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AXIOMATIC THEORY OF HARMONIC FUNCTIONS.
NON-NEGATIVE SUPERHARMONIC FUNCTIONS

by N. BOBOC, C. CONSTANTINESCU, and A. CORNEA

In the most recent investigations on the axiomatic theory of
harmonic functions two axiomatic systems have been mostly used:
Brelofs axiomatic theory [4], [5], which is especially adequate to the
theory of linear partial differential equations of elliptic type, and
Bauer's axiomatic theory [I], which may be applied in addition to
some linear partial differential equations of parabolic type.

The aim of the present paper is to extend some results from Brelot's
theory, obtained by R.-M. Herve [8], to a more general axiomatic
theory [2]. This axiomatic theory starts like Brelot's and Bauer's
theory with a sheaf of linear spaces of real continuous functions on a
locally compact space for which the regular sets form a basis (axiom
Hi). It is assumed that for any point there exists a positive harmonic
function defined on a neighbourhood of this point (axiom Ho), that
the set of open sets for which the minimum principle for hyper-
harmonic functions is valid forms a covering of the space (axiom H^)
and that Bauer's convergence axiom K^ is satisfied (axiom H3).
It isn't required that either the space is non-compact or has a
countable basis. It will be proved in theorem 1.1 that the axioms Ho
and H3 imply the local connection of the space. Any space on
which Bauer's axioms are locally fulfilled, satisfies the above axioms.

This paper is divided in three chapters. The first one is devoted
to the introduction of the axioms and to a survey of some preliminary
results. Here the hyperharmonic functions, the nearly-hyperharmonic
functions and the specific order are introduced and studied. It is
proved that the hyperharmonic functions form a conditionally
complete ordered set with respect to the specific order and if the
locally bounded non-negative hyperharmonic functions have no
zero in common any non-negative hyperharmonic function is the
least upper bound with respect to the natural order of its continuous
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finite hyperharmonic minorants. In the second chapter the non-
negative superharmonic functions are studied. A superharmonic
function is a hyperharmonic function which is finite on a dense set.
It is proved that the set of differences of non-negative superharmonic
functions is a conditionally complete vectorlattice with respect to
the specific order. In order to define a carrier for the non-negative
hyperharmonic functions w^e had to introduce a sheaf J^ of non-
negative superharmonic functions, which coincides with the sheaf
of non-negative harmonic functions if and only ifDoob's convergence
axiom is fulfilled. The carrier of a non-negative superharmonic
function is the complementary set of the greatest open set to which
the restriction of this function belongs to J^4 ' . This notion of
carrier enables us to carry over R.-M. Herve's construction of the
measures associated wdth a non-negative superharmonic function.
In the last chapter we show that a finite non-negative super-
harmonic function is the specific least upper bound of its specific
minorants whose restrictions to their carriers are continuous.
Then we introduce some interesting closed ideals (with respect to the
specific order) of non-negative superharmonic functions: the closed
ideal of substractible non-negative superharmonic functions, the
closed ideal of non-negative quasicontinuous superharmonic
functions and the closed ideal of non-negative superharmonic
functions which satisfy, in a certain sense, Brelofs axiom D. If the
non-negative locally bounded superharmonic functions have no
zero in common and if the minimum principle for hyperharmonic
functions is valid on any relatively compact open set then any
function of this last ideal, which is orthogonal to J^, is the specific
least upper bound of its continuous finite specific minorants and
therefore quasicontinuous. If moreover Brelot's axiom D is fulfilled,
then any non-negative hyperharmonic function is quasicontinuous.

I. PRELIMINARIES.

1. Axioms and definitions.

Let X be a locally compact space and Jf a sheaf on X of real
vector spaces of real continuous functions called harmonic functions.

An open relatively compact set U of X is called regular if it has
non-empty boundary 9V and any real continuous function / on 9V
possesses a unique continuous extension to U, whose restriction H^
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to U is harmonic, non-negative if/is non-negative. For any regular
set U and any x e U the map / —> Hy(x) is a linear non-negative
functional on the space of real continuous functions on 5U; we
denote by co^ the measure on 8V associated with this functional
and we call it harmonic measure.

A numerical function(1) 5 on an open set U is called hyperharmonic
if:

a} it does not take the value — oo,
b) it is lower semicontinuous,
c) any point x e U possesses a neighbourhood U,(x) c U such

that for every regular set V, V c= U^x), and any y e V
p

s(y) ^ s dcoj.
j

An open set U is called an MP-set if any hyperharmonic function
s on U is non-negative if there exists a compact subset K, of X such
that s is non-negative on U — K^ and for any boundary point x of U

lim inf s{y) ^ 0.
y-^x

It follows immediately from this definition that any hyperharmonic
function on a compact MP-set is non-negative.

We shall suppose that the sheaf J^ satisfies the following axioms:
Ho. For any point xeX there exists a harmonic function on a

neighbourhood of x, positive at x.
Hi. The regular sets form a basis ofX.
H^. The MP- sets form a covering ofX.
H3. For any open set U the least upper bound of any upper directed

non-empty set of equally bounded harmonic functions on U is harmonic.

2. First consequences.

THEOREM 1.1. — The space X is locally connected.

Let x be a point of X and U be an open neighbourhood of x
on w^hich there exists a positive bounded harmonic function u.
For any open set V, x e V c: U, such that U — V is open, we denote
by Uy the harmonic function on U equal to zero on V and equal to u
on U - V. The least upper bound v of the family (My)v is harmonic

(1) Real (resp. numerical) function is a map into the real axis (resp. real axis completed
with +00 and — oo).
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on U and is equal either to zero or to u at any point of U. Hence the
set W on which v vanishes is open and therefore connected. Since it
contains x, X is locally connected.

COROLLARY 1.1. — The regular domains form a basis ofX.
Let U be an open subset of X and / a numerical function on 8V.

We denote by y^j- the set of lower bounded hyperharmonic functions
s on U such that

liminf5(y) ^ f(x)
y-^-x

at any x e 8V and non-negative on U — K^, w^here K, is a compact
subset of X, and by H^ the function on U

HV(x) = inf s(x).
seyy

We shall denote, as usual, for any non-negative hyperharmonic
function s on X and any set A c: X, by R^ the greatest lower bound
of the set of non-negative hyperharmonic functions on X w^hich
dominate s on A.

