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INVESTIGATIONS OF RETARDED PDEs

OF SECOND ORDER IN TIME USING THE METHOD

OF INERTIAL MANIFOLDS WITH DELAY

by Alexander V. REZOUNENKO

To Louis Boutet de Monvel

1. Introduction.

Since the time when H. Poincar6 and A. Lyapunov published their
famous results on the qualitative analysis of differential equations, this
field constantly attracts much attention. Investigations of asymptotic be-
haviour of solutions belong to this field. In the study of infinite-dimensional
dynamical systems (constructed by partial differential and/or delay equa-
tions [17, 20, 21]) the possibility of reducing the dimension and obtain a
finite-dimensional system which captures all the asymptotic properties of
the initial one brings a valuable simplification. In this context the notions
of finite-dimensional global attractor and invariant manifolds were intro-
duced. One of the direct ways to get the finite-dimensional system is to
construct an inertial manifold (IM) [1, 2, 9, 8, 10] and consider the flow
restricted on the manifold. IMs for retarded nonlinear partial differential
equations (PDEs) were considered for the first time in [11] for the case of
semilinear parabolic equations (see also [26] for systems of second order in
time and references on articles where invariant manifolds are studied for

retarded ordinary equations). Unfortunately, most of the cases in which the

Keywords: Approximate inertial manifolds - Inertial manifolds with delay - Retarded
non-linear partial differential equations.
Math. classification: 35R10 - 35L05 - 37L65.
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existence of an IM known require a big gap in the spectrum of the leading
linear part of the system. To consider cases when a system does not pos-
sess such a gap, the notion of an approximate inertial manifold (AIM) was
introduced [3, 5] (see also [6, 29, 7] and references therein).

Recently, another interesting infinite-dimensional invariant surface
called an inertial manifold with delay (IMD) was introduced by
A. Debussche and R. Temam [14] (see also [15] and for the case of re-
tarded parabolic equations [25]). It was found [27] that this surface can be
effectively used in the construction of new families of AIMs (see also [28]
for the extension to retarded parabolic equations).

The aim of this article is to construct IMD for dissipative systems
of second order in time and apply this result to the study of different

asymptotic properties of solutions. We give the proof (Section 3) for the
retarded case and notice that even for the nonretarded case it has not

been done before in the context of systems of second order in time. Using
IMD, we construct AIMs containing all the stationary solutions (Section 4),
improve the result of [23] on the finite number of essential modes (Section 5)
and give a new characterization of the IC-invariant manifold constructed in

[16] (Section 6). In contrast to the case of parabolic equations with delay
[11, 25, 28], our investigations are crucially based upon a special choice of
the norm introduced in [12].

2. Assumpt ions and preliminaries.

In this work we study the dynamical system generated by the evolu-
tion equation

with initial data

In (2.1) and below, if z is a continuous function from R into a space Y, then
as in ~17~ 9 E [-r, 0] denotes the element of C(t-r, t; Y),
while r &#x3E; 0 presents the retardation time.

We assume that:

(A1) In (2.1), A is a positive operator with a discrete spectrum in a
separable Hilbert space H. Hence there exists an orthonormal basis 
of H such that
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For r &#x3E; 0, we denote for short Ca - C(-r, 0; D(A")) which is a Banach
space with the following norm: I Here

and is the norm of H, and (.,.) the corresponding hermitian
product.

(A2) The nonlinear operator B is a mapping from Cm to H

where Bo and B1 are maps from D(Aa) (resp. to H such that

and

where Mo and M1 are positive constants.

We can rewrite (2.1), (2.2) as follows:

It is easy to verify that the eigenvalues and eigenvectors of ,,4 are

We need the condition -2 &#x3E; [LN+l which is the most restrictive one

for applications but usual in our framework (see e.g. [12, 6, 26]). We
set E - D (A1 ~2 ) x H and consider the splitting E - Ei si E2, where

We will use the following hermitian product [12] in Ei and E2 :

Here, belong to the corresponding subspace Ei.

