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, 2085-

DETERMINATION OF THE PLURIPOLAR HULL OF
GRAPHS OF CERTAIN HOLOMORPHIC FUNCTIONS

by Armen EDIGARIAN &#x26; Jan WIEGERINCK

1. Introduction.

Let f be a holomorphic function on its domain of existence D C C
and let h f be its graph in D x C. Answering a question of Levenberg,
Martin and Poletsky [6], we showed in [2] that it is possible that is

not a complete pluripolar subset of C2 , but that the pluripolar hull of
h f is strictly larger than In a subsequent paper [3] we studied the
pluripolar hull (r f )Do relative to a domain Do in the following setup:
D C Do are domains in C, K = Do B D is a closed polar subset of D,
and z E K. We showed that a necessary and sufficient conditions for

~ z ~ x C n xC 
= 0 is that z be a regular boundary point for the

Dirichlet problem on Dm - f Do : f(() )  M}.
In the present paper we continue our study of Our main

results in that direction are Theorem 5.10 and Theorem 5.11 in Section

5, stating that if (f z I x C) n x c is not empty, then it consists of

exactly one point. Thus a complete description is obtained of the pluripolar
hulls of graphs of holomorphic functions that have a polar singularity set.

The first author was supported in part by the KBN grant No. 5 P03A 033 21. The first
author is a fellow of the Rector’s Scholarship Fund at Jagiellonian University.
Keywords: Plurisubharmonic function - pluripolar hull - complete pluripolar set -
pluriharmonic measure - graph of holomorphic function.
Math. classification: 32U30 - 30B40 - 31B15
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As an important tool we introduce in this section the notion of interior
values of holomorphic mappings. These give rise to non-trivial points in the
pluripolar hull of graphs of holomorphic mappings. In the one-dimensional
case we show that the interior values of f - if they exist - are unique and
coincide with the value of a distinguished homomorphism as introduced

by Gamelin and Garnett, cf. [4]. In [2, 3] we gave a sufficient condition
for graphs of holomorphic functions to have a non-trivial pluripolar hull;
Theorem 3.4 provides the natural generalization to pluripolar sets.

As a preparation we study in Section 2 pluriharmonic measure and
extend work of Levenberg and Poletsky, [7], as well as some results in [3]
on this topic. Noteworthy is Theorem 2.3, which leads rapidly to the just
mentioned Theorem 3.4. As one may expect, knowledge of pluriharmonic
measure can be translated to pluripolar hulls. This is done in Section 3.

In Section 4 we prove a localization principle for pluriharmonic
measure. This turns out to be strong enough to explain qualitatively
Siciak’s [13] extension of our example in [2] of a holomorphic function

f C ~4°~ (ID) with domain of existence the unit disc ]1)), which has (h f ) *
extending over most of C. We also show that the pluripolar hull of a
connected Fa-pluripolar set is connected; this may be of independent
interest.

Throughout the paper B(a,r) denotes the ball in (Cn, centered at a
with radius r.

The first named author thanks Norm Levenberg for very helpful
discussions, the second author is grateful to Tony O’Farrell for a useful
conversation.

2. Pluriharmonic measure.

Let Q be an open set in CCn and let E C Q be any subset. The

pluriharmonic measure of E relative to Q (or, relative extremal function)
is defined as follows (see e.g. [5])
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Note that the function -w need not be in PSH, but if E is open then
-U) E PSH (Q).

Let h : nl ---+ Q2 be holomorphic. A straightforward consequence of
the definition is, see [7],

For a subset E of C~ and for a 6 &#x3E; 0 we put

PROPOSITION 2.1. - Let Q’ c Q be open sets in (Cn and let V c. U C
S2 be open subsets. Fix a (o C Q’. Then there exists a neighborhood W of
(o such that

Proof. There exists an c &#x3E; 0 such that E C U and that f2~ C

Recall the following very useful result (see [7])

PROPOSITION 2.2. - Let Q be an open set in C~ and let E be

any subset. Then

Combination of the above Propositions yields immediately the

following.

