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ON THE INTEGER SOLUTIONS OF

EXPONENTIAL EQUATIONS IN FUNCTION FIELDS

by Umberto ZANNIER

1. Introduction and statements.

It is a rather well-known problem in Number Theory to estimate
the number of zeros of linear recurrences of algebraic numbers or, more
generally, of polynomial-exponential equations over number fields. We do
not pause here on references, since the subject has been widely investigated,
but we refer to ~Schm~ for this and for a general overview.

For recurrences and polynomial-exponential equations over function
fields similar results are available. Sometimes they may be reduced to the
number-field case by means of specialization arguments, as e.g. in [Schm,
~9~ . However, for equations which are "truly" defined over function fields
other (more elementary) tools seem more efficient (as in the abc-theorem -
see [BrM]).

For example, in [BMZ, Thm. 2] a method with derivations has been
applied to estimate the number of zeros of recurrences in one variable.

(See also [Schm, §10] for an analogous approach.) The purpose of the
present paper is to carry out a similar analysis for polynomial-exponential
equations in several variables. We stress that the alluded proofs do not work

automatically for several variables; we briefly outline the main points. The
approach in [BMZ] or [Schm, §10] relied in an essential way on viewing the

Keywords: Number theory - Diophantine equations - Function fields.
Math. classification: 11D45 - 11D61 - 11D99.
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solutions in question as (integer) zeros of a certain (Wronskian) polynomial
in one variable; their number was then bounded by the degree of that
polynomial. Naturally, for several variables such a principle is not sufficient.
We have succeeded in adapting the approach at the cost of analyzing first
the whole set of solutions in complex numbers. The corresponding equations
are not even well-defined in that extended context, and so we have found
it convenient to embed first the relevant fields into fields of complex-valued
algebraic functions in one variable, in order to obtain meaningful notions.
(See §2 and Remark 2 below.)

In this way we have obtained bounds which, for a given number of
variables, have polynomial growth in the number of terms; this substan-
tially improves on the known estimates over number fields (see [Schm]). As
for the dependence on the number of variables, the estimates are simply-
exponential, like for number fields (see [ESS]). On the other hand, we have
no significant lower bounds so we do not know to what extent the present
estimates might possibly be improved.

Among others, we have given applications to the number of zeros of
certain recurrences over function fields and to a problem studied in the
recent paper [FPT].

Some notation. - We let 1~ be an algebraically closed field, supposed
to be embedded in C. We let L / k be a field extension of transcendence
degree 1; L is the function field of a certain nonsingular curve over k.

Actually, the results below hold for arbitrary finitely generated extensions
However the present case suffices for many applications. For this

reason we shall give complete proofs for the case in question and just a
hint of the general case in Remark 3 below.

We shall work with vectors A = (a1, ... , air) E (L*)r, using coordi-
natewise multiplication. For notational convenience we shall use the rule
Au = for a vector u = (ul , ... , of integers. (In the course of
§2 this notation will be suitably extended to complex vectors u E 

For given Ai , ... , Ah E 
rather than dealing directly with equations we shall

be concerned with the set of integral vectors m E Z’° such that the

Pi(m)AiB i = 1,..., h, are linearly dependent over k. This will turn out
more convenient and also will lead to sharper conclusions. Let us then

formally state:
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up of the vectors m E ~r such that the Pi (m)Am, i = 1, ... , h, are linearly
dependent over k.

Plainly, when for example all the lie in the question reduces
to the dependence of the Pi (m) over k. More generally, it may happen that
for a proper subset B the elements i E B, are

already linearly dependent over k ; again, if the quotients i, j E B,
lie in the question amounts to the dependence of the polynomial terms.
This suggests to group the relevant integral vectors into classes. We do this

according to the following definition.

DEFINITION 2. - For ~4i,..., Ah, Pl, ... , Ph as above, let B be a
nonempty subset ... , hl. We say that a set S’ c tlr is a class relative
to B if the following conditions are verified: (i) For m E S’ the elements
Pi(m)Ar, i E B, are linearly dependent over k; (ii) for some mo E ,5’’, the
set S’ consists of all the m satisfying (i) and such that for i, j C B l.ve have

(A?’A 3 
Observe that for given i, j the set of vectors m E Z’° such that

E 1~* is a subgroup of 7lr; hence, observe that if (ii) is true

for some mo E ,S’’ then it is true for any mo E S’. As a further motivation
to this definition note that when for instance the P2’s are constant, then
if S’ is a class relative to B, and mo a fixed element of S’, the linear
dependence over k of the PiAm, i E B, for any m E S’ is equivalent to the
linear dependence over k of the i E B. Now the classes consist of

certain cosets of the alluded subgroups.

We remark that for "general" Ai’s in (L*)r these subgroups may well
be trivial as soon as 2 these cases the classes consist of single points

Further, note that certainly ,S’ may be expressed as a union of classes,
but this representation needs not to be unique, nor the relevant classes
need to be disjoint.

With these conventions we state our main result.

satisfy d2. Then the above set S may be expressed as a union of
no more than (d1 + - - - + ~ + 
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In a given class in practice we have to establish the dependence over
~ of polynomials in m, defined over L. Of course this may lead to any
possible diophantine equation, so there is no hope to describe this point in
a satisfactory way; however the exponentials disappear from the context.
Also, as remarked above, when for instance the Pi’s are constant, a class
is determined by a single point in it and by certain explicit multiplicative
relations among the coordinates of the Ai’s.

We shall now present some corollaries. Our choice is however rather

special and it will be clear that Theorem 1 allows several other possibilities,
not taken into account here.

Naturally, when each class consist of a single point, which "often"
holds as remarked above, Theorem 1 gives an estimate for #S. For instance
we have the following:

COROLLARY 1. - Let Pl , ... , Ph, Ai,..., Ah be as in Theorem 1.

Assume that for all i the coordinates are multiplicatively
independent modulo k*. Then:

(a) There are at most (d1 + ... + dh + (h 2))r solutions ill E Zr to the
-

(b) If uTe also assume that the coordinates of each Ai are multiplica-
tively independent modulo k*, then there are at most (c
integer points such that ] is in k and Pi(m) - -’ 0.

(c) Let Pi have at most ti 71 terms. Then there are at most (ti+- 9’ +th) 
Ir

solutions m E ~’~ to

v .... i

such that not all the Pi (m)
vanish.

