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A DIMENSION FORMULA FOR

EKEDAHL-OORT STRATA

by Ben MOONEN (*)

To an abelian variety X over a field of characteristic p we can
associate invariants such as the p-rank or the isogeny class of its p-divisible
group. Such invariants can be used to define stratifications of the moduli

space in characteristic p. One example of such a stratification is the
Newton stratification. Two points of Ag (k) are in the same Newton stratum
iff the associated p-divisible groups are isogenous over k. Mainly through
the work of de Jong and Oort [3] and Oort [13], we now have a fairly
complete picture of this stratification. For an overview we refer to Oort [15]
or Rapoport’s Bourbaki lecture [16].

Of more recent date is the EO-stratification, after Ekedahl and Oort.
The starting point is that, given g - dim(X) and working over = 1~
with char(k) = p, there is a finite list of isomorphism classes of group
schemes ~C[p]. This was proven by Kraft [9] (unpublished), was seemingly
forgotten for some time, and was then reobtained by Oort around 1995. The
EO-stratification is defined by declaring that two points of Ag (k) are in the
same stratum iff the associated group schemes X[p] are isomorphic over k.
Several basic properties of this stratification were obtained by Ekedahl and
Oort; see Oort [14]. Other questions, such as which strata occur in the
boundary of a given one, remain open.

(*) Research made possible by a fellowship of the Royal Netherlands Academy of Arts
and Sciences.

Keywords Abelian varieties - Shimura varieties - Finite group schemes - Dieudonne
theory.

classification 14G35 - 14L15 - lIG15 - 14KlO - 14L05.
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Naturally, people have tried to extend these theories to other Shimura
varieties. A good class to start working on are the PEL moduli spaces
at primes of good reduction. A generalized Newton stratification can be
defined using the theory of isocrystals with additional structure, developed
by Kottwitz [7] and Rapoport and Richartz [17]. The picture is, at present,
still much less complete than in the Siegel modular case, though; see

[16], §5.

Work on the generalized EO-stratification was taken up by Wed-
horn [18] and the author [10]. (The Hilbert modular case was studied by
Goren and Oort in [5].) The data that are fixed in the moduli problem give
rise to a connected reductive group G and a conjugacy class X of parabolic
subgroups. The "p-kernel" objects to consider are triples Y - (Y, c,, A)
consisting of a group scheme Y killed by p, equipped with an action t of a
semi-simple Fp-algebra and a polarization A : Y ~ Writing WG for
the Weyl group of G and Wx C WG for the subgroup associated to X, the
main result of [10] is that, fixing suitable discrete invariants, such triples Y
are classified by the Wx-cosets in WG. (Here we assume that p &#x3E; 2.) Wed-
horn showed in [18] that this leads to a generalized EO-stratification on
good reductions ,A.o of PEL moduli spaces. More precisely, k-valued points
of ,A.o naturally give rise to triples Y as above, and with the appropriate
assumptions we arrive at a stratification = Also

in [18] we find a result about the dimension of the strata : If Yw is the

triple corresponding to the coset w E WXBWG and if Ao (w) # 0, then every
irreducible component of Ao (w) has codimension equal to dim ( Aut (Y ) )
in Ao.

The main purpose of the present paper is to give an explicit dimension
formula for the strata. To state the result, let us recall that once we fix
a generating set of reflections S C WG, every coset w E Wx B W G has a
distinguished representative w. The actual element w depends on the choice
of S, but its length f (tb) does not. Our main result is then the following.

THEOREM. - then its irreducible components all have
dimension equal to 

The strength of this formula lies in the fact that the lengths £ ( w) are
easily computable. In particular, an immediate consequence of our result is
that there is at most one 0-dimensional stratum and that there is a unique
stratum of maximal dimension. The latter takes the role of a generalized
ordinary stratum and plays a central role in our paper [11], in which a

TOME 54 (2004), FASCICULE 3
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generalization of Serre-Tate theory is developed.

As suggested by the above, what we really compute in this paper
are the dimensions of the automorphism group schemes Aut(Y). These
computations are based on an explicit description of the Dieudonne modules
of triples Y as in the above. The classification results of [10] are recalled in
~ l, the actual computation of the dimension of Aut (Y) is done in §2. The
application to the study of EO-stratifications is discussed in §3.

Acknowledgements. I thank F. Oort, R. Pink and T. Wedhorn for
stimulating discussions on the subject of this paper. The research for this
paper was made possible by a Fellowship of the Royal Netherlands Academy
of Arts and Sciences (KNAW). During my work on this paper I have been
affiliated to the University of Utrecht (until June 2001) and the University
of Amsterdam (from July 2001). I thank these institutions for their support.

Note added September 2003. Another proof of the main result of this
paper can be obtained using the methods of [12]. See in particular the
discussion of PEL moduli spaces in loc. cit., Section 6.

1. p-Kernel group schemes with additional structures.

1.1. Generalities on BT1.

We fix a prime number p. When dealing with polarized group schemes
we assume p # 2.

1.1.1. Let S be a scheme. Write So C S for the closed subscheme
defined by the ideal (p) C Os. By a BT, over S (short for "truncated
Barsotti-Tate group of level 1" ) we mean a commutative finite locally free
S-group scheme Y such that, with the notation Yo := Y the sequence

is exact. Here F and V denote the relative Frobenius and Verschiebung of
Yo over So. For further details see Illusie [6].

If Y is a BT, over ,S’ then we write yD for its Cartier dual. There is
a canonical isomorphism Y which we take as an identification. If

c then by an E-d uali ty of Y we mean an isomorphism A : Y 
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such that A == E - A . Such an E-duality induces an involution f H f t on
the ring Ends (Y) . We also refer to an E-duality as a polarization.

1.1.2. Let B be an Fp-algebra. By a BT, with B-structure over

a basis S’ we mean a pair Y = (Y, t) where Y is a BT, over Sand
t: .S 2013~ Ends (Y) is a homomorphism of Fp-algebras.

Suppose B is equipped with an Fp-linear involution b ~ b*. Let
E E f ±11. By a BT, with (B, *, E)-structure over S’ we mean a triple
Y = (Y, t, A) where (Y, t) is a BT, with B-structure and A: Y --+ yD is an
E-duality, such that t(b*) = t(b)t for all b E B.

1.1.3. We use contravariant Dieudonne theory as in Fontaine [4]. Let
K be a perfect field, char(K) - p. Then a BT, with B-structure over K
corresponds to a 4-tuple (N, F, V, ~), where

- N is a finite dimensional K-vector space,

- F: N - N is a FrobK-linear endomorphism,
- V: N is a FrobK-1-linear endomorphism, and
- t: B - End(N, F, V) is an Fp-linear homomorphism,

with Ker(F) = Im(Y) and Im(F) = Ker(V). Using these last relations one
can show that there exists a filtration

that is the coarsest filtration with the properties that

(i) for every j there exists an index f ( j ) E ~0,1, ... , r~ with F (Cj)
]

(ii) for every j there exists an index v ( j ) E f 0, 1, r I with (Cj ) ==

Cv(j)
We refer to this filtration as the canonical filtration of N. See

also [10], 2.5.

