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STRATIFICATION THEORY FROM THE NEWTON
POLYHEDRON POINT OF VIEW

by OULD M. ABDERRAHMANE*

A stratification of a variety V is an expression of V as the disjoint
union of a locally finite set of connected analytic manifolds, called strata,
such that the frontier of each stratum is the union of a set of lower-

dimensional strata. The most important notion in stratification theory
is the regularity condition between strata. The notion of (w)-regularity
introduced by Verdier in [15] plays a very important role in the study
of algebraic and analytic varieties. Moreover, he showed that the (w)-
regularity condition implies the Whitney (b)-regularity condition. The

(c)-regularity, defined by K. Bekka in [2], is weaker than the Whitney
(b)-regularity, and he showed that the (c)-regularity condition implies
topological triviality. In this paper, we will investigate these regularity
conditions relative to a Newton filtration in terms of the defining equations
of the strata. The article is organized as follows. In Section 1 we present
a characterization for Bekka’s (c)-regularity condition. Next we give a
criterion for regularity conditions in terms of the defining equations of
the strata, following [1] we introduce a pseudo-metric adapted to the
Newton polyhedron in Section 2. Using this construction we obtain versions
relative to the Newton filtration of the Fukui-Paunescu Theorem (Theorem
4 below). In this approach it is possible to consider a version relative to
a Newton filtration of the (w)-regularity condition. We show that this

* This research was supported by the Japan Society for the Promotion of Science.
Keywords : Stratification - Regularity condition - Newton polyhedron.
Math. classification: 14B05 - 58A35 - 14M25.
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condition implies the (c)-regularity condition. In Section 3, using the
criterion of the regularity condition given in Section 2, we prove that the
J. Damon and T. Gaffney condition in ([5], Theorem 1) implies the (w)-
regularity condition related to the Newton polyhedron.

Since complex varieties can be considered as real varieties, we shall
only consider the real case.

Notation. To simplify the notation, we will adopt the following
conventions: for a function g(x, t), we denote by ag the gradient of g
and by the gradient of g with respect to the variables x. For a non
zero vector v of we denote by L(v) the line spanned by v. Also, let

each xi &#x3E; 0, z = 1,..., n} and

Let rp, (IRn, 0) -~ be two functions. We say that I ;S
1~(x)1 I if there exists a constant C such that C 1~(x)l. We write

if and lW(x)I I  Finally,
when x tends to xo means

1. Stratification.

In this section, we recall some definitions about stratification. The
stratification theory has been introduced by H. Whitney [16] and R. Thom
[13].

Let M be a smooth manifold, and let X, Y be smooth submanifolds
of M such that Y C X and X n Y = 0.

(i) (Whitney (a)-regularity)
(X, Y) is (a)-regular at yo E Y if:
for each sequence of points (xz) which tends to yo such that the
sequence of tangent spaces tends in the Grassman space of

(dim X)-planes to some plane T, then TyoY C T. We say (X, Y) is

(a)-regular if it is (a)-regular at any point yo C Y.

(ii) (Bekka (c)-regularity)
Let p be a smooth non-negative function such that p  (0) = Y. (X, Y)
is (c)-regular at yo C Y for the control function p if:
for each sequence of points (xz) which tends to yo such that the
sequence of tangent spaces tends in the Grassman

space of (dim X - 1 )-planes to some plane T, then C T. (X, Y)
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is (c)-regular at yo if it is (c)-regular for some control function p. We
say (X, Y) is (c)-regular if it is (c)-regular at any point yo C Y.

1.1. A criterion for (c)-regularity.

We suppose now that M = R’+’ and 0 E Y C X - X (the regularity
conditions are defined locally). Modulo an analytic transformation of 
near 0, if necessary, we may assume that Y coincides with its tangent space
ToY. Let (x, t) = (~l, ... , Xn, tl,..., tm) denote a system of coordinates of
JR.n+m. For notational convenience we also use xn+s = ts. We assume that

Then we can characterize (c)-regularity as follows:

THEOREM 1. The pair (X, Y) is (c)-regular at 0 for the control
function p if and only if (X, Y) is (a)-regular at 0 and 18t(Plx )(x,t) I «
Igrad as (x, t) E X and (x, t) ~ 0.