(We recall that elements ~1, ... , A, E L* are said to be multiplica-
tively independent modulo k* if no relation A’- E 1~* holds with

integers ai not all zero.)

Part (b) answers a question of W.M. Schmidt. (For the case of a single
variable this was remarked in [BMZ], §5.) We also note that the conclusions
in [Schm, 310], or [BMZ, Thm. 2, Thm. 3] are easy corollaries of Theorem 1,
with r = 1 (see Lemma 2 below for an instance) .

Other applications are to recurrence sequences. We illustrate this with
an example which will be useful for Corollary 3. Let G(n), H(n) be simple
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linear recurrences over L, i. e. power sums

D n

where ai, bi, cxi, {3i E L*, for a field L as above. Then we have:

COROLLARY 2. - Assume that no ai or (3j and no ratio a./aj or
,C32 /,~3~ , i ~ j , lies in k *. Then:

(a) The equation G(u) = H(v) in integers u, v has at most ( 2 )
solutions, unless there are integers uo, vo, r, s, with 0, such that the

identity G(uo + rm) = H(vo + sm) holds for m E Z.

(b) The equation G(u) = cH(v), c = c(u, v) E k* has at most (p2 q )3
solutions (u, v) E Z2, unless there are integers uo, vo, r, s, with 0, and
elements ç, r~ E k* such that the identity G(uo + rm) = sm)
holds for m E Z.

Plainly, the identity G(uo + rm) = H(vo + sm) for m G Z in part (a)
(respectively G (uo + rm) - for m E Z with g, q E I~* in part
(b)) implies that p = q and that the pairs coincide in some order

with the pairs (respectively ç (3f) in (b) ) . The proof also
easily shows that in any case there are at most solutions which do

not "come" from such an identity; and it is also rather easily seen that all
such identities come from a "minimal" one by substitution m H a+bm. We
do not give the easy proofs of these sharpenings since they fall somewhat
outside the scope of the paper.

As announced we shall apply the result to the main problem treated in

[FPT] (and in previous papers quoted therein); we use in part the notation
therein. We let Ao (X ) , ... , Ad(X) E k[X] and we consider a recurrence of
polynomials Gn(X) E k[X] satisfying

We assume that d is minimal and as in [FPT] we assume that the

characteristic polynomial

has no multiple roots; we let aI, ... , cxd be its distinct roots in a fixed finite

algebraic extension L of k(X). Then Gn admits a representation
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where G~ are also in L*. Further, let P(X) E We shall deal with the

equation in u, v G N,

where c = c(u, v) E 1~* may depend on u, v. In [FPT] the authors use deep
results of Evertse-Gyory [EG] and of Evertse-Schlickewei-Schmidt [ESS] to
give, under various conditions (see [FPT], Thms. 2.1-2.7) an upper bound
for the number of solutions (u, v) E I~2 of (*).

We do not repeat here the conditions, nor the bounds, which are
somewhat complicated to state. As remarked in [FPT] some assumption is
necessary for finiteness, in view of the equation T2n (X ) = Tn (2X 2 -1), any
n E N, valid for the Chebyshev polynomials Tn (X ) = cos(narccosX); in
fact, this equation holds more generally as Tn o Tp = Tnp (see [S]) and there
is also a simpler example, obtained by putting = X n, P(X) = Xp.
Plainly these examples lead to more general similar ones by summation; e.g.
we have Gnp(X) when Gn is a linear combination L cJTJn
of Chebyshev polynomials and similarly for the other case. Also, we may
change linearly the variable X. Roughly speaking, we shall call these cases
and analogous ones the Chebyshev case and the Cyclic case respectively.

Here, with the present essentially self-contained methods, we shall
improve on the paper [FPT] in two respects:

(i) We shall substantially sharpen the doubly exponential bounds
of [FPT, Thms. 2.1, 2.3], obtaining a polynomial bound; also, we shall

completely eliminate the dependence on deg P and on the degree of the
discriminant of Q (with respect to T).

(ii) We shall show that the Cyclic and Chebyshev cases are the only
ones when infinitely many solutions may arise, describing completely the
matter.

More precisely we have, with the above notation:

COROLLARY 3. - Suppose that deg P &#x3E; 2 and that no c~2 and no
ratio =h 3, lies in k. Then if there are only finitely many solutions

(u, v) for equation (*), their number is at most (22 ) 3  8d6.

If there are infinitely many solutions then for suitable r, s C N we
have an identity

for suitable ~, q E k*, and two cases may occur.
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Case A: We are in the "Cyclic cases namely P is of the form 
for suitable A, A’ E Also, the ai 71 are in I~(X ), of the
form o A, for integers 6. and ci E k.

Case B: We are in the "Chebyshev case", namely P(X) = A’ o Tp o A,
A, A’ as above. The c~i are quadratic over k(X) and of the form 

We omit even more explicit formulas that can be written down for

Gn(X), in order not to complicate further the already long statement;
we believe that the present one is sufficiently illustrative. Also, as in the
remarks after Corollary 2 above, the result may be made even sharper, by
classifying the infinite families of solutions (as coming from substitutions
in an identity of the stated type) and by bounding the number of the
remaining ones. Moreover, it is possible to discuss the case degp - 1:

now there may be infinitely many solutions only if P has finite order by
composition and the polynomial Q is "essentially" invariant by X - P(X).
We do not pursue however in the task of giving the complete proofs of these
further conclusions, since our main purpose for introducing these corollaries
is to exemplify some applications of Theorem 1.

Further corollaries of Theorem 1 may be obtained about the solutions

of xl -I- ~ ~ ~ -f- xh = 1 where the x2 lie in a subgroup of L* which is finitely
generated modulo k*. However, of course we cannot treat with the present
methods the constant solutions, which give rise to an extraordinarily deeper
problem, solved to a large extent by Evertse, Schlickewei and Schmidt

[ESS], who give quite remarkable estimates; also, Evertse and Gy6ry [EG]
have studied a function-field analogue. Here we just give an instance, by
considering an equation in two variables, of type.

COROLLARY 4. - Let h, p E L* and let r be a subgroup of L*
containing k* such that Flk* has rank r. Then the equation Ax = 1,
x, y E r, has at most 9r solutions such that k*.

