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ON PROJECTIVE TORIC VARIETIES

WHOSE DEFINING IDEALS HAVE

MINIMAL GENERATORS OF THE HIGHEST DEGREE

by Shoetsu OGATA

Introduction.

Sturmfels asked in [S2] whether a nonsingular projective toric variety
should be defined by only quadrics if it is embedded by global sections of
an ample line bundle. An evidence has been obtained by Koelman [K3]
before Sturmfels asked the question. Koelman showed that projective toric
surfaces are defined by binomials (differences of two monomials) of degree
at most three ([Kl] and [K2]) and obtained a criterion when the surface
needs defining equations of degree three ([K3]). He used combinatorics of
plane polygons.

Sturmfels showed in [Sl] that for projectively normal toric varieties
of dimension n, the defining ideals have minimal generators consisting
of elements of degree at most n + 1 (Theorem 13.14 in [Sl]). There are
examples showing that this bound is optimal. In this paper we give a
generalization of [K3] to higher dimensions, that is, we give a criterion
for the ideals defining projectively normal toric varieties of dimension n to
be generated by elements of degree less than n + 1. Bruns, Gubeladze and
Trung [BGT] also give a generalization of the results of [K3].

Keywords: Toric varieties - Convex polytopes - Generators of ideals.
Math. classification: 14M25 - 14J40 - 52B20.
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A toric variety is a normal algebraic variety with an algebraic action
of an algebraic torus of the same dimension of the variety and a dense
orbit. Let X be a projective toric variety of dimension n and T ~ 
the algebraic torus acting on X. Let M = Homgr (T, C*) be the group of
characters, which is isomorphic to For m E M, we denote e(m) the
corresponding character of T. Let L be an ample line bundle on X. Then
there exist an integral convex polytope P in := M Oz I~n and an

isomorphism

where an integral convex polytope is the convex hull of a finite number
of elements of M. Let R(X, L) . :== be the homogeneous
coordinate ring of X. Then we have an isomorphism

This is a normal polytopal semigroup ring in the sense of [BGT]. If L is
normally generated in the sense of Mumford [M], that is, L satisfies the
conditions that it is very ample and that the image of X in L)*)
is projectively normal, then R - R(X, L) is generated by its degree
one elements. In this case, R is a quotient ring of the polynomial ring
,S’ = Let I be the ideal of S’ with R ~ S/I. We call I the
defining ideal of (X, L), or of the polytopal semigroup ring of P.

In general an ample line bundle L on a projective toric variety of
dimension n is not very ample for n &#x3E; 2. On the other hand, L&#x26;;;i is

normally generated for i ~ n -1 ([EW]), and the defining ideal of (X, LO’)
is generated by quadrics for i &#x3E; n ([BGT], [NO]), or for i = n - 1 and
n &#x3E; 3 ([Og]). The normal generation of L is equivalent to the condition for
the corresponding integral convex polytope P that for all positive integers
l, each element x in (lP) n M can be expressed as a sum x = ml +... + ml
of 1 elements of P rl M. We call P is normally generated if P satisfies this
condition. When n = 2, all ample line bundles on projective toric surfaces
are normally generated. This is one of difficulties arising in generalization
of Koelman’s result [K3] to higher dimensions by using combinatorics of
polytopes.

We employ a method of algebraic geometry. Specifically, we consider
the case of curves which are complete intersections of hyperplane sections
and use regular ladders of Fujita [Fj].
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THEOREM 1. - Let P be an integral convex polytope of dimension
n (&#x3E; 2). Assume that P is normally generated. Then the defining ideal of
the polytopal semigroup ring of P has generators of degree n + 1 if and
only if P is an n-simplex with standard facets and containing lattice points
in its interior.

We may restate Theorem 1 in terms of algebraic geometry. It is

convenient for the readers because we shall prove a part of Theorem by
using algebraic geometry.

THEOREM 1’. - Let X be a projective toric variety of dimension n

(~2) and let L a very ample line bundle on X which defines an embedding
of X as a projectively normal variety. Let P be the integral convex polytope
of dimension n determined by the global sections of L. The defining ideal
of X needs elements of degree n + 1 as generators if and only if P is an
n-simplex with standard facets and containing lattice points in its interior.

