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MOTIVIC-TYPE INVARIANTS OF

BLOW-ANALYTIC EQUIVALENCE

by S. KOIKE and A. PARUSINSKI (1)

We develop techniques that allow us to study and distinguish different

blow-analytic classes of analytic function germs f : (R , 0) -~ (R, 0). For this
we adapt and apply to the real analytic set-up the ideas coming from motivic
integration, in particular the concept of motivic zeta function due to Denef
and Loeser.

The notion of blow-analytic equivalence was introduced by
T.-C. Kuo [22] and [23]. Recall briefly that analytic function germs

/,~:(R~O)2013~(R,0) are blow- analytically equivalent if there exist real

modifications and

an analytic isomorphism -4: which induces a

homeomorphism 0: (R , 0) -~ 0) such that f = g o 0. In this paper we
suppose additionally that p, resp. p’, is an isomorphism over the comple-
ment of f -’(0), resp. g-1 (0). The blow-analytic equivalence is interesting
because it does not allow continuous moduli for families of isolated singula-
rities cf. [23], and it preserves a deep information on the algebraic structure
of the singularity. For real singularities, unlike for the complex ones, the
topological classification is too crude, e.g., + and x2n + y 21 are
always topologically equivalent. The blow-analytic equivalence was inven-
ted to overcome this problem. Moreover, as follows from various examples,
the blow-analytic equivalence of real analytic function germs behaves in

(1) This research was originated during the conference New Developments in Singularity
Theory, Cambridge 2000, at the Isaac Newton Institute, and was subsequently supported
by the University of Angers and Grant-in-Aid for Scientific Research (No. 13640070)
of Ministry of Education, Science and Culture of Japan. We would like to thank these
institutions for their support and hospitality.
Keywords : Blow-analytic equivalence - Motivic integration - Zeta functions - Thom-
Sebastiani formulae.

Math. classification : 14B05 - 32Sl5 - 57R45.
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a similar way to the topological equivalence in the complex case, though
there is no precise result in this direction. This observation seems to be
confirmed by the main results of this paper.

There exist various criteria of blow-analytic triviality of families
of analytic function germs, based mainly on toric equi-resolutions [10],
[13], [1], but there were till now very few results allowing to distinguish
different blow-analytic types and hence to attempt a classification even in
the simplest cases. The only known up to now invariant of blow-analytic
equivalence was introduced by Fukui in [11], see also Section 5 below.
In this paper we introduce new invariants that allow us to start such

a classification.

The main results of this paper are the following. In Section 1 we

associate to each real analytic function germ f : (R d, 0) -~ (R,0) its zeta
functions: Zf, Zf,+, Zf,- E Z[[T]]. We show that they are blow-analytic
invariants in Section 4. In order to compute the zeta functions we propose
formulae in terms of a resolution (Denef and Loeser formulae), see Section 1,
and the Thom-Sebastiani Formulae in Section 2. Sections 6 and 7 contain

classification results, in particular a complete classification of blow-analytic
types of Brieskorn polynomials of two variables and a partial classification
in three dimensional case.

Our main idea of construction of new invariants is based on

the following simple observations. Suppose that f, g: (JRd, 0) --~ (R, 0)
are blow-analytically equivalent via a (blow-analytic) homeomorphism
0: (R~,0) ~ f = g o 0. Then, firstly, f and g admit isomorphic
resolutions. Secondly, let L(R , 0) denote the set of germs of analytic arcs
at the origin in R . Then p induces a bijection (~ : /;(R~,0) --~ 0) by
composition ’P* (q(t) ) = (p o q) (t). In Section 1 below, using the integration
with respect to the Euler characteristic with compact supports on these sets
of arcs, we associate to each real analytic function germ f : (R , 0) -~ (R, 0)
its zeta functions: Zf, Zf,+, Zf,- E Z[[T]]. Here we follow the path
introduced by Denef and Loeser [5], [9], and inspired by work of

