described as a maximal

embedding £8 together with a filtration

and identifications In this description the fibres of

forgetDl consist of the liftings of the inclusion

And thus forgetDl is a torsor
for the group

To describe such liftings we first lift the inclusion ne,n-2 ~ :12 c

and then lift to

the cokernel of j. Note that for a point in a fixed fibre of forget D1, its

image under the map ext : (Q- Ext C £8) -~ A~1 depends only on the
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choice of j but not on the lift of ~n~S2’~n-2, i.e. ext factors through the
stack classifying points of SZD1 together with a lift j. This is
because the extension of oe,n-2 by oe,n-l is given by the connecting
homomorphism:

. Assume that D2. We claim that in this case

Write D for the effective part of D1 - D2. Then the group

acts on the choices of j. Note that this action changes the

image under the map ext by the residue of the element in

However the cokernel of j is not affected
by this action, because by construction we have a surjective map

and thus given j and
isomorphism

we can find an

simply by choosing a splitting of

locally at D.

To see that this implies Formula (5.2), fix a lifting j, denote by 
the cokernel of j and let Lift~n_2 be the space of liftings of 
to ,~n_2.

Consider the preimage of the of j in
Then the above tells us that this preimage is isomorphic to

the product
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and furthermore the restriction of ext* L~, to this space is an
exterior product, i.e. ext factors through the projection to the first
factor and quot factors through the projection to But ext* L’l/1
is nontrivial on the factor and therefore its

cohomology is trivial. Thereby we get that ®
ext* Lp) - 0 as well. 

. Assume now that Dl  D2. In this case we can define a map

extD1 : ExtD2,...,Dn - A~

given as the composition

We will use this map to write the restriction of ext* L~ to

0- as a product of two local systems. To this end

note that - because Dl  D2 - for any point in SZD1 
there is a canonical lifting j: oe,n-2 -+ (choose any
lifting - and restrict this to oe,n-2 - this is

independent of the choice since Dl  D2). Moreover, for any point
in its image under ext D is the same as ext applied
to this canonical lifting.

Furthermore, for any point of this space the torsion sheaf ~’ /~n is

equipped with a filtration induced by the with subquotients isomorphic
to Denote by Ext (Dn, ... , Di ) the stack of parabolic torsion
sheaves together with such a filtration.

Since D2 we can define a residue map for sheaves in Ext(D2, D1),
because we have an exact sequence

and therefore the usual residue map Res :

factors through Ext (D2, D1 ) . Let W 12 be the pull-back of via the

composition
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Then we have a diagram

Here Fib is the fibre product making the lower square cartesian, and the
maps are the natural projections. The additivity of L~ implies that

Furthermore the map prFZb is a

bundle, because the fibres of prFib consist of the different choices of

the dotted arrow in

Therefore the projection formula and base-change imply that

where cl = dim(

Now we can inductively apply the same considerations to the maps
forgetd, : ---4 QD1,...,D, to prove:

1) R forgets, (ext * 0 = 0 unless 0  D, ...  Dn .
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2) If we have 0  Di  ...  Dn, then we may define a sheaf 
on the stack Ext(Dn, i Dn- 11 . * * Dl) as the tensor product of the sheaves

defined as the pull back of L1jJ via the map:

3) Denote gr the natural map

and define Then

where and

To compare the trace function of R forgetTor,! (ext* L1jJ 0 quot* £§ ) and
WE we therefore only need to calculate the trace function of W E . Denote the
trace of WE at the set of divisors Dl :S ...  Dn by WE).
By construction it is sufficient to calculate this in the case that all Di’s are
supported at a single point p, because we can write Di Di,p
with divisors Di,p supported at p and then

We may also assume that p E ~S’, because for p ~ ,S’ we can use

the calculations for unramified local systems [11] (note however that a
calculation similar to the one we do below (Lemma 5.4) could be applied
for p 0 ,S’ as well).

5.2. Calculation in the case rank = 2.

We want to compute the trace function of the sheaf WE defined in
the preceding paragraph in the case of a 2-step parabolic structure. We
use the above reductions, i.e. we take DI = kp  D2 = (d - k)p parabolic
divisors supported at p e ? with Recall from the proof of the last
proposition that for such parabolic divisors we have defined a residue map
Res : Ext(D2,Di) = -~ A’ and a sheaf

= Res* L,~ . Further, by abuse of notation, we denote the pull-back
of to Ext(D2,Di) by the same symbol. Finally we will replace the
stack Ext by corresponding set Extl to prove the following formula:
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LEMMA 5.4. - Consider sheaves with 2-step parabolic structure at
S = {p} E C. Denote by AE := tr(Frobp j* E). Then for any and

k with 0~d-~we have

for

for

Before we prove this lemma we need to use the Hecke property of 
to give a recursive formula for the trace function trd : as in the unramified

