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PURE DISCRETE

SPECTRUM DYNAMICAL SYSTEM AND

PERIODIC TILING ASSOCIATED WITH A

SUBSTITUTION

by Anne SIEGEL

Introduction.

A complete study of the dynamical systems associated with the Morse
substitution (1 - 12, 2 - 21) , the Fibonacci substitution (1~12,2’-~1),
and the Tribonacci substitution (1 1--* 12, 2 ~-4 13, 3 H 1) states that the first
system has a continuous spectral component whereas the others have pure
discrete spectrum and are explicitly semi-conjugate to toral translations,
linked with self-similar periodic tilings. Hence, a natural question is to

determine which substitutive systems are measure-theoretically isomorphic
to a translation on a compact abelian group. An additional motivation
comes from the physics of quasicrystals, where sequences generated by
substitutions are used as models of atomic configurations, and pure discrete
spectrum corresponds to the configurations being pure point diffractive
[BT], [Se]. °

The case of substitutions of constant length is well understood: the
maximal equicontinuous factor is explicit and systems with pure discrete

spectra are characterized [De]. The question of substitutions of non-constant
length was first tackled with a complete study of the system associated
with the Tribonacci substitution [Ral]. Then, a significant advance was
made by proving that the two main dynamical classifications, up to

Keywords : Substitution - Dynamical system - Pure discrete spectrum - Rauzy
fractals - Tiling.
Math. classification : 37B 10 - 52C22 - 47A35 - 28A80.
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measure-theoretic isomorphism and topological conjugacy, are equivalent
for primitive substitutive systems [Ho], and also for linearly recurrent maps
on Cantor sets [Du]. As a consequence, the spectrum of a substitutive
system can be divided into two parts: the first part has an arithmetic

origin, and depends only on the incidence matrix of the substitution; the
second part has a combinatorial origin, and is related to the return words
of the fixed point of the substitution [FMN]. The arithmetic spectrum of
substitutive systems of Pisot type is explicit and nonempty, so that these
systems are never weakly mixing.

Many papers deal with conditions for a substitutive dynamical system
to have pure discrete spectrum (see the bibliography in [PF], Chap. 7) ; in
particular, the condition of strong coincidence implies the pure discrete
spectrum property for substitutions that have constant length or that are
of Pisot type over a two-letter alphabet [De], [HS]. About substitutions on
more than three letters, the condition of coincidence implies self-similarity
of the associated Rauzy fractal, which is an explicit compact subset of
non-zero measure in the product of a euclidean space and p-adic spaces
(depending on the unimodularity of the substitution) [AI], [Si2]. More
precisely, the Rauzy fractal is covered by a finite number of pieces that
satisfy an equation. Self-similarity of the Rauzy fractal is equivalent to
the disjointness of the pieces up to a set of measure zero. The condition
of strong coincidence implies that the pieces are effectively measurably
disjoint.

As a consequence, the associated substitutive system is semi-

topologically conjugate to an exchange of domains on the Rauzy fractal.
An explicit topological factor is given by a translation on a compact
abelian group [CS2], [Si2] ; the techniques do not provide results for a
semi-topological conjugacy as it is the case for two-letter substitutions.

In this paper, we use a formal and algebraic point of view instead
of the usual measurable point of view, to address both the questions of

self-similarity and pure discrete spectrum. Our point of view is based on
two points. The first one is the combinatorial structure of the substitutive

system, deduced from its prefix-sufhx automaton. The second one is the
algebraic structure contained in the substitutive system and described by
the incidence matrix of the substitution. More precisely, we introduce a
formal representation of substitutive dynamical systems expressed with a
formal power series in cx, where a denotes the dominant eigenvalue of the
incidence matrix. We obtain a representation map by gathering the set of
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finite values which can be taken for any topology (archimedean or not) by
the formal power series, that is, by taking the completion of with

respect to all the absolute values on this field which take a value strictly
less than 1 on a.

In this way, the self-similarity of a Rauzy fractal is reduced to the
study of sequences of digits such that the associated formal power series
tends to zero for all the metrics for which the power series has a limit.

This implies that the sequences of digits are paths in a finite graph. The
understanding of the structure of the graph is fundamentally connected
with pure discrete spectrum. Hence we prove and give many illustrations
for the following:

THEOREM. - There exists a computable sufficient condition for

a substitutive dynamical system to have pure discrete spectrum. This

condition is a necessary condition when the substitution is unimodular and

has no non-trivial coboundary.

With this condition, we check whether a given translation on a
compact abelian group is isomorphic to the substitutive system. When the
substitution is unimodular and satisfies an extra combinatorial condition

(no non-trivial coboundary), this translation is known to be the maximal
equicontinuous factor of the substitutive system. As a consequence, the
sufficient condition is also a necessary condition for pure discrete spectrum
in this specific case.

The reason why we are unable to state that the sufficient condition
of the theorem is also a necessary condition is the following. In the

general case (non-unimodular or unimodular with non-trivial coboundary),
the discrete spectrum of the substitutive system is not explicitly known.
Therefore, we cannot prove that the translation on the compact abelian
group that is deduced from the construction of the Rauzy fractal has the
same discrete spectrum as the substitutive system. When this is not true,
the translation is not the maximal equicontinuous factor of the substitutive

system; these systems cannot be isomorphic. However, this does not imply
that the substitutive system does not have a pure discrete spectrum, since
the good candidate has not been exhibited. Such a phenomenon could
occur especially when the spectrum of the substitutive system contains a
combinatorial part. However, one should notice that we are unable for the
moment to exhibit a substitution of Pisot type that does not satisfy the
sufficient condition of the theorem.
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As we explained before, the sufficient condition in the theorem above
is satisfied if and only if an explicit translation on a compact group is

semi-topologically conjugate to the substitutive system. If the substitution
is unimodular, the compact group is a torus. In this case, we prove that
the Rauzy fractal generates a given periodic tiling if and only if the

toral-translation is semi-topologically conjugate to the substitutive system.
Hence we deduce the following, illustrated in Fig. 0.1.

THEOREM. - Let a be a unimodular substitution of Pisot type over a
d-letter alphabet. There exists a computable necessary and sufficient

condition for the two following equivalent properties:

. the Rauzy fractal of the substitution is a fundamental domain for a
given lattice Ho, so that it generates a periodic tiling 

. the substitutive dynamical system is semi-topologically conjugate
to the translation on given by the vector of frequencies of letters in
any infinite word of the substitutive system.

As an intermediate result, we also give an effective sufficient condition
for unimodular Rauzy fractals to be connected.

Organization of the paper. - The first section is devoted to the

definition of substitutions and an associated combinatorial expansion
system. In the second section is deduced a numeration system associated
with a substitution. The non-proper expansions in this system are

characterized. The third section introduces the Rauzy fractal associated
with a substitution of Pisot type. Its geometric properties (connectivity and
self-similarity) are described by finite graphs. In the final fourth section,
the dynamics of substitutive dynamical systems of Pisot type is studied.
The theorem stated above are then deduced.

Hence, four different types of graphs are introduced along this paper:

. the prefix-suffix automaton describes combinatorial expansions
generated by a substitutive dynamical system;

. the arithmetic graph describes the non-proper expansions in the
numeration system associated with a substitution;

- the geometric graph is obtained as a cross product of the arithmetic
graph with the prefix-suffix automaton. It contains informations about

connectivity, boundary, and intersections of cylinders of Rauzy fractals,
providing a caracterization for self-similarity;
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Tribonacci substitution

1 f--+ 11223, 2 ~-4 123, 3 - 2

Flipped Tribonacci substitution

Figure 0.1. Periodic tilings generated by Rauzy fractals

. the tiling graph is an extension of the geometric graph. It is linked
with the intersections of translated copies of the Rauzy fractal, and provides
a condition for pure discrete spectrum and tilings.
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1. Substitutions: combinatorial and formal

expansions.
1.1. Definitions.