LEMMA 1 . 1 . — L e t V be a regular MP-set and f a lower bounded
numerical function on 8V. Then H^ is hyperharmonic on V and for
xeV ^

H^(x) = fdo^.
j

Iffis bounded H^ is harmonic on U.
The assertion follows from the axiom H3 and from the fact that

if/is lower semicontinuous, the function

x-^rfdcD^
j

is hyperharmonic and belongs to y^.

THEOREM 1.2.—Let Ui, U^ be two open sets and for any i = 1,2
let Si be a hyperharmonic function on U,. // the function s defined on
V, uV^by

s(x) = inf s,(x)
U,9JC

is lower semicontinuous then it is hyperharmonic.
It is sufficient to show that s is hyperharmonic on a neighbour-

hood of a point x e V^ n 8V\. Let W be an MP-set containing x and



AXIOMATIC THEORY OF HARMONIC FUNCTIONS 287

U be an open neighbourhood of x on which there exists a positive
harmonic function u. We shall prove that we can take as U^x) (re-
quired in the definition of hyperharmonic functions) the set U n W n
U^(x). Indeed let V be a regular set, V c= \J,(x\ and/a real continuous
function on 5V, / ^ s. Obviously s ^ Hj on V - U^. For any
s > 0 we denote by Sg the function on W equal to inf(s + su — H^, 0)
on V n U^ and equal to zero on W — V n U^. Since it is hyper-
harmonic on V n U^ and equal to zero outside a compact subset
of V n U^ it is hyperharmonic. W being an MP-set it is non-nega-
tive. Hence, a being arbitrary, s ^ Hj also on V n U^. It follows
immediately that for any y e V

s(y)^ f*5d<.
j

COROLLARY 1.2.—Any open subset of an MP-set is also an
MP-set.

COROLLARY 1.3.— The regular MP-domains form a basis ofX.
COROLLARY 1.4.— Let V be a regular MP-set and s a hyper-

harmonic function on X. The function s ' on X equal to s on X - U
and equal to H^ on U is hyperharmonic and not greater than s.

The assertion follows immediately from the Lemma 1.1 and from
the theorem since s ' is obviously lower semicontinuous.

Remark. —It follows from this corollary that for any hyperharmonic
function s on an open set U and for any x e U one may take in the
definition of hyperharmonic functions any MP-set containing x and
contained in U in the place of Us(x), this means independently of s.

From Theorem 1.2 it follows also that for any non-negative hyper-
harmonic function s on X and any open set U we have H^ = R^^
on U. Hence if s^ s^ are non-negative hyperharmonic functions on X
then [3] (Theorem 3.2) H^ = H^ + H^(2).

3. Nearly hyperharmonic functions

A numerical function s on an open set U is called nearly hyper-
harmonic if it is locally lower bounded and for any regular MP-set V,
V cz U, and for any x e V we have

r*
s(x) ^ s dco^.

(2) This equality will be used only in lemma 3.3.
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The greatest lower bound of a locally equally lower bounded set
of nearly hyperharmonic functions is also nearly hyperharmonic.

LEMMA 1.2.—Let s be a nearly hyperharmonic function on U. The
function s equal to

lim inf s(y)
y^x

at any x e U is hyperharmonic and
p F*

S{x} = sup s d(D^ = lim s dco^,
xeV J V,^J

\vhere V is a regular MP-set and ^x is the filter of the sections on the
set of all regular MP-sets containing x ordered by the converse
inclusion relation.

Let V be a regular MP-set, V cz U. From the Lemma 1.1 it follows
/•sje /^c

s{y) $? s dco^ ^ s d(D^
J J

for any y e V. Hence s is hyperharmonic.
Let x e U, u be a harmonic function on a neighbourhood of x,

u(x) = 1, and a be a real number, a < 5(x). For a sufficiently small
regular MP-neighbourhood V of x we have

(XU < S

on V. The last assertions of the lemma follow from

f f*= au do^ ^ s dco^ ^ s(x).
J •/

LEMMA 1.3.—Let Si, s^ be nearly hyperharmonic functions. Then
s^ -h s^ is nearly hyperharmonic and

s! + s! = ^1 + ^2-

V (^JneN ls an increasing sequence of nearly hyperharmonic functions
then s = lim s^ is also nearly hyperharmonic and

s = lim S^.
n—»oo

For any family y = (sj^i of hyperharmonic functions we denote by

\1 y or V s, (resp. /\y or A s )
t€l if=\
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the least upper bound (resp. the greatest lower bound) of y in the
set of hyperharmonic functions if it exists.

LEMMA 1.4.—For any upper directed (resp. locally equally lower
bounded) family y = (s,)^of hyperharmonic functions V y (resp. A^)
exists and

\1 y = sups, (resp. ^y = infsj.
tel tel

For any hyperharmonic function s we have

s + V s, = V (5 + sj (resp. s + A s, = A (s + 5J).
ie! tel ie! ie!

Obviously inf5\ is a nearly hyperharmonic function. The equality

s + A s, = A (5 + sj
ie! tel

follows from

s(x) + inf^(x) = inf(5 + 5J(x)
ie! ie!

and Lemma 1.3.

Remark. — The set of hyperharmonic function is a conditionally
complete lattice with respect to the order relation ^.

LEMMA 1.5. —Let 5'i, s^ be hyperharmonic functions on X, s^ ^ s^
such that for any regular MP-sets V and any x e V

r* r*
Sl(x) + 52 d^ ^ S^(X) + Si rf^.

J J

T^e function s on X equal to s^ — s^ where s^ is finite and equal to
+ oo where s^ is infinite, is nearly hyperharmonic and

s^ = s^ + S.

For any V and any x e V at which s is finite we have
F* F* F*

s(x) == s^(x) - s^(x) ^ Si ̂  - ^2 ̂  = s dco^.
V J J

Let s^ s^ be hyperharmonic functions on X. The relation:
«there exists a non-negative hyperharmonic function s on X such
that s^ = s^ + s»

is an order relation. It is called specific order (M. Brelot, R.-M. Herve)



290 N. BOBOC, C. CONSTANTINESCU, AND A. CORNEA

and we denote it

Si ^ S^.