THEOREM 2.3. - Let 0 be open sets in (Cn and let E c Q’ be
- - - -I

a compact subset. Assume that a sequence
Then
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Proof. - Indeed, from Proposition 2.1 we have

for any fixed m. Now apply Proposition 2.2 to obtain (2.5).

Recall the following result (see e.g. [5], Corollary 4.5.11).

THEOREM 2.4. - Let D be a hyperconvex domain in C~ and let
K C D be a compact set. Then c~ ( ~ , K, D) is upper semi-continuous.

As a corollary of Theorem 2.3 we next present a variant of Theo-
rem 2.4 that gives a little less than upper semi-continuity, but is valid for

arbitrary open sets in C~.

COROLLARY 2.5. - Let Q’ c SZ be open sets in C~ and let K C Q’ be

a compact subset. Then for any (o E SZ’ u~e have

Using similar methods we give an alternative proof of a result of
N. Levenberg and E. Poletsky.

COROLLARY 2.6 [Levenberg-Poletsky [7]]. - Let Q’ c Q be open sets
in C~ and let E C Q’ be a compact subset. Assume that V C S2 B E is an
open set and that Then there exists a

( E K such that

Proof. Fix n so large that Ei c Q’. We claim that there exists an

Indeed, assume that for every z E av n Q’ we have
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Because E is open, the function -w ( , E i , S2’ ) is plurisubharmonic. There-n

fore 
"

is in PSH (Q’) - We have v # 0 on E. Hence,

a contradiction.

The conclusion is that there exists a subsequence converging to
such that

The next theorem is very important in our theory. It extends Theo-
rem 3.7 in [3].

THEOREM 2.7. - Let D be a bounded open set in C and let A c D

be a closed disc. Assume that K C 9D is a compact polar set. Then for

any zo e K we have

In particular, if zo E K is a regular boundary point of D then

Proof. Observe that  is evident. For the inequality &#x3E; we take an
open neighborhood U of K and note that for every 0  e # 1 the set

is a compact connected subset of D U U that contains A. Moreover, if

Ul C U2 then FÚ1 C FU2 . We set F~ = nuF6. Then F~ is a compact
connected subset of D.
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Now let

As Fl is a subset of the union of K and the irregular boundary points
of D, the set F~ n 8D is thin at zo and therefore totally disconnected.

To reach a contradiction, suppose that

then zo E F~ .

For any decreasing sequence {Ui} of neighborhoods of K with K =
nui, the functions D U Ui) form a decreasing sequence of harmonic
functions on D ) A, and hence converge uniformly on compact sets in 
The limit function is D) and hence D) -&#x3E; - on F6 n D.
In view of (2.11) we infer that there is a neighborhood V of zo such
that F, n V C 9D. Thus zo is not in the component of A, which is a
contradiction. D

3. Properties of pluripolar hulls.

We commence by recalling two important definitions. Let Q be an
open set in C’ and let E C Q be a pluripolar subset. The pluripolar hull
of E in Q is defined as

For a pluripolar set E in an open set Q in C’, Levenberg and Poletsky
define the negative pluripolar hull of E in S2 as

We extend the above definition to arbitrary pluripolar sets E c C’ as
follows

We will use the following two important results from [7].
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THEOREM 3.1. - Let Q be an open set in en and let E be a pluripolar
set in Q. Then

THEOREM 3.2. - Let Q be a pseudoconvex domain and let E c 0 be
pluripolar. Suppose that S2 = where S2~ C SZj+1 form an increasing
sequence of relatively compact pseudoconvex subdomains of Q. Then

From Theorem 3.1 it follows that for a compact pluripolar set K
its negative pluripolar hull K6 is of Gb-type. And, therefore, if Q is

pseudoconvex then K~ is of type G6,. Hence it is a Borel set.

The following theorem is a high-dimensional version of Theorem 2.7

THEOREM 3.3. - Let Q be an open set in C’ and let E be any
subset. Assume that F C C~ is a pluripolar set. Then

Proof. Note that the inequality " " is trivial.

