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ON COMPONENT GROUPS OF JACOBIANS OF

DRINFELD MODULAR CURVES

by Mihran PAPIKIAN (*)

1. Introduction.

Let N be a positive integer. Consider the modular curve of

level N defined over Q. This is a proper smooth geometrically-connected
curve over Q. Let Jo (N) be the Jacobian variety of and let ~ be
the N6ron model of Jo(N) over Z. It is known that J is an abelian scheme
over Z[I/N].

Assume N is prime, so Xo (N)Q has two cusps; these are labelled 0
and oo. The two cusps are Q-rational points on and the divisor

(0) - (oo) on generates a finite cyclic subgroup C in Jo(N)(Q)
called the cuspidal divisor group. Denote by CIZ the finite flat subgroup
scheme of J generated by C C Jo(N)(Q). Let C be the FN-valued points
of ("the specialization" of C in ,7 x It is known that C - C is an

isomorphism. Let be the connected component of the identity 
and := be the group of connected components
of JF . This is a finite 6tale group-scheme over FN . In [23] one finds the
following result:

THEOREM 1.1 (Mazur). - The canonical maps

and

are isomorphisms. In is a constant group-scheme.

(*) This work was completed while the author was partially supported by Clay Mathe-
matics Institute as a Liftoff mathematician.

Keywords: Component groups - Drinfeld modular curves - Monodromy pairing.
Math. classification: llGl8 - IlGI0 - 14G22 - 11G09.
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Motivated by Theorem 1.1 and computer calculations, William

Stein [30] made the following conjecture:

Let N be a prime. Let f be a normalized weight-2 newform
f = I: anqn of level N, and let I f be the kernel of the natural

map -~ ~ I... , an, ...] that sends a Hecke operator Tin to an. Denote A f
the abelian-variety quotient of Jo (N) by the (connected)
abelian subvariety this is Q-simple. Let C f denote the cyclic
subgroup of generated by the image of the cuspidal divisor group C
and the mod-N component group of the N6ron model of A f over Z.

CONJECTURE 1.2 (Stein; refined Eisenstein conjecture). - The canon-
ical specialization maps

and

are isomorphisms. In particular, q. Ai,N is constant.

Note that Theorem 1.1 and Conjecture 1.2 imply the following weaker
conjecture that can be motivated by Ribet’s level-lowering results [28],
cf. [30], Conjecture 4.1.

CONJECTURE 1.3. - The natural map
tive.

is surjec-

Shortly after the announcement of these conjectures, Matthew

Emerton [8] proved them, using the techniques developed by Mazur
and Ribet.

Remark 1.4. - Both conjectures are false without assuming N is
prime. The following example is due to Stein. Let N = 33. The Jacobian
Jo (33) has a 1-dimensional optimal quotient E = 33A corresponding to
the newform of level 33

with but Moreover,

The aim of this paper is to discuss versions of Conjectures 1.2-1.3 in
the context of function fields. The situation which most closely resembles
the classical one is when our function field F is the field of rational

functions on that is, F = IFq (t). To get the analogue of Z one has to
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choose a point on suggestively denoted by oc. We will choose 00P

]Fq
to be rational; i.e., deg(oo) = 1. Without loss of generality, oo = lit
and 00,0) = is the polynomial ring in one variable over the
finite field IFq . Let n be an ideal of and consider the Drinfeld modular

curve of level n. This is a compactified coarse moduli scheme for
pairs (D, Z) consisting of a Drinfeld Fq[t]-module D of rank-2 over F and
an n-cyclic subgroup 2n of D. It is a proper smooth geometrically-connected
curve over F. Let be the Jacobian of Xo (n)F . Denote by J the N6ron
model of Jo(n) over and by J° the relative connected component
of the identity (i.e., the open union of fibral identity components). It is

known that J is an abelian scheme over On the contrary, the
fibres of J° at the points in supp( n . oo) are not abelian varieties over the
corresponding residue fields.

Assume n is prime. Some effort has been made to transfer Mazur’s
results on the Eisenstein ideal to the context of Drinfeld modular curves;
cf. [11], [31]. One encounters very non-trivial technical difficulties while
doing this, so the theory over function fields is not yet as satisfactory as
over Q. There is an analogue of the cuspidal divisor group C C Jo(n)(F),
and Gekeler proved in [11] that the specialization map cn : 
is an isomorphism. But as far as I am aware, it is still unknown whether

C--7Jo(n)(F)tor is an isomorphism. (1) Even though one should expect
Conjectures 1.2-1.3 to be true in this case, proving these will require
additional efforts to develop the techniques of Mazur and Ribet over the
function fields.

Since our base P’ is a complete curve, aside from the bad fibres
of Xo (n) over the divisors of the level n there is one more fibre, namely the
fibre over oo. It is known that ’To is always a split torus (n being arbitrary),
from which one deduces that is constant. It is natural to ask about

the validity of Stein’s conjectures over oo. The analogue of Conjecture 1.2
fails. Indeed, it turns out [14], §5, that the canonical specialization map

need not be surjective or injective, even when n is prime.
In this paper we will concentrate on the oo-adic analogue of Conjecture 1.3.
We do not impose any restrictions on the level n.

Let A be a quotient of the Jacobian variety Jo(n), and assume the
kernel B of the corresponding quotient map 7r: Jo (n) --7 A is an abelian

subvariety of The main result is the following:

~ According to the anonymous referee, Ambrus Pal recently made a significant
progress in the theory of Eisenstein ideal over function fields.
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THEOREM 1.5. - Assume B is stable under the action of the Hecke

algebra T C End( Jo (n) ) . For any prime t not dividing q - l, the functorial
sequence of finite abelian groups

is short-exact on torsion. In particular, the sequence is always
short-exact when q = 2. For an arbitrary q the sequence is short-exact
whenever A or B is an elliptic curve.

The condition on B being T-stable simply means that A arises
from the splitting of the Q-vector space of Drinfeld automorphic forms of
level n into TQ-invariant subspaces; cf. §3.3. For example, this condition
is automatic when n is prime. The result we prove is somewhat stronger
than as stated in Theorem 1.5. In fact, we determine the possible kernels
and cokernels in the sequence of component groups, see Theorem 5.1, and
we give a criterion which is sufficient for the exactness of the sequence of

component groups. We show that this criterion is always satisfied when
either A or B is 1-dimensional; see Corollary 3.15. This is a rather striking
fact in view of Remark 1.4.

We should remark that the component are much

more mysterious that the corresponding groups at the finite places. This is
because oo does not appear in the formulation of the moduli problem, and
hence one cannot use deformation theory to deduce the structure of the
special fibre of Xo (n) at oo. This complicates the application of Raynaud’s
results on the specialization of Picard functor to get the structure of the
group of connected components, cf. [3], §9.6. Some concrete examples show,
cf. [14], §5, is not determined by the prime decomposition
of n. Rather, it depends on topological properties of ho (n) - namely on the
action of on the Drinfeld half-plane, cf. §4. Thus, our Theorem 1.5
can also be considered as a modest step toward understanding the structure

of 03A6J0(n), ~.
The key for proving Theorem 1.5 is to study the polarization

7r o 7r~: A" --~ A, and to compute the order of the finite group-
scheme ker(7r o in two different ways. One is algebraic and relies

on Grothendieck’s monodromy pairing; see §2. The second is rigid-analytic
in nature. To carry out this second calculation, in §3 we give a higher-
dimensional generalization of a construction of 1-dimensional quotients
of Jo (n) due to Gekeler and Reversat [16]. In §4, we relate these two
expressions for # ker(7r o 7rV), and Theorem 1.5 easily follows from this.
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2. Algebraic calculations.

