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HOMOMORPHIC EXTENSIONS OF

JOHNSON HOMOMORPHISMS VIA FOX CALCULUS

by Bernard PERRON

0. Introduction: review of Johnson’s and
Morita’s results.

0.1. In a remarkable series of papers, Johnson ~J 1~ , [J2], [J3],
then Morita [Mol], [Mo2], [Mo3], [Mo4], proved a lot of results enlightening
the structure of the mapping class group of a surface and some

of its subgroups. The purpose of this paper is to reprove some of their

results in a simpler and unified way. The emphasis will be made on the
construction by Morita [Mo3], [Mo4] of extensions to the whole mapping
class group of the first two Johnson’s homomorphisms T2, T3. Morita’s

methods are sophisticated and use deep tools, such as Malcev completion of
nilpotent groups, Sullivan’s minimal models, Levi-Chevalley decomposition
theorem, etc.

0.2. - The main tool in our approach is a new way to define the
Johnson-Morita homomorphisms. In fact, for each integer k E N*, using
Fox differential calculus, we define a map Ak: ~~+2H (where
H = H1 ~) ) . The map Ak, when restricted to an appropriate subgroup
of A4g,,, becomes a homomorphism closely related to the Johnson-Morita
homomorphism 

This natural extension (as map) of the second (resp third) Johnson-
Morita homomorphism T2 (resp T3 ) allows us to construct in an elementary
way, a homomorphic extension of T2 (resp T3 ) to the whole mapping class

Keywords : Mapping class group of a surface - Johnson-Morita homeomorphisms - Fox
differential calculus.

Math. classification : 57M05.
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group We thus recover the main result of [Mo3] (resp. Theorem 2.2
of [Mo4], which has been stated without proof).

The relevance of Fox differential calculus is not a surprise, and was
known of Johnson and Morita (see for example [Mo5]) but never exploited.
Of course, most of the beautiful results of Morita (concerning cohomology
of the mapping class group) are out of the scope of our methods.

0.3. - First we make a brief review of Johnson’s and Morita’s

results. Let Sg,l denote a compact, connected, oriented surface of genus g
with one boundary component. Let r (resp. H) denote the fundamental
group (resp. the first homology group with integer coefficients) of 

based at a point * of 

Let denote the mapping class group of ,S’g,1, that is, the group
of isotopy classes of homeomorphisms of inducing identity on the
boundary, the isotopy being fixed on the boundary.

0.4. - The homology group H = HI (,5’9,1; Z) is equipped with the
bilinear form, denoted (.), given by algebraic intersection number in 
This bilinear form is antisymmetric and nondegenerate.

The mapping which assigns to a (class of)
homeomorphism f the isomorphism induced on H has, in fact, its image in
the symplectic group Sp(H, (.)).

By fixing a symplectic basis this group is identified to Sp(2g, Z). A
classical result (see [KMS], Theorem N13, Section 3.7) says that the map

is surjective.

0.5. - Let denote the lower central series of r, defined

by , where [, ] denotes the normal subgroup of r
generated by the commutators [a, b] = aba-lb-l, where a E rk-l and b E r.

Let Nk = Fl/Fk be the k-th nilpotent quotient of r. Set Ck -
so that we have a central extension

The natural action of on r = r 1 induces an action on each Nk, so
there is a representation Aut(Nk), where Aut(Nk) denotes the
group of automorphisms of Nk.
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This defines a filtration of by Ker(Pk)’
In particular, A4(2) is the normal subgroup of consisting of

homeomorphisms of inducing identity on the homology group H.
This subgroup M(2), usually called the Torelli group of will be also

denoted by Ig, 1 .

0.6. - Using the centrality of the above extension, one can define
as follows, for each 1~ &#x3E; 2 a homomorphism

Let fk denote the automorphism of Nk induced by f. Since f E A4(k),
fk = id. For each x c c Lk. Let Lk denote
the map defined by cp(x) = fk+1(X) X-1. Using the centrality of it is

easy to see that cp is a homomorphism. Since ,C~ is abelian, w induces a

homomorphism -;5: H ~ 

Then define 2013~ 1

It is easy to see that 7k is a homomorphism, called the k-th Johnson
homomorphism.