Similarly, a BT, with (B, *, E)-structure corresponds to a 5-tuple
(N, F, V, Sp, t), where (N, F, V, t) is as above and where p: N x N - K is a
perfect, E-symmetric bilinear form, such that
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1.2. BT, with given endomorphisms.

Let B be a finite dimensional semi-simple Fp-algebra. Let k be an
algebraically closed field of characteristic p. The first problem studied
in [10] is the classification of BT1 with B-structure over k. This generalizes
the work of Kraft [9], who classified group schemes killed by p without
additional structure. We shall briefly review our results.

1.2.1. Write K for the center of B. Then is a product of finite fields,
say K = K1 x ... x Let I = 11 U ... U Iv be the set of homomorphisms
K ~ k

Consider pairs (N, L) consisting of a finitely generated B k-

module N and a submodule L c N. Note that the simple factors of B 
are indexed by I, so we get canonical decompositions N = iEINi and
L = Define two functions d, f: I --+ Z~o by d(i) - length(Ni)
and j(I) = length(Li), taking lengths as B The pair (d, f )
determines the pair (N, L) up to isomorphism.

To the pair (N, L) we associate an algebraic group G over k and a
conjugacy class X of parabolic subgroups of G. First we define

Then the stabilizer P := Stab(L) is a parabolic subgroup of G, and we
define X as the conjugacy class of parabolic subgroups of G containing P.

1.2.2. Let Y = (Y, t) be a BT, with B-structure over k. Write N for
the Dieudonne module of Y and let L := Ker(F) C N. Let (d, f ) be the
corresponding pair of functions. It can be shown (see [10], 4.3) that the
function d is constant on each of the subsets In C I. We refer to (d, f ) as
the type of (Y, t).

1.2.3. Fix a pair (d, f ) with d constant on each subset In C I. Fix a
pair of B 0]F p k-modules Lo C No of type (d, f). Let (G, X) be the associated
algebraic group and conjugacy class of parabolic subgroups. Let WG be
the Weyl group of G, and let Wx C WG be the subgroup corresponding
to X.

To a pair Y - (Y, t) of type (d, f) we associate an element

w(Y) C Wx B We. This is done as follows. Write N for the Dieudonne module
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of Y and let L := Ker(F) C N. Choose an isomorphism ~: N ~ No that
restricts to L ~ Lo. This allows us to view the canonical filtration C. of N
as a filtration of No. Choose any refinement ,~’, of C, to a complete flag. The
relative position of Lo and T. is given by an element w(Lo,.F.) E 
It can be shown that this element is independent of the choice of ~
and the refinement T.; see [10], especially 4.6 for details. Now define

w (Y) : = w(L0,F.).
With these notations, the first main result of [10] can be stated as

follows.

1.2.4 THEOREM. - Assume that k = k. Fix a type (d, f). The map
gives a bijection

1.3. BT, with given endomorphisms and a polarization.

Let B be a finite dimensional semi-simple Fp-algebra equipped with
an involution b H b*. Let c Let be an algebraically closed field
of characteristic p &#x3E; 2. The second problem studied in [10] is the

classification of BT, with (B, *, 6)-structure over k. We shall briefly review
the result. As in section 1.2, this involves an algebraic group G. In the

polarized case there are two versions of the result : one using a possibly
non-connected group G, the other using the identity component Go. We
shall need both variants; see 1.3.6-1.3.8 below; see also [10], especially 3.8
and 5.7.

1.3.1. Let (B, ~, 6) be as above. We can decompose (B, *) as a product
of simple factors, say

If *n is an orthogonal involution, set En := -I-1; if *n is symplectic, set

En :_ -1. The simple factors (Bn, *n) come in three kinds :

Type C : for some finite field Kn , with *n of the first kind and
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Type D : B, for some finite field with *n of the first kind and

E . En == + 1 ;

Type A : Bn ~ where Rn is an 6tale quadratic extension of a finite
field and *n is of the second kind.

Note that the labelling depends on E. For factors of type A, if Fq then
either IFq2 or x Kn.

Let k be the centre of B, and define K :_ ~z e R I z* = We

have k = Ri x ... x Rv and K = /i1 x ... x K, where the Ken are finite

fields, Rn = if (Bn, *n) is of type C or D, and Rn is an 6tale quadratic
extension of if (Bn, *n ) is of type A. Let I = II U -’’ U Iv be the set of

For X E {A, C, D} we say that i E Z is of type X if
i C In C I *n ) is of type X. Let ZX C I be the subset of elements
of type X. Let I be the set of We have a restriction

map res: I - 1. For T E I define T := T o *. If i E Z is of type C or D then
there is a unique T E I with res(T) = I, and T = T ; if i is of type A then
there are precisely two elements T, T E I that restrict to the embedding i
on K.

1.3.2. Consider triples (N, L, cp) consisting of a finitely generated
B k-module N, a perfect, E-symmetric bilinear form cp: N x A~ ~ k

satisfying (1.1.3.2), and a maximal isotropic submodule L C N. With a
similar construction as in 1.2.1, such a triple is classified, up to isomorphism,
by a pair (d, f) consisting of functions d: I - and f : i --+ Z~o such that
f (T) + f (T) = d(i) for all T E Y and i = res(T) E Z. Note that if i is of type
C or D then there is a unique T = T with res(T) = i and we get the relation
d (i) = 2~(T).

To a triple (N, L, cp) as above we associate a pair (G, X). First,
define G := the algebraic group (over 1~) of B k-linear

automorphisms of N that preserve the form cp. We have G = DiET Gi, with
Gi isomorphic to if i is of type C, to if i is of type D and
to is of type A. Note that d(i) is even if i is of type C or D.
In the presence of (non-connected) orthogonal factors, the set X that we
want to consider is not simply a conjugacy class of parabolic subgroups
of G. Instead we consider (partial) hermitian flags in N, i.e., filtrations by
B k-submodules

with the property that C~ = C,- - 3 for all j. (Here C~ := ~n E N I
01.) The set Flag(N, p) of all such hermitian flags has the
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structure of a (generally non-thick) building, on which G acts in a strongly
transitive, type-preserving manner. Then we define X to be the G-orbit in

Flag(N, cp) of the flag (0) C L C N. Equivalently, X is the set of all maximal
isotropic subspaces in N. Note that if there are no factors of type D then
C, ~---~ Stab(C.) gives a bijective correspondence between hermitian flags
and parabolic subgroups of G ; in this case we could also define X to be the
conjugacy class of parabolic subgroups of G that contains Stab(L).

