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SEQUENCE ENTROPY PAIRS AND
COMPLEXITY PAIRS FOR A MEASURE

by Wen HUANG, Alejandro MAASS(*) and Xiangdong YE (**)

1. Introduction.

Ergodic theory and topological dynamics exhibit a remarkable par-
allelism. Classical examples are the concepts of ergodicity, weak mixing
and mixing in ergodic theory which can be considered as the analogues of
transitivity, topological weak mixing and topological mixing in topological
dynamics; or topological entropy and measure theoretical entropy which
are related through the variational principle. This parallelism has allowed
to tackle purely topological problems using measure-theoretical arguments,
and in some cases it has become the only way to do it. In other cases it is
the topological concept which has induced the measure-theoretical result.

The present work follows the research line developed since the intro-
duction in topological dynamics of the concept of u.p.e. systems in [Bl]
which is an analogue of measure-theoretical K-systems in ergodic theory.
In particular u.p.e. systems are disjoint from all minimal zero topological
entropy systems [B2]. This last work is the starting point to the theory of
topological entropy pairs which allowed to localize topological entropy and
in [BL] served to construct the maximal zero topological entropy factor of
a system, which corresponds to a parallel notion for the Pinsker factor.

(*) The second author is supported by Fondecyt 1010447 and Programa Iniciativa
Cientifica Milenio P01-005.

(**) The third author is supported by one hundred talent plan and 973 plan.
Keywords: Entropy - Sequence entropy - Kronecker factor.
Math. classification: 54H20 - 58F03.
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Later on, Glasner and Weiss [GW] have shown that if a topological
dynamical system admits a K-measure with full support then it is u.p.e. In

[B-R] the authors were able to define entropy pairs for a measure in topolog-
ical dynamics and have shown that the set of entropy pairs for an invariant
measure is contained in the set of topological entropy pairs, generalizing
the result in [GW]. Also entropy pairs for a measure allowed to construct
the maximal topological factor of zero measure theoretical entropy. It is

a measure-theoretical factor of the Pinsker factor and it is a topological
extension of the maximal zero topological entropy factor. In [BGH] it is

shown the converse result of [B-R] stating a deep refinement of the clas-
sical variational principle. Characterizing the set of entropy pairs for an
invariant measure as the support of some measure, Glasner has shown

that the product of two u.p.e. systems is u.p.e. The same characterization
has been fundamental to prove that Li-Yorke chaos is implied by positive
topological entropy in [BGKM]. Recently in [HY] concepts of topological
and measure theoretical entropy pairs were generalized to entropy tuples.

Following the idea of entropy pairs in order to consider systems with
zero topological entropy one can also define complexity pairs [BHM] and
sequence entropy pairs [H-Y]. It turns out that a system is topologically
weakly mixing if and only if each pair (not in the diagonal) is a sequence

entropy pair and for each system there is a maximal null factor (sequence
entropy is zero for each sequence). In ergodic theory the topological
concepts of maximal null factor and maximal equicontinuous factor are
related with the Kronecker factor. In this paper we explore topological
factors in between the Kronecker and the maximal equicontinuous factor
and maximal null factor. In this purpose we introduce sequence entropy
tuples for a measure and vve show that the set of sequence entropy tuples
for a measure is contained in the set of topological sequence entropy tuples.
The reciprocal is not true. Moreover, we show that for each system there is
a maximal M-null factor, that is, for each invariant measure the sequence
entropy with respect to the measure is zero. We also define M-supe systems
(which can be seen as "dual" to M-null systems) and show that the product
of such systems is of the same type and each M-supe system is disjoint from
any M-null system.

In the last section we introduce two notions of complexity pairs for
a measure and we study their relation with sequence entropy pairs and

topological complexity pairs. We prove that in general the strongest notion
is strictly contained in between sequence entropy pairs and topological
complexity pairs.
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2. Preliminaries.

By a topological dynamical system (t.d.s.) we mean a pair (X, T),
where X is a compact metric space and T : X - X is a homeomorphism
from X to X. The set of T-invariant probability measures defined on Borel
sets of X, B(X), is denoted by A4 (X, T). In this context measurability will
be always related to B(X). A probability measure p E induces

a measure theoretical dynamical system (m.t.d.s.) (X, ,~3(X ), ~C, T) (or just
(X, p, T)), that is, T : X - X is measurable and T J-L = p. In this article
we assume all sigma algebras are complete.