Obviously s^ < s^ ==^s^ ^ s^. For any family y = (s),^ of hyper-
harmonic functions we denote

y y or Y ^ (resp. Ay or A s )
iGl ie!

the least upper (resp. greatest low^er) bound wdth respect to the
specific order if it exists.

LEMMA 1.6. —Let s be a hyperharmonic function on X and

A = {xeX|s(x) < oo}.

For any xeA and any regular MP-neighbourhood V ofx \ve have

(D^(X - A) = 0.

Since the function

y —> \ s dcoj

is finite on A n V and s is infinite on X — A the function

y -^ <(X - A)
vanishes on A n V. Being harmonic it vanishes on A n V.

Remark. — I t follows from this lemma that the function on X equal
to 0 on A and equal to + oo on X — A is hyperharmonic. Hence, by
Theorem 1.2, the function on X equal to 0 on A and equal to a non-
negative hyperharmonic function on X — A is hyperharmonic.

LEMMA 1.7.—Let s, 5i, s^ be hyperharmonic functions on X and

A = {xeX|5(x) < oo}.

If 5i ^ s^ on A then s^ ^ s^ on A.
Let x e A and V be a regular MP-neighbourhood of x. By the

preceding lemma we have
/t* y*r* r*

5^ d(D^ ^ 5;2 d0)̂ .
J J

The assertion follows now from Lemma 1.2.
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LEMMA 1.8.(3) — Let Si, s^ 53 be hyperharmonic functions on X such
that

S 1 ^ S 9 ^\ •Si

anrf ^(^7, = l ,2 ,3 , f <7') fc^ ̂  5^ of non-negative hyperharmonic
functions s on X 5uc/i r/iat

5, + S = 5,

// we denote s^ = A ̂ -, then s^ e ̂  and for any s e <9^ 3

•^12 ~l~ -^23 ^ ^

For any 5 e ̂  we have

Sj = Si + S.

Hence, by Lemma 1.4,

^•=s,+s,,, 5^.e^,.

We denote
A = {xeX[si(x) < oo}.

Obviously s^ = R^. and for any s e ̂  3

5 = S^ + 5^3

on A. Hence [3] (Theorem 3.2)

5 ^ RS = ^512+523 = ^Si2 + ^S23 == S12 + S23•

Since for any regular MP-set V, V n A = 0, and any x e V we have
r*

s,j{x) = s,j da)^,
j

there exists by Lemma 1.5 a non-negative hyperharmonic function t
on X — A such that

S = S^ + 5^3 + .̂

The function t ' on X equal to 0 on A and equal to t on X — A is a
non-negative hyperharmonic function and by Lemma 1.7

5 = 5^ + ^3 + ^ /, Si2 + ^3 < 5.
(^This lemma is used only to show that in lemma 1.10 A^ exists and belongs to .9^.

These assertions, however, are not used in the rest of this paper.
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LEMMA 1.9.—Let y = (s^gj be a specifically upper directed (resp.
specifically lower directed and locally equally lower bounded) family of
hyperharmonic functions on X. Then Y y (resp. Ac99) exists,

\y = V y (resp. A^ = Ae^)

and for any x e X (r^sp. x e X 5^c/i that in! s,(x} < + oo)
l6l

(Y^)(x) = sup^(x) (resp. (A^)(x) = inf5,(x)).
t€l l€l

Let K e I. For any i e I such that s, > s^ (resp. s, < 5j we denote
by t, the nearly hyperharmonic function on X equal to s, — s^
(resp. s^ — 5J wherever s^ (resp. 5J is finite and equal to + oo else-
where. By Lemma 1.3

s, = SK + ?, (resp. ^ = 5, + ?J

the family (?J^i being upper directed we get by Lemma 1.4

SUp 5, = S^ + SUp ?,, V S, = 5^ + V ^
iel iel tgl iel

(resp. s^ = inf5^ + sup ?^ 5^ = A s, + V fj.
iel tel iel (el

Hence V y (resp. A <^) is a specific majorant (resp. minorant) of e99.
It can be proved similarly that any specific majorant (resp. minorant)
of y is a specific majorant (resp. minorant) of V y (resp. A c$Q.

LEMMA 1.10.—(R.-M. Herve). Let (UJ^i be a family of open sets
on X and for any i e I let t, be a hyperharmonic function on L^ such
that ifV^X any hyperharmonic function on U, dominating —t, is
non-negative. Let y be the set of hyperharmonic functions on X \vhose
restrictions to U, are specific majorants oft, for any L e I, and for any
i e I let y, be the set of non-negative hyperharmonic functions s^ on
U^ such that t, + ^ is a restriction to L^ of an element of y. Ify is
locally equally lo^er bounded and contains only non-negative
elements when at least an U. is different from X, then y and ^
possess a specific greatest lower bound and

A^- ^+ A^ on U,, i e L

For any L e I and any regular MP-set V, V c= U^, V n ( ^J U^ ] = 0,
we have v K ^ 1 /

(A^)(x)= f (A^)dc^ xeV.



AXIOMATIC THEORY OF HARMONIC FUNCTIONS 293

We denote s = A y, s, = A ̂ . By Lemma 1.4 we have on V,
s = t, + s,.

Let s' e y, s\ e ̂ , such that s' == t, + s; on U,, V be a regular MP-
set and/be a real continuous function on <9V,/^ 5'. The function s*
on X (resp. s* on UJ equal to s on X — V (resp. 5, on U, — V) and
equal to

inf((5' + H^ - H;), s)
(resp. inf((5; + H^ - H;U))

on V (resp. V n UJ is lower semicontinuous and therefore by
Theorem 1.2 hyperharmonic. 5* is non-negative and 5* = t, + 5*
on U for any i e I. Hence s* e y, s* e c9^, 5* ^ s,

5' + H^ ^ s + H,X
By Lemma 1.5 we get s ' >= s,s = A^. By Lemma 1.8s, = Ae9^,
taking ^, s, s' in the role of s^ s^, 53 respectively. Hence•

\y = ^ + A^: on U.

