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ON THE EXACT WKB ANALYSIS OF

MICRODIFFERENTIAL OPERATORS OF WKB TYPE

by Takashi AOKI, Takahiro KAWAI,

Tatsuya KOIKE, Yoshitsugu TAKEI

0. Introduction.

The purpose of this article is to introduce a new class of integral
operators which we call microdifferential operators of WKB type and to
show how our previous results for differential operators of WKB type (see
[AKKT1], [AKKT2]) can be extended for such operators. Our introduction
of such a new class of operators was motivated by the WKB analysis
of plasma wave propagation in inhomogeneous media (see [BRS], [BB]).
A typical example which we want to understand from the WKB-theoretic
viewpoint is given at the end of this introduction (cf. (0.11) below). Besides
an important property that its WKB solutions may have infinitely many
phases, we observe that the operator contains "a differential operator of
a negative order", i.e., a microdifferential operator. As the exact WKB

analysis of genuine microdifferential (i.e., not differential) operators with
a large parameter seems to have been rarely discussed in mathematical
literature, we begin our discussion by a heuristic explanation of what we
mean by the WKB analysis of a microdifferential operator. (See [Sj2],
[Mar] and references cited there for the WKB analysis in C°°-category
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of microdifferential operators. See also [Sj1] which the reasoning of [Sj2]
makes essential use of.) Here and in what follows, exact WKB analysis
means WKB analysis based on the Borel resummation. (See [V], [S], [DDP],
[KT] and references cited there.) The heuristic discussion given below will
serve the reader as a guide to the mathematically rigorous discussions based
on symbol calculus of microdifferential operators (see [A]), which are given
in Sections 1 and 2.

Let us consider the situation where vanishes sufficiently
rapidly as x tends to -oo, where 77 is a large parameter and §(z)
is an analytic function of x. By ignoring the contribution from the

endpoint x = -oo in the integral exp(770(x))dx, we find the following
relation (0.1) by the repeated applications of the integration by parts:

Here 0’(x), etc. respectively denote dcjJ / dx, etc. Otherwise stated, we may
develop the WKB analysis of microdifferential equations by using the

following relation (0.2) repeatedly:

where r(x, q) is a formal power series of the following form

with

Note also that we can similarly determine the action of
on a series
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where 0(x, TJ) is a formal power series of TJ-1 of the form

This time we determine r(x, q) that satisfies

through the differential equation

Assuming that r(x, 7]) is again of the form (0.3), we find

If we let denote the totality of formal power series of

the form (0.3) multiplied by exp(710(x)), the above relations entail that
determines a well-defined isomorphism from 0exp(q§(z))

to 0 exp(q§(r)). It is now reasonable to imagine that some appropriate
systematization of the above observations will give us the exact WKB

analysis of microdifferential operators with a large parameter. As a matter
of fact, the framework of differential equations of WKB type and the
construction of their WKB solutions given in [AKKT1] provide us with
a neat way for such systematization. Adopting the same approach as in

[AKKTI] , i.e., the approach to the exact WKB analysis through microlocal
analysis, we first introduce the notion of microdifferential operators of WKB
type using some analytic properties of the symbols of their Borel transforms
as their characterizations, and then construct their WKB solutions with the

help of symbol calculus of microdifferential operators. One can then readily
find that the construction is a straightforward generalization of (0.2)
(cf. Example 2.1 in Section 2). Since we can prove a Weierstrass-type
division theorem for microdifferential operators of WKB type, we can

develop the exact WKB analysis of microdifferential equations near their
turning points (Section 3).

In ending this introduction we show the example that motivated our

study; except for some simplification of numerical factors, etc. the operator
given below is the same as that discussed by Berk and Book [BB], (18):

«w

where -y is a real parameter and q is a purely imaginary parameter
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with » 1. Note that the symbol of the first term of (0.11) is given by

and that it is holomorphic 0. Note also that for real and positive (,
U has the asymptotic expansion

as ( - 0, but the coefficients of the series (0.13) grow so rapidly that the
formal sum

cannot determine a differential operator of WKB type despite the fact that
it is free from the negative powers of Some detailed study of
complex analytic properties of the function U is given in Appendix.

An announcement [AKKT3] of a part of the results in this paper was
published in RIMS Kokyuroku No. 1316 (2003).