Let ,A. _ (0 x ti  t2  ...} ç N be an increasing sequence of natural
numbers and U be a finite cover of X. The topological sequence entropy of
U with respect to (X, T) along A is defined by

where , is the minimal cardinality among all cardinalities
of sub-covers of The topological sequence entropy of (X, T)
along A is

where supremum is taken over all finite open covers of X (that is, made of
open sets). If A = N we recover standard topological entropy. In this case
we omit the superscript N.

Analogously, given p E A4 (X, T) and a a finite measurable partition
of X we define the sequence entropy of c~ with respect to (X, p, T) along
A buy

The sequence entropy of (X, T, p) along A is

where supremun is taken over all finite measurable partitions. As in the

topological case, when ,,4 = N we recover entropy of T with respect to p.
In this case we omit the superscript N. For the classical theory of measure-
theoretical entropy see [P] and classical theory of topological entropy can
be found in [DGS]. For sequence entropy see [Ku].
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Let (X, T) be a t.d.s. and p E T). On the complex Hilbert
space H = L2 (X, L3(X), p) we define the unitary operator UT : H - H by
UT ( f ) = f o T. We recall the spectral mixing theorem of Koopman-Von
Neumann (see [Be]).

PROPOSITION 2.1. - The Hilbert space H can be decomposed as

where d(S) is the density of 5 and ~~, .) is the inner product of H.

It is known (see [Hu]) that there exists a T-invariant a-algebra D,~ C
B(X) such that L2 (X, /-L) = HK. In fact, Ðf-1 == (A C X : 1A E HK ~
and (X, D,, p, T) is the Kronecker factor of (X, p, T) [Kr]. For any A C D,
we have A~ ~ ) = 0 for any increasing sequence of natural numbers
A (see [Ku]). We also recall that (X, p, T) is weakly mixing if and only if
HK is one-dimensional if and only if D~,, is trivial. If HK = H, we then say
that (X, p, T) has discrete spectrum.

If (X, T) is a t.d.s. and p C A4 (X, T), then for any finite measurable
partition a of X, it holds lim,-,, hf-1(Tn, a) = where P, is the
Pinsker a-algebra of (X, J-L, T). Theorem 2.3 below states the same kind of
property for Ð f-1.

LEMMA 2.2. - Let (X, T) be a t.d.s. and 1-t C A4(X,T). For
any finite measurable partition a of X and any increasing sequence of
natural numbers A, Moreover, for any sequence

Proof. Since (X, B(X)) is separable there exists a countable set of
finite D.-measurable partitions such that 

Thus for a fixed k C N and ,
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where in the first inequality we use that 0 for D, . Since
1~ is arbitrary we get The second statement of the

lemma follows by what we have proved. D

Now we prove,

THEOREM 2.3. - Let (X, T) be a t.d.s. and p E A4 (X, T). Given
a finite measurable partition cx of X there exists an increasing sequence of
natural numbers

Proof. Let us remark that for any A E L3(X), 1A -JE(lAIÐJL) E Hwm.
Therefore, there exists S C N with d(5) = 0 such that

for all

Claim. For any finite measurable partition Q of X and E &#x3E; 0,
there exist S C N with d(S) = 0 and (depending on 0 and E) such
that when

Proof of the claim. - Put a = ~A1, A2, ..., A~~ and Q = ~B1, B2, ...,
B, 1. By previous remark, there exists S C N, d(S) = 0, such that for all

Hence
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We conclude that

and

This finishes the proof of the claim.

Now we can define an increasing sequence of natural numbers ,,4 =

{0  tl  t2  ~ ~ ~ ~ such that

r

therefore

In fact Lemma 2.2 and Theorem 2.3 can be stated for any m.t.d.s. in

the general sense and thus Theorem 2.3 generalizes Theorem 3 of [Hu].
Moreover, the following corollary follows directly from Lemma 2.2 and
Theorem 2.3.