Let A be a finite alphabet and ,,4* the set of finite words on A.
The empty word is denoted c. A doubly infinite word on A is denoted
w = - - - W-2W-l . WOWl .... The metrizable topology of the set of doubly
infinite words is the product of the discrete topology on A. A cylinder
of is a clopen set of the form

for Wl , W2 E .~1.* (if Wl is empty, the cylinder is denoted [W2]).
Denote by S the shift map on i.e., (wi+i)iez.

A word w E Az such that ,S’v (w) - w with v &#x3E; 1 is called shift-periodic.
The symbolic dynamical system generated by a word u is the pair (Xu, S),
where Xu denotes the closure in of the orbit of u under the shift map.
The shift map ,S’ is an homeomorphism on this compact subset of 

A substitution is an endomorphism of the free-monoid ,,4* , such that
the image of each letter of ,A, is nonempty, and such that tends to

infinity for at least one letter a. A substitution naturally extends to the set
of doubly infinite words Az:

A periodic point of a is a doubly infinite word u = (Ui)iEZ E that

satisfies a" (u) = u for some v &#x3E; 0 and for which there exists a letter a such

that every factor W of u is also a factor of for some k. If a-(u) = u,
then u is a fixed point of a. Every substitution has at least one periodic
point [Qu]. The substitution is shi, f t-periodic when there exists a point that
is periodic for both the shift map and the substitution a.

We call a substitution primitive if there exists an integer v (inde-
pendent of the letters) such that, for each pair (a, b) C ,A2, the word a~v (a)
contains at least an occurrence of b. In this case, if u is a periodic point
for ~, then Xu does not depend on u and we denote by (Xa, S) the
symbolic dynamical system generated by a. The system (Xa, S) is minimal
and uniquely ergodic: there exists a unique shift-invariant probability
measure on Xa [Qu].

1.2. Substitutions of Pisot type.

Let I : ,,4* H ~Td be the natural homomorphism obtained by
abelianization of the free monoid. With each substitution a on ,~4 is
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canonically associated its abelianization linear map whose matrix M =

(called incidence matrix of a) is defined by mi,3- - so

that we have l(cr(W)) = M1(W ) on ,~i.* . If a is primitive, M has a simple
real positive dominant eigenvalue a (Perron-Frobenius theorem).

A substitution a is of Pisot type if every non-dominant eigenvalue A
of M satisfies 0  1,B1  1. We deduce that the characteristic polynomial of
the incidence matrix of such a substitution is irreducible over Q (see [CS2]).
Consequently, the dominant eigenvalue a is a Pisot number and the other
eigenvalues A are its algebraic conjugates; substitutions of Pisot type are
primitive and not shift-periodic (see the proofs in [PF]). A substitution
is unimodular if det M == ::l:: 1.

Note that there exist substitutions whose largest eigenvalue is Pisot
but which are not of Pisot type. Examples are l’2013~12,2’2013~3,3’2013~4,
4 H 5, 5 H 1 and the Morse substitution It2013~12,2’2013~21 (the characteristic
polynomial is not irreducible).

1.3. Basis of eigenvectors.

Let a2,..., ar denote the non-dominant real eigenvalues of M;
be the complex eigenvalues of M. Let

ua (respectively vx) be the unique dominant left (respectively
right) eigenvector of M normalized so that the sum of its coordinates is one
(respectively, normalized so that = 1).

An eigenvector uak for each eigenvalue a~ is obtained by replacing cx
with ak in u,,. From the irreducibility of the characteristic polynomial,
these vectors generate IRd; their dual basis is given by the vectors vak . More
precisely, one has x = Ed_ k-1 (x, for every x E [CS2]. Then, a
rational vector is characterized by its first coordinate (the other
coordinates are deduced by replacing cx with its conjugates). This remark
underlies the whole contents of the present paper.

LEMMA 1.1 (see [CS2]). - A vector x E Qd with rational coordinates
is completely determined by the polynomial (x, va) 

1.4. Combinatorial expansion system associated with a
substitution.

Let w E X0152 be a doubly infinite word generated by a primitive non-
shift-periodic substitution CF. In this section a greedy algorithm is defined
that allows one to decompose w as a combinatorial power series. Hence,
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a combinatorial expansion is defined on X~ ; this combinatorial expansion
will play the role of a numeration system on doubly infinite sequence, in
the flavour of Dumont-Thomas for finite words [DT].

Desubstitution: a combinatorial division by a. - Every doubly infinite
word w E has a unique decomposition w = Sl/(a(v)), with v E X~ and
0  v where vo is the Oth coordinate of v [Mo]. This means that
any word of the dynamical system can be uniquely written in the following
form, witg ... v-n ....v-1

Here, the doubly infinite word v appears to be the quotient of w by the
division by a. The rest of the division lies in the the three-tuple (p, wo, s),
that is, the decomposition of of the form pwos, where p = t~-~ - - - 
(prefix) and s = wl ... ww, (suffix). The word w is completely determined
by the quotient v and the rest (p, wo, s).

Let P be the finite set of all rests or digits, called prefix-suffix set
associated with a:

The desubstitution Tnap 0 : Xa - Xa maps a doubly infinite word w to
its quotient v. The decomposition of the form pwos is denoted

ry: Xa - P (mapping w to (p, wo, s) ) .
For example, if a denotes the substitution 1 H 1112, 2 H 12, one

computes P = {(~, 1,112), (1,1,12), (11,1, 2), (111, 2, ~), (~ 1,2), (1, 2, E) 1.
Prefix-suffix expansion. - The expansion is the map

Ep : Xa - PN which maps w E Xa to the sequence E 7~,
that is, the itineraries of w through the desubstitution according to the
partition defined by ry. For example, the prefix-suffix expansion of periodic
points for a has only empty prefixes.

Let w E Xa and EP (w) _ (pi, ai, si)i&#x3E;o be its prefix-suffix expansion.
If an infinite number of prefixes and suffixes are nonempty, then w
and Ep (w) satisfy:
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Hence, the prefix-suffix expansion can be considered as an expansion
of the points of Xa in a "combinatorial" power series. The three-tuples
(pi, ai, si) play the role of digits in this combinatorial expansion.

Degree of precision of the combinatorial expansion. - Any prefix-
suffix expansion is the label of an infinite path in the so-called prefix-suffix
automaton of a, whose set of vertices is the alphabet ,,4 and such that there
is an edge labeled by (p, a, s) E P from a towards b if pas = a (b). Examples
are shown in Figure 1.1.

Fibonacci substitution 1 ~ 12, 2 H 1

Tribonacci substitution 1 H 12, 2 ~ 13, 3 ~ 1

Figure 1.1. Prefix-suffix automatons.

Denote by XP the set of path labels in the prefix-suffix automaton; it
is the support of a subshift of finite type. Any such path is the expansion
of a doubly infinite word, since the map EP is continuous and onto X.
A countable number of doubly infinite words are not characterized by their
prefix-suffix expansion: EP is one-to-one except on the orbit denoted x-ger
of periodic points of ~, where it is finite-to-one (see the proofs in ~CS1~,
[HZ] ) .

1.5. Formal expansion associated with a substitution.

The desubstitution expands a doubly infinite word w E Az as the limit
of the words an (Pn) ... a(Pl )Po . Since a substitutive



350

set has entropy zero, quite no information is lost by considering only the
left side of this decomposition an (Pn) ... again, in the flavour of
Dumont-Thomas [DT].

Such a word embeds in as the vector a(Pl)po). The
underlying idea in this paper is to represent the word w by the limit of these
vectors. Since the limit does not exist in R , the vectors 
are considered formally, thanks to Lemma 1.1. Indeed, such a rational vector
is completely determined by the algebraic number

(since va is a right eingenvector of M, that is, a left eigenvector of tM).
A representation of w is given by the formal limit of these polynomials in a.

denote the set of formal power series in c~.