Now, the hermitian product in E reads
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An easy calculation gives (see e.g. [6]) for any U = (u ; v) E E:

where

Using this and (2.4), (2.5), one easily sees that

where

A weak solution of (2.6) is defined as a function I

The proof of the existence and uniqueness of a weak solution is standard

(see e.g. [19]) as well as the following

are solutions of (2.6). Then

Here aI, a2 are positive constants.

Now, we can define an evolution semigroup S’t in I

by

where U(t) is the weak solution of (2.6). We fix an integer N and consider
the following subspaces .Ei - which are orthogonal for
the hermitian product ~-, -), so El - we denote by P~2 the
orthoprojectors on the corresponding subspaces, one has (see e.g. [6])
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We set P - PE- and Q = I - P. Now and later, we reserve the notation1

P for the projector on E1, and Po, P’, p2 for elements of El . We also
define the N-dimensional projector P in CE - C(-r, 0; E) by

where -r -- 0  0 and U - is an element of CE. We also set
Q = I - P. A simple computation shows that P is the spectral projector
of the infinitesimal generator of the linear semigroup Tt in CE defined

by formulae similar to (2.11) for problem (2.1) and (2.2) with 0.

Indeed,

and

3. Existence of inertial manifolds with delay.

The main result of this section is the following assertion on the
existence of inertial manifolds with delay for the problem (2.6).

THEOREM 3.1. - Let c2 &#x3E; There exists To such that for any
T E (0, To], any p E PE = El and 0 C (JCE there exists a unique solution
U(t) of (2.6) defined on [-T, oo) such that

Moreover if we set this defines a Lipschitz mapping from

We say that -cD defines a manifold A4 in El x QCE x QCE . This manifold
is invariant i.e., if U(t) is a solution of (2.6), then

The following additional conditions give bounds for the Lipschitz cons-
tants Li.

Assume that
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Take any ~1,~2 ~ (o,1~ and any c &#x3E; ln(2~ ~).
Then (3.2) implies (see Lemma 3.3 for details) the existence of big

enough No satisfying

such that for any N &#x3E;, No, any and T, r satisfying

we get Li(T)  61 and L2(T)  62.

Remark 3.1. - This manifold with delay exists for any N, without

any restriction on the spectrum of A and for any time retardation r (r is
large as well as small).

Remark 3.2. - In fact (see Corollary below), for Li  b2 we need
the following condition

together with (3.3). Here Dc == 4e~ (e~ - e-C). We choose (3.2) in Theo-
rem 3.1 for the simplicity.

Proof of Theorem 3.1. - We follow line of arguments given in [25]
and introduce for fixed T &#x3E; 0 and V) E QCE the following spaces Y1 ==

QN y-T = Q) with the sup-norm.
Now for any 0 E we introduce the following shift-continuation

function : Y1 - Y2 which is a key tool in our considerations:

As in [25], we prove the following

! and any
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Let us fix and ~ E QCE . We define the map : Yi ---7 Y1 as
follows

where t E [-T, 0] and 6
If we find a fixed point of J

solution of (2.6) for s E [-T, 0] with the properties PU(0) = p, Q U_T = 1/J.
So for the moment, our goal is to find a fixed point of Using the

estimates (2.12) and Lemma 3.1 with 1/J1 == 1/J2 == 1/J we get

where

It is evidently that for any N, we have &#x3E;

choose To such that

then for any T E (0, To] we get Hence

there exists a unique fixed point y of a strict contraction ,~’.

Now let us define the map (D as follows. For fixed and

1/; E QCE denote by y the fixed point constructed by p and 0. Hence

We also prove that V is a Lipschitz mapping i.e., we get (3.1) with

In the most interesting case r  T we can get more refined estimate

(see [25] for the technical details in the parabolic case)
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We are interested in the case when the both Lipschitz constants

Li (T ), i - 1, 2, of 16 (see (3.1) ) are less than 1. We need the following
refinement of the algorithm [25, Lemma 3.2] of choosing T and r with
respect to N to guarantee that Li are small enough.

LEMMA 3.2. - Take any ð1,ð2 E (0, 1]. For any c &#x3E; 0 denote

COROLLARY. - Take any 61 , 62 6 (0, l~ . Then for any
the conditions (3.3) and

imply that L 1 (T)  61 and L2 (T)  62. Here Dc is defined as in Lemma 3.2.