The case k = 2 is easy to handle. The group ,C2 is identified with 
the second exterior power of H, by sending ~x, y~ E ,C2 onto [x] A [y] 6 1B2 H,
where x, y 6 F and [x], [y] are the corresponding classes in H. So T2 sends

0.7. - Johnson [Jl] identified the image of T2. Before stating his
results, consider the oriented circles in gi, fi, i = 1, 2 ~ ~ ~ g,
equipped with paths joining them to the base point * C defined by
Figure 0.1 below:

Figure 0.1
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The oriented circles and the elements of the fundamental group
r = 7r, *) they represent will be denoted by the same letter xi, Yi, etc.
Clearly the set t = 1,..., 91 is a basis of the free group r.

Let a2 (resp. denote the homology class of xi (resp. Then

i = l, ... , gl is a symplectic basis of H since 0

and ai b3 -bj . ai = 6i,j (the Kronecker symbol).
For a simple closed curve c in let D(c) denote the Dehn twist

along c (see ~B~, ~ 4.3 for the definition).
Then we can state some of Johnson’s and Morita’s results.

THEOREM 0.1 (see ~J 1~ , Theorem 1). - For 9 &#x3E; 2:

(i) The image of T2 is 1B3H C (l~2H) ~ H, where 1B3H is identified as a
Z-submodule of (

I respects the actions c

, 

THEOREM 0.2 (see [J3], Theorem 5). - A4 (3) - Ker T2 is the normal
subgroup normally generated by the Dehn twists D( fl), D( f2).

THEOREM 0.3 (see [Mo3], Theorem 4.8). - The Johnson’s homomor-
phism 72 : Lg, 1 - extends to a homomorphism

making the following diagram commutative:

Here ( denotes the senli-direct product by
the action of Sp (2g, Z) on (2 /~3H) being given by

Moreover the image of T2 is of finite index (in fact a power of 2) in
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The proof of Morita is long and sophisticated: he uses tools such as
Malcev completion of nilpotent groups, Sullivan’s minimal models, Levi-
Chevalley decomposition theorem, etc.

0.8. Remark. - The homomorphism
Sp(2g, Z) is equivalently given by a map cp : ~ 2 n3H satisfying

a map will be called a crossed homomorphism. The map T2 is then defined
. Such a map w defines a 1-cocycle belonging

0.9. Remark. - Our extension of T2 is slightly different from

Morita’s extension, but the two corresponding 1-cocycles define the same
element of H’ ( 2 n3H, Sp(2g, Z)).

0.10. - In [Mol], § 1, Morita identified, up to finite index, the image
of the third Johnson’s homomorphism T3 : A4 (3) L3 0 H. First, it is not

Let T denote the subgroup of (A’H) (D H (9 H generated by elements

for any a, b, c, d in H (here when we write
c n d is understood to be equal to c 0 d - d 0 c).

Let T be the image of T under the projection

THEOREM 0.4 (Morita [Mol], Proposition 1.2). - The image of T3 is
contained in T and is of finite index in T.

The next theorem of Morita has been announced in [Mo4] but the
proof has not yet appeared.

THEOREM 0.5 (Extension of T3, [Mo4]). Johnson’s homomorphism
T3 : A4 (3) - T extends to a homomorphism
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product x is defined by the natural action (

Moreover the image of T3 is of finite index in

0.11. - In Chapter 7, we will construct a homomorphism
- T, such that A2 = p o ~ o A2 = -12T3, where p : T - T

is the canonical projection. The extension of T3 (or equivalently of A2)
we construct here is a little bit different from Morita’s one. Precisely we
construct two different extensions, each having its own advantage.

The first one, given in Proposition 7.4, is obtained as an easy

exercice of group theory. The image of this extension is in a group

(T of Sp(2g, Z), but the image is not clearly understood.

The second extension, given in Propositions 7.5 and 7.5 bis, is slightly
more difficult to define, but its image is of finite index in an explicitly
defined group 4T oG (30~7 ~a Sp(2g, Z)).

Acknowledgments. - The author would like to thank the referee for
his very careful reading. His numerous suggestions greatly improve the
present paper.

1. An algebraic lemma.

1.1. - Let (H, w) be a symplectic space of dimension 2g and

(the Kronecker symbol). We will usually write
be the space of symplectic isomorphisms of H,

identified with Sp(2g, Z), using the symplectic basis i = 1, ... , g~.
Let cz (z = 1,..., 2g) denote ai (resp. bi ) for 1 ~ i  g (resp. g -~ 1  i  2g).