1.3.3. Let Y be a BT, with (B, *, E)-structure over k. Let N be

the Dieudonne module of Y, let L = N[F] :== Ker(F), and let cp be the

6-hermitian form on N corresponding to the given E-duality. Then (N, L, p)
is a triple as in 1.3.2. Let (d, ~) be the corresponding pair of functions; we
refer to this pair as the type of Y. It can be shown ([10], 4.3, 5.3 and 6.5)
that the function d is constant on each of the subsets C I.

1.3.4. Fix (d, f) as in 1.3.2, with d constant on each subset In C 1.
Choose a corresponding triple (No, Lo, To this triple we associate a pair
(G, X) as explained above. The Coxeter group associated to the building
Flag(No, is just the Weyl group WG of G. Note, however, that we
work with a possibly non-connected group G; an orthogonal factor 02q
contributes a factor of type Bq (not Dq) to WG. Write Wx C WG for the
subgroup corresponding to X.

Let Y be a BT, with (B, *, E)-structure over 1~ of type (d, f). Let
(N, L, cp) be the associated triple, as in 1.3.3. To Y we associate an element
w (Y) E WXBWG. This works essentially the same as in the non-polarized
case. First we choose an isometry ~: (N, cp) ~ (No, po) that restricts to
L ~ Lo. Via ~ we can view the canonical filtration C. as an element of

Flag (No, Choose a refinement of C. to a full hermitian flag T. in No.
(i.e., choose a chamber of which C. is a face). The relative position of Lo
and F. is measured by an element E WXBWG. It can be shown
that this element is independent of the choice of ~ and the refinement .~, ;
see [10], especially 5.6 and 6.6 for details. Now define w(Y) := w(Lo, T.).

With these notations, the second main result of [10] is the following.

1.3.5 THEOREM. - Let k be an algebraically closed field, char(k)&#x3E;2.
Fix a type (d, ~). Sending a BT, with (B, *, E)-structure Y to the element
w(Y) gives a bijection
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(In [10] this result is only stated for BT1 with (B, 
However, by Morita equivalence one can always reduce to the case that
E == -1.)

1.3.6. We describe a variant of the theorem that uses the Weyl group
of the identity component G°. To explain this we need to introduce another
invariant, which is a function 6: ID ---+ Z/2Z. If there are no factors of
type D then ID = 0 and the invariant 6 is void. If i E ID, let T E y
be the unique element with res(T) = i. As we have seen, the Dieudonne
module N decomposes as N = Let .- Ker(FIN-r) and

Ker(VíN-r). Now define 6 (i) to be the length of the k-module

modulo 2.

As in the above, let G .- Define ){o to be the

conjugacy class of parabolic subgroups of Go containing Stab(Lo). Write
WGo for the Weyl group of Go, and let Wxo C WGo be the subgroup
corresponding to ~° .

In addition to the type (d, f), also fix 6: yD ---+ 7~/2~. Let Y be a BT,
with (B, *, E)-structure of type (d, ~, 6). With a similar procedure as above
we associate to Y an element w° (Y) E (If there are no factors
of type D then is just the same as w (Y) ) .

With these notations we have the following variant of Theorem 1.3.5.

1.3.7 THEOREM. - Let k = k, char(k) &#x3E; 2. Fix a type (d, j, 6).
Then the map Y - w° (Y) gives a bijection

1.3.8. If m = = 2~ . This

corresponds to the fact that, given (d, ~), there are 2’n choices for 6.

In some applications it is more convenient to work with the element

w(Y) ; in other cases is easier to use. At any rate, once we fix 6 we
have a bijection

that can be made completely explicit. For details we refer to [10], 3.8.
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2. Automorphism group schemes.

2.1. Statement of the main result.

2.1.1. Let (W, S) be a Coxeter system, X C S a subset, Wx C W
the subgroup generated by X. Write for the length function on W. Every
coset w E Wx B W has a unique representative tb of minimal length, called
the (X, 0)-reduced representative. (See Bourbaki [2], Chap. IV, Exercise 3.)
If Wx C W and w E Wx)W are given then tb in general depends on the
choice of S, but f (w) := f (7b) is independent of S.

This section is devoted to the proof of the following result.

2.1.2 THEOREM. - (i) Let B be a finite dimensional semi-simple
Fp-algebra. Let Y be a BTl with B-structure over a field k = Ii with

p. Let (d, f) be the type of Y, define G and X as in 1.2.1, and let
w := w(Y) E Then the automorphism group scheme Aut(Y) has
dimension equal to dim(X) - 

(ii) Assume that p &#x3E; 2. Let * be an involution on B and let E C {:i: 1 }.
Let Y be a BTl with (B, *, E)-structure over k. Let (d, f, 6) be the type
of Y, define G° and Xo as in 1.3.6, and let wo := wO(Y) E 
Then the automorphism group scheme Aut(Y) has dimension equal to
dim(XO) - f (,bO).

2.1.3. Let ,5’ be a scheme of characteristic p. Following Wedhorn [18]
we define a Dieudonn6 space over S to be a triple (N, F#, Yb) where N
is a locally free OS -module of finite type and where F# : N(p) ~ N and

are Os-linear homomorphisms such that FO o Yb = 0 and
Yb o F# = 0. (We use F and V for semi-linear endomorphisms, F~ and V~
for their linearizations.)

In the following, D will either denote a finite dimensional semi-simple
Fp-algebra B or a triple (B, ~, 6) as in section 1.3. We have the notion of a
Dieudonne space with D-structure over ,5’; see [18], § 5 for details.

Let Y be a BT, with D-structure over k. The Dieudonne module
of Y defines, by linearization of F and V, a Dieudonne space with D-
structure N over k. Both Y and N give rise to an automorphism group
scheme. Concretely, if f: T --+ Spec(k) is a k-scheme then the T-valued

points of Aut(Y) are the automorphisms of the pull-back f * (Y) as a BT1
with D-structure over T. Similarly, the T-valued points of Aut(N) are



676

the automorphisms of the pull-back f * (N) as a Dieudonne space with

D-structure over T.

We shall make use of the following result of Wedhorn.

2.1.4 PROPOSITION (Wedhorn, [18]). - Notations as above. There
is a natural homomorphism of k-group scllemes

If K is any perfect field then A induces an isomorphism on K-valued points.
This implies that dim ( Aut (Y) ) = dim ( Aut (N) ) .

Strictly speaking, [18] only deals with polarized BT 1. In the non-
polarized case the same arguments apply. Alternatively, one can reduce to
the polarized case by passing from a BT1 with B-structure Y to Y x YD
with its natural B x B-structure and the obvious E-duality.

