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SOLUTIONS IN THE LARGE FOR MULTI-DIMENSIONAL,
NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS

OF FIRST ORDER 0
by Avron DOUGLIS

Non-linear first order partial differential equations have
solutions in the strict, classical sense only in naturally limited
domains, differentiability necessarily failing wherever charac-
teristic curves may happen to collide. Under appropriate
hypotheses, strict solutions, however, have unique absolutely
continuous extensions satisfying their differential equations
at almost all points of a half-space. These absolutely conti-
nuous extensions are analogous to the solutions with « shocks »
possessed by quasi-linear equations. To study them, it is
thus reasonable to turn to shock theory, which suggests at
least four approaches to initial value problems. The most
traditional of these approaches applies only to solutions that
are piecewise smooth and requires an exact accounting of
the regions within which the emerging solution admits conti-
nuous differentiation. If the boundaries of these regions twist
and tangle, this method, however, soon would fail. A second
approach consists in moderating, or smoothing, the solution
by introducing into the given differential equation a new
expression representative of «artificial viscosity» prefixed
by a parameter £; the moderated solutions then must be shown
to have a limit, as £ ->• 0, that satisfies the original differential
equation. Finite difference approximations form the basis of
a third possible approach, and mixed difference-differential
schemes the basis of a fourth. The second, third, and fourth

(1) This research was supported by the National Science Foundation under
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2 AVRON DOUGLIS

approaches all have been successfully used to obtain solutions
under quite general conditions in two dimensions; see [4],
[6], [2]. To attack the multi-dimensional case, we have chosen
to follow the fourth approach, adapting a difference-differential
scheme used in [1] (2).

The non-linear equations here considered are required to
fulfill a certain condition of definiteness; admitted solutions
must conform to a functional restriction generalizing the
« entropy condition » of two-dimensional theory. The solutions
constructed are of the admitted type, and all such solutions
are shown to depend uniquely and continuously upon their
initial data.

The author gratefully acknowledges some improvements
suggested by Louis Nirenberg.

1. Statement of problem. Definition of solution.

The differential equations considered are those of the form

(1.1) u, + FQr, t, u, grad u) = 0,

where u< == buf^f, grad u denotes the vector with the compo-
nents u^r = ̂ /Onf, r == 1, . . ., n, and F(x, t, u, p) is a func-
tion continuous for ( ̂  0, all values of u, all points

x === [x , . . ., x ),

and all vectors p = (pi, . . ., ?„), and of class C2 with respect
to all arguments except possibly (. Partial derivatives of F
presently to be referred to are written symbolically as follows :

F, = ^F/5p,, F, == ^F/<m, F^ = ^F/6of,
F,, = ̂ F/^p,, F,,, = ̂ F/ap,bu, F,^s = ^F/̂ p,̂

(r ,5 = 1, . .., n).

(2) Since this paper was submitted, other work on multi-dimensional problems
has appeared : S. N. Kruzhkov, The Cauchy Problem in the large for non-linear
equations and for certain quasilinear systems of the first order with several variables,
Soviet Math. 5 (1964), 493-496; E. D. Conway and E. Hopf, Hamilton's theory and
generalized solutions of the Hamilton-Jacob! equation, J . Math. Mech. 13 (1964),
939-986; E. Hopf, Generalized solutions of non-linear equations of first order, as
yet unpublished. Kruzhkov used artificial viscosity, Conway and Hopf an approach
through the calculus of variations, and Hopf in his more recent, as yet unpublished,
article, a new generalization of the method of envelopes.
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The matrix (Frs) always will be assumed to be positive
in either of the following senses :

(io) Let T > 0. For 0 < t < T, all x, u, p, and all (real)
AI, Ag, . . . , X^,

(1.20) 5 F,(^, <, u, p)X^ > 0.
r,5==l

(1*1) Let T > 0. A constant a > 0 exists such that, for
0 <; (<: T, all x, u, p, and all Xi, Xg, ..., X^,

(1.21) S F,(a;, t, u, p)X^ > a|X|2,
r,5==l

where |X] = (^ + • . . + X^2.
Further assumptions, when needed, will be stated below.
The solutions of 1.1 considered are functions u, defined

(except in Theorem 3.3) in the half-space

S: (>0, —oc^ri^oo, r = = l , . . . , n ,

and uniformly Lipschitz-continuous in any layer

ST: 0 < ( < T , — o o < ^ < o o , r = l , . . . , n ,

that satisfy 1.1 at almost all points of S. (In Theorem 3.3,
a suitable layer ST takes the place of S.)

Ordinarily, u also will be subjected to an initial condition
of the form

(1.3) u{x, 0) = f{x).

In all our problems, the solution u additionally will be
required to have the property of being « semi-concave »
described below.

A function f(x) is called « semi-concave with constant k »
if, for any point x = {x^ . . ., x^) and any vector

V == (2/15 • • •, Vn)
of length denoted by |z/|, the inequality

/^ + y) + f{^ - y) - W < W
holds. Any solution u{x^ t) we consider will be required, for
each positive (, to be semi-concave with a constant of the
form k = A/( 4- B, where A and B are non-negative numbers.
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A unique semi-concave solution of 1.1 and 1.3 under sui-
table hypotheses always will exist (Theorems 2.1 and 3.1
to 3.3) but uniqueness may fail when solutions are admitted
that are not semi-concave. This failure of uniqueness is
illustrated in the following example, adapted from one well-
known in the theory of conservation laws (cf. Lax [3], p. 23),,
concerned with the initial value problem

u, + (l/2)(uS + î ) = 0 for t>0
u{x, y, 0) = 0 for x < 0

= x for x ̂  0.

Two solutions are offered, namely,
^i{x, y, t) = 0 tor x < 0

= x2!^ for 0 < x < t if (> 0
= x — t/2 for x > (

and
^s(^ y , t ) = 0 for x < </2

= x—tl2 for a; > t/2,

the latter, however, not semi-concave.

2. The unique, continuous determination of solutions
by their initial data. Compactness of solutions.

For any solution u(rc, () considered, let U and P be constants
such that |uj <; U and \u^r\ <; P in ST for r === 1, ..., n.
Than define

K - sup (2.(F,(^, (, u, p))^,

the supremum being taken for |u| ̂  U, \ps\ ̂  P {s = 1, . .., n),
0 -^ (<^ T, all x, and r == 1, . . ., n. K is a bound in ST for the
absolute magnitude of the characteristic slope, the vector
{dx,ldt) = (F,(o;, (, u, grad u)).

If K' ^> K, a semi-concave solution u(x^ t) of 1.1 will be
seen (Theorem 2.1) to be determined within any cone of the
form

„ . ((S^_^)2)i/2^K'(T—()
^ (0<(<T

by the values the solution assumes on its base. Anticipating
this, we call D^r? when K7 ̂  K, a « cone of determinacy »
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for the solution considered. A horizontal section with altitude
to of this cone is denoted by

g . ((S^-SW^K^T-to)
^o tT- (t=t,.

The denomination, « cone of determinacy », is justified
under stated hypotheses by the following fact:

THEOREM 2.1 (UNIQUENESS). — Supposing F to satisfy
Hypothesis 1*0, consider, in the sense described, two solutions
in S of 1.1, each semi-concave with constant Aft + B, A ̂  0,
B ̂  0. If the solutions coincide on the base of a common cone
of determinacy (defined as above), they then coincide within
the cone.

COROLLARY. — If the solutions are the same on the entire
initial plane t == 0, they are the same in the half-space S.