Proof of Lemma 3.2. - We need the explicit formulas for Li (see
(3.11 ) and also [25, (3.12)]). It is easy to see that

Let us prove (ii). One has i

get (ii). The proof of Lemma 3.2 is complete.

LEMMA 3.3. - Assume that (3.2) is satisfied. Take any 61,62 E

(0, ] and any c &#x3E; In(2821). Then there exists No big enough such that for
and T, r satisfying (3.3), we
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and (3.3) are satisfied (see also the definition of Mi ) . Let us multiply the
last estimate by

For any E2 E -f- one has max . and

Hence it

is sufficient if

Now the property inf gives that for any q E (o, 1 )
there exists no big enough such that J Finally, the
condition

provides the existence of No we need. The proof of Lemma 3.3 is complete.

4. AIMs containing all the stationary solutions.

Consider N, r and T satisfying (3.12), (3.3). For the moment, it

is sufficient to take E = 6 = 1 and for any c &#x3E; ln 2, assume AjQ &#x3E;

(Mo + M1eC)Dc and ln 2  c (see [25, Lemma 3.2]).
Since L2  1 we can use the mapping + (for any fixed as a strict

contraction in QC E :

Consider the unique fixed point 0 E QC E of V constructed for p E PN H.
We define the mapping ; as follows
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is an approximate inertial manifold. Note that the manifold contains all

the steady states of (2.6). For this reason, following the terminology in [29]
we call A4 the steady approximate inertial manifold.

Remark 4.1. - By definition, contains also all the T-periodic
solutions of (2.6).

We will suppose that (2.6) is dissipative i.e., it possesses an absorbing
ball in CE. Using the existence of an absorbing ball for the equation we
can classically truncate the nonlinear term ,~3 outside the ball so that it

will be replaced by a function which is equal to ,~3 inside the absorbing
ball but which has bounded support. We denote by Rd the radius of a
ball containing this support. For concrete examples of dissipative retarded
PDEs of second order in time see e.g., [22, 23, 24].

The following properties of TT and A4 will be used in the sequel.

LEMMA 4.1. - Let r, T and N satisfy (3.12), (3.3) for some

61, 62 E (0,1). Then the mapping TT defined in (4.1) satisfies

where L1, L2 are Lipschitz constants of (D. Moreover for all 0  t , T one
has

for any solution of (2.6) U - U(t) with the initial condition Uo =

e-ABp + E CE when t = 0. is any number from the interval

[AN, AN+11, the positive constants CR and CR depend on the dissipativity
radius Rd only, the positive constant q is defined as

The proof of Lemma 4.1 uses similar arguments to [28].
The main result of this section is the following

THEOREM 4.1. - Take anyq &#x3E; 0. There exist N and ro such that

for any r E [0, TO] and any c2 E [2¡tN+1, 2¡tN+1 + PNI there exists an N-
dimensional approximate inertial manifold which contains all the steady
states of (2.6) and the thickness of its attractive neighborhood is r¡. More
precisely, we have
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and any solution U = U(t) of (2.6) such that R

Proof of Theorem 4.1. - We follow line of arguments given in [7]
and use Lemmas 4.1 and 4.2. One can notice that we cannot directly apply
the arguments of [7] to our retarded case since the considerations in [7] are
in an essential manner based on the estimate (see [7, Lemma 2.2])

Unfortunately, there is no analogue of the last estimate in the retarded case
for the projection Q (see [25, Remark 3.8]). Instead, our proof is based on
the Lipschitz properties of mappings 4) and ~. We follow arguments of [28]
to prove

LEMMA 4.2. - Assume that N, T and r satisfy

for some c &#x3E; 2 ln 8 and the constants aI, a2 defined as in Lemma 2.1. Then

the mapping TT defined in (4.1) possesses the following property

for all t &#x3E; t* + l~ and any solution U = U(t) of (2.6) such that R

for t*  t  ~

Now to complete the proof of Theorem 4.1 we need to choose the
parameters c, N, T and ro satisfying the conditions of Lemma 4.2 in such a
way that the last term in (4.8) is less than 77. Let us do it. Take any 77 &#x3E; 0

(the thickness of the attractive neighborhood). Choose c &#x3E; 2 In 8 such that

77. Here CR is defined in (4.8). Then choose N to satisfy (4.6).
Now we take T - cA-1 to satisfy (see (4.7) )  1  T  c N+1 It isN+1 y N+1 2 - 

now easy to see that ro can be chosen less than 2 - ,In 8 to satisfy (4.7).2 AN+1
Lemma 4.2 completes the proof of Theorem 4.1.