To prove Theorem 2.1.2 we shall compute the dimension of Aut(N).
Let us note that Aut (Y) and Aut (N) are in general non-reduced (see also
3.1.7), and that A is in general not an isomorphism.

2.2. The non-polarized case.

2.2.1. We first prove (i) of Theorem 2.1.2. The notions involved in
the proof are illustrated in an example in 2.2.12 below. There is an easy
reduction to the case that B = K is a finite field. In fact, as the Brauer group
of a finite field is trivial we Mrl x ... x Mrv where the Kin

are finite fields. Fixing such an isomorphism, every BT1 with B-structure

decomposes as a product Y = x ... x where Yn is a BT1
with kn-structure. If the theorem holds for each Yn then one readily checks
that it also holds for Y.

2.2.2. Suppose B = ~ is a field of p elements. Recall that we write Z
for the set of Then I is a set of m elements that comes

equipped with a natural cyclic ordering : if i E I then we write i + 1 for

Frobk oi.

A type (d, f ) consists of a positive integer d and a function

f : Z ~ ~0, ... , d}. As in 1.2.1 we associate to the type (d, f) a pair (G, X) ;



677

in this case we have G = GLd,k. After a suitable choice of coordinates
we can identify

In each factor we take the transpositions ( j j -f-1 ) as a set of generators.
As recalled in 2.1.1, each coset w E WXBWG has a distinguished

representative + = in WG. The permutations wi that arise in this

way are characterized by their property that

The length of the element w is given by, , with

2.2.3. Let be the

Dieudonne module of Y. We recall from [10], 4.9 an explicit description
of N in terms of the distinguished representative w. Namely, let N be

the k-vector space with basis ei,j for t E T and j E ~ l, ... , d~ . Write
Ni := ei,j, so that N = We let a e K act on Ni as

multiplication by i (a) . Next define Frobk-linear maps Ni+1 and

Frobk -1-linear maps Ni+l by

and

This defines a Dieudonne module with ~-action such that the corresponding
BT1 is isomorphic to Y.

2.2.4. We find it useful to draw pictures of the Dieudonne modules

N obtained in this way; see Figure 1. The boxes represent base vectors as
indicated. An edge connecting boxes (i, j) and (i + 1, j’) either represents
the relation F(ei,j) = (an F-edge) or the relation ei,j
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(a V-edge). To determine in which of the two cases we are we represent the
base vectors ei,j with = 0 by shaded boxes; thus in the module Ni
there are f (i) shaded boxes. Note that in most cases we do not need the
shading : (2.2.2.1) implies that two edges of the same kind never cross. Since
the image of F: Ni --+ is spanned by the j(I) base vectors, it
follows that an F-edge in the picture always has slope  0 and a V-edge
always has slope &#x3E; 0.

Figure 1

In the example drawn in Figure 1 we take d = 5 and m = 4, with

f (i - 1) - 1, f (i) - 3, f (i + 1) - 0 and f (i + 2) = 3. The distinguished
representative zb is given by

One should think of N as a roundabout (carousel); note that in Figure 1
(with #1 = 4) the summands and Ni+3 have to be identified.

2.2.5. We recall some facts proven in [10], Lemma 4.5. The canonical
filtration of N induces filtrations

In the description of N given in 2.2.3, if n - dim(Ci,,) then Ci,r =
1~ ~ e2,1 + . . W- ~ ~ ei,n. The length of the filtrations Ci,, is independent
of i E 1. We refer to the vector spaces Bi,j as the canonical

blocks of N ; they are indexed by the set ,A := I x ~ 1, ... , .~~. For each pair
(i, j ) C A there is a unique index pi ( j ) E ~ 1, ... , .~~ such that
either : Fi: Ni - Ni+1 induces a Frobk-linear bijection I
or : 

* Vi : induces a Frobk 1-linear bijection _
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Then p(i, j ) == (i + l, pi ( j )) defines a permutation p of the set A, and for
each a = (i, j ) E A we have a Frobk-linear bijection ta: Ba ~ which

is either induced by Fi or is the inverse of the bijection induced by Vi.

If f C Aut(N) (R) for some k-algebra R then f preserves the

filtrations Ci,.. This allows us to define a normal subgroup scheme

U c Aut(N) by

see also 10~ , 5.11.

2.2.6 LEMMA. - The identity component of Aut(N) is contained
in U.

Proof. By construction, U is the kernel of the homomorphism

It suffices to show that h factors through a finite 6tale subgroup scheme of

03A0 GL (Ba).
Take a E A, and let r be the smallest positive integer such that

pr (a) = a. The composition

is a Frob~-linear automorphism of Ba. Then := ~b E B~ ~ I 7§(b) = bl
is an Fpr-subspace of Ba such that the natural map Ba Ba is

an isomorphism. It follows that the subgroup scheme r c I1 GL (Ba ) given
by the automorphisms that commute with all To, is finite 6tale. On the

other hand, if f E Aut (N) then for every a E we have the relation

ta = ta o Iterating this we find that commutes

with Hence h factors through h. 0

As we shall see later, U is connected; hence it is the identity component
of Aut(N).

2.2.7. We describe the group scheme U in more detail; see also

[10], 5.11. Let R be a k-algebra, and let f E Aut(N)(R). Then

f respects the decomposition N 0 R = EBiEINi 0 R. Write A f (i, j’, j )
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for the (j’, j)-th matrix coefficient (with respect to the basis of the

automorphism of Ni Q9 R induced by f. Clearly f is fully determined by
the map Af:1 -~ R. Our task is to describe which maps
A: 1 --~ R arise as A f for some f E U. The first obvious
condition is that for all f E U the map A = A f satisfies

Consider the set I x f 1, ... , dl. Given (i, J) there is a unique
index ti ( j ) c f dl such that either = or ei,j =

The ti are permutations of ~l, ... , dl - Given f (i) we can easily
compute ti from and vice versa; see the formulas for F and V in 2.2.3.
When we draw a Dieudonne module as in Figure 1, it is the permutations ti
that we "see" in the picture. Write T for the permutation d~2
given by

Let E I x ~1, ... , d~2. For n E Z write :==

Suppose jo. We can think of the triple as a

pair of base vectors and with "below" Going from
to there are four possible configurations, as shown in

Figure 2. (For the interpretation of these illustrations see 2.2.4 ; cf. also the
figures in [10].) In cases 1 and 2 we say that T is parallel at (io, jo, jo) ; in
case 3 we say T is down-up, in case 4 we say it is up-down.