2.1. Grothendieck’s orthogonality and a formula for the degree.

Let R be a henselian discrete valuation ring with field of fractions K
and residue field k. Let A be an abelian variety over K and let ,A. be its N6ron
model over R. Let be the connected component of identity of A. We
let ’(DA denote the group of geometrically-connected
components of the special fibre of A.

Given an isogeny cp : A - B of abelian varieties over K, its degree
deg(cp) as a finite flat map is equal to the order of the finite flat group-scheme
ker(p) . Let A v be the dual abelian variety of A. An isogeny A: A --+ Av
is symmetric if the dual (A" )" --~ A v is equal to A via the canonical
isomorphism (~4~)~ ~ A. For example, polarizations are symmetric.

We say that the reduction of A over R is ( split) purely toric if = TA
is a (split) algebraic torus over k ; this property is invariant under passage
to an isogenous abelian variety. Let p : A --+ B be an isogeny, cp v : BV --+ A v
be the dual isogeny, and assume A and B have purely toric reductions.
Let pt : TA -~ TB be the induced map of the closed fibers of the N6ron
models. This map is an isogeny, by functoriality, so the kernel is

a finite multiplicative k-group scheme. We denote by Wv: TAv the

analogous map induced by cpv.

For any finite multiplicative k-group scheme G there is a functorially
unique multiplicative finite flat R-group scheme G with closed fibre G.
We have a closed immersion ker cp and likewise we have a
natural quotient map that is dual to the closed

immersion using the isogeny cP v .

By the duality theory for abelian varieties, there is a canonical perfect
K-group scheme duality between ker(cp) and ker(cpV) over K. Hence there
is a natural quotient map of K-group schemes
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The following theorem, whose proof relies on Grothendieck’s Orthogonality
Theorem [20], (2.4), (5.6), will play a key role for our calculations in this
section.

THEOREM 2.1. - The sequence of K-group schemes

is exact.

Proof. See [5], Theorem 8.6. D

LEMMA 2.2. Let 0 ~--~ A --~ B --~ ~’ --~ 0 be an exact sequence of

abelian varieties over K. Then B has a purely toric reduction if and only
if A and C have purely toric reduction. Moreover, A and C will have split
toric reduction when B does.

Proof. This can be proven by slightly modifying the argument in
the proof of [3], Lemma 7.4/2. 0

In this section we assume that all abelian varieties under consideration

have toric reduction over R (unless otherwise specified).
For an abelian variety A over K, we let MA = Cm) denote

the character group of the torus A’ = TA. This is a free abelian group
with continuous action of for the discrete topology, and it is

contravariantly associated to A - given a homomorphism 7r : A - B of

abelian varieties, we have the induced homomorphism 7r* : MB - MA
of the character groups.

COROLLARY 2.3. - Let p : A ---+ B be an isogeny. Then

deg (,p) - # coker( (

Proof. From Theorem 2.1 the order of ker(cp) as a group-scheme
is From the exact sequence

we get the induced exact sequence of character groups

= one concludes

Similarly for 
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COROLLARY 2.4. - Let p : A" -~ A be a symmetric isogeny. Then

DEFINITION 2.5. - We will say that the abelian variety A is an

optimal quotient of the abelian variety B if there is a faithfully flat

morphism 7r: B ---&#x3E; A whose functorial kernel is represented by an abelian
subvariety C of B (that is, C := ker 0 is connected and smooth).

For an optimal quotient A of B, we have an exact sequence of abelian
varieties

Consider the dual exact sequence

The map p : B" -~ C’ is again an optimal quotient. Let A : 

symmetric isogeny, and consider the diagram

The composite 7r o A o 7r’: A’ --+ A is a symmetric isogeny. Hence, by
Corollary 2.4, we have

By functoriality there is a commutative diagram

The image of MA in MB need not be saturated, i.e., the quotient group
might have torsion. We denote by

the saturation of 7r* MA inside of MB, and likewise by Mcv the saturation
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of inside Consider the sequence

induced from (2.3). The image of MA in MAv is the same, but now both 7r*
and (A o 7r~)* are finite-index injections. Hence

LEMMA 2.6. - The sequence

is exact.

Proof. Since cp o 7r v - 0, is in the kernel of (7r V) * .
Since MAv is a free abelian group, ker(7rv)* must contain the satu-

ration Mcv. On the other hand, rankz MBV - rankz Mcv - rankz MAv
since dim B - dim C = dim A. Hence the sequence is exact on the left.

It remains to show that (7rv)* is surjective. This follows from Bv

being a closed immersion; see [5], Proposition 3.3, Theorem 8.2. n

From the sequence using Lemma 2.6,
we get an exact sequence of abelian groups

Thus,

PROPOSITION 2.7. - With the morphism as in (2.1) and (2.3) we have

Proof. This follows from (2.2), (2.4) and (2.5). D

2.2. Monodromy pairing and component groups.

Let A be an abelian variety over with semi-stable reduction. This
means that Ao is an extension of an abelian variety ~,~ over by a torus Tk :

We again denote by MA the character group of Tk.
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In [20], §§9-10, Grothendieck defines a canonical bilinear 
equivariant pairing,

which he calls the monodromy pairing. This pairing is uniquely characterized
by the property that its extension of scalars UA 0Zg, for a prirne £ # char (k),
can be expressed in terms of the .~-adic Weil pairing on x via

a formula given in [20], (9.1.2). The monodromy pairing has the following
properties:

THEOREM 2.8 (Grothendieck).

(i) uA is non-degenerate.

(ii) uA is bifunctorial in A.

(iii) If ~ : is a polarization, then

is symmetric and positive-definite.

(iv) There is a Gal(k/k)-equivariant exact sequence

Proof. Once uA is constructed compatibly with the Weil pairing
(this is quite non-trivial), properties (i)-(iii) follow from the well-known
facts about the latter pairing; see [20], Theorem 10.4. For the proof of (iv)
see [20], Theorem 11.5. 0

To simplify our later notations we give a consequence of Theo-
rem 2.8 (iv). Let rankz MA - a, and consider the pairing induced on

(AAMA) x by uA. We denote this pairing by the same symbol.
Let x and y be the generators of 1B a MA and 1B a MA v respectively, then

Now we return to the situation in (2.1).