Remark 1. — The conclusion of the foregoing theorem is
still valid if the solutions exist, and the assumptions hold,
only in the cone discussed. Hence, if two problems satisfying
the hypotheses of Theorem 2.1 are the same in a common
cone of determinacy D, their solutions cannot be different
within D.

Remark 2. — If kr and Kr are constants such that
/c, < F,{x, t, u, p) < K,, r == 1, ..., n,

for |u |<U, |p|<P, 0 < ( < T , and all x, and if ^ are
arbitrary, we shall call the pyramid

K ^ — T ) < ^ — ^ < / c ^ — T ) r = l , . . . , n ,
a « pyramid of determinacy ». Theorems 2.1 and 2.2 and their
various consequences are valid for pyramids of determinacy
in place of cones of determinacy, a fact we shall later (Section 4)
apply when kr ̂  0.

Theorem 2.1 is a consequence of the next assertion implying
that the solutions of initial value problems depend conti-
nuously on their initial data :

THEOREM 2.2 (CONTINUOUS DEPENDENCE). — Suppose F
to satisfy Hypothesis iy. In the sense described, let u{x, t) and
v(x, t) be solutions of (1.1), each satisfying a uniform Lipschitz
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condition with respect to x and each semi-concave with respect
to x with a constant of the form A./t + B. Let D = D^ T be a
common « cone of determinacy » for u and v, B( == B? ^ T the
horizontal plane section of D of altitude t. In D, let U denote
a common upper bound for \u\ and \v\, let P be a common
Lipschitz constant for u and v^ and define

fo = max|F^, t, w, p)| for {x, t) in D, \w\ < U, |p| < P.

Then for 0 < ( < T,
^-U maxB( \u — v\

is a non-increasing function of t.
This theorem will be deduced from an integral inequality

for [ u — v \ in D involving some additional constants we
wish now to define. The new constants again depend solely
on bounds U and P, supposed to be known, such that
N < U, \v\ < U, |grad u\ < P, |grad v\ < P in D
and, like f^ are maxima of functions of x^ t, w, p over the
domain

{x, t) in D
®: H <U.

|P|<P.
Including /o? which here is repeated, they are :

fo = max^|F^, (, u,p)|
^ = max^ |2,F ,̂| + PS, max^ |F,, „!
L = max^ S^Frr.

The integral inequality referred to is stated in the following
lemma.

LEMMA. — Under the same assumptions as in Theorem 2.2,
for every even integer q,

-̂LA -̂(/,,+/,+LB)̂  ̂  __ ̂  ̂

is a non-increasing function of t in the interval 0 <^ t ̂  T.

Proof of Theorem 2.2 — For 0 <^ £ <i t <^ T, from the lemma
we have

^ (U —— ̂  ̂  < ((/£)LA^+/,+LB)(<-£)^ ^ __ ^^ ̂
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Raising both sides to the power ifq and letting q —> oo gives us
maxB( \u — p| <; ̂ -£) maxB, |u — ^|,

from which inequality and the continuity of u and v the
theorem is clear.

The proof of the lemma depends on the following fact:
Any uniformly Lipschitz-continuous, semi-concave function
can be uniformly approximated by a sequence of infinitely
differentiable functions also semi-concave with the same con-
stant. The approximating functions additionally can be requi-
red to have the same absolute bound and the same Lipschitz
constant as the original and to be such that their gradients tend
to the gradient of the original function almost everywhere.
They are obtainable, for instance, by convolving the original
function with Friedrichs5 « mollifying » kernels.

Proof of Lemma. — Since

Ut + F(^? t, u, grad u) ==0, ^ + F(^? t, ^, grad v) == 0

almost everywhere in D, the difference w == u — v satisfies
the differential equation

w, + Gw + SA^s - 0
almost everywhere in D, where
G = G(rc, (, u, ^)

==^ Fu(^, ^ v-\-y{u—v}, grad v + y(grad u—grad^))d!y,
G/== G,{x, t, u, ^)

= Jo ¥s^7 (? v ~*~ ^u—^? grad ^+?/(gradu—grad ^))rft/.
Hence, for

(2.1) W^e-^,
where q is an arbitrary even integer and c any positive con-
stant, we have

(2.2) W, + SAW,. + (qG + c)W = 0
at almost all points of D. Eventually, we shall specify

(2.3) c=f,q+f^

Let u\x, t) and ^(x, t) be semi-concave functions of class Cg



0 AVRON DOUGLIS

with respect to x in D with the same absolute bound U,
Lipschitz constant P, and semi-concavity constant A/( 4- B,'
as u and p. We symbolize the derivatives of these functions as
u^ == ̂ 7^, u'^ = ̂ u^x' ̂ , etc., and we set

G; == G,(a;, t, u', p'), s == 1, . . . , n.

Equation (2.2) can be written as

W< + S,G;W,. = S,(G: - G,)W,« - {qG + c)W
and, hence, as

(2.4) W. + S,(G;W),. = 2,(G: - G,)W,.
-(?G+c)W+W2,(G;),..

We shall prove the coefficient in the last term on the right
to be of the form

(2.5) S,(G;),. == H + J,
where

(2.6) |H|</,, J<L(A/(+B).
To this end, we set

H = H, + S,(J,u; + K^;), J = S^(J,u« + K^;,),
where

Hi =^1^F^.(^ t, ^ + y(u' — ,/),
grad ^ + y (grad u' — grad p')) rfy,J- -r^^ K- -x1^ - ̂ F^ ̂

J. -^2/F. ̂ , K, =f^ (1 - y)F, rfy,

the arguments of the derivative of F in each integrand being
the same as in the first. The equality (2.5) and the inequality
stipulated for H are obviously valid.

To prove the inequality respecting J, we note first that,
since u' is twice continuously differentiable, being semi-
concave with constant k = k{t) = A/( + B, it must satisfy
the following differential condition: For any constants
Oi, . . . , a^ such that 2»a2 = 1,

(SA<^M)Y < k.
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Hence, for any real numbers Xi, ..., 5^,

(S^u, — ̂ )V. < 0.

This is to say that the matrix U = (U^) == (u^ — kSrs) is
non-positive.

Because of Hypothesis 1*0, the matrices (J,.,) and (Kr,) are
non-negative.

The two sums comprising J are of the same form, and it
suffices to consider the first. Letting M == (J^) denote the
matrix of coefficients in this sum, we rewrite the latter as

2^4 == S^J,(u;, - ̂ ) + k^ == S,.,J,U, + /c2U,
= tr(MU) + /cS,J,,,

tr (MU) signifying the trace of the matrix MU. Since the
product of a symmetric non-positive and a symmetric non-
negative matrix is non-positive, the stated inequality
respecting J immediately follows. (The trace of a product
of matrices is independent of their order. Hence, M and U
being symmetric, each may be replaced in calculating tr(MU)
by the diagonal matrix to which it is similar).

We now integrate the members of equation (2.4) over Dj,
the frustum of D intercepted between Bg and B^, with

0 < £ < T < T.

Designating the sloping part of the boundary of D^ by E]
and the element of area and unit outward normal at a point
of Ej by dS and (vi, ..., v^, v<), respectively, we obtain

^W dx -^W dx +^W(v, + W^) dS

=f^W-G^dxdt

^f^{H—qG—c)'Wdxdt+J^J^dxdt.

On EJ, however, ^ + 2,G^ > 0, and H — qG — c < 0
by 2.3$ these facts and (2.6), W not being negative, show that

f^ W dx <^ W dx + Lf^ {Aft + B)W dx dt

+f^W—G,)W^dxdt.
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This relation is to be applied with a succession of choices
of u' and v ' approximating u and ^, respectively, such that
grad u' and grad ^' tend to grad u and grad (^, respectively,
at almost all points of D. (It is also required that |u'|, |^'| <; U
and |grad u'|, |grad v\ <; P.) The last integral on the right
will tend to zero as the approximation is made more exact,
and we conclude that

f W dx < ( W dx + L /\ (A/( + B)W dx dt.

