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BALLS DEFINED BY NONSMOOTH VECTOR FIELDS
AND THE POINCARÉ INEQUALITY

by Annamaria MONTANARI and Daniele MORBIDELLI

1. Introduction and main results.

Given a family of vector fields Xl, ... , X, in a crucial problem
when dealing with the second order operator ~ X~ is to give sufficient
conditions to ensure the doubling property of the related control balls
and the Poincar6 inequality. The problem is quite well understood for
smooth vector fields satisfying the H6rmander condition: in this case the
mentioned properties have been proved respectively by Nagel Stein and
Wainger [19] and by Jerison [13]. The techniques in those papers require a
C~-smoothness of the vector fields, for some greater than expected. The
situation is different if we consider diagonal vector fields. In this setting
a description of the control balls and Poincar6 inequality was proved by
Franchi and Lanconelli [7] in a low regularity situation.

In a recent paper Lanconelli and the second author [15] gave a method
for the proof of the Poincar6 inequality for vector fields. Their proof does
not need smoothness, but it requires that the Carnot-Carath6odory balls
are representable by means of controllable almost exponential maps, see

[15], Theorem 2.1. Here we prove that the necessary tools to use this
method can be developed, at least in the step 2 case, assuming only a

Both authors were partially supported by the University of Bologna, funds for selected
research topics.
Keywords: Vector fields - Carnot-Carath6odory distance - Poincar6 inequality.
Math. classification: 46E35.
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Lipschitz condition on the vector fields and on the commutators involved
in the statement of the rank condition.

An interesting feature of our result is that the balls are very easy to
visualize: they are equivalent to linear images of boxes (see (7)). We also
remark that in the present paper we never use the Campbell Hausdorff
formula (a powerful tool whose use in analysis of vector fields requires
regularity). The relevant properties of the "almost exponential maps" EI
defined in (6) are established in Section 2 by direct computations (see the
exact formula in Lemma 2.2). Exploiting the tools of Section 2 for vector
fields of higher step, although of considerable technical difficulty, is an open
interesting problem, which would clarify what are the minimal regularity
assumptions to have a structure theorem for control balls and the Poincar6

inequality. Here we give an answer to this problem in the step 2 case.

For reader convenience we recall the notion of control distance (see [5]
and [6]). Given a family ~i,..., of locally Lipschitz continuous vector
fields on R~, we say that an absolutely continuous path 7 : [0, T] --~ Rn

is subunit if, for almost all t E [0, TI, ~y(t) _ with

1. Assuming that for every x, y E Rn there exists at least
one subunit path connecting x and y, define the control distance related
to Xl, ... , Xm (or Carnot-Carath6odory distance) as d(x, y) = inf{T &#x3E; 0 :

there is ~ : [0, T] -~ R", subunit path such that q(0) = x, = yl. In the
sequel we shall denote by B(x, r) the d-ball with center at x and radius r.

We now state our hypotheses on the vector fields Xj == 
j - 1, ... , m. We assume that fj is locally Lipschitz continuous, that for
any x E j, k = 1,..., m, the derivatives

exist and that the functions Xjfk - Xkfj are continuous for all j, k (here
t t-~ denotes the integral curve of Xj starting at x). Denote by

(Xj fk - := fji,ko9i the commutator. We require
that

for any

We finally assume that for any compact K C R’ there is L &#x3E; 0 such that

for every E K. Note that, by the recent nonsmooth version of Chow’s
theorem proved by Rampazzo and Sussman [20], the topology defined
by d is the Euclidean one. Thus, in view of [11] and [9], the d-Lipschitz
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continuity (2) of !j,k is equivalent to the boundedness of the distributional
derivatives along the vector fields , i.e.

for all

For every compact set K put

All constants in our structure result will depend on (4).
Given a pair of locally Lipschitz continuous vector fields X and Y

define for small s the map exp* (s [X, Y]) as follows:

if

if

Enumerate the vector fields and their first order brackets as

define the degree of Yj as its length as a commutator and denote it by
Given an n-tuple I = (il,..., in), ij = 1,..., q, we define the "almost

exponential map" related to I as follows

where, if 1 then while if

2 (for instance for somepk,lk E 

Pk  lk) then is defined in (5). The maps EI have already
been studied in the smooth case, see [19], [14], [22], [18]. Here we define
and study their properties in a nonsmooth situation.