E

situation we know that = 

because the parabolic torsion sheaves and are both

contained in the image of an open embedding Coh )  . Therefore,
the Hecke property of [,~ (Proposition 4.8) implies on the level of functions
that

for

for

(Note that the set Ext’ used above differs from the stack Ext by some
automorphisms, whereby we obtain the factor q’ in the above formula.)
Recall that since k  d - k we have an isomorphism

given by mapping a homomorphism s to the push out of the extension

by s. Thus the middle term of the

resulting extension of torsion sheaves is

Further therefore we have a

filtration of Exti given by

and for any element s of the subset
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the corresponding parabolic torsion sheaf 7’ is isomorphic to

for

for

and

and

if

It might be helpful to write this out in the simplest cases: for 1 E 2 + N we
have

Thus, if i = 0, i.e. s : 0 -+ Qkp (kp) induces a surjective map O. -~ 
the above cokernel is isomorphic to (Qdp - Odp (p) --~) and the second map
is an isomorphism. In particular for d = 1, k = 2 this extension is of the
form ~). 

2

Similarly for k E No,

And again if s : C7 ~ is surjective we get that the corresponding
torsion sheaf is of the form Op ~), because s induces a
non-surjective map on the (l,p)-component of s° : 0* --~ 

The general case is proven in the same way, the above considerations
already give the isomorphism classes of the and we also know on

which summands the homomorphisms giving the parabolic structure
of 7-s* are injective or surjective.

Therefore if we rewrite the summation in (5.3) according to the above
filtration of Exti we get a recursion relation for the value of the trace at
the trivial extension

for

for

(To shorten the formula we used that LE(1~) - k), since the

corresponding torsion sheaves differ only by a shift.)
Note further that this recursion relation does not depend on the

rank of E.
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Proof of Lemma 5.4. By induction on k = 0 there is nothing
to show). Since tr(Frobe, WTor Q9 £I) = all the

summands corresponding to elements of

for k - i &#x3E; 1 cancel out, because for these Thus

Apply (5.4) to then this equals

for

for

for

for

By induction for

for

for

for

for

COROLLARY 5.5. Let E be a local system on C - S with indecom-

posable unipotent ramification at S, denote by AE := tr(Frobp , j* E)
and let W E be the Whittaker function defined in Section 1.1.

1 ) If E is of rank 2, then for any point x E Q-Pliicker uTe have
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In particular for any point x E Homini we have

2) If E is of rank 3, then for any point x E Q-Piicker with Dl = 0 we
have

In particular, for any point x E Hom inj corresponding to a maximal

embedding S2’ ~ 2 ~-~ E’ vve have

Proof. - Comparing the above lemma with the calculation of we

get the first assertion. Note that since the power of AE appearing on either
side of the equation depends only on the degree, we just have to compare
these for the trivial bundle. Similarly the power of q only depends on the
difference D1 -- D2.

For the second assertion note that for a maximal embedding, the
quotient sheaf £8/ne,n-l may be viewed as a bundle with (n - I)-step
parabolic structure since the n-th morphism in the parabolic structure is
an isomorphism. Thus for rank 3 bundles we may apply the calculation
given in part 1 ) . D

6. Constructing AE under the
assumption FE = F#,, .

In this section we give a proof of the main Theorem 2.5 under the
additional assumption that F~ = F~,!. Here the proofs are almost identical
to the ones in the case of unramified local systems (see [19], [11]): first we
show that the Hecke property for implies that FE,! is a Hecke eigensheaf
as well. The second step is to deduce from Lafforgue’s theorem and the
calculation of the previous section, that the function tFn (on Homj)
descends to a function on Therefore we can argue as in [11] that
the sheaf FE also descends to the space of parabolic vector bundles. The
resulting sheaf AE inherits the Hecke property from FE,!, and we show that
this property implies the one stated in the theorem.

6.1. The Hecke operators on the "fundamental diagram".

We want to check that Laumon’s arguments in [19] carry over to our
situation. We define operators analogous to the operators H~ on the spaces
occurring in the fundamental diagram (2.2).
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We start with Hom inj k (recall that this is the stack classifying
good coherent sheaves X° of generic rank together with an injection
SZ’ ~ ~-1 ~ .~’’ ) . We define a diagram

and the corresponding Hecke operator

Analogously, replacing Homt by Homk, we define an operator

We used a shorthand notation to describe the algebraic stacks

occurring in the above diagram, e.g. ~~~ i ’~’ , denotes the algebraic
stack classifying objects ~ F8) E Homil, together with a coherent
parabolic subsheaf F8 such that the quotient is

a parabolic torsion sheaf of degree i. And the maps are the natural ones,
e.g. Irsmall is the map forgetting everything but the smaller bundle F’,8
and quot forgets everything but the quotient ,~’’ /.~’’’ . To make this easier
to read we use the following conventions:

1 ) F8 will always be a coherent parabolic sheaf; oftentimes a subscript
will be used to specify its generic rank.