The following proof is inspired by the proof of Bekka-Koike ([3],
Theorem 2.4)

Proof. At first, we have the following equality:

where A i.e., a
line spanned by the gradient of the function 

(#) Let (xi, ti) be a sequence of points X which tends to 0 such
that tends to some (dim X)-dimensional space T. Taking a

subsequence if necessary we can suppose that n 

tends to some (dim X - 1 )-dimensional space T’ and K(~2 ,t2 ) tends to

some one-dimensional space L. By Bekka (c)-regularity {0} x R- C T’.
Since Ker dp(x2, ti) n T(X2,t2)X C T(x2,t2)X and K(X2,t2) is orthogonal to

Ker dp(x2, ti) n T(x2,t2)X, we have x JR.m C T and L is orthogonal to

~01 x which means (X, Y) is (a)-regular at 0 and I 
I 8(Plx )(X2,t2) I. ’

Let (x2, ti) be a sequence of points X which tends to 0 such that
Ker dp(xi, ti) n T(X2,t2)X tends to some (dim X - l)-dimensional space T.
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When passing to a subsequence one can suppose that all the have

the same dimension (dim X), and that this sequence of space converges
to some space T’ and K(X2,t2) tends to some one-dimensional space L.
By the Whitney (a)-regularity {0} x C T’. Since I I «

&#x3E; I, which implies L C IRn x fOl, L is orthogonal to 101 x 
Hence we have {0} x R- C T.

This completes the proof of the theorem. D

1.2. Ratio test conditions and (w)-regularity.

For X, Y as above, we say X is (r)-regular (resp. (w)-regular) over
Y at 0, if for any unit vector v tangent to Y

as and

(resp. Ixl I when p = (x, t) E X near 0) where 7rp denotes the

orthogonal projection of Rn+m to the normal space of X at p C X. We can
find a lot of information about this in [6, 8, 14].

Let F: (RI x f 01 x }Rm) --+ (RP, 0) be an analytic map-germ.
We denote by VF the variety of the zero locus of F. One can note that
E(Vp) = IF-1(0) - {0} x {0} x gives a stratification of VF
around ~0~ x Hereafter, we will assume that

and

Setting F : = (Fl , ... , Fp), assume that the Jacobi matrix of F has rank
k on X near 0, where k x p is the codimension of X in JRn+m. We note
that the normal space to X is generated by the gradient of the functions

Fj ( j = 1,... ,p) at each P E X near 0. Let us recall some definitions and
notations, used by Fukui and Paunescu in [6].

Let be integers with 1  ji  ... p. We set

and

where

where

and we define
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9G {!,..., m}, with #I + #S =
#J = k, we set ’9 FJ to be the Jacobian of FJ with respect to the I, s
variables xi (i E I), and ts (s E S). When S’ _ 0, we simply denote it by

We then define and by the following formulae:

where

where

where

For a matrix M we denote by IMI the absolute value of its determinant.

Then we have a simple criterion for the regularity conditions 
as follows:

THEOREM 2. - For X, Y as above, we have the following equivalences

(i) (X, Y) is (a)-regular at 0 if and only iflldx FII « IldF11 when (x, t) --+ 0
on X.

(ii) (X, Y) is (r)-regular at 0 if and only if ] « Ixi 
when (x, t) ~ 0 on X.

(iii) (X, Y) is (w)-regular at 0 if and only if I I dx F I I I holds on
X near 0.

(iv) (X, Y) is (c)-regular at 0 for the function p if and only if Ildx FII ( «
and as

Here,

Proof - Since (i), (ii) and (iii) have already been obtained in [6],
we only have to prove (iv). Indeed, following ( ~6~ , lemma 1.4), one get that
the orthogonal projection 7r of v E T(x,t) M to the tangent space is

expressed by the following form:
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Since 7r(åp), we can easily see that but

(where N denotes the normal space to X), which implies

Hence, we can deduce from Theorem 1 that (iv) holds. D

We next state one sufficient condition for (c)-regularity.

COROLLARY 3. - Suppose that 8t p = 0, then X is (c)-regular over Y
at 0, if

as

Note that when p = k = 1, this inequality is a necessary condition
for (c)-regularity.

Proof. It is trivial that (1.3) implies (X, Y) is (a)-regular at 0. We
first remark, by (1.1) the following equality:

Then, by Cauchy-Schwartz inequality, we have

We now assume (1.3). We then have as (x, t) E X,
(x, t) --~ 0. It follows from the equivalence in (iv) of Theorem 2 that (X, Y)
is (c)-regular at 0. D

2. (w)-regularity and (c)-regularity relative
to the Newton filtration.