Let i e I and V be a regular MP-set, V c U ^ V n (\J \J^\ = 0.
^ K ^ t /

We denote by 5* (resp. s*) the hyperharmonic function on X (resp.
UJ equal to s on X — V (resp. s, on U, — V) and equal to

^ + H^ (resp. H^)
on V. Then

s* = ^ + s*, 5* e ̂ , 5* e ̂ , 5* == s,.

Remark.—The set of hyperharmonic functions is conditionally com-
plete with respect to the order relation <.

LEMMA 1.11.—Let f be a lower semicontinuous function on X
and y be the set of hyperharmonic majorants of f. If the function SQ

x -> inf s(x\ x e X,
sey

is locally lower bounded it is hyperharmonic. If SQ is bounded in a
neighbourhood of a point x and

limsup/00 < So(x)
y-^x

(resp. lim sup/Cy) ^ 5o(x)),
y-^x



294 N. BOBOC, C. CONSTANTINESCU, AND A. CORNEA

then SQ is harmonic on a neighbourhood of x (resp. SQ is continuous
at x).

For the proof see [6] (Theorem 3), [3] (Propositions 3.1, 3.2, and
3.3).

THEOREM 1.3.—If for any point x e X there exists a non'negative
locally bounded hyperharmonic function on X positive at x then any
hyperharmonic function which is minorated by a continuous finite
function /, / ^ 0 outside a compact set, is the least upper bound of its
continuous finite hyperharmonic minorants which dominate f

II. SUPERHARMONIC FUNCTIONS.

1. Specific order.

A hyperharmonic function on an open set is called superharmonic
if it is finite on a dense subset. A subset A of an open set U is called
negligible on U or simply negligible if for any regular' MP-set V,
V c: U, we have co^(A n 3V) = 0 for any x e V.

LEMMA 2.1.—Let s be a hyperharmonic function on X. The
following conditions are equivalent:

a) s is superharmonic;
b) s is finite outside a negligible set;
c) for any open set U and any hyperharmonic functions 5i, s^ on U

such that
S + S^ S + 52

it follows s^ ^ s^.
a ==» b follows from Lemma 1.6.
fc ==» c follows from Lemma 1.7.
c ==» a is trivial.
We shall denote by ^(X) the set of non-negative superharmonic

functions on X. The relation (s^s^) ̂  (s\,s^) defined by

Si + 5'2 = 5^ 4- S\

is an equivalence relation on .^(X) x y+(X) according to the
Lemma 2.1. We denote by [^RC) the quotient set of the set
^^(X) x ^^X) with respect to this equivalence relation and by
[5^, sj the equivalence class of the element (s^ s^). Again by Lemma
2.1 the relation [s^, s^] < [s\, s^] defined by

s^ + s^ < s^ + s^
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is an order relation on [^^(X) called specific order (M. Brelot, R.
-M. Herve). Defining the sum of two elements of [^KX) by

[5i,sJ -f [Si,5'2] = [5i -r- S\,S^ + S^]

and the multiplication with real numbers by

^i^i] = [as!. ̂ L
-aOi,^] = [as2,a5j

for a ^ 0, [y^^X) becomes an ordered real vector space.
The map

S -^ [5, 0]

is an isomorphism of y+(X) on the set of non-negative elements
of [y+](X). We shall identify y+(X} with this set.

THEOREM 2.1. [y^}(X} is a conditionally complete vectorlattice (4).
The assertion follows from the above remarks and from Lemma

1.10.
We shall denote by Y (resp. A) the join (resp. meet) operation

with respect to the specific order in [^^(X).

2. Carriers of non-negative superharmonic functions.

Two non-negative elements of a vectorlattice are called orthogonal
if their meet is zero. Two subsets of non-negative elements of a
vector lattice are called orthogonal if any element of one set is
orthogonal to any element of the other set. A subset 2T of non-
negative elements of a vectorlattice is called positive ideal if the sum
of two non-negative elements belongs to ST if and only if both
elements belong to ST. ST is called dosed positive ideal if moreover it
contains the least upper bounds of its subsets, whenever they exist.
If the vectorlattice is conditionally complete then for any non-
negative element s and for any closed positive ideal 2T there exists a
unique decomposition

s = s^ + s^

where s^ e 2T and s^ is orthogonal to ^ \ we shall call this decompo-
sition the Riesz decomposition of 5 with respect to ST and s^ the com-
ponent ofs in ST.

(4) Espace de Riesz completement reticule (in the terminology of N. Bourbaki).
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U -^ ^(U) is a sheaf. We denote by ^ the set of sheaves ^ on X
such that, for any U, ^(U) is a closed positive ideal of [^KU) and
contains Jf^U), where ̂ (U) stands for Jf(U) n ^(U). Obvious-
ly the sheaf ̂ + belongs to <^. We denote

.^(u) == n w).
j^

Obviously Jf^ e </^. Any non-negative superharmonic function 5 on
U for which there exists a covering SB of U of regular MP-sets,
such that for any V e SB and x e V

f*s{x) = s da)^,
j

belongs to J^QJ).
Doob's convergence axiom [7] (the least upper bound of an upper

directed set of harmonic functions is harmonic if it is finite on a
dense set) is equivalent to ^+ = Jtf+.

LEMMA 2.2. —Let s be a non-negative superharmonic function on X
orthogonal to J^+{X). Then any hyperharmonic major ant of —s is
non-negative.

Let So be a hyperharmonic majorant of —5. We denote by y the
set of non-negative superharmonic functions on X dominating —So.
We have

So + /\y = A (so + s') ^ 0
s'ey

and therefore
So = A^ee9?

For any regular MP-set V the function on X equal to SQ on X — V
and equal to H^, on V belongs to y and therefore

c' — fr^
^ — ^sb-

Since So ^ s we get, by Lemma 1.5, s'o < s. Hence s'o = 0 because
it is an element of Jf^X).

Let s be a non-negative superharmonic function on X and Xo
AlexandroflFs compactification of X. We shall call carrier of s, and
we shall denote it by Carr s, the set of points x e Xo such that, for
any neighborhood U of x, the restriction of s to U n X does not
belong to J^^U n X) to which we add the Alexandroff point if s
possesses a non-identically zero minorant from J^^X). Obviously
Carr s is closed.
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THEOREM 2.2. — The map
s -> Carr s

possesses the following properties:
a) s = OoCarrs = 0;
fc) s < s' ==> Carr s c: Carr s ' ;
c) /or any 5 e ̂ ^(X) and for any two compact subsets K^ , K^ O/XQ,

KI u K.2 = XQ, ^r^ ^xf5t5 5i, 5 2 e <9^(X) 5uc/i ^at
s = 5i + s^, Carr 5, c= K^ (f = 1,2).