COROLLARY 2.4. -- Let (X, T) be a t. d.s. and /-t E T). Then,
A EViL if and only if h-4 (T, Ac = 0 for any increasing sequence of
natural numbers A. Particularly, (X, p, T) has discrete spectrum if and
only if h:(T, Ac = 0 for any increasing sequence of natural numbers
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3. Sequence entropy n-tuple.

Let us begin with some additional notations. Given a t.d.s. (X, T)
and an integer n &#x3E; 2, the n-th product system is the t.d.s. (X ~n&#x3E; , T ~n&#x3E; )
where x(n) is the cartesian product of X with itself n times and T(’)
represents the simultaneous action of T in each coordinate of x(n). The
product a-algebra of x(n) is denoted by and its diagonal by On (X) =

..., x) E X ~n&#x3E; : x 

Let p C A4 (X, T). Define the measure An (A) on ,~3~n&#x3E; by letting
where D~ is the T-invariant ~-

algebra defined in Section 2.

Let E X ~n&#x3E;. A finite cover of X, U = U2,..., Ukl, is said
to be an admissible cover with respect to if for each k

there exists 1 ~ ij ~ n such that x-, is not contained in the closure of UJ.
Analogously we define admissible partitions with respect to 

DEFINITION 3. l. - Let (X, T) be a t.d.s. and p E M(X,T). An
n-tuple Xi)n 1 E X ~n~ , n &#x3E; 2, is called

(1) a sequence entropy n-tuple if for some i, j  n, Xi i- x3,
and for any admissible open cover U with respect to there exists an

increasing sequence of natural numbers A such that h-,4.p (T, U) &#x3E; 0;

(2) a sequence entropy n-tuple for p if for some 1  i, j x n, xj,
and for any admissible Borel partition a with respect to there exists

an increasing sequence of natural numbers A such that a) &#x3E; 0.

We denote by SEn (X, T) the set of sequence entropy n-tuples and by
T) the set of sequence entropy n-tuples for p. Sequence entropy

2-tuples are called sequence entropy pairs. The notion of sequence entropy
pair was introduced in [H-Y] to study weak mixing property of t.d.s.

The following proposition states the basic properties of sequence
entropy tuples. The proof is similar to the proof of the corresponding result
in [B2].

PROPOSITION 3.2. - Let (X, T) be a t.d.s.

(a) If U = ~ U1, ... , Un ~ is an open cover of X with &#x3E; 0

for some increasing sequence of natural numbers A, then for all i -- n

there exists x2 C Ui such that is a sequence entropy n-tuple.

-invariant subset of 
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(d) Suppose W is a closed T-invariant subset of (X, T). If is

a sequence entropy n-tuple of (W, then it is also a sequence entropy
n-tuple of (X, T).

Now we begin the study of the structure of T).

LEMMA 3.3. - Let (X,T) be a t.d.s. and p E If

?~l = U2, ..., is a measurable cover of X with n &#x3E; 2, then

i 1 Ui ) &#x3E; 0 if and only if for any measurable finite partition cx

finer than U as a cover, there exists an increasing sequence A C N such
that &#x3E; 0.

Proof.

(i) Assume that for any measurable finite partition a finer than Ll as
a cover, there exists an increasing sequence A C N such that h-4(T, a) &#x3E; 0

- 

-, , , V 1

Consider the measurable partition

. Thus a is finer than Ll and there exists by hypothesis a sequence
, ..
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(ii) Assume Ui’) &#x3E; 0. Without loss of generality we may
assume that any finite measurable partition c~ which is finer than U as a
cover is of the type A2,..., An) with Ai C Ui , for 1 ~ i - n. Let
cx be one of such partitions. We observe that

Therefore, D~ for some 1  j  n. We conclude by Theorem 2.3 that
there exists a sequence &#x3E;
finishes the proof. 11

Remark. For a measurable partition a = {~4i, ~2?... ,~} of X
with n &#x3E; 2. By Lemma 3.3, it is easy to see that An (p) Ai ) &#x3E; 0 if and

only if there exists an increasing sequence A C N such that h:(T, a) &#x3E; 0.