Let us recall some basic definitions and properties of the Newton
filtration (see [1, 5, 7] for details). Let ,,4 C Q’. A Newton polyhedron
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r~ (,A) C 1R.n is defined by {the convex closure of ,A. + R’ 1. The Newton
boundary of A, r(A) is the union of the compact faces of r+ (,A) . We
let denote the union of the top dimensional faces of IF(A). The
Newton vertex Ver (A) is defined by ~cx : a is vertex of r(~4)}. ,,4 is called
convenient if the intersection of F+ (A) with each coordinate axis is non-
empty. Throughout, we suppose that .A is convenient.

From the Newton polyhedron, we construct the Newton filtration.
We first observe that by the convenience assumption on A, any face
F E .~’(,,4), 1. So let wF be the unique vector of Qi such

(b, wF) == 1}- We can suppose that the vertices
of ,A are sufficiently close to the origin so that all the wF E 2¡. We will
suppose henceforth that ,,4 satisfies this property. Then, we construct the

following map cjJ:}R¡ --+ R+. The restriction of 0 to each cone C(F) (where
C(F) denotes the cone of half-rays emanating from 0 and passing through
F) is defined as follows:

for all (

We extend this map to Ri as follows:

for all

The map 0 is linear on each cone C(F) (where F E .~’(,,4)), and the value
of 0 along each point over is equal to 1 C Z+. This is
called the Newton filtration induced by A.

For any monomial xa, we define = 0(a). This extends to a
filtration on the ring Cn of analytic function germs : (M~,0) -~ (Il~, 0) (via
Taylor expansion) by defining

We denote the set of g with fil(g) &#x3E; l in Cn by Az. The number fil(g) will
be also called the level of g with respect to A.

Now we introduce the control functions associated to ,A as follows:

and

where p a positive integer. Moreover if p is big enough (it suffices, for

example, that pa E ~~), p will be C2".
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Note that for an element 9 == ¿ cQxQ E Cn, the support of g
is supp(g) = : 01; it is clear that g E Az if and only if

supp(g) C which is also equivalent to (see [1, 5] for details).
Thus Al can be written as

We say that an analytic function germ g C Cn is an A-form of degree
d if supp(g) C r(cL4) (i.e., g C Ad B Furthermore, for f E Cn , we
denote the Taylor expansion of f (x) at the origin by L:v cv xv. Setting

we can write f (x) = Ej Hj (x) (Newton filtration), where Hj is A-form
of degree j. Also if #0(A) = 1, we can replace the Newton filtration
associated with ,,4 by the weighted filtration associated to wF. Moreover, if
wF = (1, ... 1), this Newton filtration coincides with the usual filtration.

2.1. Compensation factor.

Let p2: (R’, 0) --+ be a continuous function. We say that pi is

the ith compensation factor associated with ,~4 if for each g E Can, we have
that Next we give some examples of compensation factors
associated with A.

(i) Here, we have the trivial example for the compensation factors, given
by

for

(ii) Let Lie - L(xj) denote the xj-axis. We then put ai - Lj n r(A)
for j = 1, ... , n (the axial vertices of r ( A) ) . We define the weight of
the variable x2, = F E ./’~’(.~4)~. We may
introduce the compensation factors as follows:

It is easy to check that these functions pi are compensation factors
associated with A (see [1, 11] for details).
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(iii) The following compensation factors are inspired by the work of

Damon-Gaffney in [5]. For all integers 1 &#x3E; 0, we let

for

We may introduce the compensation factors as follows:

It is easy to see that for any integers 1 &#x3E; 0, we have that pl,i (x) 
pm2 (x), where mi = which implies that pl,i is

continuous at the origin. On the other hand, by the construction of
we can deduce that for all g E Cn. Hence, we get

that these functions pl,i are compensation factors associated with A.

Observation. - We should note that in the case where #0(A) = 1
(i.e., weighted filtration associated with w = (WI,..., wn)), the natural
choice of compensation factor is that given by L. Paunescu in [10] as follows:

for

Moreover, for any other compensation factors ~l , ... , gn associated with the
weighted filtration, we have pW2, i = 1,..., n. Unfortunately, in
the general case we have not succeeded in finding the best compensation
factors pl , ... , pn such that for any other compensation factors Çl, ... , Çn,
we have that Çi ;S pi. However, for each y E Qi such that the monomial
x~’ is ith compensation factor, we have pi,i, where pl,i are the

compensation factors defined in (iii).
Now we fix the compensation factors pi for i = 1, ... , n relative to the

Newton filtration, and consider the singular metric of M = defined

by

and

Here, (x, t) = (Xl’...’ ixnitli ..., tp) denotes a system of coordinates of
By elementary calculation we have
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2.2. (w)-regularity associated with A.