This result, in terms of

Z(() = f W dx,
^^t

can be written as

Z(r) < Z(£) + Lf^ (Alt + B) Z(() dt.

Z is majorized by z{t) = ((/£)LAeLB<<-£)Z(£), i.e.,

(2.7) Z(() < z(() for £ < (< T,

since z{t) is the solution of the integral relation

^(^Z^+L^A^+B)^)^.

Inequality (2.7), however, in view of the arbitrariness of (
and £, is equivalent to the property asserted in the lemma to
be proved.

Later to lessen the restrictions under which solutions of 1.1
are proved to exist, we shall refer to the result below. In stating
this result, it is convenient to designate by a symbol

3(U, P, A, B)

the set of functions v(x, t) satisfying equation (1.1) at almost
every point of ST and subject to the inequalities

(2.8a) |(^(a;,()|<U (0 < ( < T)
(2.86) \v{x,t)—v(x',t)\^P\x—x'\ (0<(<T)
(2.8c)

v{x+y, t) + ̂ (x—y, t)—2^x, ()<(A/(+B)|y|2 (0 < ( < T),

in which U, P, A, and B are uniform constants.
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THEOREM 2.3 (THE COMPACTNESS OF SOLUTIONS). ——

3(U, P, A, B) is compact in the topology of locally uniform
convergence. This is to say that any in finite subset of 3 (U, P, A, B)
contains a sequence of functions converging uniformly on any
compact subset of ST to a limit that again is a member of
3 ( U , P , A , B ) .

In proving this theorem, we need a property of monotonic
functions stated as follows :

LEMMA. — Let /fc(X), k === 1, 2, . . ., be a sequence of Lipschitz-
continuous functions defined on the real axis with uniformly
bounded, monotonic derivatives existing on a subset Ao of the
real axis whose complement has measure zero. Suppose the limit

f(\)=\imW
fc>»

exists uniformly in any compact interval. Then the first deri-
vative jf'(X) exists at almost every point of the 7^-axis, /''(X) is
monotonic, and, at every point Xo of Ao at which f exists,

f'{^)=limf'M.
k>°°

Proof. — By Helly's theorem, a subsequence (/^) of the
sequence (//c) can be selected such that the f^ are monotonic
in the same sense and the limit

g(X)=lim^(X)
fc'>°o

exists for XsAo. Let us extend g, which is monotonic on Ao,
monotonically to the entire real axis. Now consider the
identities

W-M^+f^fW^.
Letting k' -> oo proves

fW = fW +f^gW ̂
It follows that f exists and equals g at each value X at which g
is continuous and, since the only discontinuities of g are
jumps, that /*' fails to exist at the points at which g is not
continuous.

Hence,
lim^(X)=f(X)
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at each point of Ao at which f exists. Therefore,

lim^(X)=f(X)

at each point of Ao at which /*' exists, as asserted.
We call a function A(X) semi-decreasing with constant C

if, for X =^ pi,
fe(X) — hW

-\ ^ Ll-X — — ( X

It the functions of a sequence, /^(X), A- === 1, 2, . . . , are semi-
decreasing with the same constant C, we say they are uniformly
semi-decreasing. « Semi-increasing », « uniformly semi-increa-
sing », « semi-monotonic », etc..., are analogously defined. It
h(X) is, for instance, semi-decreasing with constant C, A(X)—CX
is monotonic decreasing. Hence, the previous lemma applies
if the fk are not monotonic, but uniformly semi-increasing
or semi-decreasing.

Proof of Theorem 2.3. — In any infinite subset of

3(U ,P ,A ,B) ,
Arzela^s theorem assures us of the existence of a sequence
Uj{x, (), / == 1, 2, . . ., converging uniformly on any compact
subset of ST. The limit of the sequence, which we denote
by u{x, (), automatically satisfies the three inequalities (2.8),
and it follows from (2.8c), in particular, that u^x, t), for
( > 0, is semi-decreasing with respect to of. We prove this
in the case r = 1. Set x == (a;1, Si)? where Si == (^2? • • • ? ^n),
and define

WA(^)=Wh(rr1, ̂  t) == h^{u{x1 + A, Si, t) — u(^, ^, ())

for h =/=• 0. Condition (2.8c) implies that

h^(w^x1 + h) — w,{x1)) < C,

where C == A/( + B, and thus that, if (a — ?)//i is an integer,

^(a) — ^(^) ̂ ^
a — ? "- •

With ( and ^i fixed, choose a and (i as such values that the
derivative u^(x1, Si, () exists for re1 = a and x1 = ?. Then let h
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in the previous inequality tend to zero. The result, namely

^(^ ^i, t) — ^(3, ^i, ^) ^ ^
0 ^5? '-'?a — p " '

states that u^< is semi-decreasing, as asserted. For the same
reasons, u^r and Uy^r, / == 1, 2, .. ., also are semi-decreasing
with respect to af, r = 1, . . ., TZ, with uniform constant
Aft + B.

Hence, by the foregoing lemma,

lim, u^ a.r == u^r

at each point at which u^r and the Uj^r exist.
Let S' denote the set of points XQ such that the derivatives

Ua:r(xQ, t) and u^r(a;o, () for / = 1, 2, . . . exist, and the equa-
tions

u^ + ̂ o? ^ Uj{xo, (), grad Uy(o;o, ^) == 0

are satisfied, for almost every value of ( in the interval (0, T).
The complement of S' in a;-space is a set of measure zero.
For XQ in S', 0 -^ t ̂  T, we have by integration

^o, t) == T(^o) —^ F(a;o, t\ u^, ('), grad u,(a;o, t')) dt\

Letting / -> oo gives us

u(a;o, ^)=y(^o)—y^F(^o, ^, u(a;o, <'), grad u{x^ t ' ) ) dt'

and, consequently,

/ t(^+ F)d( '==0 .

Because u is Lipschitz-continuous, u< and grad u are already
known to be measurable in ST. Hence, we now readily deduce
that 1.1 holds at almost all points of ST and, thus, that u
belongs to 3(U, P, A, B), as asserted.

3. Main results on the existence of solutions.

When one attempts to construct the solution of 1.1, 1.3,
the behavior of ¥(x, t, u, p), F^{x, t, u, p), and the ¥^{x, t, u, p)
for large values of \u\ and |p| becomes critical. Three alterna-
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tive sets of assumptions concerning this type of behavior
are given here under which the solution of an arbitrary initial
value problem is proved to exist. The simplest of the alterna-
tive sets of assumptions is as follows:

(11)1 F ̂  F((, p) is independent of x and u.
This is a special case of the second alternative, which is

an n-dimensional generalization of a condition first suggested
by Vvedenskaya [7] in the case n = 1:

(u'a) Let T be any positive number. For p .̂ 0, a positive,
non-decreasing function V(p), subject to the condition

o i) r A-=
( ) 1 V(p)

oo for c ̂  0,

exists such that

|F^(rr, (, u, p) + p.F^x, t, u, p)\ < V(p), s == 1, . . . , n,

in the domain

(3.2) 0<(<T, |p|<p, — oo <u< oo, \x\ < oo.