In particular, for a - A2 (P) (A x A’) &#x3E; 0 if and only if there exists
an increasing sequence ,,4 C N such that hA(T, cx) &#x3E; 0.

I 
/-t

THEOREM 3.4. - Let (X, T) be a t.d.s. and I
for any n &#x3E; 2,

Proof.

(i) Let E SEf;(X, T). To show (1
we only need to prove that for any neighborhood I

Set U U2 , ... , Without loss of generality we may assume
that U is a measurable cover of X. It is clear that any measurable partition
c~ finer than U as a cover is an admissible partition with respect to

Therefore, there exists an increasing sequence A C N such that

We will show that for any
admissible partition I
exists an increasing sequence

Since a is an admissible partition with respect to 

exist closed neighborhoods Ui of xi, 1 ~ i ~ n, such that for each

as a cover. Since

by Lemma 3.3, there exists an increasing sequence , ..
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~ be a measurable cover of X with n &#x3E;, 2. If

, then there exists an increasing sequence of natural

Thus, using Lemma 3.3 we have that &#x3E; 0 if

and only if there exists an increasing sequence of natural numbers

A = {0  tl  t2  ~ ~ ~ ~ such that h~ (T, ,~3) &#x3E; 0 if and only if there
exists an increasing sequence of natural numbers ,,4 = (0 x t1  t2 ...I

Proof. Since J there

is such that &#x3E; 0, where

be an increasing sequence of finite a-algebras
with By the martingale theorem, 

, in the sense of L2 (p, ,t3(X ), ,~) . Hence there
exists -y = qj for some j E N such that:

The following property holds. 0

Claim. for any finite

measurable partition {3 which is finer than U as a cover.

Proof of the claim. - Without loss of generality let B2, ... ,
with Bi C Ui, 1 ~ I x n. Let §(x) = -x log x for x &#x3E; 0 and §(0) = 0.

Then
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where we have used that for any s E fo, 1}n and 1  i  n, if s(i) = 1 then
. _.

We observe that if s(I) = 1 for some

E (I B,- 1-y). Therefore,

Hence _ This ends the proof of
the claim.

Put . By Theorem 2.3, there exists an

increasing sequence of natural numbers ,~4 = (0 x tl  t2  ~ ~ ~~ such
that h~ (T, a) = 

Let n E N and , I Since Tt2 ~3 is finer than for

t E 11, ..., n 1, one has
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Now we show (ii). For each n E N, there exists a finite measurable
partition , I
Therefore

Now we can state a relation between sequence entropy tuples for a
measure and sequence entropy tuples.

. Then

Proof. Let E T) and U be any finite open cover of
X admissible with respect to It is easy to see that any measurable
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finite partition a finer than LI as a cover, is an admissible partition with
respect to (xi)i 1. . By Definition 3.1, there exists an increasing sequence
,~4 C N such that h:(T, cx) &#x3E; 0. By Lemma 3.3 and Theorem 3.5, there
exists an increasing sequence ,,4 C N such that &#x3E; 0. Hence

(xi ) i 1 E ,S’En (X, T). This finishes the proof of the theorem. 0

The following property states the way sequence entropy tuples for a
measure pass through factors.

Proof.

(1) It is direct from the definition, so we omit the proof.
We then have

property.

Claim. -
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4. M-supe and maximal M-null factor.

Applying the results obtained in the previous sections we now in-
troduce the notions of M-supe and M-null systems. We remark that the
smallest closed and invariant equivalence relation containing entropy pairs
for a measure [B-R] define the maximal zero measure-theoretical entropy
topological factor of a system. Here, using sequence entropy pairs for a mea-
sure we obtain the maximal M-null factor, one possible topological version
of the Kronecker factor. But since there is no variational principle for the
sequence entropy, the maximal M-null factor is not necessarily the maximal

equicontinuous factor, even the maximal null factor.

Set
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Remark 4.2. - As mentioned before any topologically weakly mix-
ing system (X, T) with a unique invariant measure p supported on a
fixed point is an example for which ,S’E2 (X, T ) = X t2~ B A2 (X) and

0. This shows that we cannot always find an invariant mea-
sure verifying ,S’E2 (X, T ) . An important reason is that there
is no variational principle for sequence entropy [G]. According to [G] there
is even a strictly ergodic system for which T) :~ ,S’E2 (X, T).