The properties a) and b) are trivial. Suppose that the Alexandroff
point belongs to K^ and let us denote U = X — K^. Let h + p be
the Riesz decomposition of the restriction of s to U with respect to
Jf^QJ), heJ^+(V). According to Lemma 2.2 and Lemma 1.10
there exists a non-negative superharmonic function s^ on X such
that

S-2 < S,

s^ = p 4- 52 on U, s'2 e ̂ (U),
Carr s^ <= U c: K^.

Let 5i be the non-negative superharmonic function on X defined
by

S = 5i + 52.

We have on U
P + h = 5i + p + 5'2,

h = s^ -I- s'2.
Hence the restriction of 5i to U belongs to J^^U) and therefore

Carr5i c: Ki.

3. Abstract carriers.

Let Y be a compact space and JS? be a vectorlattice. An abstract
carrier on (^ Y) is a map s -> K(s) of the set of non-negative elements
of ̂  into the set of compact subsets of Y which satisfies the following
axioms:

a) 5 = O o K ( 5 ) = 0 ;
b) s <s '=>K(5)c: K(5');
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c) for any se^^ and for any two open subsets G^G^ of Y,
GI u G2 = Y, there exist s ^ , s^ e ̂ + such that

s =5 i + 52, K(5,)c: G, (f = 1,2).
K(s) will be called the abstract carrier of s.

It is easy to verify that the map
s -> Carr s

is an abstract carrier on ([^^(X), Xo).
We have

K(s, + 52) = K(5i Y 52) = K(5i) u K(s^\
K(s, A 5^) c: K(5i) n K(^),
K(si) n K{s^ = 0 => 5i, 5^ are orthogonal,

and for any finite open covering (G,)i^^ of Y and for any s e ̂ +

there exist (s,)^,^, ̂ .eJ^, such that
n

s = ^ 5 , , K(5,)c:G, ( f = l , 2 , . . . n ) .

Let se^. A division of s is a finite family of elements of ^+

whose sum is equal to s. We shall denote by A the set of all divisions
of 5. A division (s,)^ of s is called finer than a division (r^j of s if
there exists a decomposition (I^j of I such that

^ = E ^«
l6l,

for any j e 3. This relation is an upper directed preorder relation
on A. For any real continuous function / on Y and any S e A,
<5 = (Sf)igi, we denote

<5*( / )=E[sup /(x)]5,
igl x€K(si)

W)=E[ inf /(x)]s;,
,gl ;>ceK(Si)

£(<V) = sup( sup f{x) - inf /(x))(5)
ie! xeK(si) xeK(Si)

We have
W)<<V/)+,(<5,/>

and, if ^' is finer than 8,

W)^W)<8^(f)<8^(f).
(5) We make, in these definitions, the conventions

sup/(x) = inf/(x) = 0.
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Since for any finite open covering (G^ of Y there exists a division
8 = (^-Li of s such that for any i e I, K(5,) c= G,, we may find for any
positive number s a division S of s such that

£(<V)<6.

Hence if A es == 0 we have
£ > 0

/,^(/)-y<un
5eA <5eA

whenever one of these two elements exists.

In general, if A <5*(/), Y 6^(f) exists and are equal we denote by
<5eA <5eA

/. s their common value. We have 1. s == s.

LEMMA 2.3.— Iff. s is defined/or anf^O then
K(/.5)c=K(5)nSupp/(6),
K(5)c :K(/ .5)u{xeY| / (x)=0}.

Since, for a sufficiently great natural number n,
/. s < ns

we have K(f.s) c= K(5). Let (s^s^) be a division of s such that
K(s,} n Supp / = 0 (resp. K(^) n (K(/. s) u [x e Y|/(x) == 0}) = p)
and K(5^) c: G, w^here G is an arbitrary open neighborhood of
Supp/(resp. K(/. s) u {x e \\f(x) = 0}). Since

f.s < [ sup f(x)]s^ (resp./.s ^ [ inf J(x)]s^
xeK(s2) xeK(si)

we have
K(/. s} c: K(5^ c: G (resp. K{s,) c K(/. 5)

hence
s, = 0, K(5) = K(5,) c: G).

LEMMA 2.4.—Let f, g be real continuous functions on Y and
^reJSf^ such thatf. s, g.s.f.t are defined. Then:

^) (/ - g ) ' s is defined and (f - g). s = /. s - g . s;
b} f. (s + t) is defined andf. (s + t} = f. s + /. r;
c) inf(/, g). 5 and sup(/, g). s are defined and

inf(/, g). s = (/. 5) A (g. 4 sup(/ g). 5 == (/. 5) Y (g. 5);
d) iff ̂  0 ̂ ^n/. (5 A t) andf. (s Y t) are defined and

(6) Supp/ = {xeY|/(x)^0}.
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f.(s A ( )=( / . s) A( / . t ) , / . ( sYt )=( / . s )Y( / .0 .
a) follows from the inequalities

W) - 8*(g) < <V/ - g) < <5*(/ - g) < ̂ (.U - <Vg)

satisfied by any division 8 of s.
fc) is trivial.
c) We set

/'=/-inf(/,g),
g' = g - inf(/, g).

For any division 6 of s we have
W)A<5,(g')=0,
<5*(inf(/,g)) < W ^ W) + 5*(inf(/,g)),
^*(inf(/,g)) ^ W ^ 6^g') + ^(infK/.g)),
5*(inf(/,g)) - ^»(inf(/,g)) < 6*(f) - 8^f) + <5*(g) - ̂ (g).

Hence, if 8' is a division of s finer than 8, we have
<Vinf(/, g)) < W) A <Vg) < 5,.(/) A 6^g) <

^<5'*(inf(^g))<:^*(mf(/,g)).
^^(mf(/, g)) < /. s A g. s < 5*(inf(/, g)) <

< 5»(inf(/,g)) + <5*(/) - 5^(/) + 8*{g) - 8^g).