Fix a point zo E F~~. There exists a neighborhood U of F and a
negative plurisubharmonic function h on Q U U such that h = -oo on F
and -oo.

Fix ané &#x3E; 0 and put E U : h ( z )  - ’ 1. Note that U~ C U is
an open neighborhood of F. Let v be a negative plurisubharmonic function
on Q such that v # - I on E. Consider the plurisubharmonic function

Note that

We let E - 0 and get the result.
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THEOREM 3.4. - Lest 0 be an open set in C~ and let Q.

Assume that E c Q’ is a compact pluripolar subset. Then for any sequence
C S2’ such that &#x3E; 0 and that zn --~ wo it

follows that wo E E.. Moreover, if 0 is pseudoconvex, then wo E E~ .

Proof. Corollary 2.5 gives cv (wo, E, SZ) &#x3E; 0. Thus Theorem 3.1

shows wo E Next if Q is pseudoconvex we apply Theorem 3.2 on a
suitable exhaustion UjQj of SZ and find wo E Eô. D

4. A localization principle.

The following localization principle is a main tool in our theory.
Special cases of it appear in [15] and [3].

THEOREM 4.1 [A localization principle]. - Let 0 C (~n be an open
set and let E be an F,-pluripolar subset of Q. Then for any open set Q’ c 0
and any open set U such that 8U n Eô == 0 we have

The proof will be based on two lemmas. Their statement and proof
are similar to work of Zeriahi (cf. [18], Lemme 2.1).

LEMMA 4.2. - Lest 0 C C~ be an open set and let E be a

pluripolar subset. Assume that F C E, K C 0 B Eô are compact subsets
and that Q’ c Q is an open set. Then for any number N &#x3E; 0 there exists a

continuous negative plurisubharmonic function v on 0/ such that v  -N
on F ~l ~1 

Proof. Let a EKe 0 B E~ . By the definition of E~ there exists a
plurisubharmonic function u on Q such that and u(a) &#x3E; -00.

Put M = u(a) , 0) . Then the function

is a plurisubharmonic function on Q with
on Q’ .
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By the main approximation theorem for plurisubharmonic function

(see [5]), there exists a decreasing sequence of continuous plurisubhar-
monic functions on Q’ which tends pointwise to v.

Let N &#x3E; 0 be fixed. Dini’s lemma on monotone decreasing sequences
of continuous functions provides us with a number ja &#x3E; 1 such that

on F and 0 on Q’. Since Vja is continuous on Q’ and

since v (a) - - -1 &#x3E; -1, we may find a neighborhood Ua of a such

that Via &#x3E;, - 1 on Ua.

Using a standard compactness argument, we construct a continuous
plurisubharmonic function v = max{vjal ... , on Q’ such that v - 0

D

An immediate corollary of Lemma 4.2 is

LEMMA 4.3. - Let Q C (Cn be an open set and let E C SZ be an

Fa-pluripolar subset. Assume that K c [2 B Eô is a compact subset and
that SZ is an open set. Then there exists a negative plurisubharmonic
function v on S2’ such that v = -oo on E n [2’, v &#x3E; -1 on K f1 [2’.

Proof of Theorem 4. 1. - Fix an open set [2’ ~ Q. Since en’,
we have the inequality " &#x3E;" in (4.1 ) .

Let us show the inequality " " . Note that K := aU n SZ’ is a compact
subset of Q. According to Lemma 4.3 there exists a plurisubharmonic
function v on Q’ such that:

Let h E PSH (n’ n U) be such that h  -1 on En Un n’ and h- 0
on U rl SZ’ . Fix an E &#x3E; 0. We consider the function

Note that v, is a negative plurisubharmonic function on Q’ which satisfies
E n Q’. Hence,
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Our next Proposition is an easy consequence of Theorem 4.1. We do
not know if the condition that E is an F~ may be omitted.

PROPOSITION 4.4. - Let SZ be a pseudoconvex open set in (Cn and let
E C Q be an Fa-pluripolar subset. Assume that E is connected. Then En
is also connected.