This slightly improves on a result by Evertse [E], who obtained the
estimate 2.728 when r is the group C~s of S-units in L*, for a set ,S’ of places
with #5 == s (note that C~s /1~* has rank - s - 1). The same method used
here for the proof yields analogous results on the structure of the solutions
in several variables, with estimates independent of the genus of (see
also the Acknowledgment below).

We finally remark that the present methods, though sometimes
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efficient in estimating the number of solutions, do not give informations
about heights of solutions; for that purpose other tools are available, as
for instance the multidimensional extension of Mason’s abc-theorem due to

Brownawell and Masser [BrM] (see also [Z]).

Acknowledgment. - I wish to thank Prof. J.-H. Evertse for his kind

interest and several most important comments. He has also pointed out a

possible application of the methods to a certain generalization of Corollary
4 to linear equations in several unknowns from a group F as above; such a
result is now the topic of a joint preprint with Evertse [EZ].

It is also a pleasure to thank an anonymous referee for an extremely
detailed and helpful review, which led in particular to a substantial im-

provement in the presentation of the proof of Corollary 2.

2. A complex-numbers analogue.

This section will analyze an analogue problem for complex numbers
in place of integers; it will be a crucial tool for the proof of the main results.
As a preliminary, we introduce certain conventions about exponentials, to
be used only in the proofs of Lemma 1 and Proposition 1.

We let L be a finite extension of C(z), where z is transcendental over
C; we denote by 0 the derivation d/dz and extend it to L; for notational
convenience we put aa : - 0(a) for a E L.

Warning. - This field L need not be the same as that from Theo-
rem 1; however, we shall embed the field from Theorem 1 into one of the

shape introduced here; this will be done in the deduction of Theorem 1

from Proposition 1 below.

In the proof of the next Lemma 1 and Proposition 1 we shall need to
define expressions aU for c~ E L* and u c C; actually, at each time we shall
need such definitions only for the a’s in a fixed finitely generated subgroup
r of L*. We proceed in two steps, as follows. We first express F as a direct

product of (possibly finite) cyclic groups generated by ..., -yl, say. It will

then suffice to define ~y2 and to extend by linearity the definition to all r:

namely, to put, for -, ; of course this is not

well defined on a possible finite cyclic factor (7j) ~-- but we may

agree to choose the integer exponent a3 in [0, m - 1] in that case.
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Now, to define recall that, as is well known (see [Ch, Ch. VII]), we
may view L as a field of meromorphic functions of z on a suitable simply
connected open set Q C C; e.g. we may take SZ as a disk not containing any
branch point for L~C~(z). By shrinking SZ we may assume that the elements

i = 1,..., l, are holomorphic functions of the variable z, without zeros
in Q. Then we may define the functions i = l, ... , l, as holomorphic
functions on Q and put Note that with
this definition we have (V) /(V) = u(-yc/7) C L for any -Y E r; also, if

u = m E Z the definition is consistent with the usual meaning.

Moreover, this definition will not affect the usual properties of expo-
nentials if one restricts to the free part of r; in any case the properties
are satisfied modulo constants. Namely, we have qq" and, up
to nonzero constant factors, (’yu ) m - (.~,m ) u = = for

~, -y’ c F; also, 7u C C* for 7 c C* n F. These properties will amply suffice
for our purposes.

Recall also the convention .

In analogy with Definition 1 above, given Ai , ... , Ah E hr and

Pi, ... , Ph C L[X], we let S be the set of points u E CCr such that the

are linearly dependent over C. Also, we define a class as a set
S’ C CCr similarly to Definition 2 above, namely

DEFINITION 3. - For Ai , ... , Ah, Pl, ... , Ph as above, let B be a
nonempty subset of f 1, ... , hl. We say that a set S’ C cr is a class relative
to B if the folloiving conditions are verified: (i) For u E S’ the elements

i C B, are linearly dependent over k ; (ii) there exists uo E ~r
such that S’ consists of all the u satisfying (i) and such that for i, j E B
u~e have (, l

We remark that now the conditions E C* define a vector

subspace of CCr . (It will be shown in the course of the proof of Lemma 1
that this subspace is defined over Q.) So for instance in this context, when
the Pi’s are constant, the classes are certain cosets of vector subspaces.

With these preliminaries we have the following crucial:

LEMMA 1. -

Then S is a union of finitely many classes.

~ 1 ~ In the preprint [EZ] the definition is given differently, in terms of formal power series,
applying to fields other than C.
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Proof. We shall argue by double induction, first on r, then on h.
We remark that the inductive assumption will hold for all finite extensions
L of in fact, at some steps in the proof the field L will have to be

enlarged.

For r = 0 the statement is true (and in fact empty). Let then r &#x3E; 0

be arbitrary and suppose the statement true up to r - 1 (and all h). (The
arguments now will not substantially differ from the case r = 1.)

Let us now argue by induction on h. For h = 1 the statement is again
true, since there is only one possible class. Let us then suppose h &#x3E; 1 and

the statement true up to h - 1.

Let u E S and let B be a minimal nonempty subset hl such
that the Pi (u)Au are, for i C B, linearly dependent over C. By induction
on h we may suppose that B = ~1, ... , hl. Let So be the subset of such
u’s.

Dividing each term by Ai: has the effect to replace Ai
with Therefore we may suppose Ah = (l, ... ,1). If = 0

then is linearly dependent, against the present assumption of

minimality. Then 0 for u E So and in particular we may divide

by Ph(u) obtaining a dependence relation among the where

Observe that Rh (u)Ah = 1; hence, differentiating the relation and

setting
r »

we obtain that 8(Ri(u)AY) = whence the R2(u)AY, i = 1,...,
h - 1, are linearly dependent over C, for u E So .

Note that no proper subset of the RZ (u)Au, i = 1,..., h - 1, may
be dependent, for otherwise a proper subset of the together with
1 = would be dependent, against the assumption that u lies in
the subset so of S.

Note also that, though the Ri and Ri are rational functions, their
denominators divide and so do not vanish at u. Therefore we may

multiply by Ph and reduce to the polynomial case.

By the inductive assumption (on h) we can then include So in a finite
number of classes with respect to Hence
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in proving the lemma we may restrict to a single class (with respect to the
new data) .