The assertion for sup(/, g) follows from the relation

sup(V; g) = / + g - inf(/, g).
d) Let ^(f^P- ^i; ^i) be a division of s A t(resp. s — s A t,

t - s A t)
^ = (s0,6i,(/ = 0,1,2), Io n I, = Io n 1̂  = 0.

We denote by (jj{j = 1,2) the family defined on Io u I, equal to <5o
on Io and equal to 6j on I j , <7i(resp. a^) is a division ofs (resp. t). We
have

<W) = W) + W\
^(f) A <r$(/) = W) + 6W A W).
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Since any s,1 is orthogonal to any si we have <5?(/) A 8^(f) = 0 and
<W)A^(/) = ^(/). Similarly we get O^(/)A(T^(/) = 8^(f).
Hence

( / . s ) A ( / . r ) = / . ( s A r ) .
For the last assertion we remark that

s Y t + s A t = s ^ - t .

Let 6 == (s,)^i(resp. a = (^)jej) be a division of s Y t (resp. s A 0,
I n J = ^ and T the division of s + t defined on I u J equal to 8 on I
and equal to a on J. We have

W) + (T*(/) = T*(/), ^(/) + (7,(/) = T^(/).

From here we see that /. (s Y t) is defined and

/ . ( 5 Y O + / . ( 5 A O = / . ( 5 + 0 ,

/ . ( 5YO+( / . s )A ( / . r )= / . 5+ / . r .

LEMMA 2.5.—i^et I be a linear map of the set of real continuous
functions on Y into JS? such that for any f ̂  0

;(/) ^ 0, K(/(/)) c Suppy:

If A (£. /(I)) = t then for any real continuous function g on Y, g. /(I) is
£

defined and

g'lW==l(g\

Let ((Ai)i6i be a finite family of non-negative real continuous
functions defined on the real axis such that ^ (^ = 1. For ; e I we

l€l

denote g^ = ^ o g. The family 5 = (f(gf))i6i is a division of ((1) and we
have

Sa,;(g,)^^(g)<^(g)<^Mg.),
i€l i el

£*)<f(g)<^MgA
i6l i el

where
a; = inf g(x), P, = sup g(x).

xeSuppfiTi xeSupp^i
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If the vectorlattice cS? is conditionally complete then f.s is
defined for any se^^ and any/ In this case we define for any
s e Jz? and any /

/ .5=/ . (5YO)4- / . ( ( -5)YO).

THEOREM 2.3.—Let ^ be a conditionally complete vectorlattice,
Y be a compact space, K be an abstract carrier on (JS^ Y) and ^ be the
ring of real continuous functions on Y. Then S is a ^-modulus with
respect to the composition law

(f.s)-f.s
and

a) ifs ^ 0 then

sup(/, g). s = (/. s) Y (g. s\ inU g). s = (/. s) A (g. s)

b) iff ̂  0 then

/ . (Y5 j= Y(/.5j, / . (A5 j= A(/.5j.
t6l iSl t€l t€l

The theorem follows from the Lemmas 2.4 and 2.5.
Remark.—The set of elements of ^+ whose abstract carriers

are contained in a given compact set K form a closed positive ideal.
For any s e ̂ + we shall denote by s^ the component of s in this ideal.

III. CLOSED IDEALS.

1. Substractible functions.

LEMMA 3.1.—We suppose that for any xeX there exists a
non-negative locally bounded superharmonic function on X positive
at x. Then the following assertions are equivalent:

a) for any x and any regular ^/[^-neighbourhood V of x there
exists a non-negative superharmonic function s on X such that

>J•S(x) > S da>^
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b) for any x, y e X, x ^ y, there exists two non-negative super-
harmonic functions 5, t on X finite at these points such that

s(x)t(y) - s(y)t(x) ̂  0.

a) ==> b). Let x, y e X, x ^ y, V be a regular MP-set, x e V, y ^ V,
and 5 be a non-negative superharmonic function on X such that

f*
s(x) > s d(D^.

J
We may suppose s locally bounded and s(y) ^ 0. Let t be the super-
harmonic function on X equal to s on X - V and equal to H^ on V.
Obviously

s(x)t(y) - s{y)t(x) ̂  0.

b) ==> a). Let V be an MP-neighbourhood of x and y a point of
the carrier of the measure (D^. Let further 5, t be two non-negative
superharmonic functions on X finite at x and y and such that

s(x)t{y) - s(y)t(x) ̂  0.

By Theorem 1.3 we may suppose that s and t are continuous.
Obviously s(x) -^ 0, t(x) ̂  0 and therefore w^e may suppose s(x) = t(x\
Then

f*
(s A t){x) > (s A t)da)^.

»/
We say that a non-negative superharmonic function s on an

open set U is substractible on an open subset V of U if
S ^ 5' ==> 5 < 5'

for any superharmonic function s ' on V.

LEMMA 3.2.—Let s be a non-negative superharmonic function
on an open set U.

a) If s is substractible on any element of a family of open subsets
ofV then s is substractible on their join.

b) Let V be a regular MP-set, V <= U, t a non-negative super-
harmonic function on U and W the open subset ofV where the function

A (5 + t - H})

is positive, where f is a real continuous minorant of s + t. If s is sub-
stractible on U then s is substractible on W.
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c) J/V f5 an open subset ofV and t is a non-negative superharmonic
function on U infinite on U — V then if s is substractible on V it is
substractible on U.

a) follows from the fact that the non-negative superharmonic
functions form a sheaf, using Lemma 2.1.

b) Let s ' be a superharmonic function on W, s < s ' . We set
u == V Hj, p = A (s + t - Hj),

where / is a real continuous minorant of s + t. For any natural
number n the function equal to n(s + 0 on U — W and equal to
nu -h [s' A np) on W is superharmonic on U and dominates s. Hence
it is a specific majorant of s and \ve get

s + 5^ = nu + (s' A np)
on W, where 5^ is a non-negative superharmonic function on W.
We put

. v = V H^, g = A (s - H^),
9 9

where g is a real continuous minorant of s and w^e have
r* r*

q(x) + (s' A np)d(o^ ^ (5' A np)(x) + J qda)^

for any regular MP-neighbourhood V of x, V c: W. Hence, by
Lemma 1.5, q < 5' A np, q < s', 5' = g + 5", r ^ 5", where 5" is a
non-negative superharmonic function on W. From

s" = V HJ + A (s" - H^),
9 ^

w^here g is a real continuous minorant of 5, we have v < 5".
c) Let 5' be a non-negative superharmonic function on U, s ^ s\

Then there exists a non-negative superharmonic function s" on V
such that

s' == s + s".