Kontsevich [18]. The zeta function of Denef and Loeser, and the related
topological zeta function cf. [8], provides an important information on the
local topology of complex analytic function germs, see a new proof of
Thom-Sebastiani theorem for the Hodge spectrum [7] or works on the

monodromy conjecture, see for instance [9], [35]. We refer the reader to the
survey [8] for more information on the Denef and Loeser construction and
its applications.
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In Section 4 we show that our zeta functions are invariants of

blow-analytic equivalence in the sense of Kuo. The proof is based on

formulae (1.1), (1.2), analogous to the formulae of Denef and Loeser, that
express the zeta functions of f in terms of a resolution. These formulae
are proven by a version of the change of variable formula, Corollary 4.4.
Note that these results do not follow automatically from the analogous ones
in the algebraic case, due to the necessity of working with non-compact
subanalytic sets. This difficulty is overcomed thanks to the Lojasiewicz’s
theory of relatively semi-algebraic, semi-analytic sets [27].

Thom-Sebastiani Formulae, showed in Section 2, express the zeta
functions of f (x) + g(y) in terms of the ones of f and g. They have

interesting consequences. For instance we get a suspension property: if the
zeta functions of x"2 + and x"2 + g2 (y), m even, coincide then so
do the zeta functions of g, and g2. One may speculate that if x2 + g, (y)
and x2 + g2 (y) are blow-analytically equivalent so are g, and g2 (this
is for instance the case if we know that the zeta functions distinguish
the blow-analytic types of g, and g2, we use this in some special cases).
We do not know the answer to this question. We use the Thom-Sebastiani
Formulae to compute the zeta functions for all Brieskorn polynomials

In Section 6 we compute the blow-

analytic equivalence classes of Brieskorn polynomials of two variables and in
Section 7 most of the equivalence classes of Brieskorn polynomials of three
variables. This classification differs from the analytic one. For instance,
thanks to a phenomenon typical for real algebraic geometry, the functions
XP + p odd, k even, are blow-analytically equivalent
but not analytically equivalent (over real numbers).

As we mentioned before the blow-analytic equivalence behaves in a
similar way to the topological equivalence of complex analytic function

germs. Consider for instance the following example. The germs at the origin
y, z) = and g (x, y, z) = x3 ~- y7 -f- z3 are not topologically

equivalent as complex germs. One may show that any complex analytic
function germ with the 6th jet equal to f is topologically equivalent either
to f or g, thus there are exactly two possible topological types. On the
other hand any real analytic function germ with the 6th jet equal to f is

blow-analytically equivalent either to f or g. Of course, f and g as real

analytic functions germs are topologically equivalent (they are equivalent
to a nonsingular germ). We show in Subsection 7.2 that f and g are not
blow-analytically equivalent.
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Due to the presence of some phenomena typical for the real algebraic
geometry it is interesting to compare the properties of our zeta functions
to the ones of Denef and Loeser. For instance our sign zeta functions,
Z+, Z-, correspond to the monodromic zeta function of Denef and Loeser,
a phenomenon similar to the one studied in [29] in a different context.

Note also that our zeta functions are not really motivic and have only
integer coefficients. This is due to the fact that the Euler characteristic
with compact supports is the only purely topologically defined additive
invariant of semi-algebraic sets, cf. [32].

Moreover the zeta functions introduced in this paper do not

distinguish all classes of blow-analytic equivalence and we are far from
a complete classification even in the weighted homogeneous non-degenerate
case. This problem may be attack by hunting new motivic invariants
in the real algebraic, and not semi-algebraic, set-up. Even if one knows
such invariants it is not clear whether one can apply them to study the
equivalence that is merely blow-analytic (and not ’blow- algebraic’). On the
other hand there is a variety of work in real algebraic and analytic geometry
related to the space of analytic arcs that can be probably approached by
the techniques of motivic integration, cf. [24], [2], [25].