We say (X, T) is M-supe if there is /i E such that

,S’E2 (X, T) = X ~2&#x3E; B A2 (X). Thus (X, T) is M-supe if and only if there
is p e T) such that for any topologically non-trivial measurable par-
tition a made by two elements there is an increasing sequence of natural
numbers A such that &#x3E; 0. We observe that by a topologically
non-trivial partition we mean a partition such that none of the atoms is
dense in X.

It is clear that M-supe implies supe, that is, SE2(X, T) = X ~2~ B
A2 (X), and hence topologically weak mixing according to [H-Y] and Corol-
lary 3.6. Moreover, for an M-supe system, X where p is a mea-
sure such that T) = X(2) B A2 (X) - Saleski showed that (X, M, T)
is measure-theoretical weakly mixing if and only if sup A h:(T, a) = Hu (a)
for each non-trivial finite measurable partition c~ [S] (see also [Hu] . Call
a system (X, p, T) seq-K if for each non-trivial finite measurable parti-
tion a there is an increasing sequence of natural numbers A such that

cx) &#x3E; 0. Remark that (X, p, T) is measure-theoretical weakly mixing
if and only if ÐJL is trivial. Thus, by Corollary 2.4, seq-K implies measure-
theoretical weak mixing.
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On the other hand, by Theorem 2.3 and [S], if (X, p, T) is measure-

theoretical weakly mixing then (X, p, T) is seq-K. So (X, p, T) is measure-
theoretical weakly mixing if and only if it is seq-K and a seq-K system is
M-supe with X(2) B A2(X). We mention that M-supe does
not imply seq-K since there is a u.p.e. system (see [B2] for a definition)
without any ergodic invariant measure with full support [HY].

THEOREM 4.3. - Let (X, T) be a t.d.s. and p C If there

is an increasing sequence of natural numbers A and a non-trivial finie
measurable partition a such that a) &#x3E; 0, then T) =1= 0. Thus

T) 0 if and only if (X, p, T) has discrete spectrum.

Proof. Assume there is an increasing sequence of natural numbers
A and a non-trivial finite measurable partition a such that h-4 (T, a) &#x3E; 0.

By Lemma 2.2, h~ (T, ct) &#x3E; 0. Thus, there is A E a 

D~ . Hence &#x3E; 0. Then we may assume a and

h~ (T, cx) &#x3E; 0. By the remark after Lemma 3.3, A2 (p) (A x &#x3E; 0. It follows

By Kushnirenko [Ku], (X, p, T) has discrete spectrum if and only if
for each increasing sequence of natural numbers ,,4 and each non-trivial

finite measurable partition a, h:(T, a) = 0. Thus the second statement of
the theorem follows from this fact and the first property. 0

In [P], Parry showed that the Pinsker a-algebra of the product of two
measure-theoretical dynamical systems is the product of the coordinate
Pinsker a-algebras. This property also holds for D~. The proof is a

consequence of a previous result of Furstenberg (see Theorem 9.20 [G2]).

LEMMA 4.4. - Let (X, T) and (Y, S) be t.d.s. and p E T),
v E Then Dtx, x Dv.

From this lemma we obtain the following theorem. It is analogous to
Theorem 3 in [Gl].

THEOREM 4.5. - Let (X, T) and (Y, S) be t.d.s. If (X, T) and
(Y, S) are M-supe, so does (X x Y, T x S).

Proof. Since (X, T) and (Y, S) are M-supe, there exist T)
and v E A4 (Y, S) such that = X(2) and = y(2).

By Lemma 4.4, we have DI-t x 11 = D~, x Dv. Therefore, for any Ui x YZ E
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A t.d.s. is M-null if for each p E A4(X, T) and each increasing
sequence of natural numbers A, h:(T) = 0. It is easy to see that (X, T) is
M-null if and only if 0. It turns out that each t.d.s. has a
maximal M-null factor.

THEOREM 4.6. - Each t.d.s. has a maximal M-null factor.