LEMMA 2.9. - With notation as in §2.1 and (2.1), let C MBI
be the orthogonal complement of MA C MB with respect to Then
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Proof. Let x E MA and y E Mcv. Then using the bifunctoriality
of ug

Since p o 7r’ = 0, we conclude p* Mcv C But uB is also bilinear,
hence the orthogonality extends to the saturations. Now comparing the
ranks and using non-degeneracy of we get the desired equality. 0

LEMMA 2.10. Let dim A = a. Let xo be a generator of 1B a M A. Then

Proof. Let x and y be generators of and respectively.
On the one hand, using bilinearity of ~c~ and (2.6), we have

On the other hand, using bifunctoriality and bilinearity of the monodromy
pairing, we have

Using these two equalities along with Corollary 2.4, we get the result. D

COROLLARY 2.11. - With notations as in Lemma 2.10, we have

Proof. This follows from Proposition 2.7 and Lemma 2.10. 0

PROPOSITION 2.12. - Let ~r,~ : ~B -~ 4l A be the morphism induced
by7r. Then

Proof. Consider the commutative diagram induced by 7r on the
sequences in Theorem 2.8 (iv)
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Since Av ---+ B" is a closed immersion, the left vertical arrow is

surjective by [5], Theorem 8.2. Thus, from the snake lemma

Remark 2.13. - The idea of the proof of Proposition 2.12 is due to
K. Ribet [27].

2.3. Some exactness properties.

Let Ai:j9 2013~ Bv be a symmetric isogeny and consider a diagram
similar to (2.1) along with the induced morphisms

LEMMA 2.14. Let dim A = a and dim C = c. Let xo and yo be

generators of /BaMA and A’Mcv respectively. With A and ~z as in (2.1)
and (2.7), we have

Proof. Let V be the Z-linear transformation of MB into M A EB
A*Mc,, and let W be the Z-linear transformation of into

Mcv EB A*MA. Let dim B = b and denote by zo and zo the generators
of and respectively. Also denote by V ( zo ) and W(zü) the
generators of nbY(MB) and IBbW(MBv). Then we have

On the other hand, from Lemma 2.9 we know that Mcv is orthogonal
to MA with respect to monodromy pairing. Hence,

It is clear that

and

This, combined with (2.8) and (2.9), finishes the proof. 0
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With notation as in (2.1), consider the functorially-induced homo-
morphisms on the component groups, ~0-: Wcv and 7r * : 4Y B - 4Y A .

PROPOSITION 2.15. - There is a canonical exact sequence of abelian

groups

where is the Pontrjagin dual of coker(cp* ) .

Proof. We have the obvious complex

There is a bifunctorial pairing 4Y A x 4Y Av - Q/Z, defined by Grothendieck
in [20], §1.2, for any abelian variety A over K, which turns out to be
perfect when A is semi-stable; see [20], §11.3. Applied to the situation
at hand, this pairing induces canonical isomorphisms ~ (4)cv)v and

Hence it is enough to show that

Using Corollary 2.11, we have

where xo and yo are as in Lemma 2.14. Multiplying these equalities and
using Lemma 2.14, we get

Now Proposition 2.12 implies what we want. D

3. Analytic calculations.

Let K be the completion of F = Fq (t) at oo = 1/t, that is, with respect
to the valuation given by the degree on polynomials with coefficients in *

Denote by R the ring of integers of K, let cut be a uniformizer of K

and k = be the residue field. Note that since deg(oo) = 1, q := #k
is equal to q. We will denote buy 1.1 1 = q- ordK(.) the norm attached to the
valuation on K, normalized by 1.
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3.1. Drinfeld modular curves and their Jacobians.

For an ideal n in A = denote by Yo (n) the coarse moduli scheme
of pairs (D, Z), where D is a rank-2 Drinfeld A-module over K, and Z is
a n-cyclic subgroup of D; for definitions see [7] or [16]. From a theorem of
Drinfeld [7], §5, one concludes that Yo(n) is a smooth affine curve over K.
Moreover, since in our case Pic(A) = 1, % (n) is geometrically connected;
see [16], (2.5). Denote by Xo (n) the unique smooth compactification of Yo (n)
over K. Drinfeld modular curves Yo (n) have analytic uniformization which
we proceed to describe.

Let SZ = Since K has a finite residue field, Q has
a natural structure of a smooth geometrically connected rigid-analytic
space [7], §6. It is called the Drinfeld upper half-plane. For all n E Z set

and for all x E F let

Let be the affinoid algebra of holomorphic functions on Dn,x. Then
we have

this means that An,x is the set of series of the form

where ai, bi, ci,p, di,p are in K and satisfy

Of course, we have abstract isomorphisms of normed algebras i

but it’s not hard to check that Dn,x = Dn,,x, inside of P l,an if and only



2176

if n = n’ and  The intersection of distinct and 

is either empty, equal to

or equal to the same set with n replaced by n + 1. If Dn,x n Dn~,~~ ~ ~
then we glue them along the intersection; this gives the analytic space
Dn,x U Dn’ ,x’. With this process, one constructs an analytic space U Dn,x,
which gives the analytic structure of Q:

THEOREM 3.1. - The Drinfeld upper half-plane Q is an admissible

open in PK and constitutes an admissible cover of Q.

Proof. See [7], Proposition 6.2, and [16], §1.2. 0

be the spectral norm on An,x. Let

As is easy to see [9], §V.1.2, the analytic reduction of Dn,x

is k-isomorphic to the union of two projective lines over meeting
transversally in a k-rational point, with the other rational points deleted
from both curves. By gluing the reductions Dn, along the canonical
reductions of Dn,x n Dn’ ,x’, we obtain the analytic reduction Q of SZ with
respect to the pure affinoid covering (Recall [18], p. 116, that an
admissible affinoid covering of an analytic space Z is called pure if
each Zi meets only finitely many Zj and for any Zi n Zj # 0 there exists an
open affine subscheme Ui,j c Zi in the canonical analytic reduction of Zi
whose preimage in Zi and in Zj is Zi n Zj.) The reduction S2 is a scheme
over k, locally of finite type, each irreducible component of 03A9 is isomorphic
to and meets exactly + 1 other components. The intersections are

ordinary double points which are rational over k.

DEFINITION 3.2. - Let X be a semi-stable curve that is locally of
finite type over a field k, and has k-rational singularities. The dual graph
(or the intersection graph) of X is a such that the vertices

of G are the irreducible components of X, say X 1, ... , Xr,..., and the edges
are given by the singular points of X; namely each singular point lying
on Xi and Xj defines an edge joining the vertices Xi and Xj (Xi = Xj
is allowed). A choice of ordering of the two branches passing through each
singular point gives!; an orientation.
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The dual graph of C2 is an infinite tree such that each vertex is

connected to --I- 1 other vertices and no two vertices have double

edges between them. Hence we can choose an orientation on g(C2) to

T, where T the Bruhat- Tits tree of PGL2 (K) ; cf. [16], ( 1.3) .
Let

be the Hecke congruence subgroup of level n. This acts on SZ via linear

fractional transformations, and the action is discrete in the sense of [7],
p. 582. Hence we may construct the quotient ro(n) B SZ as a 1-dimensional
geometrically-connected smooth analytic space over K, and its formation
is compatible with the change of the ground field, cf. loc. cit. It is a theorem
of Drinfeld [7], Proposition 6.6, that there is a canonical isomorphism of
analytic spaces

One can conclude from this [18], Lemma V.1.5, that Xo (n) has a

model XO (n) R over R which is a Mumford curve:

DEFINITION 3.3. - A scheme X over Spec(R) is called a Mumford
curve (or k-split degenerate curve) if it has the following properties:

~ X is proper and flat over Spec(R) with one-dimensional geome-
trically reduced fibres, and geometrically irreducible and smooth generic
fibre XK . 