One half of Theorem is given by Proposition 1.3, which says that if P
has only n -~-1 lattice points in the boundary and if it contains at least one
lattice point in the interior then the defining ideal needs elements of degree
n + 1 as generators. We can easily see that if P contains only n + 1 lattice
points then (X, L) l3£ (P’, 0(1)). Thus another half of Theorem is that if P
contains more than n + 1 lattice points in the boundary then the defining
ideal has generators of degree at most n, which is given by Theorem 2.6.

We know that if X is nonsingular, then P is simplicial and for each
vertex vo there are n edges (i = 1, ... , n) meeting at vo such that

basis of the lattice If, in addition, the boundary
of P contains only n + 1 lattice points, then P contains no lattice point in
its interior, that is, P is a standard n-simplex. Hence it does not satisfy the
condition of Theorem. Thus we have a weak answer to Sturmfels’ question.

COROLLARY 1. - For a nonsingular projectively normal toric vari-
ety of dimension n (~ 2), its defining ideal embedded by global sections of
an ample line bundle has generators of degree at most n.

Next consider the case that P is an integral n-simplex, that is,
P = Conv~uo, ul, ... , un) with uo, ul, ... , un E Z’~ =: M. Let M’ be the
sublattice of M generated by ui - uo, ... , un - uo. Then P is a standard
n-simplex with respect to M’. Hence (P, M’) defines the projective n-space

0(1)). From this consideration we see that the toric variety X defined
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by P is a quotient of the projective n-space by a finite abelian group
M/M’. A weighted projective space has the same form

x ... x (Z/qn)) - If all facets of P are standard 
then all n elements of qi , ... , coincide, hence ql , ... , qn ) ~--" 
Thus it does not satisfy the condition of Theorem.

COROLLARY 2. - The defining ideals of projectively normal weigh-
ted projective n-spaces have generators of degree at most n.

The author should acknowledge the hospitality of Mathematisches
Institut Universitdt Erlangen-Niirnberg, where he could complete this

paper. He is also grateful to Michel Brion for his kindly advice on the
paper in manuscript.

1. Polarized toric varieties.

First we mention the facts about toric varieties needed in this paper

following Oda’s book [Od], or Fulton’s book [Fl].
Let N be a free Z-module of rank n, M its dual and  , &#x3E; : M x &#x3E;

Z the canonical pairing. By scalar extension to the field R of real numbers,
we have real vector spaces NR := N 0z R and MR := M 0z R. Let
TN := N 0z C* ~ (C*16’~ be the algebraic n-torus over the field C

of complex numbers, where C* is the multiplicative group of C. Then
M = Homgr (TN, (C* ) is the character group of TN. For m E M we denote
e(m) the corresponding character of TN. Let A be a complete finite fan of
N consisting of strongly convex rational polyhedral cones ~, that is, there
exist a finite number of elements vl, v2, ... , vs in N such that

and a Then we have a complete toric variety X =
TN emb(A) := of dimension n (see Section 1.2 [Od], or Section 1.4
[Fl]). Here Spec n M] and ov is the dual cone of a with respect to
the pairing  , &#x3E;. For the origin 101, the affine open set Spec C[M]
is the unique dense TN-orbit. We note that a toric variety is always normal.

Let L be an ample TN-equivariant invertible sheaf on X. Then

the polarized variety (X, L) corresponds to an integral convex polytope.
We call the convex hull in MR of a finite subset
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fuolull ..., C M an integral convex polytope in MR. The correspon-
dence is given by the isomorphism

where e(m) are considered as rational functions on X because they are
functions on the open dense subset TN of X (see Section 2.2 [Od], or Section
3.5 [Fl]).

Let Pl and P2 be integral convex polytopes in Then we can

consider the Minkowski sum PI -~- P2 := + X2 E E Pi (i = 1, 2)}
and the multiplication by scalars rP1 := frx C x E for a positive
real number r. If l is a natural number, then 1P, coincides with the l times
sum of The 1-th tensor

power LQ9l corresponds to the convex polytope lP := ~lx E MR; x E Pl.
Moreover the multiplication map

transforms e(ui) 0 e (u2 ) for ul E lP n M and u2 E P n M to + U2)
through the isomorphism (1.1). Therefore the equality 

equivalent to the surjectivity of (1.2).
In this article we assume that L is normally generated, that is, the

multiplication map (1.2) is surjective for all 1 &#x3E; 1, hence, it is very ample.
In terms of polytopes, the normal generation of L means that the equality

holds for all positive integers 1. It is also equivalent to the condition that
for 1, and for any v E lP f1 M, there exist 1 elements UI,... , ul
of P n M with v = ul + - - - + ui. From this reason we may call P to be

normally generated if it satisfies (1.3) for all positive integers l.