1.2. - Let fl42g (Z) denote the additive group of 2g x 2g matrices
with integer coefficients. Using the basis c = fc- ; ’ - 1,..., 2gl above and
the intersection form w, we have well-known isomorphisms

where i

Remark. - Note the following explicit computation of the above

isomorphisms:
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b) id ~d~,1 : Hom(H, given by the following formula:

1.3. - The symplectic group Sp(2g, Z) acts on the left by
conjugation on and on H 0 H by B - (x 0 g) = B (x) 0 B (y). The
isomorphism (idH o wc respects these actions: to see it, it is enough
to show that = which is obvious since 

preserves cv .

Now let A be a free abelian group on which Sp(2g, Z) acts linearly.
Then Sp(2g, Z) acts on .J~(29 (A) = A 0 A4 2g (Z) by

LEMMA 1.1. - The tensor product by A of the sequence (*) above
produces an isomorphism of abelian groups

which respects the action on A42g(A) described above and the
obvious action on A ~ H ~ H given by B ~ (a ~ x ~ g) = B - a 0 B(x) 0 B y).

Remark. - The isomorphism (p can be explicited as follows: let ei-,
be the 2g x 2g matrix, the entries of which are zero, except the one at the

place (i, j), which is equal to 1. Then (a E A), where
is the element of defined in the following way. Consider the

matrix Mo with entries in H ~ H, the j-th column of which is, for 1 ~ j ~ g
(resp. g  j  2g):

Then eij is the (i, j ) entry of Mo.
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2. Review of Fox differential calculus (see [F], or [B]).
2.1. Let r denote the free group generated by zl , ... , zn . Let Z [r]

denote the group ring of r, that is the set of finite linear combinations

Li nigi (ni E Z, gi E r). The set Z[r] has an obvious structure of non
commutative ring. 2013~Z denote the evaluation map defined by

2.2. - We define the partial derivatives (

As an immediate consequence we have

2.3. - The fundamental formula of Fox differential calculus is

(see [F], or [B], Prop. 3.4):

2.4. - Let be a word in the xn 1, each xi being
a word in the variables ... , Then we have the following formula

(derivation of a composition, see [B], Prop. 3.3):

2.5. - We have the obvious definition of derivations of higher order,
by setting

The fundamental formula of 2.3 can be generalized as follows

(see [F], §3). For any a and k E N:
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where ~ I

2.6. Magnus representation. - Let F(wl, ... , denote the ring
of formal series in the non-commutative variables ~i,... Then, using
formula of 2.5, we have a representation Z[F] ~2,’’’ given by

It is well known that this representation is the same as Magnus repre-
sentation defined by sending and z- 1 onto

This representation is known

DEFINITION 2.1. - In formula of 2.6, the term

will be called the homogeneous part of degree and

the k-th jet of a.

2.7. - Let I C Z[r] denote the augmentation ideal of 7~~r~, e.g.,
I = Ker(6-: -~ Z) and 1k its k-th power. Then for Ik is

generated as an ideal by
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2.8. Remark. - Under the Magnus representation Z[r] -
F (wl , ... , wn ) , the ideal 1k is sent into the ideal generated by Wjk

{!,...,7~}.

2.9. - Set Ik = It is an abelian group isomorphic to the free
abelian group generated by 1) - - - 1) ; jl, ... , jk E ~1, ... , 
We can also identify Ik with the tensor product 0kH, where H is the abe-
lianization of r, by sending (
is the image of zj, E r in H.

2.10. - Under the Magnus representation, Ik can also be identified
with the additive subgroup of F (wi, - - - , cvn ) generated by the homogeneous
monomials of degree k, for ]1,... j~ E ( 1 , ... , n~.

2.11. - The following proposition establishes a link between the
lower central series of r (see 0.5) and the filtration

PROPOSITION 2.2 (see [F], 4.5). - For a E r the following propositions
are equivalent:

3. The Fox matrix of a homeomorphism f E 

3.1. - We now return to the mapping class group A4g,l of a

surface of genus g. Let r = 7T, (,S’9,1, *). It is a free group, equipped
with a "symplectic" basis i = 1,..., gl defined in 0.7. Let 
i = 1,..., g~ be the corresponding symplectic basis of H = HI (Sg, 1; Z) -

3.2. - The same letter f will denote either an element of A4g,l or
the induced isomorphism of r. For i = 1,..., 2g, set
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denote the anti-isomorphism ,
where ni c Z and g E r.