We finish the introduction with more precise open questions. Let f,
g : (ccn, 0) - (C, 0) be weighted homogeneous polynomials with isolated
singularities. It is known after [31], [33], [36], [37], for n = 2, 3, that
if (C-, (0)) and ((Cn, (0)) are homeomorphic as germs at 0 E 
then their systems of weights coincide. We propose the following
corresponding question.

QUESTION 1. - Let f, g : 0) -~ (R, 0) be weighted homogeneous
polynomials with isolated singularities. Suppose that f and g are blow-
analytically equivalent. Then, do their systems of weights coincide?

Let K = R or C, and let denote the set of r-jets of analytic
function germs (II~n, 0) -~ (K,0). We say that w E is sufficient

if any two analytic function germs with the r-th jets equal to w are blow-
analytically equivalent. Identify r-jets with polynomial representatives of
degree not exceeding r. We say that w E satisfies the Kuiper-Kuo
condition (see [20], [21]) if there are C, a &#x3E; 0, such that

for

T.-C. Kuo proposed the following conjecture and has afhrmatively proved
it in the two variables case.
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CONJECTURE 1. - Let w C Suppose that w satisfies the
Kuiper-Kuo condition as a complex r-jet. Then w is blow analytically
sufficient in Cw-functions.

Convention. - By the Brieskorn polynomials of d variables we mean
Since their analytic

types depend only on the signs of ai, in order to simplify the notation,
we consider only the Brieskorn polynomials of the form

1. Motivic zeta function of analytic function germ.
1.1. Definition of the zeta functions.

Consider the space of analytic arcs at the origin 0 E R ,

and the one of truncated arcs

Given an analytic function For n &#x3E; 1 we denote

We define the positive, negative, and total zeta function of f by

where X’ denotes the Euler characteristic with compact supports. If f is
fixed we shall often drop f and write simply for x~,+ ( f ), Z+ for Z f,+,
and so on.

Remark 1.1. - The map R* that associates the first

non-zero coefficient of f o ~y, that is cp(~y) = c if f o -y = ctn + - ", is a trivial
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fibration over Ro and R&#x3E;o (for n odd it is trivial over R*). This can be
easily shown using the following action of R* :

Remark 1.2. - Our zeta function is an incarnation of the motivic

zeta function of Denef and Loeser [8], [7], [9]. Instead of using the

algebraic motifs we use just the Euler characteristic with compact supports
that is the Euler characteristic of the sheaf cohomology with compact
supports, with coefficients in the constant sheaf Z. By the long exact
cohomology sequence of the pair it satisfies the following additivity
property: X’(A) = XC(A B B) + for all locally compact semialgebraic
A and B, B closed in A. One may show that XC is the only topological
invariant of semi-algebraic sets additive in this sense, cf. [32].

1.2. Denef and Loeser’s formulae.

Let a : (M, - (Rd, 0) be a modification of Rd such that f o a
and the jacobian determinant jac a of 7 are normal crossings simultaneously
(we may define jac a locally using any local system of coordinates on M).
For instance if a is a composition of blowings-up with smooth centers
that are in normal crossings with the old exceptional divisors then jac a
is normal crossings. We also assume that a is an isomorphism over the
complement of the zero set of f. The existence of such a modification is
guaranteed by [16], [3]. We denote by Ei, i E J, the irreducible components
of ( f o (in (Be), where Be is a small ball in R d centered at
the origin). We may also suppose that is the union of some of Ei.
For each i E J we denote

Ni = multEi f o cr and vi = multEi jaca -t-1.

Denote for i E I and I C J,

Using the change of variables formula in the motivic integral [18], [6], [28]
we shall show in Section 4 that

0 0 0

Let E I,k be a connected component of EI and let x E EIk. Then, near x,
the complement of ( f o a)-’(0) consists of 2~ chambers, f being non-zero



2067

o o

on each of them. Denote by a+ (E I,k ) , resp. the number of such

chambers where f o a is positive, resp. negative. Again using the change of
variables formula one gets

The formulae (1.1), (1.2) will be shown in Section 4 below.