Let Sl be the intersection of So with such a class. Then S, is a subset
of So such that for some uo E Qr we have E C* for all u E Si,
i, j E h - 11.

Plainly these last conditions hold precisely if u - uo belongs to
a certain vector subspace V C We pause to note that this vector

space is defined over Q. In fact, for elements E r, the fact
that p := C* amounts to the vanishing of the differential

L ui(dai/ai) (which equals (E This is a priori
a differential over L with only simple poles. Let V’ be the vector space of
the u E CT such that all residues of this differential vanish. Then V’ D V
and V’ is defined over Q because the residues of the are integers.
On the other hand if u E V’ n Z’ then plainly is constant since it

lies in L and has no zeros or poles. Then V’ n Z’° is contained in V. Since
V’ has a basis in Z’ this proves that V’ = V and the claim. (This also
follows from a general theorem of Ax [A, Thm. 3].)

Let us then write u = uo + v, where v E V. Setting A := ~4i, Bi =

AiA-11 for i = 1, ... , h - 1 we rewrite as 

Then, since Bv E C* we have that 1 and the + v)AuOAv,
z = 1, ... , h - 1, are linearly dependent over C. Also, no proper subset
is linearly dependent. It will suffice to show that such set Sl of vectors u
is contained in a union of finitely many classes.

A first case now occurs when AV E C* for all v E V. Then this

set Sl is contained in a single class with respect to the original data
Pl ... , Ah, Ph and we are done. So, we suppose in the sequel that

(C * for at least one v E V.

We may parametrize linearly V, with integer coefficients, without
affecting the problem; in fact recall that V is defined over Q, so we may
choose a parametrization so that it has integer coefficients, transforming A
into another element in rr. In other words we may assume that V = Cas

for a certain -s ~ r and that A = (c~l , ... , as), with c~i E r; note that we
may assume that not all the ai lie in C* because otherwise Av E C* for all

v E V.

Further, put Ti(V) == Pi (uo + v) AuO. Observe that since uo E ~r the

(2) This holds in fact only up to nonzero constants, but this does not affect our
conclusions.
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Ti will have coefficients in a certain finite radical extension of L. We may
then enlarge L and suppose that the Ti are actually defined over L. In the
new notation, we have, for the v in question, the linear dependence over C
of Tl (v)A", ... , Th-l(V)AV, Ph (uo + v).

Recall that such set of v, which we denote S2 consists of those v E C~
such that the above elements, but no proper subset of them, are linearly
dependent over C.

Observe also that if it happens that s  r we can use the inductive

assumption with respect to r. This need not be the case however, so we
shall lower the dimension by another procedure.

Since not all the cx2 lie in C there exists a pole 7r for at least one

of them. (We view here 7r as a point of the complex nonsingular curve
corresponding to the function field L.) Let ai = ord7r az so ai , ... , as are
integers not all zero. Also, let E L* be a uniformizer at 7r. We may write

expansions

where e is some integer and Ui3 are polynomials in Y = (Yl , ... , YS ) with
coefficients in C.

For a purpose which will be soon clear, we now introduce certain

algebraic subvarieties of Cs. Precisely, for any integer I § e we let Wi be
the algebraic variety consisting of the v C CCS such that the rank of the
matrix (Ui,.(V)), i = 1, ... , h - 1, j = e,..., l, is less than h - 1. For  e

we agree that W, = C~. We have that these varieties form a descending
chain, so the chain stabilizes and we shall have W for all l larger
than a certain lo, where W is a certain algebraic subvariety of CCs .

Let v E W. Then there exist ci , ... , E C, not all zero, such that
I for e. But then the above expansions show that
so that the Ti (v), and also the are linearly

dependent over C. This shows that W n s2 is empty. In particular, for

v E S2 the order at 7f of a nontrivial linear combination must

be at most 10 and has therefore finitely many possibilities, independently
of v E S2 and of the complex coefficients c2, not all zero.

A similar and simpler argument shows that the order at ~r of

Ph (uo + v) has finitely many possibilities independently of v E S2 .

Let now v C S2 and write a nontrivial vanishing linear combination
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in the form

Taking the logarithmic derivative of both sides, multiplying by dz and
taking residues at ~r of the resulting differentials of L / k we obtain a relation

We have just shown that the right side has a finite number of possibilities,
independently of the ci’s or of v C S2. Therefore we may partition S2 in a
finite number of subsets according to the value of the right side. Each of
these subsets will be defined in S2 by a linear equation

s

where a is a fixed integer (depending on the subset); recall that the ai are
integers not all zero, so this equation defines a translate of a proper vector
subspace of C , defined over Q. We may now write parametrizations

with integer coefficients bij and rationals bi. Substituting for v in the terms
Ph (uo + v) and we see that we may view S2 as embedded in a

space cs-l of strictly lower dimension than C’°. (Note that if the bi do
not all lie in Z but just in Q, we may have again to enlarge the field L
and go to a finite radical extension.) By the inductive assumption on the
dimension we may infer that S2 is contained in a union of finitely many
classes, relative to the "new context" ; however it is immediate to realize

that the each "new" class corresponds to an "old" one: in fact, we may
write for b = (b1, ... , bs ) E (Q’, for a suitable B E and

for t = E (~:s-1; then, for t in a "new" class we have, for a
suitable to E (Qs-1 depending only on the class, Bt-t° E C*. Defining now
vo with the above equations, with to in place of t, we have vo E Q~ and

Bt-to C C*, concluding the proof.

Remark 1. - This lemma is purely qualitative; however, in the

present approach, it represents a necessary tool for a quantitative version
of itself, which we state as the next result. The arguments for Lemma 1
can be quantified, but this leads to estimates inferior to the sought ones.
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PROPOSITION 1. -

have degrees at most dl, ... , dh respectively. Then S may
, , r

be expressed as a union of no more than dl -~ ~ ~ ~ + dh + (2) ~ 
’ 

classes.