DEFINITION 3.1. The Fox matrix the 2g x 2g matrix
with coefficients in Z[r] defined by

The reason we apply the anti isomorphism () is given by the following
lemma:

LEMMA 3.2. - For f,g E we have B( f o g) = B(f) x fB(g)
where x is the usual multiplication of matrices and fB(g) is defined by

As a consequence, B(f) belongs to GL2g the group of invertible

matrices with coefficients in Z[F] .

Proof. This follows easily from 2.4. 0

3.3. - As in 2.6, we associate to each cx E Z[r] a formal series in
ug, VI,’" Vg), where ui (resp. vz ) corresponds to xi -1 (resp. Yi-1).

Doing this for all entries of the Fox matrix B(f), we associate to f the
formal series of matrices

where is a 2g x 2g matrix with entries in I~, the abelian group
generated by 1  j2  2~} where ~w~2 ~ are non-

commutative variables defined by wz == Ui if 1 ~ i  9 and Wi = vi_9
if g  i  2g: they correspond to either x2 - 1 or g2 - 1 (see 3.2 and 2.6).

3.4. - By 2.6 the element a~~ ~ of is given by

Hence Bk(f) belongs to the additive group of 2g x 2g matrices
with coefficients in Ik.
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Recall that we have identified Ik with the tensor product in 2.7

by sending (z~~ -1) ~ ~ ~ (z. - 1) (or equivalently W3k ... W31 )On Cjk 0... c. I
where c~2 is defined in 3.2. Finally Bk ( f ) appears as an element

of The following is well-known:

LEMMA 3.3. Bo ( f ) is the matrix of the isomorphism induced on H
by f , in the symplectic basis ~ai , bi ; i = 1, ... ,g~.

3.5. - Define the filtration ...

LEMMA 3.4. - The filtration ~.,Jlil’ (1~) ; 1~ &#x3E; 1 ~ coincides with Johnson’s
filtration defined in 0.5.

Proof. This follows immediately from Proposition 2.2. 1:1

3.6. - For cx E íZ[r], let E Ik ~ denote its homogeneous
part of degree k (Definition 2.1).

LEMMA 3.5. - For f E and cx C we have

where’.’ is the obvious action on Ik.

Proof. It is sufficient to prove the lemma for

Then by 2.5:

Then
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DEFINITION 3.6. - Let 1/J denote the bilinear map

defined by % where cj is defined in 3.2 and hi3
is the (~,~) entry of M.

where cp is the map given in the fundamental algebraic Lemma 1.1 and C34
is the contraction defined by C34 (x Q9 y Q9 Z Q9 U) - (z - y ( where (.) is
the intersection pairing).

Proof. Consider the following diagram

where the vertical sequence is the sequence ( * ) of 1.2 tensored by H on the
right and the left, and C34 ’ is defined by

By definition of dw (in 1.2), diagram (2) commutes. So, to prove Lemma 3.7,
it is sufficient to prove that diagram (1) commutes. By bilinearity, it is

sufficient to prove commutativity eij Q9 ck. By the remark in 1.2 :

Applying C34 ’ we get 6jkh © ci , which is precisely
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: has been defined

in Definition 3.6. Then we have a commutative diagram
. ~ / rrB ~ ~ I / rrB 

qj 
11 1 / - ~ rrv

where cp is the isomorphism given in Lemma 1.1 and C34 is the contraction

LEMMA 3.9. - Let denote the

bilinear map defined by the usual multiplication of matrices. Then ure have
a commutative diagram: 

-

where C35 is the contraction
and T23 is the permutation T,

Proof. Consider the following diagram

where the vertical lines come from 1.2 and C35 ’ is defined by

Diagram (1) commutes by definition of the composition. Diagram (2)
commutes by definition of dU). 0
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PROPOSITION 3.10. - Let Then, with
the notations of 3.6, we have

(See 3.6 for the definition of c~~l), a(2»).

Proof. By Lemma 3.5, it is sufficient to prove Proposition 1 ’-’

(by Fox formula 2.3). Then

where

4. The maps Ak and their relations to Johnson
homomorphisms.

where has been defined in 3.3 (the product makes sense, since Ik
is a Z-module). By the fundamental algebraic Lemma 1.1, this defines

maps, still denoted Ak :

The next three lemmas and corollary present properties of the first
two maps A1 and A2.
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LEMMA 4.1. - For any f ,g E we have the following fundamental
formulas:

Proof. By Lemma 3.2, we have

Point (ii) is equivalent to (i), using the fundamental algebraic
Lemma 1.1. Point (iii) is a direct consequence of (ii). 0

Remark. - In the terminology of Morita, ~3H is a

crossed homomorphism, by formula (ii) (the action of A4g,1 on ~3H is the
obvious one, going through Sp(2g, Z) ) .