1. Microdifferential operators of WKB type.

In order to incorporate the equations like (0.11 ) into the framework of
the exact WKB analysis we generalize the notion of differential operators
of WKB type that was introduced in [AKKT1] so that ordinary differential
operators of negative orders with a large parameter q may be equally
treated. An important feature of such operators is that the balance between
the multiplication by 1] and the differentiation with respect to x (or
rather the integration) should be maintained. Thus in view of the results
in [AKKT1] an intuitive idea of such an operator is given by the operator
of the form

where P (x, ~ ) is holomorphic on U x ~ ~ E (C ; ~ ~ 0} for an open set U
in Cx.

As is usual in the exact WKB analysis, we consider its Borel transform
where ax and 8y respectively denote 910x and a/ay, and
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we give the precise definition of the required class of operators using the
properties of Borel transformed operators. In what follows we often use
the simplified instead of (Since the
operators P we discuss in this article are independent of y, i.e.,

no confusions will be caused by this simplification. Note, however, that
here and in what follows we use the normal ordering in the notations

P(x, and PB (x, 8;18x), that is, all the multiplication operators
by functions of x stand to the left of all the differential operators in x
in these operators.) Although the intuitive idea (1.1) of the operator in
question requires that the operator PB (x, c~y 1 c~~ ) is exactly of order 0 as a
microdifferential operator on

we choose somewhat more general operators as our target, that is,
0

we consider the totality of microdifferential operators on SZ that are

independent of y and of order at most or equal to 0. Although restricting our
consideration to the operators of order exactly 0 might not be too restrictive
from the practical viewpoint, the theoretical completeness seems to be
better attained by including operators of negative order into consideration.

(See e.g., Theorem 3.1 below.)

0

DEFINITION 1.1. - Let U be an open set in Cx and let Q denote the
subset of T*(U x Cy) defined by I(x,y;~,71) E T*(U x C);~ :~ 0}.
A microdifferential operator of WKB type on U is, by definition, the inverse

0

Borel transform of a microdifferential operator defined on Q that is free

from y. The totality of microdifferential operators of WKB type on U
0

is denoted by The composition of microdifferential operators
of WKB type is defined through the composition of their Borel transforms.

Remark 1.1. - It follows from the above definition that the total

of the Borel transform PB of a microdifferential operator P
of WKB type is a formal series of the form
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where
0

(1.3) ç/r¡) is a holomorphic function on f2, that is, homogeneous of
degree 0 in (ç, r~),

0

(1.4) for each compact set K of Q there exists a constant CK for which the
following holds:

We note that the pioneering work [BK] of Boutet de Monvel and
Kree is one of the earliest works that make effective use of the estimation

of the type (1.4) in developing the theory of pseudo-differential operators
(see [BK]).

2. WKB solutions of microdifferential equations
of WKB type.

To construct a WKB solution for a microdifferential operator P
of WKB type we use the notion of a (Borel transformable) WKB symbol
introduced in [AKKT1]. It is a formal series of the form

for some real number a, where §(z) and are holomorphic functions
on an open set V in C, and it is said to be Borel transformable if

(2.2) for each compact set K in V there exists a constant CK for which the

following holds:

See [AKKT1] for the detailed discussions of the estimation of the type (2.2)
for the several series we construct below; the reasoning given in [AKKT1]
can be readily found to apply to our case. Note also that, although the
estimation is done only on the domain of analyticity of functions fj (x),
we often consider a WKB symbol on a domain containing singular points
of fj(x).
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Since the principal symbol of the Borel transform of a microdifferential
operator of WKB type has a singularity at ( = 0, the actual construction
of WKB solutions for such an operator becomes somewhat more delicate
than that for a differential operator of WKB type discussed in [AKKT1].
Hence we begin our reasoning by showing the following

PROPOSITION 2.1. - Let P be a microdifferential operator of WKB

type defined on an open subset U of C and let

be a formal series with being holomorphic on an open subset V
of U. Suppose that Sj (x) (j &#x3E; 0) satisfies the condition (2.2). Let 6 be a
sufficiently small positive number and denote by the following
integral

where x belongs to an open subset W of V for which x + zt (0 ~ t  1)
belongs to V for any z in C with Izl  6, and let T(x,1J) denote

where xo is a generically fixed point in W. Then we find

Here ( stands for and u(Q) denotes the symbol of a microdifferential
operator Q.