Proof. We use at once Lemma 1 and express the set S as a union

of finitely many classes Sl , ... , Sl . We start by proving that each Sk is a

closed algebraic subvariety of 

In fact such a class Sk, say relative to a subset B = Bk C {I, ... , /z},
is defined by two conditions: the first condition is that for u the

i C B, are linearly dependent over C; the second condition is

that for u we have C* for all i, j E B. Now, by the
second condition the first one is equivalent to the fact that the Pi (u)Au° ,
z E B, are linearly dependent. By the Wronskian criterion this amounts to
the vanishing of the Wronskian determinant of the elements in question.
Plainly this determinant is the value at X = u of a certain polynomial in

L[X], and this gives a first algebraic condition on u. ~3~

As to the second condition, we have already remarked that it defines
the translation by uo of a vector subspace of CCr . (This vector space is

actually defined over Q, as we have shown in the course of the proof
of Lemma 1; this is however immaterial now.) In conclusion, S~ is the

intersection of the above pair of algebraic subsets, proving the claim.

Next, we show that the whole S is a closed algebraic subset of CCr
defined by equations over C, each of degree ~ dl + ... + dh + Q).

For a natural number t define inductively polynomials Pi~ as follows.
Set Pzo(X) = PZ (X) and, for 1 § 0 put

The definition is given so that for u E C’° the formula 

holds.

Consider the matrix for 1 = 1,..., h, .~ = 0,..., h-1, and its
determinant A E L[X]. Then it is immediately checked that A(u) equals,
up to I the Wronskian determinant of the 

(3 ) Note that this condition is over L and corresponds to several conditions defined
over C.
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We write, as we may, z
are linearly independent over C and where
(possibly q = 0).

Plainly, deg A d, + ... + dh + (h 2 ), so the same estimate holds for
the degrees of the A3.

Observe now that, by the Wronskian criterion again, for a u C we

have u E S if and only if A(u) = 0; in turn this amounts to the equations
A3 (u) = 0 for j = 1,..., q. This proves our contention about the variety S.

Further, each irreducible component of S is contained in some class

5J, because the 5J are (finitely many!) algebraic varieties (not necessarily
irreducible) in CCr whose union contain S. For each component of S, let us
pick one class containing it; at the end of the process let us omit the classes,
if any, which we have not met so far; the union of the chosen classes will
contain the union of the irreducible components of S, hence it will continue
to contain the whole S. Also, the number of such classes will not exceed
the number of components of S.

To conclude the argument, it will then suffice to estimate suitably the
number of components of S. We shall prove first the following claim from
elementary algebraic geometry:

There exists an algebraic variety W in CCr defined by at most r
equations of degree  dl + ’’’ + dh + (h) such that each component of
S is a component of W.

The argument below is certainly well known but missing a reference
we describe it.

We prove by induction on p = 0, l, ... , r that there exists a variety
Wp containing S and defined by at most p equations of degree  dl -~ ~ ~ ~ +
dh + (2) such that each component of S of dimension s is contained in a
component of Wp of dimension  max(s, r - p).

For p = 0 just take Wp = Assume now the existence of Wp
for a positive p  r; we shall construct a suitable concluding
the induction. Let V be a component of S. By induction, V will be
contained in a component V’ of Wp of dimension  max(dim V, r - p).
If Y’ ~ Y (hence dim V’ &#x3E; dim V and so dim r - p) there exists some
polynomial as constructed above, such that A. vanishes on V but not
on the whole V’. Let AV denote such a A3 * Observe that AV has degree
C dl ~- ~ ~ ~ ~ dh ~ (~). Choose such a polynomial for each V and form a linear
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combination , with coefficients cv E C. Plainly, since there
are only finitely many components V, for a "general" choice of the cv, the
polynomial A will not vanish identically, on any V’ such that V’ # V. For
such V’, the polynomial A will define in V’ a proper subvariety, hence of
dimension _ dim V~ 2013 1 ~ r - p -1, still containing V. Defining then 
as the variety determined by A in Wp concludes the induction step.

Putting now W = Wr gives immediately the above claim.

Finally, by the generalized Bezout Theorem (see e.g. [D, Ch. III, 2.1])
we have that the sum of the degrees of all the components of such a variety
W does not exceed (dl -~ ~ ~ ~ -~ dh ~- (2) )r; Since each component of S is a
component of W, the same bound follows for the number of components of
S and, as remarked above, for the number of relevant classes; this completes
the proof.

Remark 2.

(i) In the present paper we are interested in the integer points u,
rather than the complex points appearing in the statements proved so
far. By the way, the complex points complicate the whole thing, since the
meaning of expressions like cxu for complex u is not always well defined, and
in fact we had to introduce some preliminaries for that reason. However,
we needed to use the whole complex points in question, in order to better
investigate the structure of the variety S; of course, if we had Lemma 1

just for the integer points, no quantitative conclusion could be reached since
the integer points in the classes of S could be a priori not Zariski dense
on any component of the variety determined by the Wronskian. (The only
exception occurs in the one-variable case.)

(ii) Note also that in the case when the are constant, the classes
are cosets of vector spaces, so Lemma 1 implies that all the components of
the variety S are linear (and over Q).

3. Proofs of main results.

We start by proving Theorem 1. For this we want to suitably embed
the relevant field and elements in a finite extension of C(z), so to apply
Proposition 1. (See also [Ch, Ch. V] for a detailed theory of extension of
the field of constants.)
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The field k is already supposed to be embedded in C. Since L has
transcendence degree 1 over k, we may view L as a finite extension of

k(t), where t is transcendental over k. Let L’ be the quotient field of the
ring L 0k C; it is easily verified that in fact this ring is a domain, since
1~ is algebraically closed. Then k, L are embedded in L’; let 0 denote this
embedding. Since t is transcendental over k, z := 0(t) is transcendental

over C and L’ is a finite extension of C(z). For Ai, Pi as in the theorem,
define now Ai := Pi := ~(PZ). We now apply Proposition 1 to L’
and the Ai, P’. We let S be as in Proposition 1 and express S as the union
of classes 51, ... , SN, where

, /

Let now S be the set of Theorem 1 and let m E S, so the Pi(m)A’
are linearly dependent over k. Then the are linearly dependent
over C. In particular, m lies in S and hence in one of the classes, say it
lies in Sl. If Sl is relative to a set BL C ~ 1, ... , h~ this means that the

i E Bj, are linearly dependent over C and that, if mo E Z’° is

any element of Si n Z’° we have for all i, j E Bi.

Now, if xl, ... , xh e L are such that are linearly
dependent over C, then .ri,..., xh must in fact be linearly dependent over
k. This follows immediately by the fact that a basis for the tensor product
of vector spaces over k consists of the products of basis elements for the
vector spaces.