DEFINITION. - The formal expansion of a doubly infinite word
w E Xa is the formal power series

2. Numeration system associated with a
substitution of P isot type.

The aim of this section is to represent as precisely as possible any
formal expansion associated with a substitution of Pisot type. We first
define a representation space and an embedding of into this set. In a

second part, the lack of injectivity of the embedding is studied: formal

power series that map to 0 are characterized. In a third part, examples are
developed.

2.1. Numeration system.

Let D be the finite set of digits that appear either in the formal
expansion of doubly infinite words of Xa, or in the difference between two
such formal expansions.
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The formal expansion map maps Xa to the set of formal power
series with coefficients in D, say 

A power series in is simply a formal object. There are no
difficulties with giving a value to this formal object, as soon 

is provided with a complete metrics such that an tends to zero. The
representation of a formal power series we want to define will gather the
complete set of such values.

Topologies on - The metrizable topologies on Q(ct) are of two
types [Am]:

. Either the topology is archimedean: its restriction to Q is the usual
topology on Q. Then there exists a conjugate A  1 of a such that the

absolute value of any P(a) E Q(ct) , where P E Q[X], is I P (A) 1. .

. Or the topology is non-archimedean: there exists a prime p such
that the restriction of the topology to Q is the p-adic topology. Then there
exists a prime ideal I of the ring of integers of Q (a) such that a, p E I and
the topology is the completion of Q(ct) for the I-adic topology on this last
field. Notice that this completion is a Qp-vector space with dimension the
ramification index of 1.

Representation space of the formal power series set D ~ ~cx~ ~ . - Let us
fix the following notation:

. For 2  k  r + s, K,,, is equal to R if cx~ is a real number; else, it is
equal to C.

o Zl, ~ ~ ~, Zv are the prime ideals that contain a, in the ring of integers
of Q(a) .

For K  v, OCIk is the completion of Q( a) for the Ik-adic topology.
. Pi? ’ "? p,y are the prime divisors of the norm of a, that is, det M.

. For I~  q, let where e(Ij) denotes the
ramification index of Ij.

The representation space is the direct product K of all these
fields:

Endowed with the product of the distances of each of its elements, K is a
metric abelian group. Notice that K is a euclidean space if and only if a is
a unit. The sequence an tends to zero in this space.
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The representation or canonical embedding of into K is

defined by

Lemma 1.1 allows one to embed finite words into K, so that a relation exists
between doubly infinite words and the representation space 

2.2. Degree of injectivity of the canonical embedding.

The canonical embedding 6 provides a representation for the formal
set D[[c~]]. In this section, we determine how precise is this embedding:
its "kernel" is described thanks to a finite graph. The following result was
settled and partially proved in [Ra2].

PROPOSITION 2.1. - The representation of a formal power expansion
dia2 E is null in II~ if and only if the sequence of digits

(di)i labels an infinite path in a finite graph called the arithmetic graph
associated with ~.

Arithmetic graph. - Let us gather in a subset Wa of Q(a) the
renormalized finite sums formal power series having a null representation

The arithmetic graph is the connected component of the vertex
zero in the following graph. Its set of vertices is denoted Va C Wa and is
the biggest set such that

. an edge from ~ E Va towards v E Va is labeled by d C D if

and I

. each vertex ~ E Va belongs to an infinite path that starts in ~o = 0.
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Proof of Proposition 2.1. - There are four steps in the proof.

1) For any absolute value 1. Iv on Q(a), there exists a constant Mv
such that ] . v is bounded by Mv on Wa.

Let with

If lalv &#x3E; 1 then lçlv  Mv = d e 1).

If  1, then v is the metric associated with one of the fields that
appear in the definition of K as a product, so that g = - di+Nai for
this topology. Hence lçlv  Mv = E lal:).

If 1, then the absolute value 1. Iv is non-archimedean so that

lçlv  Mv = 

2) A sequence (di) D’ labels an infinite path in the graph if and
only if 6 (F-i&#x3E;O diai) - 0.

Let (di ) E D°° label a path in the arithmetic graph. There exists a
sequence of vertices ~i e Va such that ~o = 0 is the initial vertex of the
path and açi+l = di + gi for every i &#x3E; 0. For every absolute value such that

 1, we know that tends to zero

since Me,. This means that 0. The converse is a

direct consequence of the definition of the arithmetic graph.

3) There exists A =/=-E N such that for every ~ is an algebraic
integer.

Since D is a finite set of algebraic numbers, there exists A =/=-E N
such that Ad is an algebraic integer for every d E D. Let 1. v be a
non-archimedean absolute value on Let

with Since c~ is an algebraic integer, either 1,
hence  E D)  1, or  1, hence

Finally, 1 for every non-archimedean absolute value 

which means that Aç is an algebraic integer.

4) Va is a finite set. The set AVa consists of algebraic integers
whose algebraic conjugates are all uniformly bounded, so that the set of
minimal polynomials of AVa consists of polynomials in Z[X] with bounded
coefficients. Hence, it is finite and so is AVa. 0
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Effective construction of the arithmetic graph. - The smallest

integer A such that AD contains only algebraic integers is easily computable
since an algebraic number is an algebraic integer if all the symmetric
functions of its algebraic conjugates belong to N. The other steps of the
proof are algorithmic, so that the arithmetic graph is computable.

2.3. Examples.

The Fibonacci and the Tribonacci substitutions 1 H 12, 2 H 1. -

The eigenvalues of the matrix of 1 ~ 12, 2 - 1 are the Fibonacci number oz

and 0 - -1 (1 - v~’5-). The prefixes appearing in the prefix-suffix automaton
are all empty, so that D = f 0, 1, - 11. The arithmetic graph has 7 vertices.
It is shown in Fig. 2.1. By construction, paths starting from 0 are labeled
by the sequences (di)i C {O, 1, such that limN ~ ~ ¿i:SN = 0.

Since a is unimodular over a two-letter alphabet, 6 is the morphism from
to R that preserves Q and maps a to 0. Hence paths are labeled by

the sequences (di)i E {O, 1, -1}N such that 0.

Similarly, the prefixes that appear in the prefix-suffix automaton of the
Tribonacci substitution 1 ~ 12, 2 H 13, 3 H 1 (see Fig. 1.1) are all empty,
so that D = {O, 1, -11. The arithmetic graph is shown in Fig. 2.1; there
are 15 vertices. Paths are labeled by the sequences (di ) i E {O, 1, 20131}~ such
that where 0 is the a conjugate of the Tribonacci numbers,
that is, one of the roots of the characteristic polynomial X3 - X2 - X - 1
of modulus less than 1.

The flipped Tribonacci substitution. - The characteristic polynomial
of 1 H 12, 2 - 31, 3 ~ 1 is again X3 _ X 2 - X - 1. Let a be its

dominant root. Prefixes that appear in the prefix-suffix automaton are the
empty prefix, 1 and 3, so that D = {0, 1, - 1, x2 - x-1, -a 2+ cx + 1, a2 -
cx - 2, -x2 + x + 2}. The arithmetic graph has 65 vertices and does not
fit to be seen. Infinite paths are labeled by the sequences (di)i E D~ such
that 0, where 0 is a conjugate of the Tribonacci number and di
denotes the algebraic conjugate of di (obtained by replacing each cx with 0
in the expression of di).

A non-unimodular substitution of Pisot type 1 H 1112, H 12. - The
characteristic polynomial is X2 - 4X + 2. The eigenvalues are cx = 2 + V2
and p = 2 - V2. Prefixes that appear in the prefix-suffix automaton
are the empty one, 1, 11 and 111, so that D = {O, 1, -1, 2, -2, 3, -3}.
The arithmetic graph has 11 vertices (see Fig. 2.1). Paths are labeled
by the sequences (di)2 E D~ such that, first, 0 for the real
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topology; and second, the power series diai tends to zero with

respect to the unique topology on where 2i tends to zero.