2) £8 is a parabolic vector bundle, i.e. it is torsion free; again £g is a
parabolic vector bundle of rank k.

3) By T8 we will always denote a parabolic torsion sheaf.

4) Three term sequences will always be short exact sequences.

We have a similar diagram for Ext~ :
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And finally on we have:

6.2. The Hecke property of F E,, .
We want to show that these Hecke operators commute with the

functors used to construct F E,, . We will use the notations of Definition 2.3,
in particular the maps Let further := for

any T- e And denote by pr d : Ext6 --t the projection.
’ ° 

o,s 
’

PROPOSITION 6.1. - Let i be any parabolic degree and let

d = (d, ... , d) be a constant parabolic degree, then we have:

1 ) For any
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Proof. 1) Write down the definition of the correspondences:

The left- and right-hand "squares" are cartesian and p is an affine space
bundle (an Ext1 (T- /T’. , 0- )-torsor), therefore we get our claim:

2) This holds, because extensions of good sheaves by torsion sheaves
are good.

3) This is true, because there is an isomorphism of the diagrams
defining the two Hecke functors given by

4) By definition.

5) Again Laumon’s proof can be copied word by word, the only thing
used is the compatibility of the Fourier transform with bundle maps:
Four(¿* K) = (see [21] Thm 1.2.2.1

and 1.2.2.4). D
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COROLLARY 6.2. - The sheaf FE, is a Hecke eigensheaf on Homk i.e.

if i is constant,
otherwise.

Proof. By the above Proposition 6.1 this follows from the Hecke
property of £k (Proposition 4.8). p

6.3. Comparison of the Hecke operators and the
generalized Hecke operators.

In the same way as in ~11~, Proposition 8.4 we want to show that for
some sheaves on Coh the eigensheaf property with respect to H~ --
implies that the restriction of the sheaf to Bunn,s has the eigensheaf
property for H~ and Hlc. To do this we need to note some general properties
of the maps 7rsmall and 7rbig used in the definition of the operators 

Fix a degree d = (d(3’P) ) of parabolic sheaves, and let i some positive
degree. We have defined a diagram

Denote further

Then we have:

Remark 6.3. - 1) The map 7rsmall x quot is a generalized vector
bundle, in particular it is smooth.

2) The map ?fsmall is smooth.

3) The map 7rbig is representable and projective.

4) The restriction of 7rbig to the pre-image is smooth:

5) Assertions 2), 3) and the second part of 1) are true for the analogous
maps defined by replacing
respectively.

and by and
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Proof. 1) The map 7rsmall x quot is the projection from the
generalized vector bundle

where prjg are the projections from on the j and £-th
factors, and and are the universal bundles on Cohi, x C andd-* ,
Coh :;;’$’1:. x C respectively. 

’

2) By 1) we only need to note that Coh" is a smooth stack

(Lemma 3.7). 

3) The fibres of 7rbig are closed subschemes in the scheme

TI which is projective (see ~15~ ) .

4) This is as in [11]: the given pre-image is smooth, since it is a

vector bundle over a smooth stack. Its image under 7rbig is Coh n’s which
is smooth as well. Furthermore, 7rbig is representable, and therefore it is

sufficient to prove that it induces a surjective map on all tangent spaces.
Thus we need to show that at every point in a fibre of 7rbig the kernel of the
induced map is of the correct, constant dimension.

We claim that for any point (~’ ~ ~’ - T° := this kernel

is isomorphic to Hompara(E., I.). In Lemma 3.5 we have shown that this
space is of constant dimension, and in case that F. is torsion free the map
is certainly smooth at this point, thus it is smooth on the whole subset. ~7~

To prove the claim, take a point in the tangent space to the fibre of

7rbig, i.e. a deformation to k[,E]/(,E’), such that the deformation of the middle
term is trivial:

But then And therefore the choices

of 9 are given by Hom( £ö, 7~), as claimed.

5) Since Bun4,s C Coh 4 is open the maps are still smooth. The

restriction of 7rbig is still projective because subsheaves of vector bundles
on curves are automatically vector bundles. 1:1

7~ Alternatively one could use Lemma 3.5 to calculate the dimensions of the spaces
involved, but one has to be careful in case i is not constant.
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As on Homj, we say that a perverse sheaf AE on Coh is a
(generalized) Heeke eigensheaf for E if

if i is constant,

otherwise.