Figure 2

2.2.8 LEMMA. - Suppose given a map x ( I, ... , d~2 - R that
satisfies (2.2. 7.1). Then A = A f for some f e Aut (N) (R) if and only if the
following two conditions are satisfied for all (io, jo, jo) with jo :

(2.2.8.1) if T is parallel at (io,jb,jo) then.. a

(2.2.8.2) if T is up-down at (io, jo, jo ) then 0.
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Proof - First suppose that A for some f E Aut (N) (R) .
That (2.2.8.1) and (2.2.8.2) hold is immediate from the fact that f is

compatible with the linear maps F’ and Vb. (See 2.1.3 for notation.) For
instance, suppose T is up-down at (io, jo, jo). Writing out elements on the
basis eio,l, ... , eio,d we have

Applying F~ to both sides, and using that FO , f , F~, we find a
relation 0 = 0+... +A(io,jb,jo)P +.... So indeed A(io, jo, jo)p = 0.

Conversely, suppose f is a K 0IFp R-linear automorphism of N such
that the corresponding matrices satisfy (2.2.7.1), (2.2.8.1) and
(2.2.8.2). We have to verify that f is compatible with F~ and Yb. To check
the compatibility with V~, let us consider a base vector eil ,jl’ Note that for
each i the image of Fi - 1: Ni-1 - Ni is spanned by the first d - base

vectors Hence if = 0 then also 0 for all j’ 
and it follows that = 0 = Vb f (ei,,3, ). The other possibility is
that eio,jo’ In this case we have

If j~  ~i, write j’ = Either jo &#x3E; jo, in which case T is down-up
at (io, jb, jo) and 0, or j’  jo, in which case T is parallel at

(io, jo, jo) and (2.2.8.1) gives = A (io , j§ , jo )P . Combining this
we find that We leave it to the reader to verify, in a similar
manner, that F~ o = f o F~. D

2.2.9. As before, suppose j’  jo. It can be shown (see [10], 4.16 and
4.19) that T is parallel at for all n E Z if and only if (zo, jo) and
(io, jo) belong to the same canonical block, by which we mean that there
is an index r such that ejo,j, 0 and both lie in Cio,r B Cio,r-1. Hence
in order to have A = A f for some f E U, the map A should satisfy the
additional requirement
(2.2.9.1)

jo and T is parallel at (in, jn, jn) for all n then A(io, do, jo) = o.

2.2.10. To summarize our conclusions, let us define a track in

I x fl,...,dl2 to be a sequence
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with ) for all n, such that

We call (io,jb,jo) the start of the track, (ib, jb, jb) its end, and b its
length. If T is up-down at then we call the track a ud-track ; if T
is down-up at (ib, j’, jb) then we call it a du-track.

Suppose there are /t different du-tracks in Z~ x ~l, ... , and that

there are v different ud-tracks, of lengths bi, ... , bv. Then we find an
isomorphism of k-schemes

by associating to f E U the matrix coefficients A(i°, jo, jo) for all starting
points of a track. In particular, U is connected, and together with
Lemma 2.2.6 it follows that U = Aut(N)°.

2.2.11. To compute p = dim(U) we count the du-tracks by their
end points. These end points are simply all triples (i, j’, j ) at which T is
down-up. Hence if for i E I we define

then the result is that It follows from ( 2 . 2. 2 .1 ) that
if = n  f (i) then there are j’ - n elements in the range 1, ... , j’ for
which w2 takes a value &#x3E; f (i). So there are (d - f (i)) - ( j’ - n) elements ,7
such that (j’, j) E ?(z). This gives, using (2.2.2.2) :

which is the formula we want.
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2.2.12 Example. - We consider the Dieudonne module illustrated
in Figure 3; here m = 4 and d = 4, with f (i) = 1, f (i + 1) - 0, and

f(z+2)=f(z+3)=2.

Figure 3

The distinguished representative of the element w is given by

which gives f(zb) =2+0+2+3 =7. As dim(X) - 1.3+0.4+2.2+2.2=11
we should find a 4-dimensional automorphism group. Note that there are
indeed precisely four du-tracks; they are the sequences

(When we draw a Dieudonne module as is done in Figure 3, we can

quickly count the number of du-tracks as the number of intersections in
the A straightforward but tedious calculation shows that
an automorphism of the Dieudonne module (over a field) is given by the
four-tuple of matrices

where t, u, v and w are chosen arbitrarily, and ( and 77 satisfy (p8 = (
q. So we indeed find a 4-dimensional automorphism group. The
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identity component U C Aut (N) corresponds to = 1. Note

that the variables t, u, v and w, and the places where they occur in the
above four-tuple of matrices, correspond exactly to the four du-tracks.
Note further that this only describes the points of Aut (N), which is non-
reduced, with values in a field; as there are seven ud-tracks the Lie algebra
of Aut (N) has dimension 4 + 7 = 11.

2.2.13. Retaining the notations used above, we find that 

A’ as schemes. The isomorphism is obtained by sending a point of

U = to the matrix coefficients A(io, jb, jo) for all triples
(io, jo, jo) that form the start of a du-track. If = 

then we have seen that A (in, j’n, in) = As a result, when wen, n, j n O,j,, 0

identify the Lie algebra of GLK0k(N) == DiET GLd,k with DiET we

have

2.3. The polarized case.

Throughout this section we work over an algebraically closed field
1~ with char(k) = p &#x3E; 2. Let D = (j,,6) be a triple as in section 1.3.

Let Y be a BTI with D-structure over k, of type (d, f, 6). We write
N = (N, F, V; cp, t) for the associated Dieudonne space with D-structure

and N’ := (N, F, V, t) for the Dieudonne space with B-structure obtained by
forgetting the polarization form cp. Define (G, X) as in 1.3.2, and let (G°, X° )
be as in 1.3.6. Let w := w(Y) E WXBWG and w° :- E 

As explained in 1.3.6 and 1.3.8, there is only a difference between w and wo
if there are factors of type D, and the two determine each other once we fix
the invariant 6.

As a general notational convention, we use a prime ’ I for objects
obtained by "forgetting the polarization form p" . E.g., we write G’ :-

GLB01F p k(N). In particular, our convention means that the objects studied
in section 2.2 will now appear on stage equipped with a prime.

Proof. Recall that (

It is clear that . so it suffices to show that
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A is smooth at the origin. For j = 1, 2, let (Rj, mj) be an artinian local
k-algebra with k. Let -F: R1 -~ R2 be a surjective homomorphism
such that I := Ker(7r) satisfies mi - 1 = 0. Let a2 E A(R2) be an element
which reduces to the identity modulo m2. We have to show that cx2 can be
lifted to an element al E A(Ri).

As Aut(N’)rea is a smooth k-group scheme we can lift a2 to an

R1-valued point cxl of If a is the Lie algebra of 
then the set of all such liftings of c~2 is a principal homogeneous space under
a 0k I. Our task is to show that there exists an element {3 C a 0k I such
that 0152l .- c~l + {3 preserves the form cp.