For any e > 0 the function Sg on U equal to s" + £^ on V and infinite
on U — V is superharmonic. We have

5 + A 5g = 5'
£

on V and therefore on U since U — V is negligible.

Remark.—If s is a substractible non-negative superharmonic
function on U it is not always substractible on any open subset of U.
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This is nevertheless true if the assertion a} from the Lemma 3.1 is
satisfied and a fortiori if Bauer's « Trennungsaxiom » is fulfilled.

We denote for an open set U by <^(U) the set of non-negative
superharmonic functions on U which are substractible on any
open subset of U.

THEOREM 3.1. —a) U -^ <?(U) is a sheaf',
b) for any U, <?(U) is a closed positive ideal of[y+](V)',
c) Jf^U^^U);
d) any locally bounded element of(?(U) is harmonic.
a) follows from the definition and from Lemma 3.2. b) Let s^ s^

be non-negative superharmonic functions on U, V be an open
subset of U and s ' be a non-negative superharmonic function on V.
I f 5 i + s^eS{V} then

54 < S ' => 5i + 52 ^ S ' + 52 => Si + S2 < S' + S^ ==> S^ < S'.

Hence 5i e <?(U). If s ^ s ^ e <?(U) then

Si + 52 ^ S' => Si < 5' => Si + S = S '

=> 5^ ^ S ==> ^2 < S ==> S^ + 52 < 5',

w^here 5 is a non-negative superharmonic function on V. Hence
5i + S2 e^(U). Let c99 = (s^gi be a specific upper directed family of
elements of^(U). Then, since the restriction of \y to V is the specific
least upper bound of the restrictions of s, to V,

\y ^ s' => s^ s' => s, < s' => \y < s'.
Hence \y e<^(U). c) follow-s from a\ b) and ^(U) c: <^(U). d) Any
locally bounded element of^QJ) is harmonic since it is locally speci-
fically dominated by a harmonic function.

THEOREM 3.2. — I f s is a non-negative superharmonic function on X
such that there exists a dense subset A o/X, A n s ~ ^{oo}) == <^, such
that for any point x e A there exists a non-negative superharmonic
function s^ on X infinite almost everywhere mth respect to the measure
onX

/-(/.5)(X),

freal continuous with compact carrier on X, then 5e^(X).
It is sufficient to prove that s vanishes if it is orthogonal to <^(X).

Let x e A and K be a compact subset of s^^oo}). The component
5^ of 5 in the positive closed ideal of non-negative superharmonic
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functions with carriers contained in K belongs to <^(X) by Lemma 3.2
and therefore it vanishes. We get

s{x) == sup s^(x) = 0, s = 0 .
K

2. Closed ideals.

This paragraph is consecrated to the study of some interesting
closed positive ideals of [y+](X}.

THEOREM 3.3.—The closed positive ideal generated by the set
of non-negative superharmonic functions on X whose restrictions to
their carriers C) are finite continuous contains any non-negative finite
superharmonic function on X.

Let s be a non-negative finite superharmonic function on X,
orthogonal to any non-negative superharmonic function whose
restriction to its carrier is continuous and finite. In particular s is
orthogonal to .^(X). For any x e X the map

f-(f.s)(x)
is a measure ^ on Xo. Let K be a compact subset o fX such that the
restriction o f s toK is continuous. Then s^ = 0. We get by Lemma 1.9

^(K) = inf/4/) = inf(/. s)(x) = s^(x) = 0,
j j

where / runs the set of non-negative continuous finite functions on
Xo greater than 1 on K. By Lusin's property ji vanishes on any com-
pact subset of X and, since /x(Xo - X) = 0,

s(x) == ^(Xo) = 0.

We denote by (S the set of non-negative superharmonic functions s
on X such that for any relatively compact open set U

A^y = 0,

w^here (S^ is the set of non-negative superharmonic functions s ' on U
for w^hich there exists an upper semicontinuous real function / on U
such that

/ ̂  S ̂  5' + /

We denote by M (resp. JT) the set of non-negative superharmonic
functions s on X such that for any relatively compact MP-set U,
H^ is the component of the restriction of s to U on ^(UUresp
W).

(7) More "precisely" to the trace on X of their carriers.
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LEMMA 3.3. —-62, ̂  J i ' are dosed positive ideals in [^](X) and
(S c= M' cz ̂

Let 51,52 be two non-negative superharmonic functions on X
Then

^u + ^u c= ©^^ c= ^u n ^u

for any relatively compact open set U. Hence
5i + s^ e G os^, s^ e ̂ .

For any relatively compact MP-set U we have [3] (Theorem 3.2)
H~u _ LJU , fju

S i + S 2 — ^Si + ^1S2•

Hence
Si + s^ e M (resp. <jT) <^> s ^ , s^ e e^ (resp. M'}.

Let ̂  = (sj^i be a specifically upper directed family of elements of
(Q (resp. Ji, M'\ s = Y^ and for any i e I, t, be a non-negative super-
harmonic function on X such that s = s, + t,. Then for any rela-
tively compact set (resp. MP-set) U w^e have

^ + ^ c= ^ (resp. H^ ^ H^).
Hence s e (S (resp. ̂  ̂ /).

Obviously M' c= .̂ Let 5 e ( S , U be a relatively compact MP-set,
V be an open relatively compact set, U c: V, 5' be a non-negative
superharmonic function on V and / be a real upper semicontinuous
function on V such that

/ < s ^ s' + f.