Furthermore,

K(p) == sup (2,(F,(rr, (, u, p))2)^2 < oo,

the supremum being that for the domain (3.2).
It is possible to relax the stringent assumptions above

concerning the behavior, for large values of |u|, of F and its
partial derivatives. This is done, for instance, in the following
hypothesis, which, however, is rather extreme and leads to
a solution (Theorem 3.3) not necessarily defined in the half-
space S, but possibly merely in a suitable layer ST. (Assump-
tions of intermediate strength between ii^ and 11*3 can be
given under which the solutions would be defined in all S.)
Like its predecessors, the new hypothesis still pertains to
solutions permitted to have discontinuous first derivatives.

113) a) When t, u, p are held to any finite domains, the
functions

F F F r F r — 1 n1 ? 1 u? 1 a;'̂ ? 1 r? ' — ±, . . . , U,

are bounded uniformly with respect to x.
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b) The initial data are uniformly bounded :

l?(^)l < ?0,

where <po ls a constant.
The theorems below, under varying hypotheses, affirm the

existence of a solution of (1.1), (1.3) in S or a layer ST, the
first two theorems also containing estimates for the solution
of its constants of Lipschitz continuity and semi-concavity,
denoted in such a layer by M(T) and /c(T), respectively. The
initial values y of the solution always are taken to be Lipschitz
continuous with Lipschitz constant Mo.

THEOREM 3.1. — Under hypotheses i^ and ii^y a unique solu-
tion of 1.1, 1.3 exists in S with M(t) == Mo and k(t) == 2/a(.

THEOREM 3.2. — Under hypotheses i\ and Ug? a unique solu-
tion of 1.1, 1.3 exists in S with M{t) ̂  P, where P is determined
by the relation

f^w=t.
Furthermore, k(t) ̂  4/a( + B, where, in any internal 0 ̂  t <^ T,
B can be regarded as a constant depending on T.

THEOREM 3.3. — Under hypotheses i'i and 113, a unique solu-
tion of (1.1), (1.3) exists in a suitable layer ST.

4. Preliminaries in the existence problem.

An initial value problem is solvable in the half-space S
if solvable in any layer S-r, T > 0; it is solvable in ST if sol-
vable in cones of determinacy within ST with arbitrary axis.
The values of the solution within a given cone of determinacy,
moreover, are unresponsive to alterations made outside the
cone in F and o (Theorem 2.1), while such alterations may
appreciably simplify the problem. Alterations in F and <p sui-
table for our difference-differential scheme below are the
main subject of this section. (These alterations probably
could be dispensed with in an existence proof based on an
explicit finite difference scheme, but other details of the
proof then would be troublesome.)
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Our ability to modify the problem at pleasure in the inten-
ded way depends on our foreknowledge of cones of deter-
minacy of arbitrary axis x = \ and arbitrary altitude T and
thus on our foreknowledge of K (Section 2) within ST. K
depends on an absolute bound P for the gradient of the
eventual solution and, in the case of the third hypothesis,
also on an absolute bound U for the solution itself. We now
give, for arbitrary T, determinations of P that will prove
to be valid in ST under Hypothesis ii^ or u'a. Under Hypothesis
11*3, we give, for arbitrary, sufficiently large P and U, such T
that the P and U selected hold as bounds in ST. The correctness
of all these determinations will be proved in Section 6. Then
it will be clear that the cones of determinacy are indeed
those that correspond in slope to the K calculated from these
determinations of P or of P and U. We shall anticipate this
fact in later considerations of this section.

Under Hypothesis u\: Select any T > 0. Take P = Mo.
Under Hypothesis iig: Fixing T > 0 arbitrarily, determine

P such that
X>/V(P)-T.

Under Hypothesis 113: Select U > 90, P* > Mo, and To > 0.
Let V(p) be a positive, non-decreasing function of its non-
negative variable p such that

|F,r(o:, (, u, p) + p,F ,̂ (, u, p)| < V(p), r == 1, . . . , 7i,

when 0 < ( < To, |u| < U, and |p| < p. With U' > U,
P' > P*, let Qo be a constant such that

|F(^,u,p)|<Qo

for all x, 0 < t < To, H < U', |p| < P'. With T^ == f rfpMp),
define T == min (To, Ti, (U — 9o)/Qo) and then determine P
by the condition

J^p/V(p)=T.

As a further preliminary, choosing Uo > U and Po > P,
we normalize F by requiring

(4.1) F,(a;, (, u, p) > 0



SOLUTIONS IN THE LARGE 17

for all x, 0 < (< T, \p\ < Po, \u\ < Uo. (Now and later, the
restriction |u| <; Uo is to be disregarded when u\ or u'g is
valid.) To accomplish this normalization, let Ko denote the
value of K (Section 2) corresponding to the indicated T and to
the values Uo and Po in place of U and P, respectively, and
make the linear change of variables

'̂r == af -4- Ko<, r == 1, .. ., n,
(' ==(.

Equation (1.1) then becomes

uy + ¥o{x, t, u, grad' u) = 0,

where grad' u denotes the vector with the components u^,

r = 1, ..., n, and Fo(o;, (, u, p) = ¥{x, t, u, p) + Ko2,p,.

Condition (4.1) is verified for Fo in place of F, and we now
simply drop primes.

Making the hypotheses of Theorem 2.1, and working in
the original variables, at this point we select a cone of deter-
minacy (or, rather, an eventual cone of determinacy) D^r
in which we desire to know the solution of the given problem.
Provided D^r stays a cone of determinacy, changing F and y
outside this cone will not change the values of the solution
inside it (this is by Remark 1 after Theorem 2.1), and the
same considerations obviously apply to the image D of D^r
under the linear change of variables above. Thus justified,
adjustments outside D now are made with the object of
having (p{x) == y' == constant and ¥{x, t, 9', p) = function of
p only for x1' ̂  a7', r = 1, ..., n, the ^r here being the variables
in which 4.1 holds and the o^ suitable constants. The o^
next are made zero by a translation. The original conditions
(1.1) and (1.3) herewith are reduced to conditions of the same
type for which, however,

(4.2) F(a;, t, 9', p) = function only of p when any
^ < 0 ( r = l , . . . ,n) , 0 < < < T , |p|<Po,

and

(4.3) <F(a?) == y' when any of ̂  0, r = 1, . . . , n,

where 9' is a constant.
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If the new problem has a solution u(x, t) in S-r, then by
Remark 2 after Theorem 2.1

(4.4) u{x^ t) = 9', when any x^ <^ 0, r == 1, . . . , M,

and
0 < < < T.

This can be regarded as a boundary condition added to
(1.1) and (1.3).

5. A difference-differential scheme for a problem of modified type.
Some convergence theorems stated.

The foregoing considerations show that, in proving Theorems
3.1 to 3.3 on the existence of solutions, it suffices to consider
problems with the special features described in Section 4.
Hence, only such problems from now on will be discussed.
Our fundamental result as to the existence of solutions, which
implies Theorems 3.1 to 3.3, as noted, is as follows :

THEOREM 5.1 (EXISTENCE). —Let^{x) be Lipschitz-continuous
with Lipschitz constant Mo and be equal to a constant outside
the first « octant »:

(5.1) y (x) = 9' when any x1' <; 0,
r = 1, . . ., n (9' = constant).

Let F satisfy Hypothesis 1*1. Assume one of the three hypotheses
ill to ii^ to hold and constants T, P and V to be selected or deter-
mined as indicated in Section 3. With Po > P, Uo > U, F also
is required to satisfy the additional conditions

(5.2) F(rc, (, 9', p) == function only of p when any
^<0 {r= 1, . . . , M ) , 0 < ( < T , |p| <Po,

and
(5.3) F,(.r, (, u, p) > 0

for 0 ̂  t ̂  T, \p\ ̂  Po, and, in the case of Hypothesis 11*3,
\u\ <^ Uo. Then a Lipschitz continuous function u(x, (), semi-
concave for 0 < t ̂  T, exists satisfying the partial differential
equation 1.1 at almost all points of ST and satisfying the initial
condition (1.3) and the boundary condition (4.4). The Lipschitz
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constant for u in ST does not exceed P. A number B independent
of <p exists such that 4/a( + B is a constant of semi-concavity
of u{x, t) on any horizontal plane in the layer 0 < T <: T. Under
Hypothesis ii^ 2 fat is a constant of semi-concavity on any
horizontal plane in the half-space t > 0.