We shall prove that the control ball is equivalent to the I-box, defined
as

Our first result is the following.

THEOREM 1.1. - Given a compact K, for every x E K and r  ro

there is an n-tuple I such that
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where EI is the map defined in (6). The constants ~o, El, E2, ro are positive
and depend on K and on L in (4), while C is an absolute positive constant
only depending on the dimension n.

In the recent paper [20], Rampazzo and Sussman define the Lie
bracket (at the point x) [X, Y] (x) of a pair of Lipschitz continuous vec-
tor fields X and Y as the convex hull of the set of all vectors v -

with Xj a point of differentiability of both X and Y.
They prove, under the assumption that is spanned by the set

for any x C Rn and for each choice of the vector in the set

that the control ball of radius r contains the Euclidean ball D

of radius r2. Namely, given a point x, there is a constant c = cx &#x3E; 0 such

that, for small r &#x3E; 0, B (x, r) D D (x, cxr 2). Our structure theorem improves
this inclusion. In particular, if I satisfies (19), the ball can be

replaced by Box, (x, r). The latter contains D(x, cor2) for some co &#x3E; 0 which

can be chosen uniformly on compact sets (compare Lemma 3.4). To get this
sharp result we have to require that the commutators [Xk, Xil are Lipschitz
continuous, at least along the "horizontal directions". This assumption
is somewhat reasonable because it ensures that the set BoxI(z, r) moves
continuously with x in the Hausdorff distance in R~. Moreover, we mention
that extra regularity properties of the commutator naturally appears in the
analysis of the regularity properties of a real surface in (~2 with smooth
nonzero Levi curvature (see the work by Citti, Lanconelli and the first
author [1] and the discussion in Section 5).

Theorem 1.1 gives the representation of the Carnot-Carath6odory
balls by means of the maps EI, which are controllable in the sense of [15].
Therefore the doubling property of the Lebesgue measure and the Poincar6
inequality hold.

THEOREM 1.2. - For any compact set KeIRn there are c, ro, Q &#x3E;

0, A &#x3E;, 1, depending on K and L in (4), such that

and

uTith B = B (x, r) and AB = Here



435

It is known that (9) and (10) are the basic tools for a complete study of
the Sobolev embedding for Sobolev Spaces of order 1. See the references by
Saloff-Coste [21], Maheux and Saloff Coste [16], Franchi Lu and Wheeden
[8], Garofalo and Nhieu [10] and Hajlasz and Koskela [12].

Theorem 1.2 improves our previous results [17], where embeddings
for first order Sobolev Spaces were proved but under the more restrictive
condition that the vector fields are linearly independent at any point.
Moreover, all the results in [17] were obtained for compactly supported
functions and no properties of the control distance were studied.

Our paper is organized as follows. In Section 2 we prove some

estimates for the derivatives of the maps Ej. These will enable us to give,
in Section 3, the structure theorem for the control balls. In Section 4

we show the doubling property of the control distance and the Poincar6
inequality. Section 5 is devoted to some examples. In particular we present
a situation of Lipschitz continuous vector fields, related to the prescribed
Levi curvature equation, which satisfy conditions (1) and (2).

Notation. - We denote by C or c positive constants. If u : R

and v : 1R.n --+ Rn we denote by uv = u o v the composition between u
and v. Moreover, if f 1, ... , f p are diffeomorphism in we let 

fp. We denote by etxx the solution of the Cauchy problem
= ~. The Jacobian matrix of a function

f : is denoted by D f . Finally, (.,.) indicates the standard inner
product in R" .

Acknowledgements. - It is a pleasure to thank Ermanno Lanconelli
for his encouragement to our work on this problem. We also thank the
referee, who helped us to improve the exposition of the paper.

2. Derivatives of the map EI.

In this section we assume the vector fields of class C°° and differ-

entiate the map EI (x, h) defined in (6) with respect to h. We will discuss
how to regularize nonsmooth vector fields in the next section. Although the
vector fields are smooth all the constants appearing in this section depend
on L in (4).