Fibonacci substitution Tribonacci substitution

Figure 2.1. Arithmetic graphs



356

3. Rauzy fractal associated with a substitution of
Pisot type.

3.1. Definition and main properties.

The Rauzy representation wa of a doubly infinite word w E X~ is

the representation in K of the formal power series associated with w:
if (pi, ai, si)i is the prefix-suffix expansion of w, then

The representation of the whole substitutive set is called the Rauzy
fractal of the substitutions and denoted R. The images of cylinders are
denoted Ra.

Rauzy fractals first appeared in [Ral], defined and studied in the case of
the Tribonacci substitution 1 H 12, 2 H 13, 3 H 1. Then the definition
was generalized to unimodular substitutions of Pisot type in [Ra2], [AI],
[CS2]; the dynamics of Rauzy fractals is studied in these papers, as in [Sir].
Finally, the definition and properties were extended to non-unimodular
substitutions of Pisot type in [Si2].

Examples of Rauzy fractals are given in Fig. 3.1. The different shades
hold for the cylinders.

Properties of Rauzy fractals. - The Rauzy fractal of a substitution
of Pisot type satisfies the following properties in See [PF] for details and
references.

. It is compact, with a nonempty interior, and it is the closure of its
interior.

. It is fixed by the action of a pseudo-exchange of domains, that is, a
piecewise translation defined on domains that may not be disjoint:

. It is a subset of the closed subgroup 1t of K generated by the vectors

T/(a) for a E A.

. It has non-zero measure for the Haar measure of K.

. The image rpa * Ma of the shift invariant measure on Xa is absolutely
continuous with respect to the Haar measure on K.
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Figure 3.1. Rauzy fractal (in and in R x íZ22) of substitutions
of Pisot type

. The Rauzy fractal is very close to satisfy a property of self-similarity
since there exists a contraction h on K such that for every letter b E A,

the union being disjoint.

We say that the Rauzy fractal associated with a substitution of Pisot
type is self-similar with respect to cylinders if the cylinders Ra intersect on a
set of measure zero. Indeed, as soon as the cylinders are measurably disjoint,
they provide a partition for the Rauzy fractal, so that two properties hold:
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. the Rauzy fractal is self-similar since the cylinder partition contains
its own decomposition up to a set of measure zero (Formula (3.3));

. Formula (3.2) defines almost everywhere an exchange of disjoint
domains on R, that satisfies a commutation relation with the shift map.

3.2. Geometric problems on Rauzy fractals.

Geometric questions arisen on Rauzy fractals are of different kinds:
are the Rauzy fractals self-similar, that is, do their cylinders intersect

up to a set of measure zero? Do the pieces (Ra + r~(a)) intersect? Are the
Rauzy fractals connected? What about simple connectivity? What is the
Hausdorff dimension of their boundary? See [PF] for a review on these

questions. In this paper, we focus on two geometric questions: connectivity
and self-similarity. Let us now state known partial results on these two
points.

Connectivity. - In [Ca], some equivalence relations related to the
connectivity of Rauzy fractals are defined.

. A first relation E describes intersections between the cylinders of
the Rauzy fractal: for every aI, a2 E ,A2, if Ral and Ra2 have a
nonempty intersection in R.

. For every letter ao, the relation Eao describes the intersections

between the sub-cylinders that appear in the self-similar decomposition
of 7Za (Formula 3.3). It is defined on the set

as follows: if the sets and

have a nonempty intersection in Rao .

According to [Ca], as soon as a unimodular Rauzy fractal is connected,
each pair 7Za2) of cylinders is joined by a finite chain of cylinders that
successively intersect. This condition is not sufficient ; an information about
the geometry of cylinders is needed. More precisely:

. if the Rauzy fractal of a unimodular substitution of Pisot type a is
connected, then the equivalence relation obtained by transitive closure of E
has a unique equivalence class [Ca];

. if the transitive closures of E and every Sa, for a E A, have each a
unique equivalence class, then the Rauzy fractal R is connected as well as
each cylinder Ra [Ca].
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Notice that non-unimodular Rauzy fractals cannot satisfy such a
property, since p-adic spaces are not connected.

The problem raised by such a characterization is that the intersection
points between the cylinders have to be explicitly exhibited to check the
relations. In Section 3.3, the arithmetic graph is used so that the intersection
points do not need to be explicit anymore.

Self similari ty with respect to cylinders. - It is proved in [Ral], [AI],
[Si2] (depending on the class of substitutions that is studied) that the
combinatorial condition of strong coincidence is a sufficient condition for
the sets to be disjoint up to a set of measure zero, that is, self-similarity
with respect to cylinders. In this case, the dynamics of the exchange of
domains defined by x H x + q(a) when E Ra, is semi-topologically
isomorphic to the shift map on the substitutive dynamical system.

The condition of coincidence was introduced in [De] for substitutions
of constant length. It was generalized to non-constant length substitutions
by Host in unpublished manuscripts. A formal definition appears in

[AI]: a substitution a satisfies the condition of strong coincidence on
prefixes (respectively suffixes) if for every pair (bi, b2) E .~42, there exists a
constant n such that: plasl and o-n(b2) = P2aS2 with 1(p2 )
(respectively I(S2)), where 1 denotes the abelianization map.
An example of substitution with no coincidence is the Morse substitution.

It is conjectured that every substitution of Pisot type satisfies the
condition of coincidence: no counter-example is known. It was recently
proved by Barge and Diamond that this conjecture is true for two-letter
substitutions: every substitution of Pisot type over a two-letter alphabet
satisfies the condition of strong coincidence [BD]. They have partial results
in the case of more than two letters.

The condition of coincidence implies that the pieces 7Za are

measurably disjoint, hence it appears to be a sufficient condition for

self-similarity with respect to cylinders. In Section 3.5, a necessary and
sufficient condition for self-similarity is defined.

3.3. The geometric graph.

The aim of this section is to define a graph, called the geometric graph,
that describes some geometric properties of Rauzy fractals. Applications to

connectivity and self-similarity are given in the following sections. Let us
state and prove the following theorem:
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THEOREM 3.1. - Let a be a substitutive dynamical system of

Pisot type. Two doubly infinite words WI and W2 E X, have the

same representation in the Rauzy fractal associated with a, that is,
and only if their prefix-suffix expansions label two

symmetric paths in a symmetric finite graph, called the geometric graph
of a

The geometric graph is an alteration of the arithmetic graph. It has
to characterize digit sequences such that:

. the representation of the formal power series r is equal to zero,
that is, the sequence (di)i labels a path in the arithmetic graph introduced
in Section 2;

. the power series ¿ diai is the difference between the formal

representations of two points in the dynamical system. Equivalently, the
digits (di)i correspond to the difference between the formal representations
of two paths is the prefix-suffix automaton.

In concrete terms, the geometric graph is a subgraph of the product
of the arithmetical graph with the square of the prefix-suffix automaton:
its vertices belong to A, where Va denotes the set of vertices of
the arithmetic graph. Its edges are labeled by the prefix-suffix expansion
set. Notice that P projects on the set D of digits thanks to the mapping
(p, a, s) ~ r¡ (p) == E K°

DEFINITION. - The geometric graph of a, whose set of vertices is
denoted by Vg c Va x A x A, and which is labeled by D, is the largest
graph that satisfies:

. there exists an edge from E Vg towards (~2 ~2~2~) ~ ~
which is labeled by (p, a, s) E P if

&#x3E; a = a, and a(a2) = pas,
&#x3E; there exists (p’,a’,s’) such that a’ = al’ and cr(a2~) = p’a’s;

. each vertex belongs to an infinite path that starts in the initial set

Symmetries in the geometric graph. - The edge from (ÇI, a,, al’)
towards (~2, a2, a2’) labeled by (p, a, s) is said to be symmetric to the edge
from (2013~i,a/,~i) towards (-~2, a2’, a2) labeled by (p’, a’, s’).
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Examples of geometric graphs are shown in Fig. 3.2 for the uni-

modular Tribonacci substitution and the non-unimodular substitu-

tion 1 - 1112, 2 ~-4 12.