Let P n M - By the assumptions we have the
embedding by global sections of L;

Let Zo, Zl , ... , Zr be the homogeneous coordinates Then V is defined

by Zi - e(ui) for i = 0,1, ... , r. Set R . :== LO’)
and Then we define a surjective ring
homomorphism . Let I be the kernel

of p. Then we see that I° = h = 101 for the graded ideal I = We

call I the defining ideal of X in L)*).



2248

LEMMA 1.1 (Eisenbud-Sturmfels [ES]). - The defining ideal I is
generated by binomials, that is, the differences of two monomials.

For a proof see Proposition 2.3 in [ES].

PROPOSITION 1.2 (Sturmfels [Sl]). - Let L be a normally gener-
ated ample line bundle on a projective toric variety X of dimension n.
Then every minimal generator of the ideal defining X in (X, L) * ) has
degree at most n + 1.

For a proof see Theorem 13.14 in [Sl].

PROPOSITION 1.3. - Let P = Convf uo, ul,..., un~ be an integral
n-simplex such that the equality (1.3) holds for all positive integers l. We
assume that the boundary of P contains only n + 1 lattice points, and that
P contains at least one lattice point in its interior. Then the defining ideal
I needs an element of degree n + 1 as a generator.

Proof. By a suitable affine translation of M we may assume uo =
0. Let {eI, ... , en I be a Z-basis of M. The very ampleness of L says that the
set of all lattice points in the cone ov - + ... + is generated
by P n M as a semigroup. In other words, every lattice point in av n M can
be written as a sum of elements in P n M with positive integer coefficients.
Since the lattice points of the face cone Tn := a V
are also generated by Conv f uo, ul, ..., I Un-11 as
a semigroup, we may set ul = e1, ... , un-1 = en-1. This shows that every
facet of P is a standard (n - I)-simplex. Set un = aie2 with integer
coefficients. By a change of bases we may set all ai &#x3E; 0. Since dim P = n,
we have an &#x3E; 0. Moreover we may assume that un+1 :== E~=I eg is in the
interior of P. Then we have

for

and

By componentwise description with respect to the basis of M, we have

Since ( a 1, ... , 1) is contained in nP from (1.4) and (1.5), there
exist t~+2? - v2n+1 in P f1 M such that



2249

Corresponding to the relation uo + ul + ..- -f- un = vn+2 -t- ~ ~ ~ + v2n+l, we
obtain a binomial B := Zn+l - Yn+2 ... Y2n+1, where Yj = e(vj) E
{Zo?’ -’ ? Z, I - Since (aI, ... , is not contained in (n - 1) P from
(1.5), none of vn+2, ... , V2n+ 1 coincides with uo. If we assume Yn+2 = ZI, 7
that is, = ul, then from (1.4) we have (al - 1, a2,..., a~ - 1) ~
(n - 1)P, which contradicts (1.6). Hence we see that the binomial B is

irreducible.

Next we assume B = X 1 B1 ~- ~ ~ ~ -f- X s BS with binomials Bi E In of

degree n and Xi write binomials Bi as the difference of
two monomials then we have

and = 
..., Zn. We note that for a

binomial Bi = Mli) - M2 (z) we have E nP n M. If we

assume Xs = Zo, then we have MJs) = Zi - " Zn and

Since is a monomial of degree n, it is defined by the finite set

~w~ , ... , C P n M with wl + - " + ~ = ul ~ ~ ~ ~ -~ un . From the

assumption of very ampleness, ~u2 - UI, ... , Un - is a basis of the

sublattice of M contained in the affine subspace spanned by {t6i,..., Un I -
Since the expression (t~i 2013 ul ) -f- - ~ ~ -~ (wn - UI) = (u2 - ul ) -~ - - y-- (un - UI )
is unique, we have that is, = This

implies Bs = 0. If we assume Xs = Zi for some i = 1,..., n, then we can
easily see that M(’) hence Bs = 0 from the same reason.