PROPOSITION 2.1. - Let

Then, for all j = 1,..., n,



436

where, given a compact set K, there is a neighborhood V of the origin in
R~ such that for all h E V and j = 1,..., n, the remainder Rj satisfies the
estimate

The proof of Proposition 2.1 relies on the computation of the deriva-
tive of the "approximate commutator" defined in (5). This will be done in
Lemma 2.2. We shall use the following standard formulas:

and

The following exact formula holds:

LEMMA 2.2. - Given a pair X and Y of smooth vector fields, for
small s &#x3E; 0 the following formula holds for any smooth function u : JRn --+ R

Proof. Write
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The first term in the previous equality is

where we used (13) in the second equality. Analogously

Let and take (12) into account. Thus

Analogously, letting we can write
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Now the proof can be easily concluded summing up A2, A3 and 

To estimate the terms of the exact formula in Lemma 2.2 we shall use

the following lemma.

LEMMA 2.3. - Let ~i,..., Xp and Y be smooth vector fields. Let
also u : smooth function. Then, tp are small numbers
and x belongs to a compact set K,

denotes the supremum norm in some neighborhood of K.
Let 7rk (x) = Then for all k = 1, ... , n

where, if x and E is small enough, the constant C depends on the
Lipschitz constants of the in some neighborhood of K.

Proof. Both the estimates are standard. In order to control care-

fully the constants in their right hand sides, we recapitulate their proofs.

Estimate (14) is an easy consequence of the fundamental theorem of
calculus.

To prove (15) it suffices to show that



439

with will follow iterating (16). Let

Then (we omit the summation on repeated indices)

Thus we have )£(t) - £(0) ) # where we used the boundedness of

(81bk) in a neighborhood of K. The proof follows from Gronwall inequa-
lity. D

Proof of Proposition 2.1. - In the proof u is any of the 7rk’S. Let

and

We have

We distinguish two cases. If 1, then

By the inequality (15) we get
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where the constant C depends on the Lipschitz norm of the original
vector fields Xi, i = 1,..., m. The proof can be concluded by estimating

(Uju)(x) by means of (14).
If instead = 2, say ~Xp~ , Xl~ ~, then by Lemma 2.2

where we let

We use again (15) and (14) to estimate

where the constant C depends on L in (4).
To conclude the proof of the proposition, note that both the terms in

the last two lines of in ( 17) can be estimated by a sum of terms of the form
= 1, ... , m . All these suprema can be

estimated by L, the constant appearing in (4). 0

3. I-Boxes and structure of balls.

In this section we take Lipschitz continous vector fields satisfying (1)
and (2) and we shall prove Theorem 1.1. We start with the following remark.

Remark 3.l. - The last inclusion in the right hand side of (8) can
be proved rather easily. Indeed, since t H is a subunit path,
then I t 1, for every j - l, ... , m. By the definition of
Ei in (6), for every n-tuple I = (iI, ... , in) we have the inequality
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with an absolute constant C = C(n), and the inclusion h) : 
r} C B(x, Cr) follows.

In order to prove the remaining part of the theorem, given an n-tuple
I = (il, ... , in) e ~1, ... , we shall denote d(1) = E7=1 d(Yij) and

By condition (1) at every point x there is an n-tuple I such that À¡(x) =1= 0.

Theorem 1.1 will be an immediate consequence of Remark 3.1 and of

the following theorem.

THEOREM 3.2. - Given a compact set K, there is a neighborhood
V of the origin in such that the map EI(x, -) is Lipschitz continuous in
V for all I and for any x E K. Moreover there are ro &#x3E; 0, EO, EI, E2 &#x3E; 0

such that if x E K, r  ro, and I satisfy

then

(i) I det for almost all 

(ii) The map EI(x,.) is one-to-one Eorl.

We start by proving the Lipschitz continuity of EI (x, ~ ) and some
estimates on derivatives. The following lemma is the nonsmooth version of
Lemma 2.1.