Proof. Assume that E~ C Ul U U2 = U, where U2 are open sets
such that U1 n U2 = 0. Since E is connected, E C Ul or E C U2. Assume
that 

Let be an open set. Then

Hence, E n = 0 for z E U2 n Q’. Therefore, (E n n U2 = o
and E* n U2 = 0. Here we used Theorem 3.2. D

Remark 4.5. - Using Poletsky’s theory [9], [10] of holomorphic discs
one can give another proof of Proposition 4.4 [11].

Note that if f is a holomorphic function on the unit disc D, then its
graph (]Ff)* 2 is a connected set and, therefore, ~r ( (h f ) ~2 ) is also connected,
where 7r : e2 :3 (z, w) - z E C is the projection to the first coordinate.
In particular, the set 7r((]Ff)* 2) is not thin at any point of itself. Here, we
show that in some cases it cannot contain boundary points. We obtain this
as a corollary of the following more general result.

THEOREM 4.6. - Let m, n E N and let E C C~ be an F,-pluripolar
subset. Assume that F : em is a holomorphic mapping such that
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Proof. Assume that zo E is such that F ( zo ) E Fix an

E &#x3E; 0 and r E (o,1 ) . Note that U~ is an open

neighborhood of By Theorem 4.1 we have for any R &#x3E; 1

Since E &#x3E; 0 is arbitrary, we get

. 
. Since R &#x3E; 1 is arbitrary, it follows that

From [1] we obtain that

Remark 4.7. - The first condition in Theorem 4.6 (i.e. F(E) C 
is essential. Indeed, in [6] a function f E n Coo (D) is constructed such
that the graph 

-

is complete pluripolar in (C2 . Hence, ~r ( (h f )~2 ) = D, where 7r is the

projection.

COROLLARY 4.8. - Let f E O(D) be a holomorphic function such
that (r f )(:2 C Dip x C, where p &#x3E; 1. Then (r f )(:2 C Dp x C.

In [2], the authors constructed an example of a smooth holomorphic
function f on the unit disc such that (1, f )~2 B h f ~ s~. From Proposition 4.4
(see the discussion after the Proposition) and Corollary 4.8 we see that the
set (h f )~2 B h f is actually quite big. See also Siciak [13].

COROLLARY 4.9. - Let f E O(D) be a holomorphic function. Assume
that rn E 1 is a sequence of radii such that (]Ff)* 2 n x C) == 0. Then
h f is complete pluripolar.

Proof. From Corollary 4.8 we see that (r f )~2 C D X (~.
Fix a closed disc ,5’ C D, denote the graph of f over ,S’ by rs, and put

Ro = sups If I + 1. Then for any R &#x3E; Ro from Theorem 4.1 (take U = ~ x C
and Q’ = we get
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But D x DR is a hyperconvex

As a simple corollary of the localization principle we have the follow-
ing

COROLLARY 4.10. - Let SZ be a pseudoconvex domain in en and let
E C Q be an Fa-pluripolar set such that Eô c Q. Then for any open set
0’ s Q such that E~ C Q’ we have En’ == E~.

Proof. Let Q" be a pseudoconvex domain such that Q’ c Q" c Q.
From the localization principle we have SZ" ) = E, f~) for z 
Hence, En" = E6,. Since Q" is arbitrary, E~ = E6,. D

5. The set of interior values.

In the study of boundary behavior of a holomorphic function the
properties of its cluster set are very important (see e.g. [8]). In connection
with the pluripolar hull a certain subset of the cluster set is very useful.

DEFINITION 5.1. - C C’ be an open set and let f : Q - (~"2
be a bounded holomorphic mapping. Assume that zo is a boundary point

An interior value of f at zo is a limit point of a sequence where

z~ C S2 tend to zo in such a way that for some closed non-empty ball B C SZ
and some positive number a ure have

We denote the set of interior values of f at zo E aSZ by L,, (f ; Q).
For an unbounded holomorphic mapping f defined on an open set Q

u~e put Lzo ( f ; Q) = QR), where

denotes the Euclidean norm in C~.