1.3. Examples.

1.3.1. - Let 

if n = km,
otherwise.

That is if n = km, and

Of course, the same formula can be obtained by (1.1) by taking a equal to
the identity

If m is odd then Z+(T) - Z_ (T ) - 2 Z(T) . If m is even then

Z+ (T ) =z(r),z-(r)=o.

1.3.2. Let y) = x2k + y2k, (x, y) E Jae2. We may desingularize f
by blowing-up the origin with the exceptional divisor P . Since = 0

we get by ( 1.1 ) and (1.2)

1.3.3. - Let Since f is already normal
crossing we apply ( 1.1 ) to a = id. Then

1.3.4. - Let m odd. Then f can
be desingularized by one blowing-up with the exceptional divisor pl. Now,
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( f o (0) contains as well the strict transform of that is a smooth

curve meeting the exceptional divisor transversally at a point. Hence

Clearly.

1.3.5. Zeta functions of a product. - Let f (x, y) : :(Rd, 0) - (R, 0),
y) = where fi : 0) --~ (R, 0), i = l, 2. Then it is easy to

check the following formulae:

If f (x, y) - f 1 (x) f2 (y), f 1 (o) - 0 but f2 (o) &#x3E; 0, then Z f,~ - and

the signs are swapped if f 2 (o)  0.

Let f (x) - &#x3E; 1, k &#x3E; 1, with u(0) # O. By the
above and Example 1.3.1

If one of Ni is odd then If they are all even and

u(O)  0, resp. u(O) &#x3E; 0, then Z f,+(T) - 0, resp. 0.

2. Thom-Sebastiani Formulae.

The Thom-Sebastiani Formulae express the zeta functions of f (x) +
g(y) in terms of the zeta functions of f (x) and g(y), x E y E 

We denote

For motivic zeta functions similar formulae were proposed in [7].
In what follows we denote

Then
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where ai - a+ + ait and so on. Let

Then

Similarly we define Bn, n &#x3E; 0.

THEOREM 2.1.

Note that, in general, the total zeta function depends on all,
that is also on the positive and negative zeta functions of f and g and not
only on Z f (T ) and Zg (T ) as the following example shows.

Example 2.2. - Let f (x) = x2, g(y) - y2. The zeta functions of f
and g are computed in Subsection 1.2. The coefficients Ai are given by

One may compute easily the zeta functions of f * g using Theorem 2.1.
They, of course, coincide with the ones given by 1.3.2. The total zeta

function of h(g) _ -g2 equals that of g. But the total zeta functions f * g
and f * h are different, see 1.3.3.

In general formulae (2.1)-(2.3) are not easy to use. Moreover they
are term by term formulae. If the zeta functions of f and g are given by
rational functions of T, then Theorem 2.1 does not give a similar form for
the zeta functions of f * g. The Thom-Sebastiani Formulae can be simplified
considerably by introducing the modified zeta functions given by
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where .

and if we introduce the total modified zeta function
then

We can compute the zeta functions from the modified ones by the inverse
formula

Let

(same signs). The following formulae are equivalent to those of Theorem 2.1.

THEOREM 2.3. - One has

Example 2.4. (a) Let f (x) = x"z, m odd. Then,

In particular,

(b) Let f (x) = xm, m even. Then,

COROLLARY 2.5. - Let f (x) - or m even. Then 

can be computed from 

Proof. As follows from Theorem 2.3 this suspension property holds
for any function f (x) for which all An are non-zero. This holds for

f (x) = m even, by Example 2.4 (b). 0

If f (x) = xm, m odd, then, in general, Zg (T ) cannot be computed
from Nevertheless we have the following result.
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PROPOSITION 2.6. Let f (x) = m &#x3E; 1 odd, and let g(y) = 
Then k is determined by the zeta functions of f * g. If, moreover, k is even
and not divisible by m then the sign at y k is determined by the zeta
functions of f * g.