’

~ All of the components of the normalization of the closed fibre Xk
are isomorphic to JP&#x3E;1, and all the singularities of X,~ are ordinary k-rational
double points with two k-rational branches.

Let Jo(n) be the Jacobian variety of Xo (n), and let :1
be the N6ron model of J over R. By the N6ronian property we have
a canonical morphism :1, which by [3], Corollary 9.7/2,
induces an isomorphism

Hence by Example 8, p. 247 of [3], is a split torus over 1~. (Here g
is the genus of Xo (n) .) The lifting of tori in’[19], Theorem 3.6, implies that
the formal completion of J° along its closed fibre is canonically isomorphic
to a formal split torus Consider Raynaud’s
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generic fibre cf. [2]. There is a canonical open
immersion of analytic groups [4], Theorem 5.3.1,

We also have the analytic split torus
and an open immersion

associated to

THEOREM 3.4. - With Jo (n) and G as above, zyo extends uniquely to
a rigid-analytic group morphism ~r : G -3 The kernel of 7r is a free

lattice A C G(K) of rank g, and ule have an isomorphism of rigid-analytic
groups

Proof. - See 1 ~ , Theorem 1.2. D

Recall that a (split) lattice of rank r,  g is a discrete subgroup A
of G(K), such that under log 1. 1: G(K) -~ A maps onto a lattice of

rank K in R9 with finite kernel. In particular, A as an abelian group, up to
finite torsion, is free of rank r,, and for each affinoid U in G, U n A is finite.
If the lattice A has no torsion we will say it is free. If K = g we will say that
the lattice is of full rank.

Since Jo(n) is principally polarized, using [1], Theorem 2.1, it can be
shown that the analytic torus G in Theorem 3.4 is canonically isomorphic
to Hom(A, G an where Hom indicates homomorphism of analytic groups.
Hence we have a uniformization

Theta functions and the uniformization of Jo(n).
The uniformization of Jo(n), which exists due to the nature of the

reduction of Drinfeld Jacobians, can be made quite explicit by using
rigid-analytic automorphic functions relative to ro (n) . This is carefully
treated in [16], §§5-7. We recall the main theorem [16], Theorem 7.4.1.
To simplify the notation we write r . := (assuming n is fixed)
and r := ]pab/(F-b )t.r- One can show [16], (3.2), that r is a free abelian
group of rank g.

A holomorphic theta function for rover .K is an invertible holomorphic
function u : 03A9 ~ AK over such that for each y E r there exists
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E K’ with and which is holomorphic and non-
zero at the cusps of r. For a E r, and cv E SZ an arbitrary base point,
consider

where r is the quotient of T by its center. The group r acts faithfully on Q.

THEOREM 3.5.

(i) ua (z) converges locally uniformly to an invertible function u, on Q
that does not depend on the choice (and so is defined over K).

(ii) ua is a holomorphic theta function, whose multiplier cua (q)
is a homomorphism K’ that only depends on the class of a in r.

(iii) The map r x r ~ Kx given by (a,(3) ~--~ ca((3) is symmetric and
bilinear.

(iv) The symmetric bilinear form
is positive-definite, and

on r

is injective.

(v) We have an exact sequence of analytic groups

Proof. See [16], §§5.4-5.7, 7.4. 0

3.3. Drinfeld’s cusp forms and the Hecke algebra.

Let again T := ro(n) and r := Also let J := Jo(n).
Denote the edges (resp. vertices) of the Bruhat-Tits tree T of PGL2 (K) by
Ed(T) (resp. Ver(T)). Given an edge e E Ed(T), we will denote by e the
edge of T which corresponds to e with opposite orientation. For any abelian

group B, let H, (T, B)’ be the group of maps 0: B subject to

for any v E Ver(T), where t(e) is the terminus of e;

(iii) for
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(iv) 0 has finite support modulo F.

We call this group the group of B-valued cuspidal harmonic cochains
for r.

Using the strong approximation theorem for function fields, it can

be shown that C)r may be interpreted as a space of automorphic
cusp forms on which are special at 00; see [7], Proposition 10.3,
and [16], §4. We have the finitely generated Z-algebra of Heeke operators
1[’ = ( m is an ideal of ~4} acting on H, (T, C)  by the usual formulae;
cf. [17], p. 47 or [12], (1.10). Moreover, T preserves the canonical integral
structure The elements of ’lP also act on %(n) as algebraic
correspondences - one uses the moduli interpretation of Yo (n) to define this
action. These correspondences uniquely extend to Xo(n) and hence T is
naturally enclosed as a subring of End K (J) . Let £ be a prime number not
equal to the characteristic of K. Let

be the .~-adic Tate vector space of J. Via the canonical injection

we get 1r 0 Qg C Let ~.~(~)* - 
be the linear dual of Let spe(2) be the two-dimensional special
representations of Gal(K"P/K), cf. [6], §3.1.2. The following fundamental
result is due to Drinfeld [7], Theorem 2.

THEOREM 3.6. - There is a canonical isomorphism

,

One can conclude from this theorem that the abelian subvarieties

of J which are stable under the action of T as a subalgebra of EndK (J)
are in one-to-one correspondence with the stable subspaces of H, (T, 
We recall the decomposition of this latter vector space into T-invariant
subspaces, which is the analogue of a well-known result of Atkin and
Lehner for the classical weight-2 cusp forms.

Let m be an ideal of A. Denote by H?ew(T,C)ro(m) C H, (T, C) "0
the orthogonal complement with respect to the Petersson inner product
on the cusp forms [16], (4.8), of the different embeddings of H, (T, C)ro(m’)
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into where m’ runs through the strict divisors of m.

Let 0 E Hnew (T, CC)ro(m) be a normalized eigenform for the action of 1r -
we call 0 a newform of level m. (There is a more intrinsic definition of

newforms given by Casselman; see [17], Proposition 6.17).
Now given a newform 0 of some level n,6 n, let H ~ be the space

spanned by the linearly independent where a ranges over

the monic divisors of n/n~. Then H~ is stable under the action of T and
moreover we have

where the sum is taken over all newforms 0 of some level n4&#x3E; dividing n.
Let [0] be the Galois orbit (under the action of Gal(//Q)) of 0. The space

is a finite dimensional C-vector space spanned by Q-valued cusp forms, and
we denote by (Q) the Q-subspace spanned by this Q-basis. Then we
have TQ-stable decomposition

which reflects the decomposition of J (up to isogeny) into a product of
T-stable abelian subvarieties. Let the ideal be the kernel of the action

of ’lP on 

Then is a connected smooth abelian subvariety of J which is
stable under T and is defined over K.