Let further t be the component of the restriction of 5 to U in <?(U).
For any x e U let u^ be a harmonic function on a neighbourhood
W^ of x, u^ ^ / Since t ^ s ^ s' -t- i^ on W^ n U we have

r + ^ = 5' 4- u^,
w^here ^ is a non-negative superharmonic function on W^ n U.
Hence there exists a superharmonic function ^ on U equal to ^ - u^
on W^ n U for any x e U. We have

t - ^ - t ' = s \ t^ -/, r' ^ H1^ H^,^ -HY.
Hence, since H^ is a superharmonic function,

t ^ s' + fiy, t ^ fly.
Since H^€^+(U\t = H^.
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LEMMA 3.4. — Let s e M.
a) At any point x e Carr s

lim sup 5(v)
y-^x

is either infinite or equal to
lim sup s{y\ y e Carr 5.

y-^x

b) If any relatively compact open set is an MP-set and
A R^ = 0,

\vhere U is a relatively compact open set, then for any non-negative
superharmonic function s ' \ve have

s ' ^ s on Carr s => s ' ^ s on X.

b) Let U be a relatively compact MP-set. Then,

s = H^ ^ 5' + R^ on U - K,

where we have put K = Carr s. Hence, U being arbitrary,

5 ^ 5 ' on X.
a) Suppose

lim sup s(y) < + oo.
y-^x

Since the property has a local character we may suppose that X is
an MP-set, s is bounded and there exists a positive harmonic func-
tion u on X, u{x) = 1. For any e > 0 there exists a compact neigh-
bourhood V of x such that

sup 5X^- ^ lim sup 5v(}0 + £ = j8e,
yeVnCarrs ^W Can-say-^

where 5y is the component of 5 on the closed positive ideal of non-
negative superharmonic functions whose carriers lies in V. By b)

Sy < j8^,
lim sup s(y) — lim sup s(y) = lim sup Sy{x) — lim sup Sy(y) ^ s.

y-^x Carrs^y->x y - * x Carrs9y-»jc

THEOREM 3.4.—Suppose that any relatively compact open subset
of X is an MP-set and for any xeX there exists a non-negative
locally bounded superharmonic function on X positive at x. For a
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non-negative superharmonic function s on X whose component in
Jf^X) is harmonic the following assertions are equivalent:

a) se C°;
b) s e J / ' \
c) s e M ;
d) s is the specific least upper bound of its continuous finite specific

minorants.
d) ==> a) => b) ==> c) follows from Lemma 3.3.
c) => rf). It is sufficient to suppose that the carrier of s is a compact

subset of X. Let K be a compact subset of X such that s is infinite on
K. By the preceding lemma b)

SS ^ 5^

for any s > 0. Hence
5K=0 .

We may assume therefore that s is bounded on its carrier. It follows
then, again by the preceding lemma b\ that s is locally bounded.
Hence by Theorem 3.3 we may take further 5 continuous on its
carrier. By Lemma 3Aa) s is finite and continuous.

COROLLARY 3.1.—^(X) n M c: jf^X).
For some further developments of the theory it is necessary to

require the following condition: any locally bounded non-negative
superharmonic function belongs to M. This condition coincides with
Brelot's axiom D if Jf satisfies Brelofs axiom 3. We shall call it also
axiom D.

3. Quasicontinuity.

Let 5 be a non-negative hyperharmonic function on X and for
any subset A of X let Q'^ = ̂ A be the set of non-negative hyper-
harmonic functions 5' on X such that the restriction of s to

{xeA\s\x) ^ 1}

is continuous. We say that s is quasicontinuous on A if
A^^O.

LEMMA 3.5. —Let {y^nEN be a sequence of families of non-negative
hyperharmonic functions such that

A^=0, neN.
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Then
A ^ = 0 ,

"where y is the family of hyperharmonic functions of the form

f Sn^nC^.

The assertion follows from the fact that infs(x) is equal to zero
se^n

outside a negligible set and from the fact that a countable union of
negligible sets is negligible.

LEMMA 3.6.—Let A be a relatively compact subset ofX and let
y = (sj^i be an upper directed family of non-negative hyperharmonic
functions on X such that

v y = +00.
on A. If s is a non-negative hyperharmonic function on X such that
for any L e I, s A ^ is quasicontinuous on A, then s is quasiconti-
nuous on A.

Let (iJyigN be a sequence in I such that s^ > n on A. Then
<.' P/D'A y ^ p^A
^tn^^SAS^ ==> Z, ^n^^S •

neN

Hence, by the preceding lemma,

A ^A = 0.

THEOREM 3.5. —a) For any subset AofX the non-negative super-
harmonic functions quasicontinuous on A form a closed positive ideal
of[y^m.

b) The restriction of any element of (S to a relatively compact open
set U is quasicontinuous on U.

c) Any non-negative locally bounded superharmonic function quasi-
continuous on any compact subset ofX belongs to (S.

a) Let s^ s^ be non-negative superharmonic functions on X. Then
/O^ 4- ((}'^ c- f()'^ (0'^ 4- pfc j- c \ r- ^/A r\ ^/A

^Sl r ^S2 — ^51+52 » ^Si+Sl 1 ^l 1 "27 (:- ^Sl • ' W S2•

for any e > 0. Hence s^ + s^ is quasicontinuous on A if and only if
s^ and s^ are quasicontinuous on A. Let y = (sj^i be a specifically
upper directed family of non-negative superharmonic functions
quasicontinuous on A and

5= yy.
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For any i e I let t, be the non-negative superharmonic function on X
such that

s = s, + t,.
For any infinite subset J of I we have

^e^eJ^^+tJe^.
(€J

Hence if J is countable

A^^Sr ,
t€J

and therefore

A ̂ A = 0.

b) Let s e £ and U be a relatively compact open subset of X. Then
for any sequence (^)^ ̂ e^,

E s^^
n= 1

and therefore

A (̂  = 0.

c) Let 5 be a non-negative locally bounded superharmonic func-
tion on X quasicontinuous on any compact subset of X and U be a
relatively compact open subset of X. We have

s'eQ^^^s'e^
where a = sup s(x).

xeV

THEOREM 3.6.—Assume that any relatively compact open set is
an MP-set and that the non-negative locally bounded superharmonic
functions on X have no zero in common. If axiom D is fulfilled then
any non-negative hyperharmonic function on X (5 quasicontinuous on
any compact subset of X.

Let s be a non-negative hyperharmonic function on X. For any
non-negative locally bounded superharmonic function s ' on X,
s A s' is quasicontinuous on any compact subset of X by Theorems
3.4 and 3.5a). Hence, by Lemma 3.6, s is quasicontinuous on any
compact subset of X.
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