Our proof of Theorem 5.1, which is presented at the end of
the section, is based on a difference-differential scheme we
now describe.

With any multi-index i == (i\, . . ., ij and scalar A, let

(5.4) hi=(hi^ ...,/^);

for h > 0, let E'1 denote the lattice consisting of all the points
(5.4) with i, == 0, ± 1, ± 2, . . . , / = 1, . . ., n. The functions
f(x) on this lattice are subject to operations of translation
and difference quotient formation defined by

T^EEET!1/^, ..., ̂ )EEE/^,..., ̂ -i, ̂ + h, x^\ ..., ̂ ),
T7Y(^)=(T?)-W,.. .,^)=/^, .. .^-^-A, x^\ .. .,^),

and
^^/^(l—T;-1).

For any /i > 0, we shall seek to approximate the solution
u{x, t) of our problem by a function ^(rr, () defined for x
on E'4 and for 0 ̂  (<; T. The first derivatives u^r are to be
approximated by S? .̂ When h is fixed, we set ^ == hi and,
for brevity,

^ = ̂ t) = v\x^ t)
T^ = T (̂n,, (),

etc. We also use S^- or S -̂ to refer to the vector (§1^1, . . ., Sn^i),
a presumed approximation to grad u.

The function ^(a;, t) is defined by three conditions, the
boundary condition,

(5.5) Vi{t) = 9' when any of the indices ii, ..., ^ is
zero or negative,

the initial condition,

(5.6) ^,(0) = ^{x,) for all i,

and the recursive differential conditions,

(5.7) ^ + F(^., (, .̂, S^) = 0 for all i.
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We shall prove that, for a suitable sequence of mesh widths
hf, tending to zero, the v^x, t) defined by this scheme converge
continuously (see Section 7), as k—> oo, to a solution v[x, t)
of (1.1) and (1.3). Unless 9 is semi-concave, we do not prove,
however, that v is semi-concave. Theorem 5.1 thus is obtained
only after further argument, which is given below, the direct
outcome of the difference-differential scheme alone being
as follows :

THEOREM 5.2 (CONVERGENCE). — Under the hypotheses of
Theorem 5.1, a sequence h^, k •== 1, 2, . . ., of positive numbers
tending to zero exists such that the v^x, t) converge continuously,
as k->oo, to a Lipschitz-continuous function v(x, (). The
limit function v{x, t) satisfies 1.1 at almost all points of ST
and satisfies the initial condition (1.3) and the boundary condi-
tion (4.4). With A,. defined for r = 1, . . ., n by the condition

A,/'(^, . . ., X71) = h^(f{x1, . . ., of-1, x- + h, x^, . . ., x^
-A^,...,^))

(§I1 was the restriction of Ay. to the lattice E/i), v also satisfies the
inequality

(5.8) A2^, () < 4/a( + B for 0 < t < T, r = 1, .. ., n,

where B is a constant uniform, in particular, for all choices of y.
Under Hypotheses ii^, the right side of 5.8 can be replaced by
2/a(.

More can be said if y is semi-concave on compact sets in the
following sense : To each positive R corresponds a constant
/c(R) such that

<p(^ + y) + ̂  — y) — W < ̂ (R)lyl2 for \x ± y\ < R.
SUPPLEMENT TO THEOREM 5.2. — If y is semi-concave on

compact sets, then, for each t in the interval 0 ̂  t ̂  T,
^(x, t), too, is semi-concave on compact sets.

Theorem 5.2 and its supplement after some preparation
will be proved in Section 8.

COROLLARY TO THEOREM 5.2. — If all the hypotheses made
in Theorem 5.1 are in force, and if, in addition, y is semi-
concave, then for 0 < (<; T 4/a( + B is a constant of semi-
concavity for v.
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Proof of Corollary. — Let T here denote any translation
in re-space through a distance d: Tf(x) = f(x + y), where
jy] = cL Let A == rf-l(T — 1). It is necessary to prove that

(5.9) A2^, () < 4/a( + B for 0 < ( < T.

This we shall do in an arbitrary, fixed cone of determinacy C.
Since 9 is semi-concave, the supplement to Theorem 5.2
shows ^ to be semi-concave within C and thus (Theorem 2.1)
to be uniquely determined by the values of 9 on the base
of C only. Hence, if we were to rotate the a?-axes, renormalize
accordingly (Section 4),apply the foregoing difference-differen-
tial scheme, but in the new coordinate frame, go to the limit
as the mesh width in this scheme tended to zero, and finally
return to the original coordinate axes, we would arrive at
the same v as before. Since new axes can be chosen one of
which is in the direction of the difference operator A, inequality
(5.9) follows from (5.8).

Proof of Theorem 5.1. — Theorem 5.1, for semi-concave
initial data, is contained in Theorem 5.2 and its corollary.
Theorem 5.1 with arbitrary data is proved as follows by
approximating these data by semi-concave functions and
then applying the continuity and compactness properties
of Section 2.

By a translation, let us arrange that, for some positive
constant £o,

<p === <p' when any xr <^ £o-

Let j{x) be a function of class C°° such that j(x) ̂  0, j{x) == 0
for \x\ ;> 1, and / j{x) dx == 1, and tor e =^= 0 define

?s(a0 =/y(^ — "/)/(y) dy,
the domain of integration being the entire n-dimensional
^c-space. Since y is Lipschitz-continuous, (pg —> y uniformly
as £ —> 0.

Since
(f,{x) = e^y^?/)/^ — y)/£) dy,

this function is infinitely differentiable, its second derivatives,
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in particular, being bounded on any compact set. Each <pg,
therefore, is semi-concave on compact sets in the sense defined
after Theorem 5.2. Furthermore, if 0 <; £ <; £o, then <pg == 9'
when any xT ̂  0. Hence, the corollary to Theorem 5.2 applies,
guaranteeing the existence of a solution v^{x^ t) that reduces
to 9g for ( === 0 and, for each fixed (in the interval 0 < t ̂  T,
is semi-concave with uniform constant 4/a( + B independent
of £. Since <pg -> 9 uniformly, Theorems 2.1 and 2.3 prove ^g
to converge uniformly within any characteristic cone to a
Lipschitz-continuous limit v(x^ t) that satisfies 1.1 almost
everywhere and, for (> 0, is semi-concave with constant
4/a( + B. Clearly, v(x, 0) == f{x) and

^{x^ t) == 9' for ^r <; 0, r == 1, . . ., n.

Thus, Theorem 5.1 is completely proved.

6. Fundamental inequalities for the difference-differential scheme.

Theorem 5.2 is based on four inequalities we prove in this
section. The first, arising only in connection with Hypothesis
113, is

(6.1) |̂ )| < U for 0 < t < T and all i.

The second inequality states that

(6.2) |S,^(()| < P for 0 < t < T, r == 1, ..., n, and all i.