DEFINITION 3.7. - The optimal abelian quotients of J associated to 101
is the abelian variety J.

From the definition it is clear that A~ is an abelian variety defined
over K, and that there is a natural action of T on A~ which factors
through Moreover, the multiplicity one theorem for cuspidal
representations implies that A~ as an optimal quotient of J is uniquely
characterized by this property.

The Hecke algebra also acts on r. This follows from the analytic
uniformization of J in Theorem 3.5. Indeed, by a theorem of van der
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Put [32], (3.3), the torus Hom(r, (~m K) is a universal covering space of Jan,
and hence every endomorphism of Jan uniquely lifts to an endomorphism of
the torus which preserves the lattice c(r) . This action can be made explicit
[16], (9.3), and one has the following important fact

THEOREM 3.8. There is a natural1r -equivariant isomorphism

Proof. See [16], Lemma 9.3.2, and [15]. 0

Another important feature of the action of T on T is that the map c
in Theorem 3.5 is T-equi variant.

THEOREM 3.9. - The action is symmetric with respect to the
bilinear pairing in Theorem 3.5 (iii). Moreover, the exact
sequence

is T-equivariant.

Proof. See [16], (9.3)-(9.4). 0

Hence we have a decomposition of T~ into To-stable subspaces similar
to (3.6), and to each optimal quotient A of J, such that the kernel of J- A
as an abelian subvariety of J is T-stable, we can associate a unique
saturated sublattice T of r which is stable under the action of T (saturated
means that the quotient F/T is torsion free). The sublattice in question
is the image under c of r n using the isomorphism in Theorem 3.8.
Conversely, in §3.4, starting with a saturated T-stable sublattice T of r,
we will construct an optimal quotient AT of J, which as a quotient of J is
uniquely determined by T.

3.4. Analytic construction of optimal abelian quotients of Jo(n).
We will need the following fact

THEOREM 3.10. - There is a non-degenerate pairing

which becomes perfect after tensoring with Z [p -1 ] (here p is the

characteristic of K).



2183

Proof. The method of the proof is similar to the one used to show
that the Z-dual of the lattice of classical modular cusp forms with integral
Fourier coefficients forms a free T-module of rank 1, i.e., using the Fourier
expansion of cusp forms, one constructs a pairing between H, (T, Z) ’ and
~ which maps (1;, T) to the first Fourier coefficient of T(1;). See [12],
Theorem 3.17, for the details. 0

PROPOSITION 3.11. - Let s : T --* r be a saturated T-stable subgroup
with K. Then the image A off under the composition

is a split lattice in of full rank (but not necessarily free).

Proof. Let jC: By definition, to show

that A is a lattice we need to show that the restriction of L: A - R’

maps A onto a lattice in R’~ with finite kernel. It is enough to show that

rankz(A) = and £(A) contains a basis of From

Theorems 3.10 and 3.8 one concludes that is a free 1r ® Q-module
of rank 1. Thus the lattice r contains a sublattice h’ of full rank which
is cyclic under i.e., r’ = 1r7’ for some rand [r: is finite. The

image of r’ in Hom(’Y’, is the restriction of c(r’, .) to ’’Y’. Since by
Theorem 3.9 the action of T on h is symmetric with respect to c and T is

T-stable, the image of h’ is just the restriction of c( 7’, .) to T. Since [r : r’]
is finite, we get rankz(T*), where T* is the linear dual of T

with respect to c( 7’, .). Hence

Next, as a subgroup of Hom(’Y’, R) !2-- contains - ordK c(’Y’, .)Iy.
By Theorem 3.5 - ord(c) is a symmetric positive-definite bilinear pairing
on r x h. Hence £(A) contains a basis In particular, ~.

On the other hand, we obviously have rankz (A) &#x3E; rankz (£ (A) ) . Combining
this with (3.7), we have

So equality holds throughout. Finally observe that A is split since c(T) is
split. D
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PROPOSITION 3.12. Let T and A be as in Proposition 3.11. The
quotient 9A:= is the analytification of an abelian variety
A of dimension ~, which is an optimal quotient of J. Moreover, A as an
optimal quotient of J is uniquely determined by T, and we denote it by 

Proof. We have a commutative T-equivariant diagram

By Proposition 3.11 A is a split lattice. The quotients of split tori by split
lattices always exist as connected proper separated analytic group spaces
over K ; see [9], Proposition VI.4.5. On the other hand, c restricted to T is a
symmetric bilinear positive-definite form. Hence % = Aan for some abelian
variety A by [1], Theorem 2.4. The kernel G’ of the middle vertical map
in (3.8) is isomorphic to Hom(l’/T, Since ’Y’ is saturated, F /T is free
and G’ is a split torus. Let A’ - c(h) n G’. This is a full rank sublattice of G’.
One way to see this is to observe that = r ; ordK = 0)
maps injectively into A’ with finite index. Hence the kernel of is

connected. Moreover, it is smooth as the quotient map G’ - G’/A’ is 6tale.
So by GAGA and the definition of optimality 2.5, A is an optimal quotient
of J.

As we mentioned previously, by multiplicity-one the optimal quotients
A of J for which ker(J - A) is T-stable, are uniquely determined by the
kernel of the natural homomorphism 6A : ’lF - EndK(A). Since (3.8) is

T-equivariant, ker(6A) is isomorphic to the kernel of T - End(T). This
implies the last part of the claim. D

3.5. Analytic calculation of the degree.

Consider the pairing

By Theorem 3.5 this pairing is bilinear, symmetric, and positive-dehnite. Let
T be a saturated T-stable sublattice of F, and let A~ be its corresponding
optimal quotient of J, cf. Proposition 3.12. Denote

for all
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It is clear that y1.. is saturated, and since the action of T is symmetric with
respect to (.,.), ’Y’ 1 also T-stable. Moreover, due to positive definiteness
of (.,.) we have T n T-~ = 0 and T EB ’Y’ 1 has finite index in 1, . Consider
the dual to the quotient map J -~ AT. Using the fact that J is

principally polarized and 7f is an optimal quotient, we get a closed

immersion A~. ~ J, where Ay is the dual abelian variety of AT .
The composite 7r o 7fV : Ay -+ AT is a symmetric isogeny in sense of ~2.1;
in fact, it is a polarization. Denote Q = F/(T 0 y1..); this is a finite abelian
group, which can be regarded as a commutative 6tale group-scheme over
K. Denote also Ator the finite torsion subgroup of A in Proposition 3.11.
Since Ator C and K has positive characteristic p, in particular K’
has no non-trivial p-th roots of unity, Ator is a commutative 6tale constant
group-scheme of order coprime to the characteristic of K. Let r = #Q
and d = #Ator.