LEMMA 4.2. - For f, g c we have

where -6o(/) ’ ( ) is the usual action of ~ I and F is the

bilinear map ((93H) (g) ((g)~) -~ 0~7:f defined by F = C34 - T23 ~ C35, where
C34 and T23 o C35 have been defined in Lemmas 3.7 and 3.9, respectively.

Proof. By Lemma 3.2 we have

The term of degree 2 in B(fg) is given by

where ( ) ( i) denote the term of degree i.
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We claim that the last term above is equal to Bl1 (Al ( f ), Bo (f) . Al (g) ) .
This follows from the three formulas below where Bo is an integer matrix
and AI, Bl E A42g(H):

where B° Al has been defined by

The first two points are obvious from the definition of wand 1/J
(Definition 3.6 and Corollary 3.8). For the third one, we have for Bo = (b(o))
and B1 = (b~~ ~ ) :

This completes the proof of Lemma 4.2, using Corollary 3.8 and Lemma 3.9.
D

COROLLARY 4.3. - The map A2 restricted to .Jlil (3) is a homomor-

phism into ~4 H , satisfying .L
and cp in 

4.2. - We have reviewed in 0.6 the definition of the k-th Johnson

homomorphism:
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4.3. - Remark that Ck imbeds in (9 kH (the embedding is
induced by the map * Ik which sends c~ E rk to I k, by
Proposition 2.2). So T~ appears as a homomorphism

4.4. - The relation beetween Ak and T,~ is given by

PROPOSITION 4.4. - For any k &#x3E; 2,

where is the reversing isomorphism, defined by

Proof. Let f E A4 (k) - Using (2.3) we can write

4.5. - Since ~ it follows that

and ~

.L

Using notation of 3.6, it is then

easy to see that

where

We thus obtain

is by definition

entry of the matrix



1091

Applying the isomorphism id odw 1 of 1.2, we get the result. D

4.6. Remarks. - 1) Note that Ak, for 1~ &#x3E; 2, is defined on the

whole mapping class group compared with 7k which is defined

only on Jl~l (1~) . This will be a great avantage, used in chapters 5 and 7.
But - is no longer a homomorphism.

2) Johnson ~J1~, Theorem 1, proved that the image of T2 is contained
in A3H C the image of the injective homomorphism l~3H ~ tgy3H
defined by

where 93 is the group of permutations of the set f 1, 2, 3}, and the

signature of the permutation a.

Let denote the composition of A1 by the canonical
homomorphism ~r : ~3H --~ n3H. It is obvious that the restriction of 7r

to n3H is 6 id 3 H . We then have from Proposition 4.4 and [J 1], Theorem 1:

In fact, the third Johnson homomorphism T3 did not appear in the
litterature in the form given by 4.3, but only through its composition with
the canonical map ((92H) (9 H 0 H - (n2H) ~ H) 0 H/( l~3H ~ H), where
the inclusion C (A2H) &#x26; H is given by

(see [Mol], [Mo2] and Chapter 6 for more details).
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5. Extension of the second Johnson homomorphism.

Recall that, in Chapter 4, for any integer k &#x3E; 1, we have defined maps

PROPOSITION 5.1 (Extension of Al = -6T2 ) .
(i) The crossed homomorphism . ..

Lemma 4.1 ) has its image contained in ( uTe have seen in
Corollary 4.5 that Ai sends A4(2) onto 6 n3H). This defines a (true)
homomorphism Bo (the action of Sp(2g,Z) on 3A3H is defined

by g ~ making the following diagram
commutative:

Proof. We know (see [H]) that the set of Dehn twists 

D (Y2), D(xi) 1  i  g (defined by Figure 0.1) and D(Cl), ... , D(C9_1)
(defined by Figure 5.1, below) is a system of generators for Recall

that the model for Dehn twist is the homeomorphism of x ~- l, -~ l~
defined by D(eie, t) = (e~(B+7r(l+t), t). To define the Dehn twist D(c) along
a simple closed curve c of 5o i, choose an orientation preserving embedding

such that x ~0~) = c. On the image of ~p we
and D (c) = identity outside.