Proof. - Using the idea of Malgrange [M] to neatly write down the
composition of microdifferential operators in terms of their symbols, we find
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To relate this expression with the required form (2.5), we note the following:

We then com-

bine (2.6) and (2.7) to find

on w. Note that

Remark 2.1. - The above reasoning is, essentially speaking, adopted
from the proof of Sublemma of [A], p. 509, although the statement of the
sublemma only refers to differential operators.

The above relation (2.5) describes the composition of the operators
and However, what we really want to

know is the resulting WKB symbol when regarded as a
function of x is acted upon by the operator To find the

required WKB symbol, we note that the right-hand side of (2.5) makes
sense at ~ = 0 on the condition that is different from 0. Hence

the microdifferential operator whose symbol is given by the right-hand side
of (2.5) can be expanded in non-negative powers of and 1]-1 if we
arrange the multiplication operator by a function of x always stands left
to the differential operators (1~ &#x3E; 1) in the expansion. Then the
part free from the differential operator d/dx is the required WKB symbol.
Hence in order to find the required WKB symbol it suffices to evaluate the

right-hand side of (2.5) at ( = 0.

Example 2.1. - To exemplify the above procedure let us consider the

following case:
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where §(z) is a holomorphic function on a neighborhood of a point xo. Let
us suppose 0’(x) (= doldx) does not vanish at xo . In this case we find

Hence we have

Here does not mean the p-th derivative of the symbol (p)
designates just an index. Then it follows from the definition of rp and (2.12)
that

where C is the boundary of a sufficiently small disk centered at the origin
on which §(z -~ z) - §(z) vanishes only at z = 0. Note that it follows from
the assumption that R_ 1 (x, 0) - is different from 0 at the point in

question. We then find

and
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On the other hand,

holds and the contour integral along C of the left-hand side of (2.17)
vanishes. Hence it follows from (2.14) that

Thus we obtain

u:.c, 
.

Comparing the relations (0.9) and (0.10) with (2.15) and (2.19),
we immediately find constructed here coincides with

in the Introduction.

Example 2.1 clearly shows that considering the restriction of the
right-hand side of (2.5) to {( == 01 gives us the required systematization of
the observations given in the Introduction. Thus we arrive at the following
definition (2.1) of a WKB solution of microdifferential equations of WKB
type; it naturally extends the definition of WKB solutions of differential
equations of WKB type given in [AKKT1], Definition 3.1. Note that

[AKKT1] first introduces the notion of WKB solutions in a somewhat more
sophisticated manner and then uses the relation corresponding to (2.21) to
write down the Riccati-type equation that the logarithmic derivative of a
WKB solution should satisfy (cf. [AKKTI] , Proposition 4.1).

DEFINITION 2.1. - For a microdifferential operator 
of WKB type and a WKB symbol 8 = So (x) +,q- 1 §, (x) + - ... that satisfies
(2.20) So (x) is holomorphic and different from 0 at x = xo ,

is said to be a WKB solution of the equa-
tion 0 near xo if the following relation holds:

Equation (2.21) is called a Riccati-type equation for a WKB solution 0 of
the equation P1jJ = 0.
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Remark 2.2. - In order to conform to the traditional numbering
in WKB analysis we should shift the index by 1; that is, defining

and setting, , we consider a WKB solution

Since in the computation below our numbering is more convenient, we use
this non-traditional numbering. To avoid the possible confusion we use the
symbol 5j to emphasize the fact that a non-traditional numbering is used.
We present the final result (Theorem 2.1) using the traditional numbering.

The above equation (2.21) can be solved in a recursive manner once
the top order term ,S’o (x) is given; the top order term ,S’o (x) is a characteristic
root of the equation P7jJ = 0, namely,

Let us suppose 8,Po(x, ,S’o (x) ) =I- 0 holds if Po (x, ,S’o (x) ) - 0. Suppose
further

(2.24) So (xo ) 7~ 0.
To find Sm (x) (m &#x3E; 1 ) let us calculate the coefficient of (p &#x3E; 1 ) in (2.21 ) .
Recalling that P has the form , we first consider each

contribution from r¡-n Pn in (2.21) separately:

We then use the assumption (2.24) to consider the Taylor expansion
we then find
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where 7(,y) ( j &#x3E; 1) denotes the set of 2 j-tuple indices given by

For j = 0, 1(j) is by definition the void set, and the summation over 1(0)
is conventionally defined to be 1.