According to the third, a constant B independent of y exists
such that

(6.3)
^i{t) < 4/a( + B for 0 < t < T, r== 1, .. .,n, and all i;

under Hypothesis Hi, the right side can be replaced by 2 fat.
The fourth inequality relates to problems in which 9 is

semi-concave on compact sets with constant 92(R) on the
sphere \x\ = R. To formulate the inequality, let T here
symbolize any translation in ^-space moving lattice points into
lattice points. Thus,

Tf{x\ . . ., x^ = f{x1 + m ,̂ ..., ̂  + rr^K), ••



SOLUTIONS IN THE LARGE 23

where the m^ r == 1, . . ., n, are integers. With \m\ = V/S^m'')2,
let

^=T^i>
\m\h

The fourth inequality asserts that, to each positive p, a con-
stant C depending on p and y2(p) exists such that

(6.4) A2^) < C for 0 < ( < T and ]i|h < p.

Proof of 6.1 and 6.2. — The first two of the inequalities
must be taken up together. Thus, we begin by deriving equa-
tions for the §r^, to this end noting that

,̂F(̂ , (, ̂  ̂ i) = ¥{x^ t, ̂  S^) —F(T71^, (, T71^, T;-1 S^-)
= F( ,̂ (, ̂  ̂ -) — F(T7^, t, T71^, S^)
+ F(T71^, t, T71^, S^)

— F(T,r1^,, (, T71^-, T71 S^)
n _

~-.F..-L.FS^.4-y F S S ^— 1-x'^ \ r uor^l l Zj 1 ^r^^i)
5==l

the single bar in these equalities referring to the arguments

(T71 + 0(1 — T71))^, (, (T71 + ®(1 — T71))^ S^

and the double bar to the arguments

T^n,, (, T71^-, (T71 + 6(1 — T;r1))^

where 0 < 0 < 1 , 0<0<1 . Using this result, from 5.7
we can immediately write the desired equations. We do so
in the form

: • (6.5) (8,^ — w)' + [^ + F,r + F^-] + S FAS^c = 0,s=i
where w(€) is an arbitrary function chosen according to cir-
cumstances. Defining Wg(() (s > 0) as below, differently for
each hypothesis considered, we shall always choose w(t} = Wg[t)
or ̂  — Wg(().

Under Hypothesis ii^ take Wg(() == Mo + £•
Under Hypothesis 11*3, take Wg(() as the solution of the initial

value problem: w' = V(w), w(0) = Mo + s-
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Under Hypothesis 11*3, take Wg(<) as the solution of the initial
value problem : w9 = V(w), w(0) = Mo + £. (V(p) was defined
in Section 4.) This solution exists for 0 < (< T.

Under any one of the hypotheses considered, Wg(T) > P^
and lim Wg(T) == P. Choose £ so small that P < Wg(T) < Po.
In Hypothesis 113, take U' < Uo and P' < P^, and demand
additionally of £ that U + £ < U' and Wg(T) < P'. To justify
6.2, it obviously suffices to prove that, for such £,

(6.6) |^,(()| < ^((),
and to justify (6.1) (under Hypothesis 113), that

(6.7) |̂ )| < U + s,
for 0 < ( < T.

The case of Hypothesis u\, apart from the special estimate
of the semi-concavity constant, which is easily obtained, is
included in that of Hypothesis iig.

Proof of (6.6) under Hypothesis 11*2. — Choosing an arbitrarily
large, positive N, we shall keep for the present to the region

R: ^<N, r = = l , . . . ,n.

Let Sg denote the set of values of ( in the interval 0 ̂  (<; T
such that

|Sr^(T) < Wg(r) for r == 1, . . . , n, a^R, 0 < T < (.

Since We > Mo, Sg is not empty; 2g therefore is an interval,
which, by continuity, is open in [0, T]. Hence, to justify (6.6)
in R for 0 <: (<; T, it suffices to prove that ^ is a closed
interval. Consider any value (' such that any smaller (positive)
value belongs to ^; ̂  is closed if it must contain such a ('.

If 2 does not contain a value (' of this description, then
(6.6) fails in R for t = t ' : i.e., there are an index s and a lattice
point Xf in R such that either

(6.8') S '̂) = ̂ ((')
or

(6.8-) ^,(^_^(^

in either case, assume Xy the nearest of such lattice points to



SOLUTIONS IN THE LARGE 25

the origin. Then in case 6.8', for instance,

U '̂) > 0, r = 1, . .
and also

n,

(̂ , _ ̂ )'|̂  ̂  o.

These inequalities, applied to (6.5) with w = w^ imply that
the square brackets in that equation are negative, a conclusion,
however, that, in view of the definition of ^g, contradicts
an assumption of u'g. Our trial assumption (6.8'), having thus
led to a contradiction, is untenable, and the other alternative,
(6.8^, similarly is incorrect. It follows that inequality (6.6)
holds in R for t = t\ as asserted. Hence, Sg is closed, and,
from the previous argument, inequality (6.6) is valid in R
for 0 < ^< T and x, in R; R being arbitrary, it is valid as
stated. Inequality (6.2) results, finally, by letting e -> 0.

Proof of6.6 and 6.7 under Hypothesis 113. — Again keeping x
to the region R introduced above, let Eg now denote the set
of values of ( in the interval 0 < t < T such that

^)\ < U + £, |§^(T)| < ^(T)
for

r= 1, . . . , n, XieR, 0 < T < (.

Since U + £ > yo and w, > Mo, Eg is not empty; 2g therefore
is an interval that, by continuity, is open in [0, T]. Hence, to
justify (6.6) and (6.7) in R for 0 < ( < T, it suffices to prove
that 2g is a closed interval. Consider any value t' such that
any smaller positive value belongs to Sg. If Sg excludes (',
either (6.6) or (6.7) is excluded (in R) for t = t\ Let us first
consider (6.7). Since, by the definition of Sg and by continuity,
1 ^ ) 1 < U + 6 < U ' ) ,
i^)<^)<P'i for r==1---^ ^ 0 < ^ < ^
Hypothesis 113 implies

W\ = |F(^ t, ̂  ̂ ,)| < Qo for 0 < (< ('.

By integration and by the definition of T, we have from this

W)\ < ?o + <V < ?o + QoT < yo + Qo((U — 9o)/Qo) = U.
Hence, inequality (6.7) holds for ( == ('. With this knowledge

we now justify (6.6) for t = (' in the same manner as was
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used in the previous case. It follows that Sg is closed, as well
as open, and thus coincides with [0, T], inequalities (6.6)
and (6.7) herewith being proved in R and, R being arbitrary,
in ST.

Proof of (6.3) and (6.4). — By (5.7), we have

(6.10) A2^ + A2?^, t, ̂  ^,) = 0.

This and the fact that T and A commute with the Ty. and the
§r lead to a differential inequality satisfied by A2^-.