Let

that

be analytic. We next assume

and

Setting F := (Fl,..., Fp), assume that the Jacobi matrix of F has rank
k on X near 0, where k x p is the codimension of X in R’+’ . We
note that the normal space of X is generated by the gradient of the

functions Fj ( j - 1, ... , p) at each P E X near 0. Following [6], we define
and by the following formulae:

where

where

where

and

We first remark that and (dx, 
Now using the above construction, we state the version relative to the

Newton filtration of the Fukui-Paunescu Theorem ([6], Theorem 2.1).

THEOREM 4. - The following conditions are equivalent

holds on X near 0.

holds on X near 0.

(iii) For any Cl-functions Sp~ ( j = 1, ... , p) near 0, and s = 1, ... m,

holds on X near 0.
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(iv) For with

holds on X near 0.

(v) For f-

holds on X near 0.

(vi) For some positive Cl-functions Oj on X with J c 

i = 1,...,n, s = 1,...,m,

holds on X near 0.

Proof. The proof is similar to that of Fukui-Paunescu in [6]; it is

enough to replace (resp. llxllwl) in the proof of Theorem 2.1 [6]
by the pi (resp. D

We say that X is (w)-regular over Y at 0 with respect to A (or 
regular), if one of the above equivalent conditions holds. When #0(A) _
1, we find that for i = 1, ... , n, hence our 

regularity reduces to the weighted (w)-regularity (see [6]). Moreover, if

wF - (1,-’-,1), these coincide with the usual (w)-regularity (Verdier’s
regularity).

We shall prove the following theorem.

THEOREM 5. - For X, Y as above, if (X, Y) is (wA) -regular, then
(X, Y) is (c)-regular for the control function p (we recall that P(x)

REMARK 6. - The converse of the theorem is false in general: (Kuo’s
exam pl e [8])

and

We consider the usual filtration (A -- f (1, 0); (0, 1 ) ~ ) . It is easy to see that
(X, Y) is (c)-regular at 0 for the control function p(x, Y) - x2 + y2 , but
that (X, Y) is not Verdier (w)-regular at 0 (see [14] for details.
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As an immediate corollary we have

COROLLARY 7. Let - (R, 0), t E be a family of
weighted homogeneous polynomials defining an isolated singularity at the
origin. We set F(x, t) = ft(x), then the stratification is (c)-regular.

(we again recall that

Proof - Let us put X = F-1 (0) - ~0~ x and Y = ~0~ x Con-

sider the weighted filtration associated with A = f ( -L, 0, ... , 0), ... , (o, - - - , I
0, .l )} such that ft is a weighted homogeneous polynomial with the weightWn

w = (w1, ..., Wn) E ZT. Now from the Theorem 5, it is enough to show
that (X, Y) is (wA )-regular, that is,

holds on X near Y.

Since ft defines an isolated singularity at the origin, we can see that

g: )2 is not zero outside the origin, and this implies
our inequality. D

COROLLARY 8. Let ft : --~ (R, 0), t C R’ be a real analytic
family non-degenerate (in the sense of Kouchnirenko [7]) and r( ft) = F(fo),
then the stratification £(VF ) is (c)-regular.

Proof. - By standard argument, based on the curve selection lemma,
we can see that

Therefore, (X, Y) is for any Newton filtration. In particular,
(X, Y) is usual (w)-regular (Verdier’s regular). D

Before starting the proofs of the above results, we will first illustrate
these results with several examples.

EXAMPLE 9 (Briançon-Speder family [4]). - Let ft: (JR3, 0) - (R, 0),
family of weighted homogeneous polynomials defined

by

We set F(x, t) = ft(x), Y - fOl x J and X = F-1 (0) - Y. It is

easy to check that )8tF) ~ holds on X near 0, where A =
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~(1, 0, 0), (0, ~,0), (0,0, ~)}. Thus, by Theorem 5, we have that (X, Y)
is (c)-regular for the function p(x, y, z) _ ~12 -~ y6 -~ z4. (It is well known
that ft is not Whitney regular and not usual (w)-regular).