The surviving terms in

are only those satisfying

(2.29)

and the outcome is

Hence (2.25) evaluated at ~z = ~ = 0} is

Thus, taking into account the extra-factor r¡-n coupled with Pn, we find
the coefficient of in (2.22) is given by
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where either

(2.33)

with

for some j &#x3E; 1, or

with j = 0 (and hence f - m = 0).
Because of the non-negativity of ki, mi and n, (2.32) consists of finitely

many terms. Furthermore the term containing 5p in (2.32) is only the term
with j = = 0, m1 = p and n = 0, i.e.,

Other terms in (2.32) depends only on 8m or its derivatives with m  p.

To illustrate them let us write down 81 and 52 : here Pj stands for 
and So, etc. mean d80/dx, etc.

where

here consists of, by definition, terms corresponding to n = a and
m = fl (and hence = 2 - a - {3) in (2.32). Note that é + m &#x3E; j follows
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from (2.34). Hence in our case, i.e., for p = 2, the situation with j = 2
is observed only when n = 0. Summing up (2.39)-(2.44) we find

Thus we can recursively determine by (2.21) in spite of its formidable
appearance. The Boutet de Monvel and Kree type estimation of S’m can be
done in exactly the same way as in [AKKT1], proof of Theorem 4.1, and
we finally obtain the following

THEOREM 2.1. Let 

be a micro-differential operator of WKB type defined near x = xo and
let ,S’_ 1 (x) be a holomorphic function that satisfies B ) (x, S- 1 (x) ) = 0
near xo. Suppose

and

Then the WKB solution Y of the equation = 0 can be constructed

near x = xo and it is Borel transformable.

3. The local structure of a microdifferential equation of
WKB type near its turning points.

Although a microdifferential operator of WKB type is singular at
( = 0, we can develop WKB analysis of such an operator near its turning
point with a characteristic value different from 0; the argument can be done

completely in parallel with the case of differential operators of WKB type
discussed in [AKKT1]. To fix our notations let us first give the definition of
a turning point of a microdifferential operator P of WKB type defined on
an open subset U of C, i.e.,
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DEFINITION 3.1. ~i~ Let ~x, ~~ - ~x* ~ ~* ~ be a point in U x CB101
that satisfies

Suppose that Po (x* , ~) does not vanish identically as a function of (. Then
we say that x* is a turning point of the operator P (with a characteristic
value * ) .

(ii) For a turning point x* of the operator P with a characteristic
value ~* , its rank is the smallest positive integer m such that 8r Po(x* ,(*)
does not vanish.

It follows from the Weierstrass preparation theorem in analytic
function theory that Po (x, () can be uniquely decomposed near a turning
point x* into the following form

where q(x, () is a holomorphic function that does not vanish at (x* , (*) and
r(x, () a Weierstrass polynomial of degree m in ( centered at (x*, ~* ), i.e.,

where is holomorphic near x * and vanishes at x * for j = 1,..., m.

DEFINITION 3.2. - For a turning point x* of the operator P with a
characteristic value (,, that has rank m, the Weierstrass polynomial r(x,()
in (3.3) is called the vanishing factor of P.

Let us consider the case where the rank of a turning point x* with a
characteristic value (,, is 2. Then we find two analytic functions (::I:: (x) that
satisfy the following:

Then a local Stokes curve emanating from x* is, by definition, the following
curve considered near x* :

Using the notion of a vanishing factor we can prove the following
decomposition theorem. As the proof is exactly the same as that of

Theorem 5.1 of [AKKT1], we omit it here.
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THEOREM 3.1. - Let P be a microdifferential operator of WKB type
defined on U. Let x* be a turning point of rank m with a characteristic
value (*. Let r(x,() be the vanishing factor of P at (x.,(,,). Then

on a sufhciently small neighborhood Uo of x*, we find microdifferential
operators Q and R defined on Uo urhich satisfy the following:

(3.8) P = QR,

(3.9) the principal symbol Ro (x, ~) of R is r(x, ~),

(3.10) for each j &#x3E; 0, the coefhcient of the operator R is
of degree at most m - 1 in (,

(3.11) the principal symbol Qo (x, ~) of Q does not vanish at (x* , ~* ) .