In the calculations that follow, it is convenient temporarily
to change the abbreviations for bF/^pr and ^F/^ppb^5 from
F,. and F^s to F,r and F,r,.c», respectively, and then to set

F, - F(^, (, ^, ^,)
and

FI.^ = F^x,, t, ,̂ S^.), F,,, = F,,(a;,, (, ,̂ S^),
Fi.r,^ = F,r,^(^ <, ^^),

etc. To estimate A^- appropriately, we write

\m\h^Fi = A(T — 1)F. = ATF, — AF,

and apply Taylor's theorem with a remainder of higher than
second order to the two terms on the right. With

c, == m'/jm) == Arc?,
we have, first,

ATF, = H-^-^T — 1)TF,
= S^TF,,. + AT^-TF^ + S.ATU-TF,,
+ (1/2) \m\h^c^F^s + 2S^AT^_F,^
+ S^AT^F,^ + 2S,AT^-ATS^-F,^,
+ (AT^F,,, + S^AT^,-AT^,-F,^j,

the bars over the second derivatives of F indicating that these
derivatives are to be taken at intermediate arguments. We
note that T^, oT^, AT^-, by (6.1) and (6.2), are bounded in ST
and that the coefficients in the right member being first and
second derivatives of F therefore also are bounded. Hence,
the last result is of the form

ATF, = S^TF,,. + AT^ TF^ + S,ATo^<; TF,,
+ |m|A[Ao + SAATS^, + (1/2)S^AT^,-AT^,-F,,,J,
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where the A^ are absolutely bounded in ST. Because of Hypo-
thesis (ii) (equation 1.2), the combination

2,A,AT^, + (1/2)2^ATS^,-AT^^-F,^,
however, is not less than

SAATS,^ + (a/2)S,(ATS,^)^
and, since for any positive £

[ATS^I < (£/2)(ATS,^)2 + l/2s,
is not less than

- 2,1A,|/2£ + (l/2)(a - £2,|A,|)S,(ATS,^.
Hence,

ATF, > 2,c,TF,.,. + AT^-TF,, + S^TU-TFi,
+H/i[A+(a/4)2,(AT^)2j.

A denoting a suitable constant. Similarly,
— AF. = Iml-^-^l — T)F,

> — S^TF;,,, — A^-TF; „ — 2,AS,^TF.,
+ \m\h[B + (a/4)S,(AU-)2], '

where B is a constant. Adding the preceding two inequalities
and dividing by \m\h, we obtain

..A^, > A .̂-TF,,, + ̂ U î-TF,, + (a/4)S,(A^.)2 _ c',

C' being a constant we may assume to be zero or positive.
Now we return to (6.10), which in view of the last result

leads to the inequality

(6.11) (A^;)' + S,TF,/^(A^;) + TF; ^A2?;
+ (a/4)^(^Ap,.)2 — C' < 0.

To prove (6.4), we drop the squared quantities in (6.11)
and make the substitution

A^.^^.+C'+y'),
where

^ >^ 1 + sup F» and 9/ = max ̂  ^P ̂ xr ̂  — c^

the suprema being for all arguments (x, t, u, p) such that
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0 < ( < T, \x\ < p, \u\ < U, \p\ < P and, in the second
instance, for all r and s, as well. Inequality (6.11) thereby
leads to

z[ + 2,TF,, SA + (TF^ + X)(z, + C' + ?') < C'̂ ,
which implies a relation of the form

(6.12) z[ + S,E,,S,z, + E^z, < 0

with positive E^. From this, we shall prove z^ <^ 0 for h\i\ <^ p.
First, Zi{0) ̂  0. Hence, it ^(() ever assumes a given positive
value £, it can do so only for positive (. Let ^ denote the least
value of ( such that, for any index i with h\i\ <^ p, z^to) == £;
let io denote the index nearest the origin such that Zi((o) = £•
Then z^(<o) > 0 and Uo^o) > 0 in contradiction to (6.12).
Such an e, therefore, does not really exist, and, hence, z, ̂  0
for h\i\ ̂  p, as asserted. Consequently,

A^<^(C'+?') for /i|^|<p,

which is to say that ^(rr, () is semi-concave on compact sets
with respect to x. Inequality (6.4) thereby is proved.

Inequality (6.3) remains, Substituting Sp tor A in (6.11),
we deduce

(S^)' + 2/rF,,-S,(^) + TF,»-^ + a(§^_c'<0,

where a == a/4. Let us make a substitution in this inequality
of the form

S^ == y, + I/at + P,

where ? is a new constant we shall specify below. We thereby
obtain

(6.12) y\ + S,TF,,.S,t/, + (TF^ + 2ft + 2ap)y,
+ (l/a()(TF^ + 2ap) + (pTF,» + a?2 — C') < 0.

Now we select (3 in such a way that the parenthesized expres-
sions will be non-negative. With

m == int Fg(a;, (, u, p),

the infimum being for 0 < (< T, |u| < U, |p| < P, and all x,
it suffices to have

2ap + m > 0 and a?2 + m(3 — C' > 0.
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These conditions, however, are satisfied if we choose

P= m + \/m2 + 4aC'
————2a—————'

and with this choice inequality (6.12) is reduced to one of the
form

(6.13) y[ + S,EAy. + Ey, < 0

with positive E;r. From this we can prove by an argument
similar to one above that t/» <; 0. In fact, z/i <; 0 for all suffi-
ciently small values of (, and if yi{t) == 0 for any value of <,
this value is positive. If such a positive value of t exists,
let lo denote the index nearest the origin, and, for this index,
to the least value of t, such that y^(to) == 0- Then §,.2/10(^0) > 0
and y'i^to) ̂  0. The last relations being incompatible with
6.13, we conclude that no such n and (o exist. Hence, y^t) <; 0
for 0 ̂  (<^ T, as asserted, and thus

S^ < l/a< + P tor 0 < t < T.

Inequality (6.3) thereby is proved.
The fact that it is possible, when Hypothesis ii^ is in force,

to replace the right side of (6.3) by 2/at we see by applying
reasoning of the foregoing type to the simpler form

(A2^,)' + S.TF,,-U2^. + (a/2)S,(AS,^ ̂  o
taken by (6.11) in this case.

7. Some lemmas on continuous convergence.

Let f^(x) be a function defined on the lattice E^ === E71*
(Section 5), where h^ k == 1, 2, . . . , are positive numbers
with integral ratios h^h^. Let f{x) be defined for all n-dimen-
sional points x. The sequence [f^ is said to converge conti-
nuously to f at a point XQ if

lim /^(^) = f{xo)
k->oo

for all sequences of points x^ tending to XQ. (In this and later
contexts, x^ tacitly or explicitly, always is to be understood
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as belonging to the lattice E^, the domain of f^ However, XQ
need not be a lattice point.) This convergence is called uniform
if, to each £ > 0, positive S and N exist such that

l/^)-/^o)l<^

whenever \x — XQ\ < S and k > N.
The Theorem of Arzela has been generalized by C. Pucci [5]

to continuous convergence. Here we state a special case of
Pucci's result of interest to us :

THEOREM 7.1. — Let f^ be a function defined on a lattice E^,
k = 1, 2, . . ., as above. If a constant K exists such that, for
all lattice points x and y ,

\W-Uy)\<K\x-y\, / c = l , 2 , . . . ,

then a subsequence of the f^ converges continuously at every
point (of the n-dimensional space in question), and the limit
is Lipschitz-continuous with constant K. In any bounded
region, the convergence is uniform.

The remaining lemmas are concerned with functions of a
single real variable s, — oo <; s << oo. Again requiring that
W^/c+i ^e an integer, consider the discrete sets

T,= [jh,\j=0, ±:1,±2, . . . j

partitioning the 5-axis into equal subintervals, each partition
being a refinement of the preceding.

THEOREM 7.2. — Let f^(s) be defined on T^, and suppose the
sequence (/^) to converge continuously at every point to a continuous
limit f{s). Suppose that the difference quotients

f \ fki8) —— fk(8 —— ^/c)
gk(s) =/JCL-/———'-^—————^,

flk

which are defined on T^, are uniformly bounded in any finite
interval and, furthermore, converge continuously almost every-
where to a measurable function g{s). Then

(7.1) g($) == dffds almost everywhere.

If the only discontinuities of g(s) are jumps, then the points of
continuity of g{s) are also the precise points at which df/ds
exists, and g == dffds at all these points.
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This is proved as Theorem 6.4 in [2].
The following result concerning semi-monotonic functions

(Section 2) comes from Theorem 7.1 of [2] :

THEOREM 7.3. — Let functions g^{s), defined on T^,
/c=l ,2, . . . , be uniformly bounded and uniformly semi-
decreasing. Then for a suitable subsequence (g^), a semi-decrea-
sing function h(s) exists such that g^' converges continuously
to h at every point SQ at which h is continuous, and converges
continuously at no other point.