PROPOSITION 3.13. - With previous notation, ure have an exact

sequence of commutative finite flat group-schemes over K

where and * denotes the Cartier dual. In particular,

Proof. The subtorus corresponding to the subvariety J in

the analytic uniformization of J is Hom(r/TB G~~). Let

for all

We have a commutative diagram of rigid-analytic groups with exact rows

The proposition will follow from analyzing this diagram. The middle
homomorphism arises from the injective composite T --* F - F /T . Since
T and F /T are free, the map of tori is surjective, and its kernel is obviously
isomorphic to Hom
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By construction of Ayn, the kernel of the homomorphism A 2013~ A is

Since T 3 T-L has finite index in r, for any ~ E F there exists a natural
number m~ such that E T (B T . Hence if ~y E A) then

is an m.y-root of unity. This implies (~,~) = 0, which contradicts
the positive definiteness of (.,.) unless q = 1. Thus A is injective.
Applying the snake lemma, we get a short exact sequence

(If a homomorphism of groups is injective, to simplify the notation, we will
denote both the group and its image by the same symbol.) If 7 E A, then
from the definition of A we clearly have (q, (3) = 0 for all Since

( ~ 1 ) 1 - T we get A C T.
Next observe that the restriction of the homomorphism F 2013~ A

to T is injective. In fact, this amounts to T ~ Hom(’Y’, being
injective, which again follows from positive definiteness of (.,.). Hence we
can naturally decompose A /A into pieces by applying the kernel-cokernel
lemma ’Y’ -~ A:

For -y E r the image of -y in A is in Ator if and only if (7, (3) = 0
for all (3 E T. Hence the image of Y 1.. in A is exactly Ator. Since Y 1..
is saturated, by comparing the ranks, we have ~ Afree? where
Afr We get a commutative diagram

Hence we have an exact sequence of commutative 6tale group-schemes
0 - Ator -~ ~1/’Y’ ~ Q - 0, and we take H := A/T.

As we mentioned, Ator, so from its definition A is the
largest sublattice of T such 1. Thus,
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On the other hand, we clearly have

Using the fact that Ator is 6tale and constant of order coprime to p, we

get ’Y’’/0 "-_J Ator. Combining with the calculation of A/T,

Since 7r o 7r’ is a symmetric isogeny, its kernel is self-dual with respect to
Cartier duality. Comparing (3.10) with (3.11), and using the fact that AT
has split purely toric reduction (cf. Lemma 2.2) along with an isomorphism
At,,,r 2-,-’ lltor, we get the desired exact sequence of finite flat group-schemes

3.6. A criterion for triviality of Ator ·

Let B be the scheme-theoretic kernel of the quotient map 7r : J 2013~ AT.
As we proved in Proposition 3.12, this is an abelian subvariety of J.
Let J’C = AT n B, where the scheme-theoretic intersection is taken inside
of J. This is a commutative finite flat group-scheme which is canonically
isomorphic to its Cartier dual and the order of K is a perfect square. Indeed,
lC is the kernel of the polarization 7r o 7r v : A~. ~ AT and the statement
follows from Proposition 3.13 (see also [24], §§15-16). By a theorem of
Deligne any commutative finite flat group-scheme is annihilated by its

order. That is, if m is the order of the group-scheme then repeating the
group law m times gives a form vanishing identically on the scheme (the
identity element). The least natural number with the same property will be
called the exponent of the group-scheme. In the case of J’C = ker(7r o 7rV) its
exponent e divides the square root of its order deg(7r o 7rV) 1/2.

The idea of the proof of the following proposition is due to Gekeler,
Ribet and Zagier [12], [34].

PROPOSITION 3.14. - If the exponent of JC is equal to deg(7r o 7r~)~
then Ator is trivial.

Proof. We have natural inclusions
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The left and the right injections are obvious. To see the middle injection,
observe that due to the semi-stable reduction of J over R we have an

injection

(Look at the action of the endomorphisms on I-power torsion for t =,4 p.)
But Jfl is a split torus over k, hence End(M), where M is
the character group of On the other hand, from the construction of
analytic uniformization of J in §§3.1-3.2, it follows that M is canonically
isomorphic to r as an End(J)-module.

For any finite free Z-module L, the denominator of a non-zero

v E L oz Q is the least natural number m such that mv E L. Let e be the
idempotent of End(f 0 Q) corresponding to (1,0) under the splitting

We claim that the denominator m of e in End(1,) is equal to the order r
of the finite abelian group Q . E9 ’Y’1 ) . Indeed, it is clear that m

divides r. On the other hand, since me preserves both T and Tj-, it induces
an endomorphism of Q. The quotient is a free Z-module (as T’
is saturated), and T is a full lattice in (IF/T’) ® Q. Since m - e acts as
multiplication by m on T we get that m - e acts as multiplication by m
on Q. Applying the same argument with the roles of T and Tj- reversed,
we also get m - e acts as 0 on Q. Thus, the exponent of Q divides m. The
assumption of the proposition along with Proposition 3.13 imply that the
exponent of Q must be equal the order r of Q, and we conclude m = r.

Next, we claim that the denominator of e in End(J) is equal to the
exponent e of Indeed, since there are no non-trivial homomorphism
between Af and B (due to the multiplicity one theorem), and there is an
isogeny 3: B x J given by (3(x, y) H ~" (y) - x, we have a splitting

The denominator n of e in End(J) is the same as the denominator of the
idempotent ( 1, 0) in this splitting. As n - e is n - 1 on Ay and 0 on B, in
particular, multiplication by n is trivial on /C, we have e I n. Conversely,
since multiplication by e kills JC, the map (e, 0) from AT x B to itself
factors through (3, so e - e E End(J) and n e. By the assumption of the
proposition, we get n = deg(7r o ~" ) 1/2 .
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Finally, let s be the denominator of e in T. The inclusions in (3.12)
imply m n 5. From what we proved we get deg(7r o Jrv)1/2 Ir divides slr.
But again by Proposition 3.13, deg(7r o JrV)1/2/r = #Ator- Recall that
Ator C and K has positive characteristic p. Hence K’ has no non-
trivial p-th roots of unity, and consequently d = #Ator is coprime to p.
From Theorems 3.10 and 3.8 there is pairing T x r - Z.
This implies that slr is a p-power. Hence d must be a p-power, which

forces d = 1.

To see that slr is a p-power, let TTy be the subring of Endz(T)
generated by the Hecke operators acting on T and T y.L be the similar
subring of Then ’lfT and are naturally quotients of ~,
which in turn is a subring of the direct sum EB Ty± via the injective
homomorphism that sends an element T of T to (eT, (1 - e)T). We have
an exact sequence

and the denominator of e in T is equal to the exponent of the finite abelian
group S. Indeed, since se E ~’ the image 5-1 of se in ,S’ is 0. So the

exponent of ,S’ divides s. Conversely, since multiplication by the exponent
of ,5’ kills the image of e in S, we have exponent(S) . e E Hence s divides

this exponent and we must have an equality. Consider the sequence dual
to (3.13):

We have an isomorphism Homz (S, Q/Z) = ,S’" (which is valid
for any finite group S). Hence, after tensoring the above sequence with the
flat and using the pairing between 1r and
r mentioned before, one concludes that Q and ,S’ are isomorphic on their
prime-to-p torsion. In particular, s/r is a p-power as we claimed. D

COROLLARY 3.15. - If either Ay or B is an elliptic curve (equivalently,
if either rank or corank of T in r is 1 ) then Ator = 1.