EXAMPLE 10 (Oka family [9]). - Let f t : (II~3, 0) - (R, 0), t e J -

[ -1, 1], be a family of polynomial functions defined by

We set and

It is not hard to see that the inequality I
holds on X near Y, where pi denotes the ith compensation factor of type
(ii) as defined in 2.1. It follows from Theorem 5 that (X, Y) is (c)-regular
for the control function y, z) = x’6 + ~32 + z32 + 

2.3. Proof of Theorem 5.

In order to show this theorem we need the following lemma.

LEMMA 11.

near

when on -

Proof. We first recall that:

Therefore, (1) is a simple consequence of the construction of the compen-
sation factors and the control functions.

Let us observe that, by (1.2) we have On the

other hand, ap = 0-pl, (where N denotes the normal space to X).
Since N is generated by the gradients of Fj ( j = 1, ... , p), we have that

ap -~ ~i9Fi’ - - + After this, (2) in the lemma, follows from
the following more general proposition.
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PROPOSITION 12. - Let be

two germs of analytic maps, setting f : = (11,..., f r ) . Then there exists
a real constant C such that for p E f -’(0), and sufficiently close to the
origin,

We note that if r = 1, one finds Theorem 1.1 of Adam Parusinski

[12]. Moreover, the proof of this proposition is similar to that of Theorem
1.1 in [12] (we omit the details). 0

Now we are ready to prove Theorem 5. We assume that (X, Y) is

(wA )-regular at 0. By inequality (iii) in Theorem 4, we have

on X near 0,

where 8 C S such that #S = #S - 1. Thus we 
when (x, t) -~ 0 on X (i.e., (X, Y) is (a)-regular at 0), and so by Theorem
2, we only have to prove that:

We first remark, by (1.1) the following equality:

and hence

According to the inequality in (iii) of Theorem 4, we have
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Thus, we obtain

and, using (2.13), we obtain

on X near 0.

It follows from Lemma 11 that (2.12) holds. This completes the proof of
Theorem 5.

3. The Damon-Gaffney condition and (c)-regularity.

In this section we describe some definitions and notations used by
Damon-Gaffney in [5].

Given a Newton filtration ,,4 as above. We extend this filtration on

the ring of formal power series in the variables Xl, ... , xn ; t1, ... , cm
around the origin by defining

Let g = Lv cv (t)r" be a series in Cx,t, the support of g, denoted by supp(g),
is the set of points v C Z’ such that 0. We denote the set of g with

l in by It is not difficult to see the following equality:

We say that level of the Newton filtration is fit if all the vertices

of ø-l (l) are lattice points of 1R.¡. This says that l Ver(A) = E 7~+
(because of the linearity of the Newton filtration on cones). For which

is fit, we let

We also let
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with denoting the Al+,,x,t-module generated by the 
t = 1, ... , n. Finally, for an element 9 E Cx,t, we let Vl,x,t(g) == ~~(g) : ~ E
Vl,x,t}.

Now we can announce the Damon-Gaffney Theorem.

THEOREM 13 (Damon-Gaffney [5]). - Let f : 0) - be

an analytic deformation of a germ fo: (R n, 0) - (R, 0) (i.e., f E Cx,t). Then
a sufficient condition that f be a topologically trivial deformation is that
there exists a fit so that

We will call condition (3.5) the Damon-Gaffney condition. Next, our
principal goal will be to show that this condition implies a (w)-regularity
condition relative to the Newton filtration, hence, these deformations will,
in fact, satisfy the Bekka condition.

Given an analytic function f E Cx,t, we define

which gives a stratification of R~ x R- around ~0~ x Rn - Then, we have

THEOREM 14. - For f E Cx,t, if there is a positive integer 1 such that

(The Damon-Gaffney condition),

then the x is (c) -regular.
Proof. - Let us put ver(,,41 ) = then we get the following

expression:

and summing over x0152 E ver(Ai ) we obtain
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Since = l Ver(A) , which means , J Then we let

It follows from (3.6) that (ç~ ax ) 2, and so by Theorem 5, it

is sufficient to show that these E’i are compensation factors associated with
A. Indeed, for any g E Cn, we have from the filtration properties of the (a)
that

which means

Therefore, for i = 1,..., n,

This completes the proof of the Theorem

REMARK 15. - We observe that if and only if

supp(gi) C Rl,i (uTe recall that
which is also equivalent to Hence, the

Damon-Gaffney condition implies a condition with pl,i as

compensation factors, where pl,i denotes the i th compensation factor of
type (iii) as defined in 2.1.
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