8. The convergence of the difference-differential scheme.
Proof of Theorem 5.2.

Select a sequence of partitions E^ such that h^h^i is an
integer > 1, and set

v^x, t) === (A(^, ().

In the scheme considered, by (5.7) written for any lattice point ̂
belonging to E'1* as

(8.1) ^(z,, t) + F(z,, (, ^(z,, (), SS^z,, ()) = 0,

we have

(8.2) ,̂ t) = 9(zJ —f^{^ t\ v,{^ t^v^ <')) dt\

By (6.1), (6.2), (6.3), the ^(z, () and their first differences

(8.3) g?^(z, <)

are uniformly bounded in Sr; by (8.1), the derivatives v^z, t)
are similarly bounded.

We also make the following remarks : 1) If 9(0;) is semi-
concave on a ball \x\ < p, then by (6.4) for each (in the inter-
val 0 <; (<; T the ^ are semi-concave on this ball with a
single constant of semi-concavity holding uniformly with
respect to k. 2) Let h > 0 and, as in Section 5, define A,
for r = 1, . . ., n by the condition

Ar/'(^ ...^ra)

= h-\f{x\ . . ., ̂ -1, X1' + A, x^\ .... ̂ n) — f{x\ .... ̂ )).
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Because
W^ t) < ^at + B (0 < ( < T),

where B is a constant, we easily deduce that, when h is an
integral multiple of h^,

(A,)2^, () < 4/a( + B for 0 < ( < T.
The uniform boundedness of the ^-derivatives and the

^-difference quotients of the v^x, t), and the foregoing remarks,
give us from Theorem 7.1:

THEOREM 8.1. — The v^(x, t) converge continuously everywhere
to a Lipschitz-continuous limit u(x, t) satisfying the assigned
initial conditions (1.3), the boundary condition (4.4), and n
inequalities of the form (5.8). The convergence is uniform in
any bounded region of the half space t ̂  0. If 9 is semi-concave,
u is semi-concave for 0 <^ (<^ T.

(Strickly speaking, Theorem 8.1 can be justified at this
stage only for a subsequence of the v^ eventual reference to a
uniqueness theorem being needed to establish the result as
stated. In what follows, we shall identify the convergent
subsequence with the sequence itself, i.e., assume that the
sequence v^ converges.)

The principal result concerning the convergence of the
differences (8.3) is as follows :

THEOREM 8.2. —For fixed, positive t (0 << (<^ T), the differences
(8.3) converge continuously to Uyx at each point x at which this
derivative exists. This is to say that, for any sequence z,c of
points of E^ tending, as k —> oo, to x,

lim S^(^, t) = u^r{x, t).
k->oo

This result is a corollary of the theorem below.

THEOREM 8.3. — Fix t in the interval 0 < (-^ T, fix r as
any index from 1 to n, fix arbitrarily the n — 1 quantities x1,
i -=f^ r, and let Sj. denote the set of values of of at which
Uyj-(x, t}{x == {x1, . . ., X71)) then exists. (S^ may depend on t and
the x1, i =7^= y.) Set ^ = x1 for i ^=f=- r. The function

w,(rr, t) = lim sup u^, t) (^ = {^, . . ., ^)),
^'-^x1'
^S,
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defined for e^ery real value of af, is semi-decreasing with respect
to xr, This function is continuous with respect to x1' when, and
only when, ^sSp. For ^fsS7',

U^X, t) = W^(X, t)

and also lim S^^Zj,, t) == u^r{x, t)
fc->00

for all sequences of points z^eE^ tending to x.

Proof. — We shall prove this theorem just for r = 1, the
n — 1 other cases being analogous.

In what follows, z or ^ generally will refer to lattice points or
their coordinates, or to sets of their coordinates, and x or ^,
in similar fashion, to arbitrary points. ( will be fixed in the
interval 0 < (< T.

Let Eo == (rcg, . . ., x^) denote an arbitrary point with n — 1
coordinates and ^ == (^, . . ., z^), k = 1, 2, . . ., a sequence
of points tending to S;o :

C/c ""> §0-

The ^, conforming to the foregoing convention, are such that
the n-dimensional points (4, ^) = (^, ^, . . ., ^) belong for
suitable choices of their first components z^, to the lattices
E\ respectively. Regard

W,(^)=§^(^,^^)
for /c == 1, 2, . . . , as a sequence of functions of z1. These
functions are semi-decreasing. Theorem 7.3 thus proves the
existence, for all values of x1, of a semi-decreasing function
W(a;1) and of a subsequence (W^) of (WJ that, as V —> oo,
converges continuously to W at the points of continuity of
the latter and just at these points. W can be normalized,
without changing any of the aforementioned properties, to be
continuous from the left: We merely replace W(rc1) in all future
considerations by W(^) = W{x1 — 0). The normalized func-
tion being both continuous from the left and semi-decreasing
satisfies the condition

W(^) == lim sup W(^).
^-^x*

Regarding

V,(^) == p,(zi, ̂ , (), /c=l ,2, . . . ,
3
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as functions of z1, and
U(^) = u{x\ So, t)

as a function of x1, the n variables besides x1 being considered
fixed, from Theorem 8.1 we know that the V^ converge
continuously to U, as k —^ oo, for all values of x1. Theorem 7.2
thus applies to U, W, the V/,, and the W^ with the following
result: The values of x1 at which W(.r1) is continuous (with
respect to x1), which are the values at which the subsequence
(W^) converges to W continuously, are also the values at
which dVldx1 = u^{x1, So, t) exists and the equality

u^(x\ So, t) = W(^)
is satisfied. Hence, we have

W(o;1) = lim sup W(^) = w^x\ So, t),^^
Wi having been defined above in stating the theorem. Since
Wi is independent of the mode of selection of the subsequence
(W^), W thus, too, is independent. Consequently, the entire
sequence (W^) converges continuously to u^{x1, E^, () at the
values of x1 at which Wi(rc1, E^, () is continuous with respect to x1.
From the manner of definition of the W^, Si^k(z, () therefore
converges continuously to u^ at all points (x1, ^, () at which
Wi(a;1, So, () is continuous with respect to x1.

Proof of Theorem 5.2. — Since u is Lipschitz-continuous
with respect to x, the (vector) function defined in Section 1
as grad u is bounded and measurable in ST and, by Fubini's
theorem, is bounded and measurable also on almost every
line segment

(re == constant
': fo<0<T.

Consider such a segment determined by an appropriate x^
and let ^sE\ k = 1, 2, . . ., be lattice points tending to x.
Theorem 8.2 shows that, for almost all t in the interval
0 < (< T,

lim S?^(^, t) = u^{x, t), r = 1, . . . , n.
k->oo

Hence, the limit of

F(^, ^ ̂  t), S^,(^, ()),
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as k-> oo, exists and is equal to F{x, t, u{x, t), grad u{x, t))
for almost all ( in the interval 0 < (<; T. Letting k —> oo
in (8.2), we thus obtain the relation

u{x, t)=^x)—f^F{x, t\ u{x, ('), gradu(^, (')) dt\

valid for all ( and almost all x. It follows that

/'(U(+ F )^ '=0

for almost all x and, in consequence, u< + F being bounded
and measurable, that the integral of u< + F over any rectan-
gular parallelepiped in a^-space is zero. Hence, u< + F = 0
almost everywhere. Herewith, all the contentions of Theorem
5.2 have been proved.
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