In particular, if x E L is such that C C, then x E k ; namely,
0-’C = k.

Therefore we deduce that the Pi(m)Ar, i E Bi, are linearly depen-
dent over k and that (j

This means that m, mo lie in the same class relative to k, L. In other

words, the set ,5’ is partioned into classes in the same way the set S is

partitioned into the classes Sl. This completes the proof of Theorem 1.

Remark 3. - If one develops the arguments of 32 for arbitrary
function fields L, namely for finite extensions of C~ (zl , ... , zq ) , Theorem 1
follows for all finitely generated extensions This program needs few

changes with respect to the present treatment. One has however to use
the Wronskian criterion for several variables; this can be found e.g. in [C,
p. 112] for the case of rational functions, but the extension to algebraic
functions needs no substantial change.

Proof of Corollary 1. - We start with part (a) . Let ,S’1 C Z’ be the
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set of solutions as in the statement. Then ,S’1 is contained in the set ,S’

consisting of the m E Z’° such that the Pi(m)Ar are linearly dependent
over k. By Theorem 1 we obtain that ,S’, and hence 51, may be included

/ r

in the union of at most dl + - -’ + dh + (2) 
r 

classes. Suppose first

that m E belongs to a class corresponding to the subset B = ~i~;
then 0, a contradiction. If ~B &#x3E; 2 and the class contains two
distinct elements mo, ml of S, then we have, for i, j distinct elements of
B, C k*. However we are assuming that the coordinates
of AiA 3 are multiplicatively independent modulo 1~* for i # ~; therefore
we have a contradiction. This shows that the class contains at most one

element. We deduce that S’1 has no more elements than there are classes
and the sought estimate follows.

Part (b) is obtained in the same way, but by applying Theorem 1

to the Pi(m)AiB i = 1,..., h, together with another pair 1,

As to part (c), write - , where, for each i, the
7f il E L*, l = 1, ... , U2 are linearly independent over k and the Q 2J (X) lie in
k[X]. Since Pi terms, we may ti . Now, if m is a solution
to the equation and not all the Pi (m) vanish, then not all the 

vanish. Then the elements 7ijAm (i = l, ... , h, l == l, ... , u2) are linearly
dependent over k. We then apply Theorem 1, with £ u, in place of h, with
the same Ai’s, except that now A2 is counted u, times, and with the in

place of the P2, in the appropriate order. Let Q be a class, relative to the set
B of indices (taken now among the pairs (i, 1), t = 1,..., h, L = 1,..., u2).
Since the have multiplicatively independent mod k* coordinates for
i ~ j, we see that the class cannot contain two distinct elements, unless all
the indices (i, l) in the set B all have the same "i". But then the elements
7f il, l == 1,..., ui, cannot be dependent over k, a contradiction. This proves
that each class has at most one element, and the required estimate again
follows.

Proof of Corollary 2. - Let us assume that there are no integers
uo, vo, r, s with rs ~ 0 such that G(uo + mr) = H(vo + ms) for all m G Z
(in the proof of part (a)) and no integers uo, vo, r, s with 0 and g, Tj E k*
such that G(uo + mr) = + ms) for all m (in the proof of
part (b)). On these assumptions we shall prove the stated bounds for the
number of relevant solutions.

We define vectors AZ E ( L * ) 2 , for i = 1,...,p+q by setting
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AZ , . = 1) for 1 ~ I ~ p and Ai = (1,,3i-p) for p + 1 ~ i ~ p + q.

Similarly, we define constants Pi E L* by Pi - ai for 1 ~ i x p and

A solution m = (u, v) E Z’ of G(u) - H(v) (or of G(u) = cH(v))
gives an element of the set S’ made up of the integral vectors m E Z’ such
that the PiAiB i = 1, ... , p + q, are linearly dependent over k. The set S
is, by Theorem 1, contained in the union of no more than ~P 2 q) 2 classes as
in Definition 2. This gives a corresponding partition of the set of solutions
(in both cases (a) and (b) of Corollary 2).

Let SZ be a class, corresponding to the subset B = BQ C ~ 1, ... , 
and let us estimate the number MQ of solutions belonging to that class.

The set B cannot contain a single element because no term vanishes.
Suppose first that B contains two distinct integers Z,3* in ~1, p~ and let
mo = (uo, vo), m = (u, v) E S2. Then = E k*.

Since k, we see that u = uo. Therefore for the (u, v) E SZ we have
G(uo) = H(v) (resp. G(uo) = cH(v)); if G(uo) = 0 we have that H(v) E k
while if G(uo) ~ 0 we have that lies in k. In both cases, by
Corollary 1 (b) there are at most q+l) _ (p 2 q) such integers v. The same
argument works if B contains two distinct integers in [p + 1, p + q], proving
that in these cases MQ x 

Suppose now that B consists precisely of two elements io, jo + p with
1  io  p, 1  ~o  q.

Setting m = (u, v), mo = (uo, vo) we have E k*. This

holds precisely if (u, v) - (uo, vo) runs over a certain subgroup of ~2. This
subgroup cannot be trivial if we have at least two distinct solutions in Q,
as we assume, and it cannot have rank 2 because otherwise would

lie in k*. Therefore the subgroup has rank 1 and is generated by a vector

(r, s) C Z2, 
Then the class Q consists of the vectors (u, v) _ (uo + mr, vo + ms),

m C Z. Our solutions in the class SZ then correspond to integers m such
that G(uo + mr) = H(vo + ms) (resp. G(uo + mr) = cH(vo + ms)). This
again reduces our problem to the one-variable case.

We could now appeal to the results in ~Schm, ~ 10~ ; however, for com-
pleteness we reprove what we need as a simple consequence of Theorem 1,
stating it as a lemma.

LEMMA 2. - Let I
: be such that I
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For i = 1,..., ~ let C2j E L*, j = 1, ... , 3i - Suppose that for each i,

cil, ... , are linearly independent over k Then there are at most (~~’)
integers m such that the are linearly dependent over k.

The proof is very similar to that for Cor. 1 (c); by Theorem 1 (with
r = 1, h = with the Pi’s equal to the and the Ai’s equal to
the counted j2 times) such integers m can be grouped into at most (h)
classes. If a class which contains two distinct elements mo, ml corresponds
to the set B we have in particular that i, j E B.
Then Ai and Aj cannot be distinct, because two distinct ones among the

cannot have their ratio in k*. Then B must be such that Ai = Aj for
Z, 3 E B and therefore for some R we would have Ai for all i E B.