Remark 4.2. - To construct the AIM (4.2) we found fixed points of
two contractions: ,~’ (see (3.6)) to construct ~) and .), to get q, T.



1558

We can approximate the graph of TT by a sequence of manifolds given
more explicitly. Consider for a fixed p E PNH the mapping 

02( ’lj;, y)) in the space 2 == QNCE X Yl with the norm =
I . I I I -

One can easily check that conditions (3.3), (3.12) imply the contraction

So we can approximate the fixed point of Q by the convergent sequence

PE --~ QCE, we approximate manifold .Jlil defined in (4.2) by the sequence

It is evidently, that sup{
where E  1, and CR depends on the dissipativity radius Rd only.

5. Finite number of essential modes.

Many interesting results on finite number of determining parameters
for infinite-dimensional dynamical systems (see e.g. [6]) have been obtained
since the pioneering work of C. Foias and G. Prodi [4].

As in [14] (see also [25] for the case of semilinear retarded parabolic
equations), using IMD, we prove the following result on the finite number
of essential modes.

THEOREM 5.1. - Let T, rand N be as in Theorem 3.1 such that
the Lipschitz constants Li  1, i = 1, 2. Consider any sequence 
such that 0 = ti  t2 ...  tk ~ +oo and

Then if for any two solutions U1(t), U2 (t) of (2.6) we have
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then

This result extends the one proved in [23], where we used IPN( U1 (t) -
- 0, when t --&#x3E; oo instead of (5.1 ) .

6. Characterization of a K-invariant manifold.

In this section using the existence of inertial manifold with delay
given by Theorem 3.1, we give a characterization of a IC-invariant manifold
constructed by M. Taboada and Y.C. You in [16]. This manifold lives in the
phase space CE of retarded system (2.6) and is a locally attracting surface
weaved by the solutions of a nonretarded system (see (6.1 ) ) .

Assume, in addition to (Al), (A2), that the nonlinear term Bo
(which does not involve the delay) satisfies

(A3) Bo is Fréchet differentiable on D(A’ /2 ) and its Fréchet deriva-
tive is locally Lipschitz continuous in u.

(A4) For any b such that 0  b  oo and any function u E C([-r, b);
D(Al /2 )) n C~([0, b); H), the following holds

vv

where (.,.) denotes the inner product in H and is a constant

independent of b, but which may depend on the initial data u° = u(O) and
u1 = Ü(O).

Consider the following nonretarded equation

where nonlinear map IC has the form

Here, as before, U = (u°; u1 ) E E. We need the following

DEFINITION 6.1 ([16]). - The retarded evolution equation has the
J’C(SZ)-Property if there is a strongly continuous mapping K : 0 C E --~ E
(of the form (6.2)) such that
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where U(9) is the solution of (6.1) for 0 E [-r, 0] and initial data U(o) -
E E.

Remark 6.1. - We will consider Ki, i = 1, 2, which are locally Lip-
schitz continuous and locally bounded, so the unique solution, considered
in the definition, exists.

The existence of such mapping /C under the above assumptions is the
main result of [16].

THEOREM 6.1 ([16]). - Under the assumptions (Al)-(A4), the
retarded evolution equation (2.6) has the provided the
delay r &#x3E; 0 is sufficiently small. More precisely, for any d &#x3E; 0, there exists
an ro &#x3E; such that if 0  r  ro, there is a continuous mapping (of the
form (6.2)~

that satisfies (6.3). The same result holds if instead of assuming that r
is small we assume that the magnitude and Lipschitz constants of B1 are
sufficiently small (see (2.3)).