This implies that B V 

Remark. - If P = Convfuo, UI, 7 Unj does not contain any lattice
point in the interior and if P satisfies the equality (1.3) for all positive
integers I, then from the proof of Proposition 1.3 we may set uo - 0,
ui - ei for i = 1,..., n - 1 and un = ajui with 0 and an &#x3E; 0

after a suitable affine transformation of M. Since P n M = ~uo, ... , 7 Un I
generates the set of all lattice points in the cone with the apex uo = 0,
we see that an = 1. By a change of basis of M, we may set un = en. Thus

(X, L) ^-~ (I~n, C?(1)). °

Abe [A] constructs infinitely many examples of integral 3-simplices
whose defining ideals need elements of degree 4 as generators. Here we give
a part of them.

Example 1.4. - Let I be a positive integer and set M - 7~3.
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Let uo - 0, ul - (1, 0, 0), u2 = (o, l, 0) and let u3 - (1,1,1), u4 -
(3, 3, 4), ... , =(2l+1,2l+1,3l+1). Set Pz 
a 3-simplex. Then Pl contains the lattice points u3, ... , Ul+2 as its interior
points. The volume of Pl is (31 + 1)/3!. P1 is the union of four 3-simplices
with the common vertex u3. Since Pi is the union of Pi-, and three 3-

simplices with the common vertex ui+2, we see that Pl is devided into

the union of 31 + 1 integral 3-simplices, which means that every 3-simplex
appearing in the decomposition has volume 1/3!, hence the polytope Pz
has a unimodular triangulation. From Proposition 1.2.2 in [BGT], 7~
is normally generated. From Proposition 1.3 we see that Pl defines a

projectively normal toric variety of dimension 3 whose defining ideal needs
elements of degree 4 as generators.

2. Characterization.

We consider an integral curve C defined by the intersection of general
hyperplane sections Yi , ... , Y,,, - 1 of the linear system i.e., 
Set Lc = the restriction of L to the curve C. From easy calculation,
we see that

Hence we have

LEMMA 2.1 (Iitaka ~I~ ) . - Let D be a Cartier divisor on an integral
complete curve C with the properties that the invertible sheaf Oc(D) is
generated by global sections and that the morphism associated to D

is birational. Assume that ~(C,0c(~)) =~+1~4. Then we have an
effective divisor G satisfying

(3) the line bundle Oc(D - G) is generated by global sections and

For a proof we may see Lemma 3.16 in [I]. Unfortunately it is written
in Japanese. Hence we give an outline of a proof.
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Outline of Proof. We use an induction on l. The image W =
~D (C) is a curve in I~l and is not contained in any hyperplane. Take general
points p, q on W so that the line in I~l through p and q meets W at only
two points. These points are nonsingular points of W and the map 4)D has
an inverse on an open subset containing these points. Set PI = 4~D’ (p) and
P2 = ~D1 (q) . Then oC (D - (Pi + P2)) is generated by global sections. Let
D’ : - D - Pi. Then Oc(D’) is generated by global sections and the map
~D’ is birational.

On the other hand, we have By
the assumption of induction for D’ we have a divisor G’. Set G = G’ + Pl .
Then this divisor G satisfies (1), (2) and (3).

When 1 = 3, we set G = PI + P2. By Riemann-Roch Theorem we
have

Remarks We note that the divisor D given in Lemma 2.1 consists
of general 1 - 1 points on the curve C.

A very ample invertible sheaf L on a projective variety X defines an

embedding Set so that

there exists the following exact sequence of vector bundles:

Taking wedge product in (2.4) and twisting by we obtain an exact

sequence

LEMMA 2.2 (Green-Lazarsfeld [GL]). - Assume that L is normally
generated. Let ko be an integer such that the maps induced by (2.5)

are surjective for all 1~ &#x3E; ko. Then every minimal generator of the

homogeneous ideal defining X in P~ has degree ko or less.

In our situation we shall show ko = n for (X, L) = (C, Lc).