To show the utility of Theorem 3.1 let us consider the case where x*
is a simple turning point of rank 2, that is, the case where

Then the operator R constructed in Theorem 3.1 has the following form
(3.13) near x* :

where A and B are formal series of non-negative powers with

holomorphic coefficients defined on a neighborhood of x* and the leading
terms of A and B are - (~+ (x) ~ (- (x)) and ~+ (x) ~_ (x) respectively for
analytic functions (::f: (x) satisfying (3.5) and (3.6). Now let us consider the
following two pairs of WKB solutions:

= 5~(:r, TI) dx) of the equation Po - 0, where the leading
term ,S’~, _ 1 (x) of ,S’~ (x, r~) is respectively given by (::f:(x);

= of the equation Rcp - 0 with 
being respectively given by (::f: (x).

It then follows from (3.8) that 0. Since the logarithmic
derivative of a WKB solution is uniquely determined by its leading term,
we find that ,5’~ (resp., ,S’_ ) coincides with T+ (resp., T_ ) . Although the
concrete form of the operator R may be complicated, the WKB-theoretic
structure of a differential operator of the second order has been completely
analyzed near its simple turning points; it can be reduced to the Airy
equation through some appropriate transformation (see [AY] for example).
Thus we obtain the connection formula for WKB solutions 0± across a
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local Stokes curve emanating from x. in exactly the same manner as in
Theorem 5.3 of [AKKT1], despite the fact that the operator P may be very
complicated (like (0.11)) and defined only outside f( = 01. Although the
analysis of multiple turning points (except for the case of double turning
points) has not yet been completed, the results of Pham [P] should be
substantially useful to analyze the structure of the operator P near its
turning points of rank 2.

Appendix. On the accumulation of simple turning
points in the Berk-Book equation.

Berk and Book discuss the WKB analysis of an integral equation (o.11 )
in their pioneering work [BB]; they concentrate their attention to two
"turning points" xA and xB, which are respectively defined by the following
relations:

where 1 is a positive constant and U(z) is given by the following:

and

(We choose q = 0.60653... in concrete numerical computations
below, e.g., in writing Figures A.2-A.5, so that XB may be equal to 1.)

Figure A .1. Graph of U(z) on the positive real axis.
( The same figure as [BB], Figure 3, p. 656.)
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We note that the function -y2 exp x2 can be replaced by a more general
function -y2 for some static potential WKB analysis of the
equation (0.11) with this generalization should be an important subject. We
wish to come back to the study of this generalized equation in some future,
but in this paper we confine our consideration to the case where cp(x) = x2.

Concerning the turning point XA, all the assertions that [BB] makes
are legitimate; it is a simple turning point in the sense of (3.12) and the
study of the integral equation in question can be reduced to "the standard
WKB turning point problem, which leads to the well-known connection
formulas", as Berk and Book claim (cf. [BB], the paragraph following (9) in
p. 653, and p. 656). For the convenience of the reader we present the local
Stokes curves emanating from XA in Figure A.2. We note that in Figure A.2
two Stokes curves sit on the same curve reflecting the fact that two turning
points with different characteristic values sit on the same point xA.

Figure A. 2. Stokes curves near XA (i.e., in the region
xA)  0.2, JIM(X - xA)  0.2}).

Unfortunately concerning the point xB Berk and Book were too
optimistic in apparently imagining that one can analyze the problem by
solely making use of the real locus of the characteristic variety. As our
analysis below shows, the analytic structure of the integral equation (0.11)
near xB can never be a standard WKB turning point problem, like that of
the Airy equation or that of the Weber equation. To visualize the situation
let us show Figure A.3 which illustrates the locus of z(x) - ~(x)-1, i.e., the
inverse of a characteristic root ~(x) of the characteristic equation of (0.11),
that is, U(~(x)-1 ) = 0, supposing that x - XB + r exp(19)
(r = 0.1, -107r  0  10~r) .