Note that if the sheaf FË descends to Coh n,s, then this is the Hecke

property of the descended sheaf (twisted by on the component
of degree d = d~°~P~, the additional shift coming from the fact that the
dimensions of the connected components of Homn are different). Using
the definition of the operators HE and the sheaf on Coh6,s given in
Section 2.6 we claim:

PROPOSITION 6.4. - Assume that AE is a Hecke eigensheaf for E on

Coh n, s, such that DA E is a Hecke eigensheaf for 1ThE =: E~’ . Then A E j Bunn , s
is an eigensheaf for i . e.

Proof. Look at the generalized Hecke correspondence restricted to
Bun d-1.

*

We know by Remark 6.3, 2) that in this diagram the map 7rbig is smooth of
relative dimension n. Therefore on 

In other words, for AE we can replace R(rsmall x quot) ! by R(7rsmall x quot) *
in the definition of the Hecke operators. Note that the same consideration

applies to the operators HE for any t with (o, ... , 0)  E  (1,..., 1).
In this case we even know that HEAE = 0, and this helps to prove:
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LEMMA 6.5. - Under the assumptions of 6.4 the restriction of the sheaf
AE to the stack is zero for all (0,... ,0)  E  (1, ... ,1).

Proof. The map

is a vector bundle projection, let c be its relative dimension. Furthermore

7rbiE is Gm-equivariant, and thus we can apply Lemma 0.3 to get that

Now we can apply Lemma 8.5 of [11] - which says that in the situation
of Lemma 0.3, i.e. we have a vector bundle projection p and some Cm-
equivariant perverse sheaf K if both and are perverse,

then Rp! K Q£ Rp, K - to get that

The fibres of the projectivized bundle 7rsmall x quot are (T8, £8))
and by the above lemma we even know that the stalk of AE is zero at

sheaves F8 with Q  deg(torsion(F8))  1, therefore in the above equation
we may restrict 7rsmall x quot to the space of torsion free extensions. But
on this substack the base change to Bun-, - x Coho,s gives the map used
to define 

~ ~ 

D

COROLLARY 6.6. - Assume that AE is a Hecke eigensheaf for E
on such that DAE is a Hecke eigensheaf for DE := E~. Then

the corresponding function tAE on is an eigenfunction for the
Iwahori-Hecke algebra. 

Proof. We just have proven the Hecke-property of the restriction
of AE to Bunn,s. Therefore we only need to compare the result with the
computation of on Coh o S (Lemma 4.5) and note that the Iwahori-
Hecke-algebra at ,S’ is generated by elements corresponding to the points of

Coh6 s. And for the Hecke operators supported in C - S the situation is
the same as in the unramified situation (see [11]). D
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6.4. Descent of the sheaf F’

PROPOSITION 6.7. - Assume that we know that F~ = F~,!, then
Lafforgue’s theorem implies that F E descends to a Hecke eigensheaf on

and this sheaf can be extended to a non zero Hecke eigensheaf AE
on Buns.

Proof. By definition F~ is an irreducible perverse sheaf and by our
assumption F E = F E,, is a Hecke eigensheaf (by Corollary 6.6).

We first want to explain why the function ( WE ) does not depend
on the section SZ’ ~n-1 ~ ~’ , but only on the bundle £8: On the one
hand by Lafforgue’s theorem [18] there is a (cuspidal) Hecke eigenfunction
on Bunn,s(IFq) with eigenvalues given by tr.cE (1.2). On the other hand
by Shalika’s result (see [25], Theorem 5.9), every Hecke eigenfunction on
Hom:j  (3Fq ) is in the image of V and there is a unique such function in the
Whittaker space. Therefore the function f E is the pull back of a
function on 

Assume for the moment that n  3. In this case we know that

restricted to the maximal embeddings Hom max C Hom inj the function

trF, , = for some non-zero constant. In particular, this
E,.

function is not identically zero on and descends to 

Thus to show that this implies the descent of FE, we can apply
a variant of the argument given in [11]: since FnE is a Gm-equivariant
irreducible perverse sheaf it descends to the projective bundle IF&#x3E; Hom inj and
there is a constructible subset Y Ä such that F n
is an irreducible local system and F~ = 