Proof. - We use notation (2.6) for the modified zeta functions of f, g,
and f * g. If Cn = 0 for n ~ mN then Bn = 0, by Theorem 2.3. Then 1~ is
odd and equals the minimum of such n. Similarly, if there is n ~ mN such
that Cn then, 1~ is even and equals the minimum of such n. Thus
suppose that

for all

Then k is a multiple of m and equals the minimal n = pm that produce a

sign change Thus k is determined by the coefficients C~ .
If k is even and not a multiple of m then Bt == - Bt =1= 0 and is minimal
for this property. 0

Example 2.7. - Let f (x) = xm, m odd, and let ykm,
g2 (y) _ even. The total zeta functions of g, and g2 are equal
but the positive and the negative ones are different. By Thom-Sebastiani
Formulae (2.7) and Example 2.4 all zeta functions of f * gi and f * 92
coincide. The functions f * gi and f * g2 are not analytically equivalent
but we shall show in the proof of Theorem 6.1 below that they are blow-
analytically equivalent.

For the proof of Theorem 2.3 we need the following lemmas.

LEMMA 2.8. - One has

Proof. Denote by Li the truncation map. It is a

trivial fibration with fiber isomorphic to Then

where by xn,+ we denote . Then
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LEMMA 2.9. Let the map

associate to ~y, such that the coefficient Vn.
Then cpi is a trivial fibration for i  n.

Proof. Define on (q E ordt f o q = I) an action of R by

Then + vn-ltn-1 +(Vn +iVia)tn .+ ... that
gives cpi (1’) + ivia. Thus this action of R trivializes cp2 .

a

Proof of Theorem 2.3. - We show the formula for By Lemma 2.8

where

Then either ordt &#x3E; n and ordt g (~y2 (t) ) &#x3E; n
or ordt = ordt g (~y2 (t) )  n. This gives the following decomposi-
tion :

where

First we shall compute XC(Z n ~~(/ ~ g)). Consider the map
~ : Z - that associates to the pair of arcs (-yi, -y2) the coefficients
at tn of (t) ) and of (t) ) . The map 4) is trivial over the following
strata of ~ 4

Note that -(D is trivial over (p &#x3E; 0, ~  0} and (p + ’Ø &#x3E; 0, p  0~. By
this triviality
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since Similarly

Hence, since

Now we compute n * g) ) for 0  i  n fixed. Let

(~I,~2) 6 Write

Then Vi =1= 0, 0, and vi -f- wi = 0. Thus vi and wi are of opposite signs
and hence zi f1 X n,+ ( f * g) is the disjoint union of two sets

where + equals the sign of vi. Consider the following map:

that associates to r2) the coefficients (vn, wn ) of (2.12). By Lemma
( 2 . 9 ) , ~ is a trivial fibration and, since E R~; ~ + ~ &#x3E; 0}) = 0,

Similarly we show that X~(~ ) ~ 0 and hence

The required formula for Cn now follows from (2.10), (2.11), (2.13). 0

The formulae of Theorem 2.1 and the ones of Theorem 2.3 are

equivalent that one may check easily by a long but elementary computation.
Alternatively, Theorem 2.1 can be proved by a topological argument similar
to that of the proof of Theorem 2.3. We sketch just the main steps below.
The details are left to the reader.
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Proof of Theorem 2.1. - First note that the proof of Lemma 2.8 gives
also

Then, with Z and Zi as before,

By the triviality of over the strata we get

Another argument based on Lemma 2.9 gives

Formula (2.1) now follows from the additivity of Euler characteristic with
compact supports. D

3. Computations in two variables case.

In this section we compute two dimensional examples using toric
resolution. First we recall briefly the construction of toric resolution

associated to a system of weights.

Given a weight vector (m, k) C N~ 2, m and k coprime. There is a

canonical decomposition of the closed first quadrant x R&#x3E;o in JR2 into a
finite union of regular rational convex polyhedral cones that is compatible
with the weight vector.