In case for some (and, therefore, for any) closed non-empty ball B c Q
we have B, SZ) = 0, we put Lzo ( f ; Q) = 0. This happens if and
only if zo is a regular boundary point of Q for the Dirichlet problem.
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Example 5.2. - Let f (z) = exp (I /z) . Note that f is a holomorphic
function on C B {0}. It is well-known that the cluster set of f at 0 is the
set C U {oo}. On the other hand = 0. Indeed, since f is

unbounded, we have Lo ( f ; C B ~0~) = UR~oLo ( f ; QR), where

It is easy to check that

We see that SZR is regular at 0 for any R &#x3E; 0, hence 0 and

Lo( f ; C B ~0~) _ ø. So, the set of interior values being similar in definition
to the cluster set, in some cases is very different from it.

The following little lemma shows that in C interior value is a "local
property" .

LEMMA 5.3. - Let S2 be an open set in (C and let zo E 8Q. Assume

that f : Q - em is a holomorphic mapping. Then there exists an r &#x3E; 0

such that

where I

Proof. This follows from Bouligand’s lemma (see [12]). D

From Theorem 3.4 we have the following.

COROLLARY 5.4. - Let Q’ c SZ be open sets in C~ and let f :
Q’ --~ be a holomorphic mapping. Assume that (o c Then

In particular, if L(,, ( f ; S2’) is non-pluripolar, then
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For n = 1 we have a little bit stronger result.

COROLLARY 5.5. - Let Q’ c SZ be open sets in C and let f :
SZ’ -~ (C be a holomorphic function. Assume that (o E 8Q’ n Q. Then

Proof of both corollaries. - Fix a ball B C Q. The inequality (2.2)
with the map h : z H (z, f (z)) and the estimate (5.1) provide us with points
Wk - E r f nO’ x em converging to x Q’)
such that W(Wk, h(B), Q’ x Iffi(rJo, R)) &#x3E; 0. Now Theorem 3.4

applies. Use Lemma 5.3 for Corollary 5.4. 0

Let D be a domain in C and let f E O(D). Assume that zo C 8D.
We want to show that 1 and, therefore, the set 
is always polar. The crucial ingredient is work of Gamelin and Garnett

[4], which extends earlier work of Zalcman [17]. We recall it here for a

small part. Consider HOO(D), the algebra of bounded holomorphic functions
on D. A distinguished homomorphism at zo is a homomorphism above
zo that admits a representing measure supported on D. Distinguished
homomorphisms need not exist, but it is shown in [4] that there can at
most be one distinguished homomorphism above zo.

LEMMA 5.6. - Let D be a domain in C and let f E O(D) . Assume
that zo E )D. Then 1.

Remark 5.7. - It is well possible that a regular boundary point ad-
mits a distinguished homomorphism. Existence of distinguished homomor-
phisms can be characterized in terms of analytic capacity (Melnikov type
condition), cf. [4], while regularity is characterized in terms of logarithmic
capacity (Wiener’s criterion), cf. [12].

The proof of the lemma will be based on the connection between
distinguished homomorphisms and interpolating sequences. A sequence

C D is called an interpolating sequence for H°°(D) if for every
bounded there is f E H°° (D) such that f (zn ) = sn
for any n &#x3E; 1.

Let us show the following variation of the well-known result related
to the Green function 9D of a domain D (see e.g. [12], Corollary 4.5.5).

PROPOSITION 5.8. - Let D be a domain in C and let C D

be an interpolating sequence. Then 9D (Zn, Zl) = 0.
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Proof. There exists a bounded holomorphic function f on D such
that f (zl) = 1 and f (zn) = 0 for any n &#x3E; 2. Assume that I If 11 = M. Then

Hence,

PROPOSITION 5.9. - Let D be a domain in C and let f C 
Assume that zo C 9D is an irregular point. Then there exists wo E (C such
that for any sequence ~zn~ C D Wlth zn - zo there exists a subsequence

such that j

Proof - Theorem 4.5 in [4] states that either (zn) converges in
H°° (D) * to the distinguished homomorphism ØZQ at zo or there exists an
interpolating subsequence of ~zn ~ . Hence Proposition 5.8 implies that 
converges to 4JzQ and ,

Proof of Lemma 5.6. - In case f is bounded Proposition 5.9 applies.
The general case follows from the definitions. 0

THEOREM 5.10. Let D be an open set in CC and let A C D be a

closed polar set. Assume that f E C?(D B A) and that zo E A. Then

And, therefore,

For the proof, first let us show the following refinement of the main
result of [3].