Further the restriction of FE to V is constant on the fibres over Bunn,s,
because the trace of F~ is constant on the fibres (for any extension F n
of the base field). And the two pull backs of FE to

are irreducible is an open subset of a projectivized bundle)
and isomorphic, because the corresponding trace functions are the same.
Since the two systems are irreducible, there is only one isomorphism of
these sheaves which induces the identity on the points of the diagonal
V C V X gunn Y. Hence descends to a perverse sheaf AE,v
on Further, since F~ = we also know that

FnE = E = descends to a sheaf on ~!
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Note that in particular we have shown that = on

the whole of Hom inj. Therefore we may apply (D-1 to see that the trace
function of the sheaf R forgetTor,! (quot *(Ldo) ®ext* L’ljJ) on !1-Plücker must be
equal to WE. This allows us to drop the temporary assumption that n  3,
because we can apply the argument of Lemma 5.5 to show that the trace
of F~ is equal on the space of maximal embeddings for n  4,
and this gives an inductive argument for all n.

To finish the proof of the theorem we only need to extend the
resulting sheaf to the whole of Bunn,s. Again this works as in
[111, Section 7.8: for q E C - S’ (we might allow q E ,S’) the maps

are a covering of Bunn, s . We define

The Hecke property of AE °d (together with the ,S’2-equivariance of the
isomorphism H’ o E) gives that this is a well-
defined Hecke eigensheaf on Bun§§ . D

7. The analogue of the vanishing theorem for n  3.

The aim of the last two sections of this article is to prove that our

assumption F~ =. F~ , holds min(3, n) (Proposition 8.2). To do so
we need an analogue of the vanishing theorem in [11] which is given below
(Proposition 7.1):

For any i E Z&#x3E;o consider the total Hecke- or averaging functor HE,:ot
defined as follows (z :_ (i, ..., i) ) :

We set

Remark. - This definition is used for any d = 

therefore it includes the case of bundles with not necessarily full parabolic
structure. In particular for d = the stack Bun~
is the stack of vector bundles without extra structure.
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PROPOSITION 7.1. - Let E be a (pure) irreducible rank n local

system with indecomposable unipotent ramification at S. Then for any
1~  min(3,n) and any (mixed) complex K E uTe have

for all

Note that by Lafforgue’s theorem we may assume that E is pure, since
every irreducible sheaf is pure up to a twist.

Proof (almost the same as in [11], using the conventions given in
Section 6.1 for the definition of stacks occurring in the proof). - We use
that, by induction we already know the proposition for all 1~’  k.

Reductions : without loss of generality, we may assume that K is a pure
complex, because any mixed complex has a filtration with pure filtration

quotients.

For a pure complex K the complex pure as well,
because Q9 quot* £k) and 7rsmall is smooth

(Lemma 6.3), therefore 7rs*mall preserves purity (i.e. smoothness implies
The same is true for quot* and finally 7rbig is

proper (Lemma 6.3), therefore Deligne’s theorem (see [7], 6.2.6) implies
that R7rbig,* = R7rbig, ! also preserves purity.

Furthermore, a pure complex zero if and only if the
associated function tr H-’ K on IFqe-points is zero for all l. Hence it is

E,tot

enough to prove that h is the zero-function.
E,tot

Finally, to show that a function h on Bunk,s (IF q) is zero it is sufficient
to show that 1) h is cuspidal and 2) for all cuspidal functions f on

the scalar product  h, f &#x3E;= 0 - the product being defined
since cuspidal functions have finite support on every connected component
of In the proof of these statements we will reduce back to a
statement for sheaves.

. First step: cuspidal complex, therefore trH-2 K is a
E,t E,tot

cuspidal function, i.e. for all k1 + k2 = k and all _d1 + d2 
be the functor defined as followsk1, k2
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DEFINITION 7.1. - A complex K E is called cuspidal if
for all dl, d2 and any non trivial partition ki + k2 = k we have di, 42 K = 0.

PROPOSITION 7.2. Let E be a irreducible local system of arbitrary
rank n &#x3E; k on C - S with indecomposable unipotent ramification at S.
Then for all dl, d2 and any non trivial partition 1~1 ~- 1~2 - 1~ the

complex 0 HEBot K has a filtration with subquotients isomorphic12 , t

y , d2,tt) K &#x26;r t0  E , tot k2 

Note that by induction on k we can assume that the vanishing
Theorem 7.1 holds for all ki  k. Therefore we know that the filtration

subquotients occurring in the above proposition are all zero, because

 1~ and either il or i2 is sufficiently big. Therefore the proposition
proves that HE,tot K is cuspidal if i &#x3E; (2g - 2) nk + 

Proof of Proposition 7.2. - We define a diagram using the conventions
given in Section 6.1, all three term sequences occurring in the diagram are
short exact sequences

to compute

The stack Middle is stratified by substacks indexed by 0  il  i,
given by the condition deg(
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This stratification will induce the filtration we are looking for.