Proof. Indeed, as one easily verifies, under this assumption J’C is the
kernel of multiplication by some integer n on an elliptic curve, and hence is

isomorphic to an extension of Z /n by pn. Such a group-scheme obviously
has exponent n and order n2. D
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4. Monodromy pairing on Jo (n) .

The purpose of this section is essentially to relate §2 and §3. We discuss
the monodromy pairing on the N6ron model of Jo (n) over R = and

relate it to the pairing in (3.9). We follow the notations of §2 and §3.

4.1. The Picard-Lefschetz formula.

In this subsection we can assume that R is any complete discrete
valuation ring. Most of what we are about to say applies to a larger class of
relative curves over Spec(R) (the semi-stable curves), but we will restrict
ourselves to the special case of Mumford curves as in Definition 3.3, since
these are exactly the semi-stable curves which have Jacobians with split
toric reduction.

Let X be a Mumford curve over Spec(R). Let J := Pico be the
Jacobian variety of XK, and let ,7 be the N6ron model of J over R. If we
denote by 9 the dual graph of Xk then HI (9, Z) 0 Gm,k; cf. [3],
p. 247. Equivalently, we have

where M := MJ is the character group of JP, and the map on the right is
[x] - [JY§] with x a singular point of Xk, and x~ is an ordered
choice of irreducible components through x. This depends on the choices
of branches, but the composite

is well-defined up to a sign.

Grothendieck’s monodromy pairing in §2.2 in the case of Jacobians
can be made explicit using the Picard-Lefschetz formula. Choose the 8-
polarization on J, i.e., the canonical isomorphism between the Picard and
Albanese varieties of X, and hence an isomorphism Mjv ~ Mj. Then from
the monodromy pairing we get a symmetric positive-definite pairing

The non-smooth locus in X consists of finitely many rational points
xl , ... , X, E Xk. By the 6tale local theory of ordinary double points
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for various non-zero non-units tl, ... , R, and each ti is unique up to a
unit multiple, so ni = C N is intrinsic to xi . (Note that ni = 1 for
all i if and only if X is regular.) Then

see [20], 12.10, where this is stated as a fact (the complete proof is given
in [22]).

4.2. Model of Xo (n) over R.

To apply (4.3) we need a semi-stable model of Xo (n) over Spec(R).
We will construct such a model using the rigid-analytic uniformization
of Xo(n). To simplify the notation we denote Y = Yo(n), X := Xo(n),
and r = ro (n) .

The link between analytic and algebraic categories will be given by a
formal scheme 03A9 over Spf(R) whose generic fibre firig is isomorphic to Q.
We proceed to describe this scheme using Theorem 3.1 and (3.1). With
notation as in §3.1, take 03A9 to be the formal scheme obtained by gluing
formal affines

where R{...} is defined analogously to (3.1 ) . (That has this form
n,x 

follows from [9], proposition on p. 7.) The underlying topological space 03A9k
of 03A9 is isomorphic to C2. Also the local nature of S2 around the singu-
larities of fik is apparent from this explicit description. Let, for example,
~ be the double point singularity of Dn,x, where Dn,x is as in (3.2). Then
the completed stalk of °ô at the singular point ~ of the closed fibre SZ~
is isomorphic to

where and Hence Q is regular.
(We should mention that n is constructed directly, without reference to an
explicit admissible covering of Q, in [25]).



2192

Now Drinfeld’s theorem (3.4) establishes an isomorphism of analytic
spaces r B Yan . From it we also get a quotient formal scheme D =
such Yan . Unfortunately, since T is not proper, we cannot apply
Grothendieck’s algebraization theorem to get a model for Y over Spec(R).
So we need an explicit affinoid covering of the complete curve Xan, or
equivalently, a Mumford uniformization of X. This is the subject of a paper
by Reversat [26]. We describe the principal result of that paper.

As in §3. I , let T be the Bruhat-Tits tree of PGL2 (K) . The action of r
on Q and 03A9 transfers to an action on T, which, as we mentioned, is the
dual graph nk. Consider the quotient graph

which is the edge-disjoint union of a finite graph 9 and a finite number
of half-lines hi, cf. [29], Theorem II.9. An end s of T gives rise to an end
of r B T if and only if it is F-rational. Thus we have bijections of finite sets
~hl, ... , X - r B pl,an (F); see [16], (2.6).

Let r tor be the normal subgroup of h generated by the torsion
elements, and let h’ - r Ir tor. Choose t s 1, . si . a set of

representatives of r B Let hi be a half-line in T corresponding
to s2. An infinite half-line is the dual graph of the analytic reduction of
a punctured disc, so the preimage of each hi in Q consists of a nested
sequence of annuli with decreasing radii, whose union is a punctured unit
disc which we denote by One can choose hi so that if 7(Qs,) n nSJ :~ 0
for y E r, then i = j and q E Stabs2 F, where Stabsi r is the stabilizer
of s2 in r; see [26], ( 2.3.1 ) . By [26], Lemma 2.4, for any si the quotient
Stabsi h B Qs, is analytically isomorphic to a unit disc with the origin
removed and there is an open immersion Stabsi h B Qs, ~ rtor B Q. Define

Sp K (t) to be Stabsi r B U Denote by E the analytic space

obtained by gluing each with rtor B 0 along their common admissible
open subspace Stabs2 r B For any s E there is -~ E rand
j E {I,... r~ such that s = Denote -~(Q,j).

PROPOSITION 4.1. - Let f: SZ -~ r tor B 0 C S be the canonical
morphism of analytic spaces. The analytic space =- is an open admissible
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subspace such that E is compact, and

is a pure admissible afhnoid covering of3. The group r’ is a free group on g
generators, were 9 is the genus of X. It acts discontinuously on and this
action is compatible with the above admissible covering of3. In particular,
the quotient r’ B 3 can be endowed with a structure of a .K-analytic space.

Proof. See [26], Lemma 2.6. 0

THEOREM 4.2. - We have a commutative diagram of K-analytic
spaces

where the maps in the middle and on the right are open immersions.

Proof. See [26], Theorem 2.7. D

Let = Then the formal scheme obtained by
gluing the formal affines

where B = satisfies E and (r’ ) xan. Since

r’ B 3 is proper R-flat and 1-dimensional, according to Grothendieck’s

Algebraization Theorem [21], (5.1.6), it is the formal completion of some
unique proper and flat curve x over Spec(R) along its closed fibre x x R k.
This X is a model of X over R which we understand fairly well thanks to E.