This decomposition induces a toric modification : ~2, where
A is the fan associated to this decomposition and Mo is the associated
toric variety. The exceptional divisors of a are in one-to-one correspondence
with the one dimensional subcones (called rays or edges) of A that are not
the coordinate half-axis. The integral vectors that generate these rays
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can be computed out of m, k by the following procedure. Consider the
Hirzebruch-Jung continued fraction

where a2 &#x3E; 2 for i &#x3E; 1 and al &#x3E; 1. The coefficients ai define the vectors

(mi, ki) E II~2, i = 1, - - -, r -+- 1, such that

for

for

and then mr+i == m, = k. Similarly the coefficients ~i,’ - -, bs of the

Hirzebruch-Jung continued fraction of k/m define the vectors (m§ , kl) E R ,
i = 1, ... , s + 1, such that

for

for

Then the vectors

(3.1) (1,0) == (mi, ki), - .., (mr, kr), (m, ~s), ... , _ (0, 1)

are the primitive vectors of the rays of A. Choose a pair of subsequent
vectors v = (a, b), w = (c, d) of (3.1 ) . They generate a two dimensional
cone T of A and give rise to an affine chart of a, ar : Mr ri JR 2 ~ II~2

given by

The divisor corresponding to v, resp. w, is given in MT by X = 0,
resp. Y = 0. The jacobian

and hence it is normal crossings. Denote by Ev the divisor corresponding
to the vector v. Then the multiplicity of jac 0152T along Ev equals
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Let

and denote supp ( f ) = f (i, j); ~ 0}. Then

Example 3.1. - We compute the toric resolution and the zeta

functions of f (x, y) + xy5 . f is nondegenerate weighted homogeneous
with weights (5, 2). The toric modification associated to this system of
weights is given by the vectors (1, 0), vl - (3,1), V2 = (5, 2), v3 = (2,1),
v4 = (1,1), (0,1)..j.

Denote by Ei the component of the exceptional divisor corresponding
to vi . Let Ni - mult El f o a, vi = multEi jaca + 1. Then, by above,
Nl = 8, 4, N2 = 15, v2 - 7, N3 - 6, v3 = 3, N4 = 3, v4 - 2.

The strict transform of the zero set of f has two components: the strict
transform S’1 of x = 0 and the strict transform ,S’2 of x2 + y5 = 0. The
first one intersects E1 and the second one E2 as indicated on the resolution
tree of Figure 1. Thus

and

4. Zeta functions are blovv-analytic invariants.

Blow-analytic equivalence is a notion introduced by T.-C. Kuo as a
natural equivalence relation for real analytic function germs. He established
several fundamental results on blow-analyticity. For a general review on
the blow-analytic theory (until 1997), see [12]. The notion of blow-analytic
equivalence is defined as follows:
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Figure 1

We say that analytic function germs f, g : (R~,0) - (R, 0) are blow-
analytically equzvalent if there are real modifications

and an analytic isomorphism which

induces a homeomorphism 0: (JRd, 0) - (JRd, 0) such that f = g o 0.

By a real modification, we mean the following. Let J1: At 2013~ N be a
proper surjective analytic map of real manifolds. It has a unique extension to
a holomorphic map J1* : U(M) -~ U(N) where U(M), U(N) are respectively
open neighborhoods of M, N in their complexifications M*, N*. We say
that p is a real modification if J1* is an isomorphism except on some thin
subset of U(M).