Now gr 07r big restricted to Middle2l is the map forgetting everything
but £k and Ek2. We factor this as follows: first consider the map forget£81 2 n

forgetting £k. This is an affine fibration, the fibres being homogeneous
spaces for ~~1 ) (because of the exact square of Ext1 groups we
get from the extensions of the ~8 by the ~~2 ) .

Furthermore, both the map 7rsmall 0 forget’ and quot o forget’ factor
through forget£8, n i.e. forget§. K2 for some complex K2 and
thus R forget g. K1 = K2 2c (c) for some c. 

k

We can compose the map forget Ek, with the forgetful map forget T.
This map is just the pull back of the corresponding map in the Hecke
correspondence of torsion sheaves, and still 7rsmaij o forget’ factors through
this map. Therefore, by the Hecke property of LE we get that R forgetT.,, K2
is zero if 11 is not constant.

But if 11 = (i1) is constant, the Hecke property implies that

Thus the stratification of the stack Middle induces a filtration as claimed.

D

. Second step: for every cuspidal function f we have

Using the same diagram as in the definition of HE,tot at the beginning
of this section, we define HE,tot K := R1rsmall,! ~C~)? and denote
the analogous operator for functions on (i.e. the sheaf £k is replaced
by its trace function, pull-backs are considered as pull-backs of functions,
the tensor product is replaced by the product of functions and R1rsmall,! is

replaced by summation over the fibres of 1rsmall) by the same symbol. Then
for any cuspidal function f

the brackets (.,.) again denote scalar products.
We want to show that for all cuspidal functions f.

Using the Langlands correspondence for k  n, we know that the space
of cuspidal functions on Bunk is spanned by cuspidal Hecke eigen-
functions f E’ corresponding to local systems E’ of dimension with at
most unipotent ramification at ,S’ and their images under the action of
the Iwahori-Hecke algebra (note that for unramified local systems E’ on C



2313

these functions do not have an eigenfunction property for the Iwahori-Hecke
algebra). Furthermore, since  n, we know that these fE, are the traces
of irreducible perverse sheaves AE, on for some S’ C S. For this

argument we need that n  3 , because for k &#x3E; 3 we have not given a
construction for representations with reducible unipotent monodromy.

To prove the second step it is therefore sufficient to show:

1) For all irreducible local systems E’ on C - 8’ with indecomposable
unipotent ramification at S’ C S’ we have

for

where is the map forgetting the parabolic
structure at 5’ 2013 5’ and AE is the automorphic Hecke-eigensheaf already
constructed for k  n.

2) Any element of the Iwahori-Hecke algebra commutes with the
operator HE,tot on the level of functions.

We need another Hecke-operator As before set i := (i, ... , i).

Note that in the above we may assume that we are concerned with k-step
parabolic structures since the image of quot is contained in the image of

(k-step parabolic sheaves) C (n-step parabolic sheaves). Thus to prove the
first claim we have to show:

PROPOSITION 7.3. - Let E’ a local system of rank k  n, possibly
with unipotent ramification at S’ C S, and let AE, be a Hecke eigensheaf
for E’ on Then

More precisely,

for all i.
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Proof. - The first statement follows from the second, as in the proof
of Deligne’s Lemma in [8]: one has H° (C, j* ( E Q9 E’)) = 0, because E
is irreducible and not isomorphic to any subquotient of E’. By Poincar6
duality therefore Q9 E’) ) = 0 and thus

by the formula for the Euler characteristic of Grothendieck-Ogg-Shafarevich
(see [ 17], Exp. X, 7 .1 ) .

Furthermore we can apply the symmetric Kfnneth formula (see [2],
Exp. XVII, 5.5.21) and - because h° = h2 = 0 - we get that

for 1

We are left with proving the second statement.

Reduction to the case i = 1. - Consider the resolution

Note that

for any complex K on Bun4, Further, by Lemma 4.10 the sheaf

carries an ,S’2-action and

Therefore the projection formula implies that the complex

carries an Si action as well and that

Thus putting we are reduced to prove:
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LEMMA 7.4. - With the notation of Proposition 7.3 vve have

Proof. In the proof we will denote sheaves with parabolic structure
at S by £8S, and sheaves with parabolic structure at 8’ will be denoted £S’
to distinguish the two sets of data. We have a morphism of the Hecke
correspondences for S- and S’-parabolic sheaves:

The right hand square induces a map to the fibre product:

Denote by prl, pr2 the projections from this fibre product to its factors,
and let quot, quot’ be the quotient maps from the Hecke correspondence
to Coh I, and Coh6,sl respectively. We can apply the projection formula to
rewrite 