Proof of Theorem 3.1. - Let WI, W2 E X~ be two doubly infinite
words such that pa(wi) = pa(w2). Let us expand wl and W2 into com-
binatorial power series: (pi, ai, si )i and EP (W2) - (p’, a’, 
The formal expansion of wl and W2 are the power series Ei 
and Ei Hence, the representations of WI and W2 are equal if and
only that is,
From Proposition 2.1, the sequence of digits di = ?7(p~) has to la-
bel a path (~i ) in the arithmetic graph, with ~o = 0. One easily checks
that (pi, ai, si)i then labels the path (~i, ai, ai) in the geometric graph,
whereas (p~, a2, labels the symmetric path (-~2, ai ) .

Conversely, suppose that (pi, ai, si)i and 

(p’,a’,s’)i label two symmetric paths of the geometric graph. By
construction, the digits di = label a path in the arithmetic
graph, so that and wl has the same

representation as w2 in the Rauzy fractal. 0

3.4. Application to connectivity.

The following lemma means that the first vertices of the geometric
graph provide information about the intersections between the cylinders of
the Rauzy fractal.

LEMMA 3.2. 2013  The vertex is a vertex of the geometric
graph if and only if the cylinders and Ra2 have a nonempty intersection
in the Rauzy fractal.

. Let a E A and ~7~ x ,A~2, such that
plasl = and p2as2 = a(b2). and 

have a nonempty intersection in Ra if and only if the geometric graph
contains an edge from (o,a,a) towards ((1 (PI) -1(P2),va)/a,bI,b2).

Proof. This is a direct consequence of Theorem 3.1: if 

(pi, ai, si)i denotes the combinatorial expansion of w E X,, then ao is the
zero-indexed letter of w. Moreover, w = if and only if p = po
and al is the zero-index letter of wl. D

COROLLARY 3.3. - The geometric graph provides a computable
sufficient condition for the connectivity of the Rauzy fractal associated
with a unimodular substitution of Pisot type.
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Figure 3.2. Geometric graphs
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Proof. The geometric graph is easily computable from the

arithmetic graph by doing the product of the arithmetic graph and the
square of the prefix-suffix automaton, then by extracting the connected
components of initial vertices that belong to an infinite path. Lemma 3.2
provides an effective algorithm to check the connectivity criterion from [Ca]
detailed in Section 3.2. 0

Connected Examples. - The geometric graph of the Tribonacci
substitution is shown in Fig. 3.2. Since (o,1, 2), (0,1,3) and (o, 2, 3)
are vertices of the graph, the letters 1, 2 and 3 are in relation

through ~. The transitive closure of E1 has a unique class, that is

{((c,l,2),l),((c,l,3),2),((c,l,c), 3)}, as well as the trivial relations S2
and ?3. This provides an "algorithmic" proof for the connectivity of the
Rauzy fractal associated with the Tribonacci substitution (see Fig. 3.1 )
[Ral] .

The geometric graph associated with the flipped Tribonacci substi-
tution has 69 vertices and 117 edges. Since (o, l, 2) and (0,1,3) appear to
be vertices of the graph, the letters 1, 2 and 3 are in relation through the
transitive closure of E - However, (o, 2, 3) is not a vertex, meaning that the
subsets R2 and R3 have no intersection in the Rauzy fractal of the substitu-
tion (see Fig. 3.3). The graph contains edges that go from (o, 1, 1) towards
(o, l, 3) and (2a - a2,1, 2). Hence, the Rauzy fractal of the substitution is
connected as well as the three pieces R2 and R3.

A non-connected Rauzy fractal 1 - 3321, 2 H 3, 3 - 23321. - This
example was proposed by E. Harriss as a candidate for non-connectivity.
The fractal is shown in Fig. 3.3. The set of vertices of the geometric graph
contains (o, 2, 3) but not (o,1, 2) and (0,1, 3)). Hence the relation E has two
equivalence classes ~1~ and {2,3}. This means that the piece corresponding
to 1 is not linked with the pieces corresponding to 2 and 3. Hence, the
necessary condition of [Ca] is not satisfied so that the Rauzy fractal is not
connected.

This example is of full interest since it appears to be invertible. Indeed,
a substitution of Pisot type over a two-letter alphabet is invertible if and

only if its Rauzy fractal is connected. The given example proves that this

property cannot be generalized to the three-letter case [Ha].
A non-connected Rauzy fractal 1 H 11223, 2 H 123, 3 - 2 that does

not satisfy Canterini’s conditions. - As shown in Fig. 3.3, the Rauzy fractal
seems to be non-connected. However, the connectivity graph contains the
vertices (o,1, 2), (0, 1, 3) and (0,2,3). This is not surprising since each
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cylinder seems to get in contact with the others in Fig. 3.3. In concrete
terms, the sufficient condition of Canterini is not satisfied. However, a
refinement of the connectivity conditions allows one to prove that this

Rauzy fractal is not connected [Ca].

Flipped Thibonacci substitution

Figure 3.3. Rauzy fractals

3.5. Application to self-similarity with respect to cylinders.

By construction, the geometric graph describes points in the Rauzy
fractal that represent at least two points of the substitutive system. In the

following theorem, we prove that this allows one to compute the measure
of the intersections between the cylinders of the Rauzy fractal. Hence, we
get a characterization for self-similarity.

THEOREM 3.4. be a substitution of Pisot type. The Rauzy
fractal is self-similar with respect to cylinders if and only if the geometric
graph associated with a satisfies the following two conditions:

1) For every a E A, every edge towards (o, a, a) starts in a vertex
(0, b, b);
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2) Xp, where XP is the prenx-suffix expansion set and
denotes the set of labels of paths of the geometric graph

such that E for all i.

Proof of Theorem 3.4. - As explained in Section 3.1, an equivalent
condition for self-similarity with respect to cylinders is that the cylinders of
the Rauzy fractal intersect on a set of measure zero. We know that the Haar
measure on the Rauzy fractal is the image of the shift-invariant measure
on Xa, by the representation map cp. Hence, we need to identify which
doubly infinite words w generate an intersection in the Rauzy fractal, that
is, which w have the same Rauzy representation as a word w’ ~ w. Then
we will have to prove that the set of such doubly infinite words has measure
zero in X~..

Notice that every word w always has the same representation as itself.
This is obvious in the geometric graph, since the path (0, ai, ai)i i where
(pi, ai, si)i i = EP(w) denotes the prefix-sufhx expansion of w is its own

symmetric path.

Consequently, pairs of words (w, w’) that share the same Rauzy
representation are concerned with two situations. Either wand w’ have
the same representation simply because they share the same prefix-suffix
expansion. [CSI] states that this happens only for the countable orbit XEer
of periodic points. Or w has the same Rauzy representation as w’ but their
prefix-suffix expansions are distinct. These expansions then label symmetric
and distinct paths in the geometric graph. Let c X p denote the
set of paths in the geometric graph that are not their own symmetric.

We have just proved that the cylinders of the Rauzy fractal

overlap on the countable, hence negligible, set cp(XEer) and on the set
As a consequence, overlaps in the Rauzy fractal have

measure zero if and only if

However, the prefix-suffix expansion set XP can be endowed with
two distinct measures: first, the measure of maximal entropy for the shift
map S’P on invariant for the shift-map on Xp; second, the image

of the shift-invariant measure on X (j. Like S, this measure is

uniquely ergodic. These measures are proved to be equivalent: 
has a density with respect to J1max [Ve], [Sil]. Hence, has

measure zero in the substitutive set Xa if and only if has measure

zero in X-p for the shift-invariant measure with maximal entropy J1max.

We now have to prove that the two conditions of Theorem 3.4 imply
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J1max (X p nosym) = 0. We need the following properties of shifts of finite type:
any nonempty cylinder of XP has a non-zero measure; any shift-invariant
subset of XP has measure zero or one.