As cp satisfies (1.1.3.2), it gives rise to an involution g - g* on
G’ = GLB0k(N). It follows from the relation ( 1.1.3.1 ) that this involution
preserves the closed subgroup scheme Aut (N’ ) ; hence it also preserves

It follows that o~ is also an Rl-valued point of Aut(N’)red’
By construction, a-1a1 is congruent to the identity modulo I, and it follows
that q :- id is an element of a 0k I.

Consider the bilinear form

~: (N0kRl) x (N~~R1) -~ Rl given by n) 
Because c~1 lifts cx2 and a2 preserves cp, the form T takes values in I.

only depends on the classes of n and n’ modulo ml, as
ml . I = 0. In sum, T gives rise to a bilinear form N x N - I. The

element 7 E a 0k I c EndB0k(N) 0k I is the unique element such that
= cp (~yn, n’ ) for all n, n’ E N. Note that ~y* == 7.

If + {3 for some {3 E EndB0k(N) 0k I then the corresponding
forms 0 and ~ are related by

where is the reduction of al modulo mi. By assumption we have
idN. As -y* _ -y and 2 we can take /3 = ~/2. This gives a

lifting of cx2 as desired. 0

2.3.2. To prove (ii) of Theorem 2.1.2 it suffices to consider the

following four cases. In each case we further describe the possibilities for
the type (d, j, 6) , with notation as in section 1.3.

Case C : finite field with * = id and E = -1. The type (d, ~)
is fully determined by a number q E Z&#x3E;o via d = 2q and f(i) = q
for all i c I = 
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Case D : B = i~ _ ~ is a finite field with * = id and E = +1. The type
(d, ~) is as in Case C. Further we have an invariant 6, which is an
arbitrary function I --+ Z/2Z.

Case AU : B = R is a finite field, with * an automorphism of order 2 and
E == 1. Let ~ be the fixed field of *. The type (d, f ) consists of a
positive integer d and a function f : Z -~ Z~o with + = d

for all T E Z~.

Case AL : B = R == ~ x K with a finite field, with (~1,~2)* = (X2, Xl),
The type (d, ~) is as in Case AU. Note that in this

case Z 1I I, where the two copies of I are interchanged under
T H T ; hence f is determined by its restriction to the first copy
of Z~, which is a function ~: I - Z~o with j(I) x d for all i E Z.

The reduction to these basic cases is an application of Morita equi-
valence. See also [10], 5.2 and 6.2. Note that the labels introduced in 1.3.1
correspond, via Morita equivalence, to the above labels, with type A
subdivided into two cases.

In Case AL, every BT, with (B, *, E)-structure is of the form

Y x YD where Y is a BTI with K-structure, and where the E-duality
A: Y x yD --+ yD x Y is given by y2 ) This reduces Case AL

to the study of non-polarized BTI, and one checks without difficulty that

(ii) of the theorem follows in this case from (i).

2.3.3. Suppose we are in Case C or Case D. We have G = 03A0iEI Gi
with G- 71 (Case C) or 02q,k (Case D). The Weyl group of Gi
can be described as

I I J

In each factor WGi we take as generators the q - 1 elements of the form
( j, j + 1 ) (2g ~ 1 - j, 2g - j) together with the transposition (q, q + 1). The
subgroup Wx C WG is the product of the groups

Consider the element w E WXBWG. Write + = (Wi)iEI for its

distinguished representative. The length of w is given by f (
with
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here li E ~l, ... , ql is the largest index for + q.

In Case D the structure of the Dieudonne module N is easiest to

describe in terms of the classifying element w E Wx B W G. However, in the
result that we want to prove it is not the length of w that matters but rather
the length of the distinguished representative of w° = w° (Y) E Wxo BWGo .
The length of 7bo can be expressed directly in terms of w ; the result is that

here li E ~ 1, ... , ,~} is again the largest index for which
us further notice that, still in Case D, the invariant 6: 1 - Z/22 can be
read from the element w by the formula

Similar to what was done in 2.2.3 we have an explicit description of N
in terms of the element w. Namely, we can choose a k-basis for N, for
i E T and j E ~ 1, ... , such that a acting on as multiplication
by i (a) E k, and such that F and V are given by

The E-symmetric form cp on N is the orthogonal sum of forms cp2: Ni x 
k. With respect to the basis lei,jlj=l,...,2q the form Wi is given by an

(invertible) anti-diagonal matrix Vz. In Case D we can choose our basis
such that = antidiag(I,..., ,1 ) . In Case C there is not, in general, a
natural choice of a normal form for the Vz. Note that ( 1.1.3.1 ) gives a
relation between 03A6i i and 03A6i+i. Any collection of anti-diagonal matrices

satisfying the relations imposed by (1.1.3.1) gives a Dieudonne
module with (~, id, -I)-structure, and up to isomorphism this object is

independent of the chosen collection We refer to [10], 5.8 for details.

Via the chosen ordered bases feijl we may identify the Lie algebra
As we have seen in 2.2.13, the Lie

algebra of Aut (N’) rd is given by
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Note that if we subdivide each matrix Xi into four blocks of size q x q, say

then for Lie only the blocks Bi can be nonzero;
this corresponds to the fact that if (i, j’, j ) is the start of a track then

j’ x I(I) = q  j.
Write J = Jq for the anti-diagonal matrix of size q x q with all

anti-diagonal coefficients equal to 1. Given a square matrix A of size

q x q, write SA = J - ’A - J for its reflection in the anti-diagonal. So

In the symplectic case (Case C) there are diagonal matrices Ci such
that

(Here we write matrices in block form.) One computes that the Lie algebra
of the symplectic group Sp (Ni , Wi) is then given by

In the orthogonal case (Case D), lllz = antidiag( I , ..., ,1 ) . This gives

Given an element

is a track, write

We claim that ’t is again a track in T x ~l, ... , d~2. This is a direct

consequence of the definitions once we know that the permutation t2
defined in 2.2.7 is an element of the group IHIq defined in (2.3.3.1). Using
that wi E Mg, this can be checked using the formulas for F and V given
above.



689

We can now complete the proof of 2.1.2, (ii) in Cases C and D.

First we do Case C. By Lemma 2.3.1 the dimension of Aut(N) equals
the dimension of Lie ( Aut(N’)red) cp). By what was explained
above this dimension equals the number of tracks modulo the equivalence
relation t ~ ’t. (The equations for cpi) give one relation for every pair
{t, st} with t ~ st.)