The calculation of can be reduced to a calculation for

torsion sheaves as follows. We have a map:

where

This gives rise to the cartesian diagram

where By the base

change formula it will be sufficient to calculate:
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LEMMA 7.5. - One has

where by abuse of notation we denoted by £~ the middle extensions of E
on C - S to and Cohl

Proof. First, we want to show that the image of q is the open
substack of defined by the condition that the maps q;i,p are surjective
for 1  i and p E ~S’ - S’. By definition q maps into this substack and
we can easily describe the torsion sheaves in the image of q. Given a point

Locally at p C S - 8’ write

and

such that the cokernel we see that

where supp (T’’ ) = pi . And if pi = p there exists 0  io  1~ such that

By the structure of torsion sheaves of degree ek (Lemma 3.2) this shows
that the image of the map q exhausts the claimed substack. Denote by

and note that by the above this is almost an open embedding (i.e. the image
is an open substack isomorphic to the quotient of by a
trivial group action) . 

~ 

Further, note that the map pr?-,. is smooth, since it can be factored
into a generalized vector bundle over x and the projection
onto the second factor. Therefore is the middle extension of its

restriction to the subset where S. The map forgetT, is

projective because the fibres are closed in a product of projective spaces
and therefore R = R forgetT,.,, .

Combining the two remarks above we get a canonical morphism

and (note that )s-s’.* makes sense, because
is a sheaf (and not a complex) at points with support outside S).
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We have to prove that F is an isomorphism over the image of q.
First note that forgetT,, is an isomorphism over the open substack where

(S - ,S’’ ) , so the above sheaves are isomorphic on this
substack.

We are left to check that F is an isomorphism on the fibres over points
T’ with T ~°~p&#x3E; = I~p and p E S - S’. Since this problem is local on Coh o s
we may assume that (C, ,S’, S’’) _ (A~, 101, 0) and E = En (see Section 4.1).

We know that kp ~ C and we may factorize forgetT’-,
into the maps forgetting the choice of the subspaces T’~~Z~P~ C T(i,p) for
i &#x3E; k. Consider for example the map forgetting the choice of 
Its fibre is either a single point, if ~~-1’p(T~’~~-2’p&#x3E;) ~ 0, or it is isomorphic
to the projective space T(k- l,p))), where the kernel of 0(k,P) defines
a linear subspace of codimension 1. Thus we can apply the calculation 

(Lemma 4.4) to conclude that pry,. £~ restricted to this projective space
is the direct image (Rj* ) of its restriction to the the complement of the
kernel of 0(k,p). Thus the cohomology of this fibre is isomorphic to the fibre
of £~ at T’ for any choice of T’’ not contained in the linear subspace. By
induction we therefore get the claimed isomorphism. 0

Continuing the proof of Lemma 7.4 we can factor pr2 as

and apply the projection formula again:

To finish the proof of the vanishing Theorem 7.1 we have to show that
the operator HE,tot commutes with all other Hecke operators (at least on
the level of functions).
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Fix a parabolic torsion sheaf T~’ and define the Hecke operator HT. as
the sum over all Hecke operators corresponding to torsion sheaves contained
in the closure of T’ , i.e. let (T*) C be the closure of the substack

classifying parabolic torsion sheaves which are locally isomorphic to T~’ .

And define the stack

As before this provides a Hecke operator

By induction on the codimension of (T’ ~ C it is sufficient

to prove that HE,tot commutes with HT, for all Y8.
We may apply the reduction of Proposition 7.3 to reduce ourselves to

prove this for the operator H’

LEMMA 7.6. - For any we have

Proof. We may assume that SUpp(T8) == p for a single point p E S,
since every torsion sheaf is the direct sum of sheaves supported at a single
point and for p 0 ,S’ the lemma is easy to prove (and we do not use it in
this case).

As in Lemma 7.4 the claim is easily reduced to the following lemma
formulated on the stack of parabolic torsion sheaves (apply the projection
formula once more): denote by

Further, denote by prr,,., pr~. the projections and by prc the projection
to the curve C defined by the support of T’’ .