Using Lemma 4.1, (ii), to prove that the image of Al is contained

in 3 A H, it is enough to show it on a system of generators.

5.1. - Consider first D(Xi); we have the following action on r:
yzxz and for Zj i- yi . It is easy to see, using

notations of 1.2 that
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It follows immediately that .

Figure 5.1

5.2. - We have the following formulas:

(the other generators of F being fixed by D(Ci)). Straightforward compu-
tations show that

i z+1 i+g

This proves the first

part of point (i) of Proposition 5.1.

5.3. - Recall some well-known facts about semi-direct products of
groups. Let G be a group acting on a group A. We define the semi-direct

product G as the cartesian product A x G with the following law:

We then obtain a split exact sequence:

Now let B be a group with a homomorphism B -~ G and a crossed
homomorphism

homomorphism. We apply this construction to 1

Point (ii) follows immediately from the fact that in the diagram of
Proposition 5.1, the image of A1 is of finite index in 3 A3H. D
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5.4. Remark. - Proposition 5.1 defines an extension Alo of

Johnson’s homomorphism Al = -6T2 : ~ 6A 3H to all of We

thus recover Morita’s result [Mo3], Theorem 4.8, in a very simple way.

5.5. Remark. - Our extension Alo : A4g,l -~ (3 A 3H) x Sp(2g, Z)
is not exactly the same as Morita’s one, which is denoted T2. In fact

Morita [Mo3], Theorem 6.1, proved that two crossed homomorphisms
from into 2 extending Johnson homomorphism T2 : Ig, 1 f--~ 1B3 H
define the same homology class in H1 (J~19,1; 2 n3H), the action of A4g,1
on 2 1B3H being defined through Sp(2g, Z). Using computations in 5.1, 5.2,
5.3 and Proposition 4.7 of [Mo3], it is not difficult to see that the two

crossed homomorphisms T2 and corresponding to the two extension’s T2
(of Morita) and Alo (ours) are related, for any f C Mg,l, by the formula

, and so are cohomologous.

6. New definition of the third Johnson

homomorphism T3.

6.1. - First recall a fundamental result of Johnson.

THEOREM 6.1 (see [J3], Theorem 5). * 

which is by definitions A4 (3) (also denoted T9,1 ) is normally generated by
the Dehn twists D ( f 1 ) , D ( f 2 ) , where fz are the simple closed curves defined
by Figure 0.1.

This should be compared with the following result due to J. Powell.

PROPOSITION (see [Po]). - The Torelli group A4 (2) = is normally
generated by , where Y2, ~/2 are curves

defined by Figure 0.1.

6.1. - Consider the map

defined by ..
composition

where ~r is the canonical projection.
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- 

6.2. - In the sequel, we will consider the following elements of
is the subgroup of generated

Let T denote the subgroup

LEMMA 6.2. - One has:

Proof. Recall (see 0.7) that xi, yi, i = l, ... , g, are the oriented
circles equipped with paths given by Figure 0.1. The same letters will also
denote the elements of they represent. Let [a, b] denote the

commutator ab a-’ b-1.

6.3. - Then we have

(Here we have made the convention that composition of paths is written
from left to right.) Easy computation shows that the Fox matrix of D(/i) is

with
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It is easy to see that .

From the fundamental algebraic Lemma 1.1, we easily deduce that

6.4. - By the same type of computation, we have for D(/2)~

Then

are 4-columns defined by ’)
and ~ is the column

From this we can conclude that .i I and

By the remark following Lemma 1.1 and the formula
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6.5. - Let To denote the subgroup of T generated by elements

Remark that sl defined above belongs to To.

LEMMA 6.3. - (i) A2 defines a homomorphism

respecting the action on M (3) ( by conjugation) and on T ( through
the action of 

(ii) Composing with the projection p: T ~ T, we get a homomorphism

Moreover the image of p o A2 is of finite index in 3T and p o A2 = -3T3 , T3
being the third Johnson’s homomorphism (see [Mol], 31).