By construction, the closed fibre (r’ B E)k has dual graph
isomorphic to C in (4.5). The action of r on Q and on T factors through its
image r in PGL2(F). Also, since r acts discontinuously, the stabilizer in F
of each edge of T is finite and hence is inside For. Given an edge e E Ed(C) ,
denote by e’ some preimage of e in T, and let n(e) = # Stabe, r. It is easy
to check that this is well-defined. Let ~ be a (normal-crossing) singularity
of Xk. Denote by e~ E Ed(g) the corresponding edge in the dual graph.
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PROPOSITION 4.3. - With notation as above, X and Xk is

a k-split degenerate curve whose dual graph is isomorphic to 9 in (4.5).
Moreover, the formal completion of the stalk at a (normal-crossing)
singularity ~ of Xk is isomorphic to

Proof. - We already explained the first part. Let ~’ be a preimage of ~
in Q, and let Stab~, f be its stabilizer. The action of r is canonically

I isomorphic to its action on T. In particular, # Stabçl f - n(e~ ) . Next,
assume ~’ is the singularity in 15n,x for some n and x. By (4.4) the etale
local neighborhood of the image of ~’ in is isomorphic to

The action of Stab~, f does not interchange the two branches through ~’ .
Indeed, a choice of ordering of these branches corresponds to a choice of
an oriented edge e~, in T. If some q E Stab~, r interchanges the branches
through ~’ then ’Y( eç’) = This latter condition does not occur, as follows
from the explicit description of the action of h on T given, for example,
in [13]. Hence

where and Since r’ acts freely on S,

we have , which finishes the proof.

Consider 9 as an oriented graph, that is, keep track of the ordering
of the irreducible components through each singular point of Let a be

an oriented cycle in 9. One can describe a by a sequence of oriented edges
satisfying t(e2) = o(ei+1) for i = = o(el),

where t(e) (resp. o(e)) denotes the terminus (resp. origin) of the edge e.
Define a pairing e2 ) between the oriented edges of C by

For the cycle a put

One easily checks that qsa depends only on the class of a in H1(Q,Z), and
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COROLLARY 4.4. Fix an orientation on 9. Let M be the character

group of Jfl, where J is the N6ron model of J = R. Then

M ~ HI (9 ,Z) and the 0-polarized monodromy pairing M x M --4 Z in
(4.2) is given by

Proof. Follows from Proposition 4.3, (4.1 ) , and (4.3). 0

Now we return to the pairing (.,.) : r x r -+ Z in (3.9). There is a
canonical isomorphism

where 9 as in (4.5); see [29], Corollary 1 to Theorem I.13. Thus (.,.) can be
regarded as a bilinear symmetric positive-definite pairing on Z).

PROPOSITION 4.5. - Via the canonical isomorphisms r ~ HI (9 ,Z)
and M ~ HI(9,Z) in (4.6) and Corollary 4.4 respectively, ule have

(. , .) = UJ,8 as Z-valued pairings on HI (9 ,Z).

Proof. In the proof of Theorem 5.7.1 in [16] the authors, following
an argument of van der Put [33], Theorem 6.4, give an explicit formula for
the pairing (.,.), which agrees with the formula for UJ,8 in Corollary 4.4. 0

5. Main theorems.

We keep the notation of §3. Let A be an optimal quotient of J := Jo (n)
and let B be the scheme-theoretic kernel of the corresponding optimal
quotient map 7r: J - A. By the definition of optimality this is an

abelian subvariety of J. We further assume that B is preserved under
the action of the Hecke algebra ’lF viewed as a subring of End(J), cf. §3.3.
Let 7r * : ~ ’DA be the map induced by 7r on the component groups of
the N6ron models of J and A over Spec(R).

THEOREM 5.1. - The order of coker(7r*) divides (q - 1)dim(A).
In particular, for any prime i which does not divide q - 1 vve have

1.
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Proof. From Proposition 2.7 and Lemma 2.9 applied to
with A : being the 0-polarization, we get

On the other hand, we have an alternative formula for the degree given by
Proposition 3.13

where T is the saturated sublattice of T corresponding to A, and A is as in
Proposition 3.11. Via the canonical isomorphism IF MJ in Proposition 4.5,
it is clear that T = MA . Since by the same proposition the monodromy
pairing used to define (HA)l is equal to the pairing (.,.) in (3.9) used to
define T , we also have (M-A)-L = T . Thus (5.1) and (5.2) imply

Recall that Ator C (K )&#x3E;() . Since (KX )tor = the order of Ator
must divide (q - 1)dim(A), But by Proposition 2.12 we also have

so # coker(7r,,) also must divide D

COROLLARY 5.2. - For any prime .~ not dividing q -1, there is a short
exact sequence of finite abelian groups

Proof. The dual to the closed immersion p : B - J is the optimal
quotient (~ : J - BV whose kernel A v is T-stable. Theorem 5.1 applied to
both B" and A gives 1. Now the claim

follows from Proposition 2.15. 0

THEOREM 5.3. - Let K - B n A", with the scheme-theoretic

intersection taken inside of J. If the exponent of JC is equal to (~lC)1~2 then
the sequence of component groups
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Proof. Since lC is the kernel of both 7r o 7rv : A" -~ A and

Wv o p : ~ 2013~ BV, this easily follows from Proposition 3.14 and Propo-
sition 2.15, using the argument in the proof of Theorem 5.1 for the optimal
quotients B" and A. 0

COROLLARY 5.4. - If either A or B is an elliptic curve, or q = 2, then
the sequence

is short exact.

Proof. When either A or B is an elliptic curve but q is arbitrary the
exactness follows from Theorem 5.3 and Corollary 3.15. When q = 2 but A
and B are of arbitrary dimension the exactness follows from Corollary 5.2.

D

COROLLARY 5.5. - If one of the conditions of Corollary 5.4 holds,
then

where {1’1, ... ,~y,~~ form a Z-basis of MA - ’Y’ and (. , .~ is the pairing
in (3.9).

Proof. Indeed, if 1[*: -~ V A is surjective then Lemma 2.10 and

Proposition 2.12 imply

where {71, ... , ~y,~ ~ form a Z-basis of MA. It remains to use Proposition 4.5.
a

This last corollary generalizes a result of Gekeler [12], Corollary 3.20.

Example 5.6. - Let F = F2 (t) and n = t(t2 + t + 1). Then the genus
of the Drinfeld modular curve Xo(n) is 2. Gekeler showed [12], Example 4.4,
that J = Jo (n) has trivial old subvariety and two optimal quotients Ei and
E2 of dimension 1, i.e., elliptic curves. The valuations of the j-invariants of
these elliptic curves are -3 and ordo (j2) = -5 respectively.
Hence by the Tate algorithm Z/3 and Z/5. Moreover,
in [14], Example 5.3.1, Gekeler calculates directly that ~~ J,~ - 15.

This last fact also follows from our Corollary 5.4.
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Example 5.7. - This example is again due to Gekeler. Let F = 
and n = t3 - 2. In this case the genus of Xo(n) is 7. As follows from [10],
(5.3), and Proposition 4.3, Xo(n) has a minimal regular model over R
whose special fibre has a dual graph consisting of two vertices v, and v2
joined by eight arcs of edges starting at vl and ending at v2. One of

the arcs has length 8 and all the others have length 1. Hence by [3],
Proposition 9.6/10, the group of components is Z/57. According
to [10], Table 10.3 (see also [14], §6), J has two F-simple optimal quotients:
one is an elliptic curve with j-invariant of valuation ordoo (j) = -3, and the
other is a simple abelian variety A of dimension 6. From Corollary 5.4 we
conclude Z/19.
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