An important point to be observed in Figure A.3 is that, while

z(x) behaves approximately like a constant multiple of (x - xB ) -1 /2
for ( 8 ( small (to be more precise, for 8 ~  0.457r  ~ 7r, as our explicit
computer-assisted computation indicates), the behavior of z(x) suddenly
changes as 8 ~ approaches the value 17. In particular, the value of z (x)
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Figure A.3. Locus of z(x) for x = XB + reiÐ with r = 0.1.

for B = ~2~r, ~4~r, ... differs very much from Z(XB) (cf. [AKKT3]). Thus
we clearly see that the structure of the Berk-Book equation (0.11) near xB
should be completely different from that of the Airy equation, although at
first sight (i.e., if we study the equation only for 10 « 2 ~r) it might appear
to be approximately the same as that of the Airy equation. Furthermore a
more careful and detailed study of the locus of z (x) with different r’s gives
us Figure A.4. See [KoT] for the more detailed study of several aspects of
the behavior of z(x) and some other related functions which Landau [L]
studied in analyzing the penetration of an external electric field into the
plasma.

The comparison of the two figures "left" and "middle" of Figure A.4
indicates that there exist turning points of the equation (0.11) in the region

0.064  ~x -  0.066}. We note that, if x = x* is a turning point
of (0.11), so is its complex conjugate x = x* since U(z) is real-valued on

the real axis. Thus it is expected that there are two turning points xi and
x 1 in 0.064  ~ 2013  0.066}. In a similar manner we can find
another pair of turning points X2 and Y2 in {.r ; 0.040  ~x -  0.042},
although the figure for r = 0.042 is omitted in Figure A.4 to save the space.
(More careful numerical study shows that x, (resp., X2) is approximately
1.04863 + 0.0425103i (resp., 1.02429 + 0.0339953i).) This procedure of
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Figure A.4. Locus of z(x) with different r’s (left: r = 0.066,
middle: r = 0.064, right: r = 0.040).

finding pairs of turning points can be continued further and such a

computer-assisted study of the function z(x) strongly suggests that the
point xB is an accumulation point of turning points of the equation (0.11).
This observation was the starting point of this Appendix, and we can really
validate this observation by the following

PROPOSITION A.I. - Let P(X,z) denote

where U(z) is the entire function given by (A.2). Then there exists a
sequence of points (n &#x3E; 1) that satisfies the following:

In fact, if we set

the point zn corresponding to Xn clearly converges to xB with an

appropriate choice of its sign. Hence Proposition A.1 entails the following
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THEOREM A.I. - Let denote the Berk-Book

operator, that is,

Then there exists a sequence of simple turning points of the
Berk-Book operator which converges to xB .

Remark A.I. As is shown in Lemma A.3 below (cf. (A.52)), the
characteristic value (n = of the turning point xn tends to 0 as xn
tends to xB . This fact clearly explains why the analysis of the Berk-Book
operator is so difficult at xB. (Recall that a point (x, () with ( = 0 is

outside the domain of definition of a microdifferential operator in general.)

For the reference of the reader we present Figure A.5 which describes
the Stokes curves for the Berk-Book operator that emanate from xl, xl,
X2 and Y2- (As in Figure A.2, two Stokes curves sit on the same curve in
Figure A.5 also.) We refer the reader to [KoT] for a more complete study
of the Stokes geometry of the Berk-Book equation near xB, which includes
the added new Stokes curves. (See [AKKT2] for the notion of a new Stokes
curve.)

Figure A.5. Stokes curves emanating from xl, Xl, X2 and X2
(in the region xB)1  0.1, IIm(x - xB)1  0.1~).

Let us now prove Proposition A.I. Since the argument is rather

entangled, we divide it into several steps. We note that a crucially important
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point in our reasoning is Lemma A.2 below; there exist infinitely many
points zn with I arg Zn 1  such that is fairly large, i.e., of the

magnitude 

First we note the following Lemma A.1.

LEMMA A.I. Let S2 be a convex and open subset of JR2( x,y ), and
let Fo = t(jo,go) and F == ~(/~) denote C2-mappings from 0 to R 2. Set
F = Fo + F and suppose that Fo , F and F satisfy the following conditions:

(A.11) There exists a positive constant a for which I F (x, y)  a I Fo (x, y) I
holds for every (x, y) in Q ; here I Fo (resp., ~ I.P 1) denotes 1101 -f- Igol I
(resp., |f| + |g|)

(A.12) For any t(a,b) in there exists (xo,yo) in 0 for which

(~) holds.
(A.13) The Jacobian matrix DF = a( f ,g)/a(x,y) is invertible on 0,

where f (resp., g) denotes fo + f (resp., go + g).
(A.14) There exists a constant M1 for which  M1 holds on

Q. Here denotes maxi, j supq 

(A.15) There exists a constant M2 which dominates each second

derivative of f or g on Q ; i.e.,

Then, if

holds, we can find (x, y) in Q which satisfies F(x, y) = t (a, b) .