But then the elements ef, 1, ... , would be linearly dependent over k, a
contradiction.

Therefore each class can contain at most one relevant integer, whence
the result.

Let us now go back to the proof of Corollary 2 and consider the
solutions (u, v) in the class Q. As observed above, we may express such
solutions as (uo + mr, vo + ms) with uo, vo, r, s fixed, and m 6 Z. Thus we
have to consider the set of integers m for which there is c E 1~* such that

where in part (a) of Corollary 2 we assume c = 1. Writing as above
can be rewritten as

where a’ = We partition the set of a’ (p = 1, ... , p)
and $§ (v - 1,..., q) into groups such that two elements from this set
belong to the same group if and only if their quotient is in k*. By our
assumption on the a, , 13v , a group consists either of one element, or of one

a’ and one /?. This implies that (after reindexing) (1) can be rewritten as
n 

v 

. _

r- 
- 

r- 

where 0 x ( x min(p, q), the 6,, are in k* and where no two distinct elements

If p &#x3E; .~ or q &#x3E; .~ then by Lemma 2 there are at most (p 2 q) integers m
such that ( 1 ) with some c E k* holds. Assume henceforth that f = p = q.
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If at least one pair a’,, b~ is linearly independent over k then again by
Lemma 2 there are at most (p2 q) integers m for which there is c E k* such
that (1) holds. Now, suppose that all pairs a~, b~ (~c = 1, ... , .~) are linearly
dependent over k. By Lemma 2 (but now with I) there are at most
(’) integers m for which there is c E k* such that (1) holds, and at least
one of the coefficients a~ - is non-zero. We show below that there is

at most one m such that these coefficients are all 0. Thus there are at most

~ + (2)  (p 2 q) possibilities for m. Then it follows that each class SZ has
at most (p 2 q) solutions, and so in view of the upper bound obtained above
for the number of classes, our original equation G(u) = H(v) (in case (a))
or G(u) = cH(v) with c = c(u, v) E k* (in case (b)) in u, v e Z has at most

(p+q) 3 solutions.2 )
Now suppose that there are at least two distinct m’s for which there

exists c E 1~* such that all coefficients a~ - c6yb) (p = l, ... , R) are 0.
We have to distinguish between the cases (a) and (b) of Corollary 2. First
consider the most difficult case (b). Then there are integers m1  m2 such

that there are cl, c2 E 1~* with i

follows that ~~ 2 -"21 = cl /c2 for p = 1, ... , .~. Taking q = cl , ~ = c2 /cl ,
it follows that for every t ~ Z we have l

1,..., But then tracing back it follows that -~-t(m2 - ml ) )r) _
+ (ml +- t(m2 - ml))8) for all t E Z, which was excluded by the

assumption made in the beginning of our proof of Corollary 2.

Now consider case (a); thus we consider those m such that (1) holds
with c = 1. We can repeat the argument from above, and arrive at the
same conclusion, but with ~ = 1. Thus, G(uo + ml))r) ==
H(vo + (ml -f- t(m2 - ml))8) for all t C Z, which was again excluded by the
assumption at the beginning of our proof.

Proof of Corollary 3. - The polynomials Gn (P(X ) ) will of course
satisfy a recurrence obtained by substituting P(X) in place of X in the
recurrence for Accordingly, we shall have formulas

For a nonconstant polynomial R(X) E k[X] we let be the splitting
field of Q(R(X ), T) over k(R(X)); these fields are all isomorphic over k.
Then the ai, ai E L x , while the (3i lie in L p x&#x3E; . (The notation 
for the ,Q~’s is is not well-defined a priori ; this can be done only locally.
This is why we shall work with complete sets of roots rather than single
elements. )
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Now, consider the equation Gu(X) = u, v E Z, for

c = c(u, v) E k*. In view of the present assumptions we can apply
Corollary 2(b) to G(u) .- Gu(X), H(v) .- Gv(P(X)). Now we have

p = q = d and we obtain that there are at most (22d) 3 solutions (u, v)
unless for some E k* and integers uo, vo, r, s with rs # 0, we have

, , , , . - ... , .

identically in m E Z. Plainly if equation (3) holds we have infinitely many
solutions; in particular, this proves the first part of Corollary 3. In the

sequel we shall assume equation (3).
We shall use the notation a - 0 if the ratio a/,~ E k*. We extend

this to finite sets on putting ..., {(3l,... , if there exists a

permutation o- of the indices so that (3a(i) for i = l, ... , d.

Further, we shall use the notation (for a rational function R)
to indicate its I-th iterate under composition R o ... o R.

Let a7,£ denote the roots of so = k(P£(X),
a1,l, ... , ad,£). Take an integer l &#x3E; 1 and substitute in (3) 
we have in particular (as remarked after Corollary 2)

whence by induction we get

Now, for a fixed i, let a;:£. The degree : I~ (~~ ~ ) ~ is

divisible by : I~ ( cx~ ~ ) ~ and hence by Therefore se divides

. The factor on the right is bounded by
while the factor on the left equals [Lx : =

[Lx : We deduce that s’ divides r times a non-zero factor

independent of .~. Letting ( grow, we deduce that s divides r; let us put
r = qs ; then (4) for f = 1 entails

Im particular Lp(x) (denoted L p from now on) is contained in Lx. Let us
sliow that is somewhere ramified. Consider the point at infinity of

k(P(X)), denoted oo p . This point lifts to the point co of k(X) and is totally
ramified below it, with index [k(X) : k(P)  = deg P = p. Let now M be
the maximum ramification index above oo p in Lp. Then M is as well the
maximum ramification index above oc in Lx. Suppose that Lx / Lp were
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unramified everywhere. Then the maximum ramification index above oop
in LX would continue to be M. On the other hand this ramification index
is at least M [k (X) : I~ (P)~ = Mp. Since we are assuming p (= deg P) &#x3E; 1

we have a contradiction.