Proof. Let (X, T) be a t.d.s. and R be the smallest closed invariant
equivalence relation containing S’E2 (X, T). Then R induces a factor (Y, S)
of (X, T). Let (X, T) - (Y, S) be such factor map. We now show that
(Y, S) is the maximal M-null factor of (X, T).

First ,5’E2 (Y, ,S’) == ø. In fact, if S’E2 (Y, S) ~ 0, then there is

v E A4 (Y, S) such that
Theorem 3.7, there are j

1. By
with

= v and -X(Xl,X2) = (Y1, Y2). Since (Xl, X2) E we get
Y1 == Jr(x2 ) = y2, which is a contradiction.

Let us prove (Y, S) is maximal. Assume that (Z, W) is an M-null

factor of (X, T) which is induced by a closed invariant equivalence relation
R’ on X. It is clear, by Theorem 3.7, that (X, T) C R’. Thus R c R’
and (Z, W ) is a factor of (Y, S). D

Recall that E(X, T), SE(X, T) and Com(X, T) are the sets of en-
tropy pairs [B2], sequence entropy pairs [H-Y] and complexity pairs [BHM]
respectively. It is easy to see that E(X, T) C (X, T) C SE(X, T) C

Com(X, T) and that they induce the maximal zero entropy factor, the max-
imal M-null factor, the maximal null factor and the maximal equicontinuous
factor.

In [G, Proposition 6.2], Goodman presents an example of a strictly
ergodic t.d.s. (X, T) such that SE(X, T) - 0 and Com(X, T) # ø. It is
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an open question (see [H-Y]) if there is a t.d.s with and

Corner) = X(2) B A2(X), that is, 2-scattering (see [BHM]).

Example 4.7. - There exists a t.d.s. (X, T) such that E(X, T) = 0
and ,S’E2 (X, T) = X(2) B A2(X), that is, it is M-supe.

Proof. The Chacon’s system can be defined as a subshift X of the
fullshift on two symbols {O, First define the sequence of finite words,

for n E N. Then X contains all the two-sided sequences of 0’s and l’s

such that any finite sub-word of them is a sub-word of one An for some
n E N. It is known that the Chacon’s system is strictly ergodic and weakly
mixing with respect to the unique measure and it has zero entropy. Thus

D

Disjointness of two t.d.s. is defined in [F]. Following ideas in [B2] which
essentially needs the properties of sequence entropy pairs for a measure
stated in Theorems 3.4 and 3.7 it is easy to prove the following theorem.

THEOREM 4.8. - Each M-supe system is disjoint from any rninimal
A/1-null system.

5. Complexity pairs for a measure.

In this section we introduce two notions of complexity pair for a
measure and study their dynamical properties. We remark that we only
emphasize the fact that this is an analogue notion of complexity pair in the
measure-theoretical context, not the complexity of the system (see [Fe] for
a global approach).

DEFINITION 5.1. - Let (X, T) be a t.d.s. and p c M (X, T).

(1) We say that (XI, x2 ) E X ~2~ is a complexity pair x2 and if

whenever Ul, U2, are closed mutually disjoint neighborhoods of the points
Xl and x2, one has
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(2) We say that (xl, x2) E X~2~ is a weak 1-t-complexity pair if X2

and for every Borel partition a - of X with x- E int(Ai),

(3) We say that (Xl, X2) E X (2) is a strong a-complexity pair if

Xl i- x2 and if whenever Ul, U2, are closed mutually disjoint neighborhoods
of the points Xl and x2, one has

Denote by Com(X, T) the set of all complexity pairs, by Com) (X, T)
the set of all weak p-complexity pairs and by Com- (X, T) the set of all
strong p-complexity pairs. It is clear that Com~ (X , T ) C Com~ (X, T ) .

THEOREM 5.2. - Let

Proof.