As in 2.2.11 we count the tracks by their end points. These are the
triples (i, j’, j ) with 1  j’  j  2q and q  Wi (j). Precisely one
of the tracks t and ’t has an end point (i, j’, j ) with j  2q + 1 - j’, so we
impose this as an extra condition. Writing

this gives

Suppose j’  q is an index with Wi(j’) = n  q. We subdivide the set
f 1, ... , 2ql, and in each range we count the numbers of times Wi takes a
value &#x3E; q :

Thus we find that there are q - j’ indices 3 for which ( j’, j ) E Be (i). If, as
above, we let li E ~ 1, ... , q~ be the largest number for which zbi 1 (q + li ) # q,
we get

Combined with (2.3.3.2) this gives
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This proves our claim that dim

In the orthogonal case the computation is similar. This time we have
to count only the pairs of tracks {t, with t ~ ~t. Setting

we get that dim ( Aut (N)) = LiEI ~SD (i) . Counting as above and using
(2.3.3.3) gives

which is what we want. 11

2.3.4. Finally we consider Case AU. Recall that we write for the

set of embeddings of R into k. We have a natural 2 : 1 map res: I - Z. For
T E Z~, let T := T o *. The type (d, ~) is given by an integer d and a function
~T 2013~ Z~o with the property that + = d for all T.

Given (d, f), the corresponding pair of Weyl groups Wx C WG can be
described as follows. Let wo E be the permutation of order 2 given by

. Then

and

Let W - for the distinguished representative of the coset

be a subset such that precisely one member of each
pair fT, T-1 is in R. For each pair fT, T-1 we have
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and ). The dimension of X is given by

(Observe that

The description of the Dieudonne module N is much the same as in
the previous cases. Namely, we can choose a k-basis eT,j for T E Z and
j C ~1, ... , d~ such that a E ae acts on eT,j as multiplication by T(a) E k,
and such that Frobenius and Verschiebung are given by

The form Sp decomposes as an orthogonal sum of hermitian forms ~pi
on NT x NT (where i = res(T) - res(T)). We can choose the ordered
basis eT,1, ... , eT,d, e;r-,I, - - -, eT,d such that cpi is given by an invertible anti-
diagonal matrix -Di. As in Case C there is, in general, not a natural choice
of a normal form for these matrices.

Following the same procedure as in 2.3.3, if t is a track we get a "mirrored"
track ~t. The condition that the form 0 is preserved gives one relation for
each pair of tracks It, We find, counting the tracks by their end points,
that

with

If I values of j with
Hence

Combining this with (2.3.4.1) and (2.3.4.2) we obtain the equality
f (7,b) + dim ( Aut(N)) - dim(X) that we wanted to prove. 0
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3. Application to Ekedahl-Oort stratifications.

3.1. The Ekedahl-Oort stratification

on moduli spaces of PEL type.

3.1.1. We consider a moduli problem of PEL type with good reduction
at a prime p &#x3E; 2. The data involved are the following.

- (B, *) is a finite dimensional semi-simple Q-algebra with a positive
involution;

- V is a finitely generated faithful left B-module ;
- symplectic form (Q-bilinear, alternating and perfect)

with the property that = for all b E B and vi,

v2EV;
- 

p is a prime number &#x3E; 2 such that is unramified, i.e., isomorphic
to a product of matrix algebras over unramified field extensions of Qp ;

- OB is a Zy -order in B, stable under *, such that is a maximal

order in B 0 Qp ;
- A C V 0 Qp is a Zp-lattice which is also an OB-submodule, such that

cp induces a perfect pairing A x 11 --~ Zp ;
!; :== CSp(A, cp) n is the (not necessarily connected)

reductive group over Zp given by the symplectic similitudes of (A, p)
that commute with the action of OB ;

- x is a G(R)-conjugacy class of homomorphisms S - QIR (with S :=
Resr/R Gm) that define a Hodge structure of type (-1,0) + (0, - 1)
on VR for which either 27ri - p is a polarization form;

- c is the g(C)-conjugacy class of cocharacters of gr associated to x ;
concretely, if then we have a cocharacter p = J1h through which
z E (~" acts on (resp. as multiplication by z (resp. by 1) ;

- E is the reflex field, i.e., the field of definition of the conjugacy class c.

3.1.2. Fix data D = (B, *, V, cp, OB, A, X) as in 3.1.1. Let Q be the
algebraic closure of Q inside C. We fix an embedding Q - Qp. Let v be
the corresponding place of E above (p). We write OE,v for the localization
of OE at v.



693

Let Let CP be a compact open subgroup and

put C := Cp x CP. We consider the moduli problem over Spec(OE,v)
defined by Kottwitz in [8], §5. If T is a locally noetherian 0 E,v-scheme
then the T-valued points of are the isomorphism classes of four-tuples
A = (~4, A, t, 7~) with

- A an abelian scheme up to prime-to-p isogeny over T;

- A E ( NS(A) 0 Zp) the class of a prime-to-p polarization ;
- t: OB - EndT(A) Q9 Z(p) a homomorphism of Z(p)-algebras with

~(b*) = t(b)t; here t is the Rosati involution associated to a;

- ~ a level structure of type CP on A ;

such that a certain determinant condition is satisfied. For precise details
we refer to Kottwitz [8], §5. If CP is sufficiently small, which we from
now on assume, then is representable by a smooth quasi-projective
OE, v-scheme.

3.1.3. Let B := The involution * induces an involution
of B which we denote by the same symbol. Let .K be the centre of B, let

and let OK and OK be the rings of integers. Then

Let Q" C Qp be the maximal unramified extension of Qp. We write
for its residue field. The assumptions on the data in 3.1.1 imply that v is
an unramified prime, so Ev C Q,r.

Consider an algebraically closed field containing IFP. As usual we
write Z (resp. I) for the set of embeddings of ae (resp. K) into k. Using
that v is unramified we get, via the chosen ernbedding Q - Qp, natural
identifications Z = Hom(K, C) and Z~ = Hom(K, C). Write I = Zl U... U IV
for the partition of I corresponding to the decomposition of as a product
of finite fields.

The choice of h E X gives V a Q-Hodge structure of type
{ -1, 0) + (0, - 1) equipped with an action of B. In particular we have
a pair a C-modules eVe. Via the above identifications this

gives us a type (d, f) as in 1.3.2 with d constant on each of the subsets
In C Z and such that (1.3.2.1) holds. This type is independent of the
chosen h.

A k-valued point of gives rise to a BT, with (B, *, -1)-
structure Y by taking Y := Ap] equipped with its B-action, and with
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A: Y yD the -1-duality induced by the prime-to-p-polarization on A.
The determinant condition mentioned in 3.1.2 implies that Y has type
equal to (d, f ) .

3.1.4 LEMMA. - Let S be a scheme of characteristic p &#x3E; 2. Let Y be

a BT, with (B, *, E)-structure over S. Let k be an algebraically closed field,
p. For s E S(k) let 6,: ID --+ be the invariant associated

to Y. as in 1.3.6. Then the function s H 6s is locally constant on S(k).