. Suppose that Condition 1) is not satisfied: the geometric graph
contains a non-symmetric edge e from a vertex (~, a, a’) towards a vertex
(0, b, b). Let Yo - (0, ao, 7 a/ ) I ... I V77 a, a’), Y~+1 = (0, b, b)
be a finite path that starts in an initial vertex and ends in (0, b, b).
Let eo, el, ..., ev be the labeling of this path. Then every digit sequence
(ei)i E [eo, eI,... , ev~ n XP, with ei = (pi, ai, si), labels the non-symmetric
path in the geometric graph, with Vi = (0, ai, ai) for i &#x3E; 1]. Hence, the

cylinder [eo, el, ... , n XP has a non-zero measure for J1max and satisfies

[eo, el, ... , C X;3sym. Therefore, the set has a non-zero measure

for J1max and the pieces in the Rauzy fractal are not disjoint in measure.

. Suppose now that Condition 1) is satisfied: every non-symmetric
path can not go infinitely often towards E Hence,

&#x3E; When Condition 2) is not satisfied, one has = X. Let
W label any finite path in the prefix-suffix automaton. Then

= W. XP - [W] has a non-zero measure
for pmax, so that the cylinders in the Rauzy fractal are not
measurably disjoint.

~ When Condition 2) is satisfied, the language of is strictly
contained in the language of X-p. Hence, the language of X
contains the label Wo of a finite path in the prefix-suffix
automaton that is a factor of no element in Consequently,
the shift orbit of is contained in [Wo], whose measure
is strictly less than 1. Therefore, the orbit of has measure

zero. Similarly, every set W . has measure zero for [Lmax
so that the overlaps in the Rauzy fractal are negligible. 0

COROLLARY 3.5. - The geometric graph provides a computable
necessary and sufficient condition for the self-similarity with respect to
cylinders of the Rauzy fractal associated with a substitution of Pisot type.

Proof. There is no difficulty to check in practice whether every
edge towards (0, a, a) starts in a vertex (0, b, b). Condition 2) is checked by
constructing the deterministic graph of the geometric graph, recursively
defined as follows. A vertex of the deterministic graph is defined as
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any subset V c Vg that satisfies: a) there exists a E A such that V =
~(~, a, a’), a’ =1= a~; b) there exists a vertex V’ in the deterministic graph

and (p, a, s) such that V == {(~,~2~2~); B~.~i.~i~) E V’, (p, a, s)
labels an edge from (E, aI, aI’) towards (q, a2, a2) I - One checks that X P strict
is the set of labels of paths of the deterministic graph. Hence, as soon as
Condition 1) is satisfied, = X p if and only if the deterministic graph
satisfies the following property: for every vertex V, let (~o, ao, ao) E V. Then
for every (p, a, s) E P such that a = ao, there exists an edge labeled with
(p, a, s) that begins in V. This condition is computable. 0

The Tribonacci substitution. Application to non-proper expansions
in the Tribonacci system of numeration. - The geometric graph is shown
in Fig. 3.2. Conditions of Theorem 3.4 are satisfied, providing a new proof
for the self-similarity of the Rauzy fractal. From a number-theoretic point
of view, a new graph is obtained by replacing each vertex (~, ai, a2)
by ~, and each label (p, a, s) by the digit (1(p), va) (see Fig. 3.4). This
graph recognizes the set of points in the Rauzy fractal that have at

least two distinct expansions in the numeration system associated with the
Tribonacci number a. More precisely, infinite paths in this graph are labeled
by sequences di E such that didi+1di+2 = 0 for every i and such
that there exists another sequence d’ E 10, IIN that satisfies di+2 = 0
for every i Such a graph was previously
obtained in [Me].

Figure 3.4. Expansions of dou ble points for the Tribonacci

system of numeration

Non-unimodular example. - The geometric graph associated with
the non-unimodular substitution 1 - 1112, 2 - 12 was shown in Fig. 3.2.



368

The conditions are again satisfied. The geometry of the associated Rauzy
fractal is not so interesting, since it is not a euclidean object. However,
self-similarity allows one to define a dynamic on the Rauzy fractal. Hence,
Theorem 3.4 provides a new proof that the substitutive system is semi-

topologically conjugate to an exchange of two domains in the Rauzy fractal.

More generally, all examples in this paper satisfy the conditions of
Theorem 3.4. The associated geometric graphs are too big to be shown here.

4. Abelian dynamics associated with a substitution
of Pisot type.

The Rauzy fractal is naturally endowed with a contracting dynamics
deduced from self-similarity. In this section, we are concerned with another
dynamics that exists on the Rauzy fractal, that is, a linear dynamics.
Geometricly, the existence of such a dynamics means that the Rauzy
fractal generates a regular tiling. A more dynamical interpretation leads to
pure discrete spectrum. Hence, the aim of this section is to make use of the
geometric graph to: first, determine a computable necessary and sufficient
condition for the Rauzy fractal of a unimodular substitution of Pisot type to
generate a periodic tiling; second, deduce a computable sufficient condition
for a substitutive dynamical system to have a pure discrete spectrum.

4.1. Abelian dynamics.

Abelian representation. - Let ao denote a fixed letter in A, for

instance ao = d. Let ~Co be the closed subgroup of K generated by the
vectors 7y(Qo), for a ~ ao E A. It is a discrete subgroup of K since its
projection in is discrete [CS2]. If the substitution is unimodular, To
is a lattice in 

Let ?~ be the smallest group that contains the Rauzy fractal TZ. Let 7rg
denote the projection of onto the quotient H/Ho. We call
abelian representation of the substitution the map

By construction, it is continuous, onto, and realizes a commutation relation
between the shift map ,S’ on X, and the translation by T/(ao) on 9, that is
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Hence, the translation by on g appears to be an equicontinuous
factor of the shift map on X, since all the maps are continuous in the
following diagram. Consequently, a sufficient condition for X, to have a
pure discrete spectrum is that CPa7rg is almost everywhere one-to-one.

Isomorphism to the factor? - A natural question is whether the

substitutive system is measure-theoretically isomorphic to this factor.

Since the invariant measures for the systems appearing in the diagram are
equivalent, the following conditions are equivalent when the substitution
satisfies the condition of strong coincidence:

1) the quotient map 7rg is almost everywhere one-to-one on R;

2) the Haar representation map 7rgCPa is almost everywhere one-to-one
on the substitutive dynamical system (a, S), so that the system has a
pure discrete spectrum;

3) the sets ~Z + v, for v C Ho, are disjoint up to a set of zero measure.

In the unimodular case, it has been proved that the group H generated
by the Rauzy fractal is equal to the full space R d-1 [CS2]. Hence, the
conditions above ensure that the Rauzy fractal generates a periodic tiling
of R d-I

The aim of this section is to determine an explicit condition for these
conditions to be satisfied. Let us first state partial results on this subject.

Coincidence versus pure discrete spectrum. - Coincidence where
introduced since they have a deep relation with pure discrete spectrum in
some specific cases. Dekking proved that a substitution of constant length
generates a pure discrete spectrum dynamical system if and only if the

substitution satisfies the condition of coincidence [De]. In this case, the
spectrum of the substitutive system is explicit: the substitutive system is
measure theoretically isomorphic to a translation on the direct product of a
finite group and the group of d-adic integers Zd, where d is the cardinality of
the alphabet. Later, Hollander and Solomyak proved that a substitution of
Pisot type over a two-letter alphabet generates a pure discrete spectrum
dynamical system if and only if the substitution satisfies the condition of
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strong coincidence [HS]. Hence, two-letter substitutive dynamical systems
of Pisot type all have a pure discrete spectrum [BD]. The techniques used
cannot be generalized to substitutions over an alphabet which contains
strictly more than two letters.

Partial description of the spectrum. - The notion of coboundaries
introduced by B. Host allows one to better understand the structure of
the spectrum of a substitutive system. A coboundary. of a substitution
~ is defined as a map h : A - U (where U denotes the unit circle)
such that there exists a map f : ,A. ~ U with f (b) = f (a)h(a) for every
word ab of length 2 that appears in a periodic point for a. The coboundary
defined by h(a) - 1 for every letter a (that is, f (a) - f (b) for every
ab in the language) is called the trivial coboundary. Roughly speaking, a
substitution with coincidence does not have a nontrivial coboundary. For
substitutions of constant length, the finite group contained in the maximal
equicontinuous factor plays the role of nontrivial coboundaries. Details can
be found in [PF], Chap. 7.