The proof of this lemma is given by defining a sequence of points
zn = (xn, yn) by the following relations:

Then by the induction on n we can confirm

and
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We note that the convexity assumption on Q is used to do the computations
of the following type:

The details of the computations are left to the reader.

Using Lemma A.1 we can show the following

LEMMA A.2. - For any positive integer k and non-zero complex
number c, we can find infinitely many solutions of the following
equation

so that they satisfy for n » 1

Here ro and 8o are positive constants that satisfy

Proof. Let (r, 0) be the polar coordinate of iz2, i.e.,

Then we can rewrite (A.22) in the following manner:
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For each positive integer n, we introduce the following notations so that we
may employ Lemma A.1:

It then follows from these definitions that

It is also immediate to see that, for n » 1,

holds with a constant C1 independent of n. Setting.
we find

Thus, for n » 1, the Jacobian matrix DF is invertible on Q and I
is bounded by a constant Mi independent of n.
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Similarly we compute the second derivatives of f and g explicitly so
that we may find their bounds:

Then it is obvious that, for n » 1, each of them is bounded by a constant
M2 of the form C2 /n with another constant C2 independent of n. Combining
all these estimations, we find

holds for n » 1, where C is a constant independent of n. Thus Lemma A.l
is applicable to our situation, and hence there exists a constant no such
that for n &#x3E; no the equation (A.22) has a family of solutions ~zn~ whose
behavior is given as follows by (A.19) :

This completes the proof of Lemma A.2. D

Now, in order to employ Lemma A.2 to prove Proposition A.1, we
rewrite dU(z)/dz in a form suited for our argument. Since exp t2 is bounded

we find the following asymptotic expansion
that holds for z with | arg z| 



1418

where Co - - 1 iv/i. Substituting this asymptotic expansion into dU/dz,
we find

where g(z) is a holomorphic function on {|arg z|  and it can be

asymptotically expanded there in the form

We then use Lemma A.2 to verify the following

LEMMA A.3. - The equation dU(z)/dz = 0 has a family of solutions
~zn ~ whose asymptotic behavior for n » 1 is given by

for some positive constants 8o and ro.

Proof. It follows from (A.50) and (A.51) that dU(z)/dz = 0 is

equivalent to

that is,

Let us now use Lemma A.2 with k = 7 and c = 3/(8Co) to find a family
of solutions {z0n} of (A.22) that satisfy (A.23) and (A.24). Let f and r
respectively denote
want to claim

holds on a circle centered at z° with the radius 1 /n. If (A.56) is confirmed,
then the classical Rouché theorem finishes the proof of Lemma A.3. Since

f (z° ) = 0 by the definition of z° , we find
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On the other hand, we find

Hence on the circle (A.22) and (A.23) entail that

holds for some strictly positive constant Similarly we find that

holds inside the circle Cn for some constant A2. Thus (A.57), (A.60) and
(A.61) imply the existence of a strictly positive constant Ao for which

holds on Cn for sufficiently large n. The asymptotic behavior of I
(cf. (A.23)) also guarantees that Ir(z)1 ] = O(n-1) holds on Cn. Therefore
we find that (A.56) holds on Cn. Thus the Rouché theorem finishes the
proof of Lemma A.3. 0

Using the solution zn of dU(z) /dz = 0 whose existence is guaranteed
by the above lemma, we define

Then (Xn, zn) clearly satisfies (A.5). We also find that (A.6) immediately
follows from the definition of P(X, z). We next show that (A.52) implies
(A.8). Using (A.49) again, we first note

Furthermore (A.54) entails

Therefore (A.52) together with (A.64) and (A.65) guarantees that

lim Xn = 0, showing (A.8).
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Finally we prove (A.7). It follows from the relation 8P(Xn , zn)/8z =
dU(zn)/dz = 0 that

If a2P/az2 vanished at zn, a simple computation shows that

should hold. However, one can readily verify that the right-hand side of

(A.66) and that of (A.67) cannot be equal. This is contradiction, showing
that (A.7) holds for our choice of (Xn, zn).

At long last, this completes the proof of Proposition A.1 (with an
appropriate shift of the index n). D
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