LEMMA 3.3. - Fix a compact set KeIRn. Then there exist a

neighborhood V of the origin in IRn and a constant C &#x3E; 0 such that, for
aIl I and for any x C K, the map EI (x, -) is Lipschitz continuous on V and
satisfies for j = 1,..., n

for a.e.

where

for any

Proof. The proof relies on the smooth version of the lemma,
proved in the previous section, and on an approximation argument. Denote
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by where is the usual

mollifier. We have I
easy to realize that

and it is

with C depending on the Lipschitz constants of the coefficients of the vector
fields. Hence, for E small, the vector fields X(’) satisfy H6rmander condition
(1) at every point. We now use the results of the previous section for the
mollified vector fields. In particular Proposition 2.1 holds for the vector
fields xjc) with constants independent of c. Namely, denoting by the

(smooth) map arising from the 

where C and V are independent of 6;. By the form (6) of E, we immediately
recognize that for any x, I, h, the limit as E goes to 0 of (x, h) exists
and we put

Fix any x E K. The family E~(~’) is bounded in 

by (22) and (23). Thus it is bounded in W l2 (Y) . We can choose a
sequence Ck 1 0 such that E§~~~ (z, .) --~ EI (x, ~), weakly in W 1’2 (Y), i.e.

E~(~ .) --+ E,(.r,.) and - weakly in L2 (Y) as
1~ -~ 00. By taking the L2-weak limit in (22) we get

where the function RI° (x, ~ ) is defined by the last equality. By standard
properties of weak convergence, the estimate (23) preserves under the limit,
i.e. for almost any h E V. The function EI (x, ~ ) is

continuous by (6). Moreover, it turns out to belong to because

its (distributional) derivative .) is essentially bounded. Then (see
[4], Section 4.2.3) E¡(x,.) is Lipschitz continuous on V. Thus, (20) holds
and the derivatives in the left hand side actually are pointwise derivatives
calculated at a point of differentiability of EI (x, ~ ) .

Finally, by choosing a suitable representative = R~° (x, ~) a.e.,
we conclude that (21) holds for any h E V. D

To prove Theorem 3.2 we need some more preliminary lemmas.
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LEMMA 3.4. - For all A E ~0,1~ there is 77 = TJ(À) &#x3E; 0 such that if

x E K, r  ro and I qln satisfy (19), then

with D(x, r) the Euclidean disc of radius r and center at x.

Proof. Denote for brevity Uj. Fix À E ~ ],,1 . We first prove
that we can find q &#x3E; 0 such that

with ~ ~ ~ I the Euclidean norm. To prove (25) it suffices to take a n-tuple
P = (pl , ... , pn ) such that IÀp(x)1 = Then

where the constant C depends on an upper bound on the norm of the Yj’s
on the compact .K (recall (18)) and the last estimate comes from the fact
that infxEK F-j IÀJ(x)1 I &#x3E; 0 by (1). Thus (25) follows by choosing Çs == 0
if s ~ ~ pl , ... , pn ~ , by solving the Cramer system 1:’ 1 Yp, (x ) ~p~ = u and
by using estimate (26).

Since the vector fields YiJ (x) = 1, ... , n are linearly
independent, for any I == we can uniquely write

Following [19] we use the Cramer rule

and, since we know that &#x3E; ~ maxi we get

We are now ready to prove (24). Indeed, for any u E D(O, r¡r2), by
(25) there is a choice of G such that u = L:i=lÇl¥iz(x), with lçl I  2q,r2.1 -- 2q

Then, by (27),
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where

for any r  1. D

PROPOSITION 3.5. * - For all x &#x3E; 0 there is éO(X) &#x3E; 0 such that if

(19) holds for x E K, r  ro and I, then we can write for almost any h,

were I

Proof. The estimate in the second line of (30) is equivalent to
for all k, j. For X  1 this will be ensured by

the stronger estimate

because, in the notation of Lemma 3.3, ¿~=I We

have already proved (see (21)) that Cllhll¡. Thus, assuming
we have Recall now that we also proved

in Lemma 3.4 that, if (19) holds, D(0,7/(~)~). Thus we
conclude that (31) is ensured by the choice C£o # 71(X). 0

Proof of Theorem 3.2. - In the following proof the n-tuple I satis-
fying (19) is fixed. We write Uj and dj, j = 1,..., n.

Proof of (i). - By Proposition 3.5 we have for a.e. h, det -

ah,
AI(x) det(6j,k + bj,k) (here 6j,k denotes the Kronecker symbol). The proof
of (i) can be easily concluded. Indeed, since 6j,k is a diagonal matrix, we
have det( ( if we choose the

constant X smaller than a suitable dimensional constant xo (n) .