Now, the fields LX and L p are isomorphic over k, hence have the same
genus g. Since the extension Lx / Lp is somewhere ramified, and thus has
a degree &#x3E; 1, the Hurwitz genus formula yields 2g - 2 &#x3E; Lp~ (2g - 2);
we deduce that the genus is zero. (4)

Then k(t) for some t C L x . There exists a field-isomorphism
cp : Lx - Lp over k such that X’ = P(X) and a/° = (3T(i) for some

permutation T. Let 7f = t’P. Since L p C Lx we have 7f = E k(t)
and L~p = Also, if X = B(t) then P(B(t)) = P(X) = X~ _
B(t’P) - B( 7f(t)), so PoB = B07f; in particular, we have p = deg P = deg 7f.

Further, a., = Ai (t) and ~3T ~i) = Moreover, are

up to constants a permutation of the ai q whence for some permutation a
d} we have

qlLet us now iterate this equation obtaining A q’ (.) (t) for each
positive integer f - We may take I to be a multiple of the order of ~. Also,
these equations show that 7r permutes the set Z of zeros/poles of all the
functions Ai and also that 7r-’(Z) C Z. Hence we may take I to be a
multiple of the order of the corresponding permutation, so Jri fixes each

element in such set. We obtain in particular that

and then, comparing degrees, p = q 1. Now, since fixes Z and 7r, I (Z) c
Z, 7f : Pi is a rational map of degree p~ &#x3E; 1, totally ramified above
each z E Z. The Hurwitz genus formula gives immediately that Z contains
at most two elements, hence precisely two elements.

After changing t with A(t) for a suitable A E PGL2(k) (replacing
correspondingly 7r we may assume oo ~ . Then
we have that each A1, is proportional to a power of t and the same holds for

and 7r. Namely, for certain integers bi, elements c2, c E I~* and a suitable
choice of the sign we have
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If the sign is negative, we can change t into Ilt (and change consequently
~r in and B(u) in so to assume that the plus sign holds in (6).
We now distinguish two cases:

First case: k(X). Then k(X) = k(t), whence deg B = 1

and B E PGL2(k); then the equation P(B(t)) = B(ctP)
easily implies (on comparing denominators and recalling that P is a

polynomial) that B(t) = a + bt-::tl. Then P(a + bt") = a + Also,
(where B-1 denotes the inverse

map).

- 

Recall that i

We have just seen that is the cyclic
polynomial tP for a A’ in PGL2 (k); all of this proves that we are now

reduced to the cyclic case. We remark that it is then not difficult to deduce
from (3) that the ai(B(X)) are proportional to appropriate powers of X.
We leave this further verification to the interested reader.

Second case: [Lx : k(X)] &#x3E; 1. Recall that Lx is a normal extension
of k(X) (it is a splitting field). The Galois group, viewed as a group of
automorphism of k(t), is naturally a finite subgroup of PGL2(k). Such a
Galois group permutes the Ai (t) = therefore each element sends t to

~t:~’, for a root of unity E 1~* and some choice of the sign. Also, t ~ çt
implies ~s2 = 1 for all i: in fact, is some Aj ; but k for

1 = j and thus i = j and = 1. Then çð = 1 for the gcd 6 of the 6’l. But

B(~t) = B(t) (since X is fixed), so B is a rational function of tl for the
order l of ~, which divides 6. Since k(t) = k(B(t), A1 (t), ... , Ad(t))
we deduce that l = 1, so ç == 1. Hence the Galois group has order 2 and

is generated by t ±t-1 for some choice of the sign. By changing t into
At if necessary we may suppose that the nontrivial automorphism is
t t2013~ t-1. Since B(t) has then degree 2 and is invariant by t ~ t-1, it is

of the form b(t + C k*. Now the equation P o B = B o 7f entails

P(b(t + t-1)) = b(7r(t) + 7f(t)-l) == b(ct±P + Since this function is

invariant by t ~ t-1 we must have c But then we find that P is, up
to transformations in the Chebyshev polynomial Tp. Also, from
X = b(t -f- t-1 ) we find 2bt - X ~ X 2 - 4b2; after a linear transformation
X H 2bX we get the stated shape for t and the roots We see that we

fall in the Chebyshev case.

Again, we remark that with these informations it is not difficult to

~5~ Now the notation is well defined.
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go further and determine the precise shape of the coefficients, but we omit
the easy though a little tedious argument.

Proof of Corollary 4. - Note first that we may assume that is

finitely generated. In fact, assume the result true in this special case and
let gl, ... , gr E r be multiplicatively independent modulo 1~*; let also F’ be
the group generated by I~* together with the gi’s. Then r is the union of
the groups r n := ~g E r : gn E F’I, each of which satisfies the opening
assumption. Since the set E of solutions in question is the union of the sets
En of solutions with x, y C Fn, the estimates ~En  9~ and the inclusions
En C yield ~E  9r, as required.

Now, since is torsion free and finitely generated, it is free abelian.
Let then ..., r E r be representatives for a basis of Then we may
write for the solutions x, g in question,

We shall apply Theorem 1 with the following data: h = 3, 2r

Note that if (x, y) is a solution of Ax + ply - 1, then PIAl, P2A2 ,
P3A3’ are linearly dependent over k, where m = (2i,...,a~,~i,..., br ) Ez2r.
Thus the solutions to our equation give rise to integral exponent vectors
m which fall in at most (2) = 9T classes, in the sense of Definition 2. To
conclude the proof it suffices to show that each class can correspond to at
most one solution (x, y) such that k*.

Assume the contrary and let (xl, yl), (X2, Y2) be two distinct such
solutions, whose exponent vectors, denoted ml, m2 E z2r, lie in a same

class. The class cannot correspond to a set B properly contained in

~ 1, 2, 3}, for otherwise two of the three terms of the equation would be

linearly dependent over k, against the present assumptions. Hence the class
corresponds to the whole set {1,2,3}, whence Am2 ml = (AiA3l )°°°2 °°°1 ,
i = 1, 2, both lie in 1~* . Since the are multiplicatively independent
modulo 1~* by assumption, this means that ml = m2. Therefore x2 = 

y2 = ,C3~1 for some a, k*. Then the equations AX2 = 1

yield ({3 - a)A.ri = /~ 2013 1 and ({3 - a) pyi = 1 - a. If c~ == /3 this implies
cx = ~3 = 1 and the solutions would not be distinct. Therefore a fl 0,
but then we deduce that Ax, and both lie in k, a contradiction which

completes the argument.
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