THEOREM 5.11. Let D be an open set in C and let A be a closed

polar subset of D. Suppose that f E A) and that zo E A. Assume
that U C C is an open set. Then the following conditions are equivalent:

(1) C) n (r f n (D x o;

(2) there exists a sequence of open sets VI C V2 C ... c U such that
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Moreover, if the set (z E D B A : V} is thin at zo for some open set
V c U, then there exists a wo c V, such that (zo, (r f n D x U)nxu.

Proof - ( 1 ) (3). Assume that there exists an open set V c U
such that ~z E D B A : V} is thin at zo. Then the set ~z E D B A :
f (z) E V} is not regular at zo. Hence, there exist an open set G c D such
that 8G n A = Qs, zo E G, and a sequence ~,zn ~n in G B A tending to zo
such that lim supn-&#x3E; 00 w(Zn S, G B A) &#x3E; 0 for some closed disc ,S’ C G B A.
There is a subsequence such that f (znk) converges to an interior
value wo E V and, using Theorem 3.4 (zo, wo) E We have also

proved the last statement of the theorem.

(3) ~ (2). Obvious.

(2) ~ (1). Again r s will denote the graph of f over a disc ,S’ in

D. In view of Theorems 3.1 and 3.2, it suffices to show that for w E Vj
w ((zo, w), hs, G x Yi) = 0 for any fixed, open set G c D such that =

0 and some closed disc ,S’ C G B A. To estimate cv((z, f (z)), hs, G x let

c &#x3E; 0 and start with a small neighborhood V of A n G, to be determined
later. Put V = V U (D B G). Let

Then U is a neighborhood of It was proved in [3] that

Therefore aU n (rs)êxv J = 0. We may apply the localization principle,
Theorem 4.1 and find 

for (z, w) E G x ’0). Now we apply (2.2) to the projection (z, w) ~-* z
and find that the right-hand side of (5.4) is

By Theorem 2.7 we can choose V so small that
~. Letting E - 0, it follows that
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As an easy corollary we get

COROLLARY 5.12. - Let D be an open set in (C and let A be a closed

polar subset of D. Suppose that f e 0(D B A) and that A. Then the

following conditions are equivalent:

(1) 

(2) there exists a sequence of bounded open sets Vi C V2 C ... such
that and the set {~ e D B A : e U B is not thin at zo for

(3) for any bounded open set V the set {2: E D B A : V} is
not thin at zoo

Moreover, if the set {~ E D B A : V} is thin at zo for some open set
V c U, then there exists a wo E V, such that (zo, n D x 

For the proof of the main result we need the following simple remark
related to the pluripolar hull.

LEMMA 5.13. - Let D C en be a pseudoconvex set and let A C D be
a closed pluripolar subset. Assume that E C D B A is a pluripolar compact
set. Then ED C A.

Proof. Let Di c D2 c ... ~ D be an exhaustion of D by
hyperconvex domains. Then by Theorem 3.2 we have ED - n

Now we apply Lemma 3.1 from [7], saying that
= B A), and infer that n Dj B A = 

and the lemma follows. D

Proof of Theorem 5.10. - Assume that D B A) C ~wo ~ . Put
U := C B ~wo ~ . Then, by the definition of interior value, for every relative
compact subset W c U the set {2: E D B A : E U B W ~ is not thin
at zo. Hence by Theorem 5.11 x U n = 0. But c

(rs)DxU U (D x {~o}). Therefore, x C n C D

Remark 5.14. be a sequence such that

an - 0 and let C C B fol. Put
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In [3] the authors gave sufficient conditions on f (

Theorem 5.10 gives h f  1. In case (rf)*C2 -
h f U ((0, wo)) it seems likely that wo = f (0), as defined by the series.
Under mild convergence conditions this is easily proved.