DEFINITION 6.2 ([16]). - A C° manifold A4 in the Banach space
CE is called a K(Q)-invariant manifold for the retarded equation (2.6) if.-

(i) For any U° E A4, the global solution of (2.6) exists and lies always
on A4.

(ii) There is a strongly continuous mapping lC : E such that A4
is weaved by the mild solutions of the nonretarded equation (6.1) associated
with this /C for t E [2013r, oo).

Sufficient conditions for the existence of a IC-invariant manifold are

given in [16, Corollaries 5.4, 5.5]. Using these results we prove

LEMMA 6.1. - Let E"2 &#x3E; MN+1’ There exists To such that any
solution U(t) of (2.6) satisfies

for any T E (0, To] and any t &#x3E; 0. Here the mapping is constructed in

Theorem 3.1 for each T E (0, To].
Assume additionally that (Al)-(A4) are satisfied and there exists

r°, such that for any r E (0, r0 ] there is a K-invariant manifold (see [16,
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Corollaries 5.4, 5.5]). Then any solution U(t) of (2.6) such that Ut E A4
satisfies 

- -

for any T E (0, To] and any t ) 0. Here the mapping ~T : PE x QE - Q CE
is Lipschitz.

THEOREM 6.2. - Let s2 &#x3E; MN+1. Assume that (Al)-(A4) are
satisfied and r° is small enough such that for any r E (0, ro] the invariant
manifold A4 exists (see Def. 6.2 and [16, Corollaries 5.4, 5.5}).

Then a solution U(t) of (2.6) satisfies Ut E A4 if and only if

U(t) is uniquely defined by values PU(ti) and QU(t2) for any tl, t2
provided tl - t2 C [0, To]. Here To is defined by IMD for the nonretarded
equation (6.1).

Remarks 6.2.

(a) If Ut~ E A4 for some ti, then U(t) is defined for all t E R and

Ut E A4 for each t E R.

(b) If U(.) is uniquely defined by values and QU(t2) for

some tl, t2 such that tl - t2 E [0, To], then Theorem 6.2 and the previous
remark give that U(.) is uniquely defined by values and 

for arbitrary Sl, s2 such that sl - s2 E [0, To].

(c) We notice that when r changes (in (0, rol), the manifold A4 = A4’
also changes, moreover the space CE = C’ changes, but it does not affect
the criterion in Theorem 6.2 since the value To does not depend on r (see
the proof of Theorem 6.2).

(d) If we choose tl = t2, we arrive to the idea of construction
of manifold A4 [16] which is weaved by trajectories of the nonretarded
evolution equation (6.1).

Proof of Theorem 6.2. - Consider a solution U(t) of (2.6) satisfying
Ut E A4. By construction of A4 [16], U(t) is a solution of (6.1). We apply
Theorem 3.1 to (6.1) and define IMD -cD’ : PE x QE - QE for any T E
(0, T§] . Here To depends on r. Hence Q U(t - T)).
Using the solution of (6.1) which defines IMD, we can easily introduce the
mapping ~ : PE x QE ~ QCE, so Q Ut = ~°, (P U(t), Q U(t - T)).
That means that the solution U(t) is uniquely defined by values PU(t) and
QU(t - T). It is easy to see from the proof of Theorem 3.1 that there exists
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positive ’. . The first part of the theorem is

proved.

Consider a solution U(t) of (2.6) which is uniquely defined by values
p - PU(ti) and q QU(t2) for some tl, t2 such that tl - t2 E [0, To].
Since t1 - t2 E [0, To] we can construct IMD (for (6.1)) Q0t1-t2 i.e.,

~ ~

T - tl - t2 by the unique solution U(t) of (6.1) satisfying p

and QU(t2) - q. By construction, any solution of (6.1) is a solution of

(2.6), hence U(t) also. Since there is only one solution of (2.6) with the
property p, QU(t2) = q, we get U(t) = U(t). Hence U(t) is a

solution of (6.1) and, by definition of M, we conclude that Ut E M for
all t. The proof of Theorem 6.2 is complete.

As an application of our results we can also consider the dissipative
Klein-Gordon equation with a retarded perturbation (see [16, Section 7]
for more details).
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