Proof. (i) Follows from Theorem 6.1, Corollary 4.3 and Lemma 6.2.
(ii) Follows from Proposition 1.1 and 1.2 of [Mol] and from Lemma 6.2,
since s 1 E To. 11

6.6. - We can explain the presence of the factor 3 in the formula
p o A2 = -3T3, which does not appear in Proposition 4.4, in the following
way. Morita in [Mol, §1] or [Mo2, §2] identified ,C3 with A 2H 0 
through the map A : [[x, y], z] H (x A y) 0 z. Then T3 can be seen as a
homomorphism from .M(3) into ( n 2 H ~ H) 0 H/(A 3H) (9 H.

In 4.3 we have defined an embedding p : ,C3 --~ I3 ^_~ 0 3H which can
be explicitly described by

Let j denote the composition JL o A - 1 : (A2H (9 H)/ n3 H --j 03H. We have
said in 6.5 that the image of T in H) 0 H/ l~3H ~ H can be identified
with T = T/To. Then Morita [Mol], Proposition 1.1, shows that the image
of T3 is contained in T. On the other hand, it is not difficult to see that the
map
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(where 7r is the canonical projection), restricted to T is 3 idT . This explains
the factor 3 in Lemma 6.3.

6.7. Remark. - We will exploit in [Pe] the fact that there exists
a homomorphism A2 above -3T3, with values in T ("above" meaning
that -3T3 factors through T) to simplify Morita’s formula for the Casson’s
invariant.

7. Extensions of the third Johnson homomorphism 73.

7.1. - We define a homomorphism

by the were - has been defined

in 6.2 (recall that c A d as element of H 0 H is understood to be equal to
c0d-d0c).

By definition of T (see 6.2), ~ sends (A 2H) (D H 0 H onto

T C (1B2 H) 0 H 0 H. Moreover T- T is 4idT since

7.2. - Now we define a map - T as the composition

LEMMA 7.1. - The map A2 : - T defined above is such that:

(i) its restriction to A4 (3) = Eg, I is -12T3 (where T3 is the third Johnson
homomorphism) ;

where F is defined as the composition

Proof. (i) Follows from Lemma 6.3 and 7.1. Part (ii) Follows from
Lemma 4.2 and the definition of A2 (see 7.2). 0

7.3. - Recall some general facts about abelian extensions of groups.
Let A be an abelian group on which G acts as a group of isomorphisms.
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and ,~(g,1 ) _ .~( 1, g) - 0 for any g E G (see [Br], Chap. IV, 3). This
defines an extension A of G of G by A as follows: A o~. G is the cartesian
product with multiplication

Moreover, if M is any group, T : M -~ G a homomorphism and M --~ A a

crossed homomorphism (meaning, 
then the map

is actually a homomorphism.

7.4. - As a particular case, if G acts trivially on A, any bilinear
map 0 : G x G -~ A will be a normalized 2-cocycle and, as such, defines
an extension of G by A, which is in this case central. We apply this last
construction in the following case: A = T, G = /B3H C ~3H,

PROPOSITION 7.2 (Extension of

(i) We have a homomorphism

making the following diagram commutative:
A,

where the extension in the row below is central.

(ii) The image of A2 Al is of finite index. Let A21 denote the
homomorphism A2 AI.
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Proof. - (i) is obvious by 7.4, A3H acting trivially on T.

(ii) is obvious too, since the image of A2 : 12T is of finite index

(by Lemma 6.3, (ii)). 0

7.5. Remark. supports an action of Sp(2g, Z) defined
by f o ~ (x, ~) _ (10’ x, f o ~ y). To see this, it is sufficient to prove that the

’ 

preserves the

actions of Sp(2g, Z). But this is obvious since contractions and permutation
respect these actions (recall that F = C34 - T23 o ~35).

7.6. First extension of ~2i-M(3) -~ T to A4g,l. - Remark

that we have defined the extension T oF ( A3H) using the bilinear map
F : ( A3H) © (A3H) T. This map F is in fact defined on (03H) 0 (~3H) .
So, doing the same as in 7.4, we can define an extension T oF (E)~) of ~3H
by T (the action of 03H on T being trivial). The maps 
and 03H define a map, which we call A21 from Mg,i
into T oT (0 3H) by setting

we have an action of Sp(2g, Z) (see remark 7.5) defined by..... , ........’ · / , , .

where cpo E Sp(2g, Z), t E T and x E 03 H.

The next lemma is obvious.