Example 5.15. - Suppose that the series (5.6) has the property that
(]Ff) * 2 contains a point (0, wo) and suppose that for every M either the
series

is bounded on or the function

is in Then f(0) = wo.

From [4] we know that the distinguished homomorphism 00 at 0 can
be represented by a positive measure po on Dr,.,,. Note that 

-cnl an, because cn / (z - an ) is holomorphic in a neighborhood of 0. If (5.7)
is satisfied, then by the dominated convergence theorem

In case of (5.8) we observe that

Hence



2103

BIBLIOGRAPHY

[1] A. EDIGARIAN, Pluripolar hulls and holomorphic coverings, Israel J. Math. 130
(2002), 77-92.

[2] A. EDIGARIAN, J. WIEGERINCK, Graphs that are not complete pluripolar, Proc.
Amer. Math. Soc. 131 (2003), 2459-2465.

[3] A. EDIGARIAN, J. WIEGERINCK, The pluripolar hull of the graph of a holomor-
phic function with polar singularities, Indiana Univ. Math. J., 52 no 6 (2003),
1663-1680.

[4] T.W. GAMELIN, J. GARNETT, Distinguished homomorphisms and fiber algebras,
Trans. Amer. Math. Soc. (1970), 455-474.

[5] M. KLIMEK, Pluripotential Theory, London Math. Soc. Monographs, 6, Claren-
don Press, 1991.

[6] N. LEVENBERG, G. MARTIN, E.A. POLETSKY, Analytic disks and pluripolar sets,
Indiana Univ. Math. J., 41 (1992), 515-532.

[7] N. LEVENBERG, E.A. POLETSKY, Pluripolar hulls, Michigan Math. J., 46 (1999),
151-162.

[8] K. NOSHIRO, Cluster sets, Springer-Verlag, 1960.

[9] E. POLETSKY, Holomorphic currents, Indiana Univ. Math. J., 42 (1993), 85-144.
[10] E. POLETSKY, Analytic geometry on compacta in Cn, Math. Zeitschrift, 222

(1996), 407-424.
[11] E. POLETSKY, personal communication, 2003.

[12] Th. RANSFORD, Potential Theory in the Complex Plane, Cambridge University
Press, 1994.

[13] J. SICIAK, Pluripolar sets and pseudocontinuation, Complex Analysis and
Dynamical Systems II (Nahariya 2003), AMS, Contemp. Math., (to appear).

[14] J. WIEGERINCK, The pluripolar hull of {03C9 = e-1/z}, Ark. Mat., 38 (2000),
201-208.

[15] J. WIEGERINCK, Graphs of holomorphic functions with isolated singularities are
complete pluripolar, Michigan Math. J., 47 (2000), 191-197.

[16] J. WIEGERINCK, Pluripolar sets: hulls and completeness. In: G. Raby, F. Symesak
(ed), Actes des rencontres d’analyse complexe Atlantique, 2000.

[17] L. ZALCMAN, Bounded analytic functions on domains of infinite connectivity,
Trans. Amer. Math. Soc. 144, (1969), 241-270.

[18] A. ZERIAHI, Ensembles pluripolaires exceptionnels pour la croissance partielle
des fonctions holomorphes, Ann. Polon. Math., 50 (1989), 81-91.



2104

Manuscrit requ le 20 octobre 2003,
accepté le 30 mars 2004.

Armen EDIGARIAN,
Jagiellonian University
Institute of Mathematics

Reymonta 4/526, 30-059 Krak6w (Poland).

edigaria@im.uj.edu.pl

Jan WIEGERINCK,
University of Amsterdam
Faculty of Mathematics
Plantage Muidergracht 24
1018 TV, Amsterdam (The Netherlands).

janwieg@science.uva.nl