PROPOSITION 2.3. - Let Lc be a very ample line bundle on an

integral complete curve C and let n &#x3E; 2 an integer with H1 (C, L®Z) - 0
for i &#x3E; n- l. Then we have = 0 for i &#x3E; n. Furthermore
if we have the inequality hl (L®n-2) &#x3E; 3 for n &#x3E; 2, then we have

- 4
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Proof. When 1 := h° (LC ) - 1 = 2, from the condition we have
h’ (L gn-2) = 0. Since 2, we have L-1 from the
sequence (2.4), hence, we have -
for i &#x3E; n - 1.

When 1 &#x3E; 3, we can apply Lemma 2.1 to Lc = Oc(D). Then we have
the following commutative diagram:

Here we write as ~G the kernel of 0 Since

h° (LC (-G) ) - 2, the vector bundle is a line bundle.

And since G is a general divisor of degree 2013 1, we may write G = ~~=1 Pi,
hence, we have ~G ~ Thus we have the exact sequence

Taking wedge product in (2.7) and twisting by we obtain an exact

sequence

Since 0 and since Pi are general, we have that

-P»&#x3E; = = 0 for k &#x3E; n and that 

Pi)) = = 0 n + 1. Hence we have = 0

Next set k = n - 1. If Pi)) = 0, then the proof of the
proposition is completed. Suppose that hl (L~n-2 (G - &#x3E; 0. Since the

divisor G - Pi consists of general l - 2 points, then we have
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The assumption 3 implies the inequality 0 &#x3E;
hI (L gn-2 (G - Pi)), which is a contradiction. Hence we have 
Pi)) = 0-

COROLLARY 2.4. - Let Lc be a normally generated ample line
bundle on an integral complete curve C. If 
and hl (L®n-2 ) &#x3E; 3 for n &#x3E; 2, then the defining ideal of C in

L~)*) has generators of degree at most n.

Proof. From Proposition 2.3, we have the surjectivity of the map
of (2.6). Thus the statement follows from Lemma 2.2.

LEMMA 2.5 (Fujita [Fj]). - Let Y be an irreducible member of ILl ]
with Ho (Y, Ly) surjective. Let 6 E Ho (X, L) be the class
corresponding to Y, and let Ça (a = 1,..., k) be homogeneous elements
of the graded ring R(X, L) := L®t) with deg Ça == da and
let 17a be the restriction to R(Y, LY ) - L®t ) . Suppose
that {17I, ... , generates R(Y, LY). Let g2 (i = 1,..., 1) be homogeneous
polynomials in k variables Yl, ... , Yk with deg Yi = d2.

Suppose that all relations among ~r~a ~ in R(Y, Ly) are derived from
gI (171, ... , = 0,..., 9l (~1, ... , =0. Then there exist 1 homogeneous
polynomials fl, ... , fl in k + 1 variables X°, Xl, ... , Xk with deg Xo =
1, deg Xi - di for i = that/,((), 
for i = 1,..., k and that all relations among 6, ~1, ... , Çk in R(X, L) are
derived from fl(~,~1,...,~~) =0,..., f~(b,~l,...,~~) =0.

For a proof see Propositions 2.2 and 2.4 in [Fj].

THEOREM 2.6. - Let P be an integral convex polytope of dimen-
sion n satisfying (1.3) for all positive integers l. We assume that the bound-
ary of P contains at least n + 2 lattice points. Then the defining ideal I
has generators of degree at most n.

Proof. Let C be an integral curve defined by the intersection
of n - 1 general hyperplane sections of the linear system Then

the condition hl (LC 2 ) - 3 is equivalent to the condition
n M &#x3E; n + 2 from the equalities (2.1) and (2.2). From Corollary

2.4 we have the statement of the theorem for the integral complete curve
C in P(Ho (C, Lc) ’).
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Let D be a general member of the linear system I L 1. Then D is
irreducible and reduced, and the restriction map H°(X, L) - 
is surjective from the vanishing of cohomologies: We have Hi (X, LQ9j) = 0
for 0  i  n and all j, and LQ9j) = 0 for Thus we have

a sequence X = DI == C with dim Dj = j, 
ILID, I and the surjective restriction 
This sequence is called regular ladder in [Fj]. By applying Lemma 2.5 to
a regular ladder of (X, L), we have that every minimal generator of the
homogeneous ideal defining X in has degree n or less.
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