Proof of (ii). - Fix X &#x3E; 0 such that (i) holds. The map 
is Lipschitz continuous and, by Rademacher theorem, for any h’ there is
a subset ~(h’) of the (n - I)-sphere S’-’ C Rn, such that the surface
measure of ~n -1 B ~ ( h’ ) is zero and such that for any v the map
h ~ EI(x, h) is differentiable at any point of the set + tv E 

of  except a subset of 1-dimensional measure zero.
Thus for any h such that Q E ~(h’) we can use the gradient formula to
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calculate A E, (x, h’ + t ( h - h’)) and the fundamental theorem of calculus
to get

where In is the identity matrix, U = [Ul,... , and B is the n x n matrix

whose entries fo + t(h - h’))dt satisfy I , xrdk-dJ.
Since

with A(x) ~4 0, and we have chosen X such that 
(1/2,2) then the matrix U(x) (I + BT ) is invertible. Ultimately, we have
for any fixed Eor, for almost any the following
estimate

where the constant C does not depend on h and h’. Thus, by continuity, (33)
holds for all h, h’, Eor. Therefore the map h - EI(x, h)
is injective.

Proof of (iii). - We shall show that if El is small enough, for every
g e ~ the equation

has a solution h E := Ih E Eorl. Here Eo is the

constant fixed in the proof of (i) and (ii).
To prove (34) we shall use the homotopic invariance of the topological

degree. Let

Recall that the map h --+ h) is continuous. Thus Fa is a continuous
map in (A, h) E [0,1] x QI (E0r). Moreover Fo (h) = h and F1 (h) --
U(x)-1 (EI(x,h) - x). Equation (34) is equivalent to E. The

topological degree deg(Fo; Q¡(Eor); ç) of the map Fo (h) = h is clearly 1 as
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soon as El  Eo. In order to use here the invariance of the degree (see, e.g.
[3]) we have to check that for a suitable choice of CI we have

for all ,

If (35) holds, then we can assert that deg(FI; Q¡(éor); ç-) == 1. Thus there
is h E Q¡(éor) such that (34) holds.

In order to prove (35) note that the latter is implied by the strict
inequality

To show (36) we prove that there is an absolute constant Co such that

Then the choice of any positive -I such that El  Coc6 gives (iii).
Now by continuity it is enough to check (37) for any h E 

with ~ G £(0) (recall has full measure in 8n-I). For any
of those h’s, equation (32) with h’ = 0 holds and gives 
x + U(x) (In + BT (x, h))h. Therefore, (37) is ensured by

In order to prove the last inequality, take h such that llhllj = Eor-
This means that for some l we have IhllI/dl = Eor. Then write

where were introduced after (32). Introduce the matrix M defined
by Mk,j = (6k,j + -dk ) and denote v = E7=1 hjr-dJ ej. Thus the
inequality in the last line of (38) may be written as

By the same argument of the proof of (i), we may assert that the matrix M
satisfies Clvl for all v E (here 1.1 denotes the Euclidean norm),
for every h E ~0, 1~ . Note also that both v and Mv belong
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to a fixed compact set (Eo has been fixed in (ii)). Thus there are positive
constants C2, Cl, Co such that

The proof of (iii) is concluded.

Proof of (iv). - Now El has been fixed. We will prove that there is
E2 &#x3E; 0 such that for any y E B (x, c2r), there is ~ such E 1 r and

Write y = -y(1), where,
Thus

) and é 2 r for a.e t.

where we let fo = (3j. Note that The remainder 

satisfies ~G(-y) ~  CC2r2. Indeed ~X~ (~y(t)) - X~ (x) ~  
.r) ~ CLc2?" (here L is the Lipschitz constant of the vector fields).

Thus, using (27) we conclude

By (29)

Thus the proof will be concluded as soon as we are able to solve
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with This can be easily done, if E2 is small enough, by taking
into account estimate (40) and Lemma 3.4. D

4. Doubling property and Poincaré inequality.

In this section we prove Theorem 1.2.

Proof of Theorem 1.2. - The doubling property (9) will follow
from the equivalence where A(x, r) -
E, IÀ1(X) Ird(l). Fix x and r and choose I such that (19) holds. By (8)

The estimate from below can be proved by (8) with a similar argument
(recall that ~I (x) ~ rd~I &#x3E; &#x3E; r) if (19) holds).