LEMMA 7.3. - The map

homomorphism, that is
is a crossed

where * is the group operation in ’_

By 5.3, this defines a homomorphism.
Sp(2g, Z) by the formula

Here ( ~a ) denotes the semi-direct product of (T oF H) by Sp(2g, Z), the
action of Sp(2g, Z) on T of 03H being defined as in 7.5. We thus have
proved:
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PROPOSITION 7.4 (First extension of A2 : M(3) ---~ T - We

have a commutative diagram of homomorphisms between exact sequences:

Together with Proposition 7.2, this gives the desired extension.

7.7. Remark. - The above extension A210 has the advantage of

being simply defined but we do not control its image.

7.8 Remark. - In Proposition 7.4 above, one may wonder why we
do not define an extension of - T into (T o Sp(H) since
we have a map Al : .I~19,1 --~ n3H. The reason is that the 2-cocycle F we
use is defined on 03 H and not on its quotient There is no obvious

way to define a 2-cocycle on the 1B3H level with the right properties. The
first idea coming to mind would be to embed 1B3 H into ($)3 H as A3H, but
this would not produce the right formula which has to be

(This formula is true when we remplace by A1 ( f ) ) .

7.9. - The object of this section is to prove the following two propo-
sitions :

PROPOSITION 7.5 (Second extension of A2 : .11~( (3) -~ 12T). - There
exists an extension To- (6/B3 H) of 6/B3 H by T and a homomorphism

extending A2 = -12T3 : .,/~l ( 3 ) -~ 12T,
1 

- - 

1

whose image is of finite index. More precisely we have a commutative

diagram of exact sequences:
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PROPOSITION 7.5 bis. - To simplify the notations, put

There exists an extension and a homomorphism

extending A2, whose image is of finite index and making the following
diagrams commutative:

Bo

the map 1 being induced by the inclusion 3 A3H ---+ T.

the notation --+-&#x3E; 0 meaning that the image is of finite index.

7.10. Remark. - The extension

the one of Proposition 7.4 using the identification

7.11. - In order to define the extension

we first define the action of (3 A~f) x Sp(2g, Z) on 4 T: this is simply defined

To define the 2-cocycle G on (3 A3H) x Sp (2g, Z) with values in ’ 4 T
we need some lemmas. Recall first that we have a commutative diagram
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LEMMA 7.6. - The map

is injective, and its image is of finite index.

Proof follows from Corollary 4.5 and Proposition 5.1.

We begin to define the cocycle G on
and then try to extend it on the whole group (

where

LEMMA 7.7. - G is a well-defined 2-cocyle on Bo) with values
in T (recall that the action on T is defined by (~, fo) - t = 10 . t, where
(~/o)~(3A~)xSp(2~,Z)).

Proofs G is well defined by Lemma 7.6. It is a 2-cocycle since F is.
R

LEMME 7.8. - Let be any element Sp(2g,Z). Then
there exist~

Proof. (i) Follows from the surjectivity of Bo. Obviously
2~-2a E 6 /B 3 H. Then (ii) follows from the surjectivity of Al : -----+ 6/B3 H

(see Corollary 4.5). Point (iii) follows from the definition of multiplication
in (3 n3H) ~ Sp(2g, Z). 0
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Then we set, with the notation of Lemma 7.8, (iii),

LEMMA 7.9. - (i) G defined above does not depend on the choice
and g.

(ii) G extends G.

The proof is easy using Lemma 4.1, (ii), Corollary 4.5 and Lemma 7.8.

Point (ii) is obvious since if (~, fo) = then we can take in

Lemma 7.8, Sp = id E Ig,l and use the definition of G given in 7.12. D

7.14. - Now we can extend G to a 2-cocycle on (3 n3H) ~a Sp(2g, Z).
For any pairs (~, fo), E (3 /~3H) ~a Sp (2g, Z), choose pairs (cp, f ),
(1/), g) given by Lemma 7.8 and set, with the notation of Lemma 7.8:

LEMMA 7.10. - G is a well-defined 2-cocycle on (3A3H) x Sp(2g,Z)
with values in 4T, extending G.

Proof. Well-definedness and the fact that it is a 2-cocycle is just
a matter of computation, using the bilinearity of F and the fact that F
preserves the action of Sp(2g, Z) (see Remark 7.5).

7.15. - The 2-cocycle G on (; ) with values in 4 T
in 7.14, produces, by 7.3, an extension of (3 A3H) x Sp(2g, Z) by 1 T-, denoted

verifying all the properties of Proposition 7.5 bis.
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The fact that the image of A2lo is of finite index comes from the fact that
~ have images of

finite index.
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