Proof. It suffices to consider the case that ,S’ is the spectrum of
a perfect valuation ring A. Write Q for the fraction field of A and mA
for its maximal ideal. By Berthelot [1], we have a Dieudonne theory that
generalizes the theory over a perfect field. (In fact, the Dieudonne functor is
again given by taking homomorphisms into the Witt covectors.) So we have
a 5-tuple N = (N, F, V, t, p) as in 1.1.3 but now with N a free A-module
of finite rank. After base change to Q (resp. to A/mA) we retrieve the
Dieudonne module of the generic (resp. special) fibre of Y.

We know that Ker(FY) C Y and Ker(YY) C are free subgroup
schemes; their Dieudonne modules can be identified with Ker(FN) C N
and Ker(YN) C N, respectively. The exactness of the sequences

then implies, using [1], Prop. 2.4.1, that Ker(FN) and Ker(VN) are direct
summands of N.

Using Morita equivalence one reduces the problem to the case where
B = ~ is a finite field with * = idx and E = -f-1. Then the assertion

reduces to the following fact : Let N be a free A-module of even rank 2q
equipped with a perfect symmetric pairing rp: N x N -~ A. Let Li and

L2 be direct summands of N of rank q that are totally isotropic with
respect to rp. Then dim ((Li 0 Q) n (L2 0 Q)) has the same parity as
dim ((Li ® A/mA) n (L2 0 A/mA)) . D

3.1.5. Write ~= F. The lemma implies that we can
decompose as a disjoint union of open and closed subscheme according
to the value of 6, say Ao = IIAo,8.

Fix 6. To the type (d, j, 6) we associate a pair (GO, as in 1.3.6.

Note that, up to a central factor, Go can be identified with the special fibre
of g, and that XO is closely related to Xo - We shall not attempt to make
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this more precise. Now our classification results of BTI with additional
structure give rise to a generalized Ekedahl-Oort stratification

More precisely, we have a partition of into a disjoint union of locally
closed subspaces such that the Zariski closure of each stratum is a union
of strata. These properties were proven by Wedhorn in [18], generalizing
results of Ekedahl and Oort in the Siegel modular case, see [14].

Combining Theorem 2.1.2 with [18], Theorem (6.10) we arrive at the
following dimension formula.

3.1.6 COROLLARY. If then all its irreducible

components have dimension equal to 1!(w).

Note that here takes the role of what in (ii) of Theorem 2.1.2 was
called w°. Further we are using that dim(Xo); see ~11~, 4.1.8
for details.

3.1.7 Remark. - Let Y be a BT, with (0/p0, *, e)-structure
associated to a k-valued point s E ~4o,~(~)- The automorphism group
scheme Aut(Y) is in general (highly) non-reduced. In fact, [18], (2.7) shows
that the tangent space of Aut (Y) at the identity is isomorphic to the

tangent space of the deformation functor Def (Y) . But by Serre-Tate and
[18], (2.17) the latter is isomorphic to the tangent space of Ao,5 at the
point s. Hence the Lie algebra of Aut(Y) has dimension equal to dim(A.),
independent of w. Cf. Example (2.2.12).

3.2. Some examples.

An immediate consequence of 3.1.6 is the following.

3.2.1 COROLLARY. - There is a unique Ekedahl-Oort stratum that
is open in Ao,6. There is a unique w C Wxo BWGo such that the stratum
,A.°,~ (w), if not empty, is 0-dimensional.

The open Ekedahl-Oort stratum, corresponding to the class of the
longest element of WGo , plays the role of the (generalized) ordinary locus
in ,r4.°,s. It is studied in detail in our paper [11]. The unique 0-dimensional
stratum (if not empty) takes the role of what in the Siegel modular case is
called the superspecial stratum. (In the Siegel modular case it corresponds
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to the abelian varieties that are isomorphic to E9 with E a supersingular
elliptic curve).

Already in the simplest examples we find that for moduli points
A = (A, A, t, ij) in the "generalized" ordinary locus, the underlying abelian
variety A is not necessarily ordinary in the classical sense. A similar remark
applies to the superspecial stratum. We shall illustrate this with an example.

3.2.2. We consider an example of type AL (see 2.3.2); in particular
this means that there is no invariant 6 to consider.

Fix PEL data as in 3.1.1 with B = ~ a CM-field of degree 2m over Q.
Let K C I~ be the totally real subfield. Suppose p is a prime number that
is totally inert (unramified) in the extension Q C K and that splits in
the extension K C K. Set q : := p~. Then B = OB/pOB is isomorphic to
Fq x Fq, with involution (induced by complex conjugation on B) given by
(x, y) * == (y, x). Fixing such an isomorphism, every BT, with (B, *, -1 )-
structure is of the form Y x YD, where Y is a BT1 with Fq-structure, and
where the (- I)-duality A: Y x yD _+ yD x Y is given by (y, 1]) ~ -y).
In this way the study of BTI with (B, *, -1 )-structure reduces to the study
of BTI with Fq-structure (without polarization).

Via the above mechanism, a k-valued point of gives rise to a BT,
with Fq-structure. Its type (d, ~) is determined by the chosen PEL data.
More precisely, d = and the CM-type f is determined by the choice
of the g(R)-conjugacy class x C Hom(S, 9R).

For instance, suppose m = 6 and d = 5. The set I of embeddings of

Fq into = k is a set of 6 elements, equipped with a natural cyclic ordering.
Suppose that the function ~:2’ 2013~ {0,1,.... 5} takes consecutive values 1,
3, 1, 1, 0 and 5. (This is a random choice.) The BT, corresponding to the
stratum of maximal dimension then corresponds to the Dieudonne module
given in Figure 4.

Figure 4
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We see that in this example Y decomposes as a product, Y -

Y1 x ... Y5, corresponding to the horizontal "layers" in the picture. This
decomposition is not canonical but it can be shown that the coarser

decomposition (referred to as the slope decomposition)

is canonical. It plays an important role in our generalization of Serre-Tate
theory; we refer to [11] for further discussion. Note, however, that Y,
the underlying BT, without additional structure, is not ordinary in the
classical sense, i.e., it is not a product of factors Z/pZ and In fact, Y is
a local-local group scheme.

At the other extreme, the BTI that corresponds to the 0-dimensional
stratum is given by the Dieudonne module in Figure 5. The underlying
group scheme Y is in this case indecomposable, quite in contrast to what
happens on the superspecial stratum in the Siegel modular case.

Figure 5

A variety of different examples is obtained by choosing different CM-
types f. Let us add that this is typical for examples of type A (cases AU
or AL in 2.3.2). In examples of type C there is no freedom of choice for the
CM-type (due to the fact that the involution is of the first kind), and we
find that the BT, (without additional structure) occurring on the stratum
of maximal (resp. minimal) dimension is of the form ((Z/pZ) x JLp)9 (resp.
E[p]g, for E a supersingular curve), as in the classical case.
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