Let FlagrD,l be the stack defined as above with the roles of T’
and T" interchanged, i.e. T~~~’ E Coh" and ?r’’ E (T’), and denote its
projections by rp~. , etc.
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LEMMA 7.7. - We have a canonical isomorphism of complexes

Proof. - This is similar to the proof of Lemma 7.5: over the open
substack of where the support of the torsion sheaf is not

equal to supp(T’) - p the stacks Flagl,T. and FlagT.,1 are isomorphic,
because there are no extensions between sheaves supported at different
points. Therefore the claimed isomorphism exists over this subset. To
extend it, we again reduce to the case (C, S) = (AI, f 01) and note that
the maps pr~. , rpQ. are projective and the map prT,. (resp. can be

factored as

The first map is a generalized vector bundle, and the second one is the
projection of a product, therefore both maps are locally acyclic. Hence we
can use the exact triangle

of Proposition 4.1 once more. If we replace by j, then the

statement of the lemma is obvious. Further, if we replace by 
then the lemma follows from the Leray spectral sequence, because we
just saw that Rj* commutes with pr~-,. (and and we may

replace (R pr~, x pre)’ by (R pr~. x pre)* because this map is projective.
Therefore the lemma follows for as well. 0

8. The vanishing theorem implies that

With the notations of the fundamental diagram (2.2) of Section 2 we
have:

PROPOSITION 8.1. - Assume that the vanishing theorem 7.1 holds

for k  n. Then for k  n and d &#x3E; &#x3E; 0 we have jHom, ! F~ = jHom , j* F~ and
thus for k  n we have Fk - F~.

Since we have shown the vanishing theorem for local systems of
rank  3, we get in particular:
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COROLLARY 8.2. - For k  n  3 the sheaves F kI are

isomorphic. 0

Proof of Proposition 8.1. - The Hecke-property of allows us

to copy the proof in [11] with some minor changes. We use induction,
and assume that the proposition is true for all k’  I~ thus, in parti-
cular 

. Step 1. - The claim is true over the substack of parabolic vector
bundles. Here every nontrivial homomorphism from S2’ into a vector
bundle is injective, that is

Homt = Homk - (zero-section) over 

Furthermore is Gm-invariant, since the Fourier transform

preserves this property by [21], Proposition 1.2.3.4. Therefore we
can apply Lemma 0.3 and get

where is the projection.

Recall from Formula ( 5 .1 ) , that we can calculate = with the

following diagram:

Where dk - d = and we know that F~ = R forget, (ext* Lp 0
Therefore

and the vanishing theorem 7.1 implies that

for d » 0.
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. Step 2: ind uction on the length of the torsion of F8. - Recall that
in Section 6 we introduced for any r = (ri,p)

the stack of parabolic sheaves such that the length of the torsion
of the coherent sheaves is bounded by r2,p. And by induction
we need to compare jHom, ! FE and RjHom,* FE above the points of
this stack, where the parabolic sheaf is good and the length of the
torsion is exactly r. Furthermore, note that the torsion free part of
a good sheaf is good as well.

It is sufficient to prove the proposition after a smooth base change.
To get a map to torsion free parabolic sheaves (we want to apply the
vanishing theorem again) we use the stack

From Remark 6.3 we know that the forgetful map
is smooth. And the map

is a vector bundle, since depends only on the degree
of Y8 and on the rank and the degree of ~’ by Lemma 3.5. Furthermore,
over any point of we have = 0 (by assumption

therefore the dimension of £8) is constant,
so ~’ ) is a vector bundle over this stack.

Consider the base change HOMK of HOMK to
define

and analogously

By the above, the map
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is also vector bundle, because it is the composition of the map induced

by composing p o s, which has fibres £8), and quot. The zero
section

of this bundle is the substack (8)

= r and

and this is by induction hypothesis the substack to which we have to
extend F#. Thus, denote
to show that

and again we have

Since this can be checked fibre wise, we fix a point

-- i n j
and denote by the fibre of Hom Jk over this point.

t&#x3E; Step 2.1: reduction to the case - T is surjective.

Factor denote

and set Then for any
in Fibre we get an extension Consider

the Hecke operator for

We know by Proposition 6.2 that is a Hecke eigensheaf and that

Thus, in case that r" is not constant, we can establish our claim that

(8) Note that, if there is a splitting of JF* -~ T’, then there is a unique one, since
is a subsheaf of T*.
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since the above Hecke operator is zero by 6.1.

If on the other hand r" is constant, we know that it is sufficient to

prove the claim for This has already been done in the
case that T’ # TB Therefore we may assume that = T’’ = TB

&#x3E; Step 2.2. Assume that ~ T* is surjective, i.e. T" ~---

for some effective parabolic divisor D. 
’

In this case, giving an element ~ F*) E is

the same as to give a map £8, because we can define a map

And indeed for any square

we automatically get that

Thus we get an isomorphism

Furthermore under this isomorphism becomes the sheaf on

constructed in the same way as F§, by replacing 
by f~~"~(2013D). More precisely, since

we have again
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Here ext’ is the composition

and therefore

But here we can apply the vanishing theorem again, because
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