We now prove the Poincar6 inequality. Fix a ball B(xo, E2r). For any
x and I satisfying (19) for the prescribed r, by Proposition 3.2, the map
h H EI (x, h) is one-to-one on Eorl with Eo &#x3E; El and

its Jacobian 2 ] A I (z ) ] for almost all
h, Moreover, (8) gives Boxj(x, Elr) C h) : Eorl.
In the language of [15], these facts mean that, letting

the map EI : QI x is an almost exponential map. Moreover, we
can choose I such that where N is the total number
of n-tuples.

The controllability in [15] requires that there exists 1 : SZI x x

[0, cr] such that

(Cl) For any (x, h) E QI x Eorl, t H 1(x, h, t) is a subunit

path connecting x and Ei (x, h), i.e. 1(X, h, 0) = x, 1(X, h, T(x, h)) --
h) for a suitable T (x, h)  cr.

(C2) For any (h, t) E x [0,cr], ~ ’-~ 1(X, h, t) is a one-to-one

map having continuous first derivatives and Jacobian determinant

uniformly bounded away from zero, i.e.

The points x and can be joined by a piecewise integral
curve of the Xj’s. Hence the map ~ can be defined as follows. Denote by
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0. If d(Uj) = 1, then let = etU1xj
for 0  t  he - If instead d(Uj) = 2, say Uj = [Xp~, Xl1], then let

If hj  0 the construction is analogous.

By taking the path -~ + ... + ’"’(1 we see that condition (Cl) is

satisfied with a T(x, h)  cr, where c is an absolute constant. Concerning
condition (C2), although we can not expect that the map x 1--* q(z, h, t) is
C , it is known that it is a Lipschitz continuous change of variables and
det = 1-~ cp(x, h, t), with cr a.e. on QI x QI(£or) x
[0, cr] (this is a quite standard fact in ODE’s, see the discussions in [9],
pp. 99-101 and [11], Lemma 2.2). This property is actually sufficient in
the proof of the Poincar6 inequality in [15], p. 332, 11. 6-9, where condition
(C2) is used to make a change of variable in a Lebesgue integral.

We conclude that all the hypotheses of [15], Theorem 2.1 are satisfied
and the Poincar6 inequality (10) holds on the ball B(x, E2 r) 0

5. Some examples.

In this section we show some applications of Theorem 1.2.

Example 5.1. (Levi vector fields). - Here we precise the Example in
[15], Section 5. Given a real valued function u E C2 (Q), Q C JR3, define the
first order operators in IR3

where, for any In

particular x 1-+ al(B7u)(X) and x 1-+ a2 (Vu) (z) are C1 functions. However,
this regularity assumption does not seem to be enough to get the Poincar6
inequality (10). Here we add to that condition the following: assume that
u is a solution of the prescribed Levi curvature equation
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and assume that the Levi curvature k is Lipschitz continuous and different
from zero at any point. This assumption provides both the rank condition
and the "horizontal Lipschitz continuity" of the commutator, which are
required in our main theorem. Indeed, in [2] it has been proved that if u is
a solution of (42) then ai (Vu) = X2u, a2 (~u) _ -Xlu and

Since is different from zero at any point, then condition (1) is satisfied. We
now show that u, Vu)) is bounded for j = l, 2. An easy calculation
shows

Remark that, for i = 1,..., 3,

and analogously

Therefore

By (43) and (44) u, Vu)) 11,, + IIX2(q(., u, is bounded by a
positive constant which only depends on 

]]V(a2(Vu))]]&#x3E; + ~~~(1~(’, u))~~~. Thus, q satisfies (2). Hence, the vector
fields in (41) satisfy the hypotheses of Theorem 1.2, which is the main tool
in the Moser iteration technique for the study of regularity of solutions. In
particular, we believe that this tool will enable us to improve Theorem 1.1
in [1], where, in order to prove C2’a estimates of a viscosity solution, it was
required the smoothness of k.

We end this section by exhibiting another example of Lipschitz
continuous vector fields for which Poincar6 inequality (10) holds.

Example 5.2. - Take in R3 the two vector fields

with rp a Lipschitz continuous function such that c &#x3E; 0. At every

point there exists ~Xl, X2~ - rp(Xl, x3)åx3 and it is Lipschitz continuous.
Hence, both conditions (1) and (2) are satisfied.
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