The spectrum of the primitive substitutive dynamical system (X a, S)
is the spectral type of the unitary operator f - f o S, well defined

on S). The structure of the spectrum is described by Host: a complex
number A C U is an eigenvalue of a primitive non-shift-periodic substitutive
dynamical system (Xa, S) if and only if there exists p &#x3E; 0 such that for

every a E A, the limit h(a) = limn~~ is well defined, and h is a

coboundary [Ho].
Eigenvalues associated with the trivial coboundary are explicitly

determined for unimodular substitutions of Pisot type: in this case, the

group of eigenvalues of X, associated with the trivial coboundary is

generated by the frequencies of letters in any infinite word of the system,
that is, by the coordinates of a right normalized dominant eigenvector
of the incidence matrix of the substitution. We say that such eigenvalues
are "commutative", since they depend only on the incidence matrix of
the substitution. On the contrary, eigenvalues associated only with a
nontrivial coboundary are "non-commutative": they depend heavily on the
combinatorics of the substitution. Note that we do not know any example
of substitution of Pisot type with irrational non-commutative eigenvalues.

Consequence on Rauzy fractals. - It is known that the spectrum
of the addition of 71(ao) on 9 is equal to the "commutative" spectrum of
the substitutive system [PF]. Hence, having no non-trivial coboundary
is a necessary condition for a unimodular substitution to satisfy the
conditions 1), 2) or 3).
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4.2. Tiling graph.

We expand the definition of the geometric graph to a so-called tiling
graph, and prove the following result.

THEOREM 4.1. - Let a be a substitution of Pisot type. The following
three properties are equivalent:

. the Rauzy fractal R is self-similar with respect to cylinders and
disjoint almost everywhere from its copies R + v, for v E Ho ;

. the abelian representation is onto and almost

everywhere one-to-one;

. the following three computable conditions are satisfied by the
geometric graph and its expansion, called the tiling graph:

1) for any a E A, every edge towards (0, a, a) in the geometric
graph starts in a vertex (o, b, b) ;

2) XP, where XP is the prefix-suffix shift of finite type
and denotes the set of labels of paths i of the

geometric graph such that (~i , a2 , ai ) ~ ~ (o, a, a) , a E ~4} for

every i ;

3) the set of labels of infinite paths in the tiling graph is a strict
subset of XP .

To prove Theorem 4.1, we need to determine pairs (pi, ai, si)i,
(qi, bi, ri)i E Xp that satisfy:

Such vectors v C ?o join two points in the Rauzy fractal R. As R is

bounded, only a finite number of such vectors v E can satisfy this
property. In the sequel, these vectors are characterized by their coordinates
in the basis (n(a) - i7(ao))aOao(EA-

PROPOSITION 4.2. - There exist d - 1 bounds such

that, for all as soon as there exists b ~ ao C A with
nb &#x3E; Mb, then the vector does not join
two points in the Rauzy fractal R, that is, does not satisfy Formula (4. 1).
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Proof. - Let for j = 2, ... , r -f- s, denote the non-dominant
eigenvalues of M and let denote the eigenvector of M obtained by
replacing each a with aj in the coordinates of va . Let us define the

following easily computable constants:

From the definition of 6, if the vector v E ~lo satisfies Formula (4.1),
then v belongs to the bounded box:

The space K canonically projects onto R’-’ x C~, that is isomorphic
to Let 7rJRd-l denote the induced canonical projection from K
onto Then 7rJRd-l (B) is contained in the box B’ whose vertices

are

According to [CS2], a basis of is given by the vectors

ao E A. For every a ~ and any vector w E 

let Ca(w) denote the a-th coordinate of w in this basis, and define

Ma = [max{ca (w), w E 1] + 1. Then for every vertex w E the a-th

coordinate of w in the new basis is less than Ma. This implies the whole
box Z3’ belongs to the half-space defined by ca (w)  Ma.

Let with nb &#x3E; Mb for a given b =1= ao. Suppose
that v = 7J(ao)) E B. This implies

But, simultaneously, cb(w) = nb  Mb, which is impossible on B’. D

Tiling vectors. - Proposition 4.2 implies that, for any vector v E Ho
that joins two points in the Rauzy fractal, there exists a tuple 

with na  Ma for every a, such that v = 
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Notice that the converse is not true. Let T denote the set of such vectors,
called tiling vectors:

Then, Formula (4.1 ) for such a vector v is satisfied if and only if

In Sections 2.2 and 3.5 were defined graphs that allow to identify
sequences (pi) satisfying Formula (4.2) for the null vector, that is, with
coordinates na = 0 for every a. In the sequel, the starting vertices of these
graphs are modified, to characterize prefix-suffix expansions that satisfy
Formula (4.2) in the general case.

Definition of the tiling graph. - Let ST denote the arithmetic set of
initial vertices

Let WT correspond to the vertices in the arithmetic tiling graph:

The tiling graph of a, whose set of vertices is denoted by
VT C WT x x A, and which is labeled by P, is the largest graph that
satisfies:

. An edge from (Çl, a,, al’) E VT towards (~2, a2, a2’) E VT is labeled
by (p, a, s) E P if there exist (p’, a’, s’) c P, ST, and a sequence of

digits di E D~ such that:

. Each vertex belongs to an infinite path that starts in the initial set
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PROPOSITION 4.3. - The tiling graph associated with a substitution
of Pisot type is finite. Let WI be a doubly infinite word in the substitutive
system. There exists a word W2 such that Ho B 101
if and only if the prefix-suffix expansion of w, labels a walk in the tiling
graph of a.

Proof. The proof of Proposition 2.1 can be transposed here so
that the tiling graph is finite. Suppose that there exists a word W2 such
that pa (w2) = v E Ho B ~0~ . From Proposition 4.2, there exist
coefficients na  Ma such that v = Hence

Let ( pi , ai, and ( p2 , be the prefix-suffix expansions of w 1 and w2 ,
and di = (I(pj) - 1(pi), v~~. One checks immediately that (pN, aN, sN)N
labels the infinite walk

Conversely, suppose that the prefix-suffix expansion (pN, aN, sN)N of
the doubly infinite word w, E X~ labels an infinite walk (~N, aN, aN) in
the tiling graph. The definition of the edges implies that there exists a
sequence that appears to be the prefix-suffix expansion
of another doubly infinite word, say w2 E X. Moreover, one has

= a-IçN + We deduce that

so that tends to zero

as N tends to infinity (since the vertices £ N+ i are in finite number). Finally,
ço E ST so that there exists v = 0 E T such

that

Hence, pa (w2 ) = v E 0

Proof of Theorem 4.1. - The self-similarity of the Rauzy fractal was
characterized in Section 3.5. The proof of Theorem 3.4 can be transposed
here so that the copies of the Rauzy fractal do not overlap up to a set of
measure zero if and only if the set of path labels in the tiling graph is not
equal to the prefix-suffix shift of finite type X. Again, this condition is
computable. 0
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4.3. Unimodular substitutions: application to tilings.

In the unimodular case, K is equal to the euclidean space 
and the subgroup is a lattice in Moreover, we know that the
copies of the Rauzy fractal along the lattice cover the full space 

UveHo (R + v) _ 
Hence, Theorem 4.1 can be directly interpreted as a necessary and

sufficient condition for the Rauzy fractal to generate a tiling. More precisely,
we have the following result.

COROLLARY 4.4. be a unimodular substitution of Pisot type
over a d-letter alphabet. There exists a computable necessary and sufficient
condition for the two following equivalent properties:

. the Rauzy fractal of the substitution is a fundamental domain for
the lattice To, so that it generates a periodic tiling 

. the substitutive dynamical system is semi-topologically conjugate
to the translation on yd-l by the vector of frequencies of letters in any
doubly infinite word of the substitutive system.