(i) Let Com~ (X, T ) and let be closed mutu-

ally disjoint neighborhoods of points Xl and x2 respectively. Consider

u - ~Ul , U2 ~.
Observe that

and

We conclude Hence

be closed mutually dis-

joint neighborhoods of points ~1 and x2 respectively. Consider the open
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By Theorem 3.5 there exists an increasing sequence of natural num-

In the following we will discuss the relation between Com~ (X, T)
and Com~ (X, T). We will show that there exists a t.d.s (X, T) such that
- -I-- -1 ~ r l ~ B B . i ~ &#x3E; v , ~-.. _ i T &#x3E; T w-.. i t &#x3E; T w-t

THEOREM 5.3. - Let (X, T) be a t. d.s. andu E T). Assume
(X, p, T) is totally ergodic with = X. Then Com~ (X, T) -

Claim. - For each E &#x3E; 0 there exists such that for any
&#x3E; &#x3E; , _

Proof of the claim. - Assume there exists E &#x3E; 0 such that for any

where Z is the shift map. Observe that for t, r E {1, 2}Z

By (5.3.1) and (5.3.2), s is a periodic point of the fullshift (

contradicts the ergodicity
of (X, ~, T* ) . This concludes the proof of claim. D
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Remark 5.4. - Shannon-McMillan-Breiman Theorem states that if

T is an ergodic measure-preserving transformation of the probability space
(X, B, p), a is a finite measurable partition of X and An (x) is the atom of
the partition . 1 T-ia to which x belongs, then

p-a.e. and in L1 (X, B, p). Hence, if cx) &#x3E; 0 one can say that /-L(An(x))
goes to zero with exponential rate The claim we just proved adds
information on when = 0 under the assumption of total

ergodicity.

Example 5.5. - Let K be the unit circle in the complex plane and
a E R B Q. Set X = K, T = Ra : K - K with T(z) = z. 
and let p be the Haar measure on K. Then (X, p, T) is totally ergodic
with X. By Theorem 5.3, Com~ (X, T ) - X(2) B A2(X). Since
(X, T) is equicontinuous, Com(X, T) 0 [BHM]. Moreover, by Theorem
5.2, 

THEOREM 5.6. - Let (X, T) be a t.d.s. and let p be an ergodic
measure of (X, T) with full support. If x, is a fixed point for T, then for

x2 E X, Xl, one has (xl, x2) E Com~ (X, T).

Proof. Take closed neighborhoods Ul , U2 , of xi and x2 respec-

holds,

Claim. - For any E &#x3E; 0 there exists N E N such that

for any n? Nand s E {1,2}n.
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Proof of claim. - If the claim is not true, there exist E &#x3E; 0 and

Define Q = ~t c f 1, 2}~ : /-L(niEN T-2Vt(i)) ? cl. It is easy to see that
Q is a closed subset of {1, 2} Z and it is invariant under the shift map a.

Take r E Q with r a minimal point of the fullshift ({1,2} , a). Since
there exists a generic point

p. Clearly, r # (..., 2, 2, 2, 2, ...) (or Tny E V2 for any n E Z which is

impossible). Observe that r is a minimal point and fi 6 Z : r (i) = 1 ~ is

a syndetic set. Hence {i Ti~ C is a syndetic set.
Since y is a transitive point and xl is a fixed point, N(y, Ul ) is a thick set,
which contradicts the fact that Vi) is a syndetic set. This proves the
claim.

Now, by using the claim, for any c &#x3E; 0, there exist N C N such

In the following, we will construct a t.d.s. (X, /1, T) such that

,S’E2 (X, T) = 0 and Com~ (X, T) # 0.

DEFINITION 5.7. - A t.d.s. (X, T) is doubly mirlimal if for all

..,- 

The following result is Theorem 5 in [W].

LEMMA 5.8. - Any ergodic system (Y, C, v, S) with zero measure-
theoretical entropy has a uniquely ergodic topological model (X, T) that is
doubly minimal.

Example 5.9. - There are a t.d.s. (Z, R) and an ergodic measure

Proof. Let (Y, C, v, S) be an ergodic system with discrete spec-
trum and assume v is non-atomic. By Lemma 5.8, there is a uniquely
ergodic doubly minimal system (X, T) which is a topological model of

(Y, C, v, S). Set a the unique ergodic measure of (X, T ) .

I. Since /-L is non-atomic,
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Theorem 5.6, we conclude 0. The m.t.d.s. (Z, 0, R) is the

system we are looking for. 0
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