Proof. The conditions of Theorem 4.1 are satisfied if and only if the
Haar representation CPa7rç; is almost everywhere one-to-one. We already
know that it is onto [CSI]. By construction, this map realizes a

commutation relation with the translation by 71(ao) on the torus H/Ho.
The group of eigenvalues of this translation on H/Ho is generated by the
frequencies of letters in the substitutive dynamical system ~CS 1~ . Therefore,
the translation is conjugate to the toral translation on by the vector of
frequencies. Consequently, the substitutive system and the toral translation
on are semi-topologically conjugate if and only if the conditions of
Theorem 4.1 are satisfied. 0

Differences with the non-unimodular case.

. In the non-unimodular case, the group ~-C generated by the Rauzy
fractal is strictly contained in K. Therefore, the abelian representation is
onto the quotient of ?-~ by the lattice Ho, and cannot be onto the full

quotient of K by Ho. As a consequence, a substitution of Pisot type satisfies
the conditions of Theorem 4.1 if and only if its Rauzy fractal generates a

tiling of the closed subgroup H instead of the full space K.

. In the non-unimodular case, the group of eigenvalues of the

translation by on is not explicitly known in the general
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case; the group generated by the frequencies of letters is strictly included
in it. Therefore, the second point of Corollary 4.4 cannot be true when the
substitution is not unimodular.

4.4. Effective condition for pure discrete spectrum.

As explained at the end of Section 4.1, the tiling property has a
dynamical interpretation in terms of pure discrete spectrum.

THEOREM 4.5. - There exists a computable sufficient condition for
a substitutive dynamical system to have a pure discrete spectrum. This
condition is a necessary condition when the substitution is unimodular and

has no non-trivial coboundary.

Proof. - When the conditions of Theorem 3.4 are satisfied, the
substitutive system is semi-conjugate to a translation on a compact
group (more precisely to the translation by 7y(ao) on the group H/Ho).
In particular, it has a pure discrete spectrum. Hence, Theorem 3.4 provides
a sufficient condition for a substitutive system of Pisot type to have a pure
discrete spectrum.

Conversely, Theorem 3.4 provides a necessary condition for a pure
discrete spectrum substitutive system as soon as the translation by on

the group H/Ho is the maximal equicontinuous factor of the substitutive
system. When the substitution is unimodular, it was recalled that the

translation by q(ao) on the group is isomorphic to the 1rd-l-
translation given by the frequencies of letters; if the substitution also has
no non-trivial coboundary, then this toral translation is the maximal

equicontinuous factor of the substitutive system [Ho] (see also [PF],
Exercise 7.5.15). D

In concrete terms, since all substitutions of Pisot type that have
been checked have no nontrivial coboundary, Theorem 3.4 appears to be a
suitable criterion to check whether a unimodular substitution has a pure
discrete spectrum. A program, implemented in MuPAD, tests whether any
given substitution of Pisot type satisfies the conditions of Theorem 4.1 [Sil].
All the examples that have been checked up to now satisfy the conditions
of Theorem 3.4 so that they all have a pure discrete spectrum. Hence, we
do not know any substitutive system of Pisot type whose spectrum is not

purely discrete. It is a conjecture that all substitutive systems of Pisot type
have pure discrete spectra.
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4.5. Examples.

New proofs for known results: The Fibonacci and the Tribonacci
substitutions. - The lattice associated with the Fibonacci substitution is

Ho = 2 (3 + J5)Z. The maximal equicontinuous factor is the translation
by Ion R/ (1/2 (3 + J5)Z). Only ± 1/2 (-3 + J5) provide intersections between
the copies of the interval R = The points -1 and -1 (1 + J5) are
the only points in 7Z that are equal modulo Ho. Consequently, they are the
extremities of this interval and the length of R is 2 (3 + J5).

The conditions of Theorem 4.1 are also satisfied by the Tribonacci
substitution. Hence, the associated system is semi-topologically conjugate
to a translation on T 2 [Ral]. The Rauzy fractal generates a tiling of C by
the lattice Ho = Z(2+o;-c~)(BZ(2~-c~), where a denotes the Tribonacci
number. Vectors that connect two points in the Rauzy fractal are + (a - 2),
~ (2a - a2 ) a - 2). The tiling graph have loops, implying that
a non-countable set of points in the Rauzy fractal are joined by non-zero
vectors in Ho .

Tilings: unimodular examples. - The lattice Ho associated with the
flipped Tribonacci substitution is the same as the Tribonacci substitution
lattice. Vectors in this lattice that join two points in the Rauzy fractal of
the substitution are 0, ±(a 2 - a - 2), ±(a - 2), +(2a - a2), ~(a2 - 4),
~ (2c~2 - 3a - 2) and d=(o;~ -3(~+2). The conditions of Theorem 4.1
are satisfied.

As mentioned before, all the examples that have been checked also
satisfy the conditions.

COROLLARY 4.6. - The dynamical systems associated with each of
the unimodular substitutions (1 H 12, 2 H 31, 3 - 1), (1 - 12, 2 H 13,
3 H 132), (1 H 123, 2 H 1, 3 H 31) and (1 H 131, 2 - 1, 3 H 1132),
are semi-topologically conjugate to a minimal translation on 1f2, so that
they have pure discrete spectra. All the associated Rauzy fractals generate
periodic tilings of the plane (see Fig. 0.1).

An example where 0 is not an interior point. - The Rauzy fractal
associated with the substitution 1 H 2, 2 ~---~ 3, 3 H 12 is quite specific:
the three pieces have a lot of contacts, and may overlap (see Fig. 4.1 ) . In
spite of this visual observation, the geometric graph satisfies the self-similar
conditions and the connectivity conditions. The tiling conditions are also
satisfied. The reason that explains why this Rauzy fractal is so intricate
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is the following: the point 0 appears to be the representation of each of
the three periodic points of the substitutive systems, so that it is at the

intersection of the three cylinders, providing a spiral shape. Moreover, 0 is
at the intersection of the Rauzy fractal with its translation r~(3).
Hence, it does not belong to the interior of the fractal, which allows the
tiling property.

Figure 4.1. Rauzy fractal and tiling associated with 1 H 2, 2 ~--~ 3, 3 H 12

Two-letter non-unimodular substitutions. - The conditions of

Theorem 4.1 are satisfied by 1 H 1112, 2 H 12, so that this substitution
generates a dynamical system with a pure discrete spectrum. This spectrum
is explicitly known thanks to [Ho]: it is generated by the numbers 1/v2n
for n &#x3E; 0. Hence, the dynamical system associated with the substitution
1 H 1112, 2 H 12 is semi-topologically conjugate to a minimal translation
on the direct product of the torus ’lP with the 2-solenoid. Notice that this was
already known since this substitution satisfies the condition of coincidence
over a two-letter alphabet [HS]. The same holds for 1 H 11122, 2 H 1222.
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The non-unimodular substitution 1 - 2, 2 H 3, 3 - 11233. - The
characteristic polynomial is X 3 - 2X 2 - X - 2, so that this substitution
is of Pisot type and non-unimodular. Let a be its dominant root. The
constants provided by Proposition 4.2 are Ml - M2 = 17. The geometric
graph satisfies the self-similar conditions. Non-zero vectors in Ho that join
two points in the Rauzy fractal are given in the Table shown in Fig. 4.2,
as well as the size of the tiling graph that correspond to each tiling vectors.
The tiling conditions are satisfied, therefore R intersect its translated copies
through on a set of measure zero.

COROLLARY 4.7. - The dynamical system associated with the non-
unimodular substitution 1 H 2, 2 ~ 3, 3 H 11233 has a pure discrete

spectrum.

Figure 4.2. Vectors between two adjacent copies of the Rauzy fractal
for I i--~ 2, 2 ~--* 3, 3 ~-~ 11233. Size of associated subgraphs
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