Let J1 : (M, /~ (0)) 0) be a real modification. Take any analytic
arc at 0 E R, A : (-E, E) -~ A(0) = 0. Then A has an analytic lifting.
Namely, there is an analytic arc ~’ : (-E, E) -~ M, A’(0) = P E J1-I(O) such
that A’ 0 J1 = A. Remark that if A is not contained in the critical value set

of p (a thin subset of R~) as set-germs at 0 E R~, then the lifting is unique.
We also assume the following condition for the real modifications

p and J1’ in the definition of blow-analytic equivalence: the critical value
sets of J1 and tc’ are contained in the zero-sets of f and g respectively
as set-germs at 0 C R d. This assumption is reasonable. In fact, for any
analytic function germ f : (R d, 0) - (R,0), there is a real modification

J1: (M, J1-1 (0)) - (R d, 0) with this property such that f o J1 is a normal
crossing (see [16], [3]). Any triviality theorem (see [22], [10], [13], [1] and so
on) and a locally finite classification theorem (see [23]) have been established
on blow-analytic equivalence with the property. A blow-analytic invariant

(e.g., [11]) in the original sense is, of course, a blow-analytic invariant in
our sense.

Suppose that real analytic function germs f , g : (IIgd, 0) -~ (R,0) are
blow-analytically equivalent in the sense of this paper. Then we can say
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that the uniqueness of the arc lifting property holds for J.1 (resp. ~c’) if the

arc is not contained in a subset of the zero-set (resp. 
In this section we show that if two analytic function germs

f, g : (R d, 0) --4 (R, 0) are blow-analytically equivalent then their zeta

functions coincide that is

This will follow from Denef and Loeser’s formulae ( 1.1 ) , ( 1. 2 ) that we show
first. The proof will be an adaptation to the real analytic geometry, the ideas
of [18], [6]. The main difficulty is that we have to use the sets that are not
necessarily semi-algebraic but only subanalytic and not relatively compact,
so we have to show that they have a well defined Euler characteristic with
compact supports that is additive.

Let a : (M, Eo) - Eo = be a real modification.

Consider the space of analytic arcs

The set of truncated arcs can be described as follows:

where ~yl (t) ~ /2(t) if /1 (0) == /2(0) and /1 (t) - ~y2 (t) = in a

(or any) local system of coordinates at /1(0) == ~y2 (o) . The set Ln (M, Eo)
is an analytic variety, a subvariety of a similarly defined set ,Cn (M) that is
an analytic manifold. The projection locally trivial
fibration with fiber R~. Indeed, in a local system of coordinates on an open
neighborhood U of po C Eo we may write simply

Denote y :- (y, , ... , y~). Using the coordinates (p, y) we identify

Following Lojasiewicz [27] we call a semi-analytic subset of /~(L~ U n Eo)
relatively semz-algebraic with respect to y if it is defined by a finite number of
equations and inequalities in functions that are analytic in p and polynomial
in y. Let us compare two such trivializations. This amounts to consider the

following situation. Let U, U’ be two open subsets of R d and let h : U ~ U’
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be an analytic isomorphism. Let 7(t) - p + ylt + ... + Yntn be as above.
Then

The coefficients ai (p, y) are analytic in p and polynomial in y. Thus
two such local trivializations of Eo differ by an analytic
isomorphism that is polynomial on the fibers. A semi-analytic subset A
of Ln(M, Eo) will be called relatively semi-algebraic if for each p E Eo
there is an open neighborhood U of p in M such that An U n Eo ) is
relatively semi-algebraic.

Let X be an analytic manifold. If A C X is subanalytic and relatively
compact then its (co)homology groups are finitely generated. The Euler
characteristic (standard or with compact supports) of such sets is well

defined and the Euler characteristic with compact supports is additive.

This is not, in general, true if A is no longer relatively compact. This
observation justifies the following definition.

DEFINITION 4.1. - Let X be an analytic manifold and A C X. We
say that A is globally subanalytic if there is an analytic manifold X and
an analytic embedding i : X - X such that i(A) is relatively compact and
subanalytic in X.

A trivial example of globally subanalytic sets are semi-algebraic
subsets of R~ The example we really have in mind are the semi-

analytic and relatively semi-algebraic subsets of Eo.
Indeed, we may suppose that M is a submanifold of I~N and hence

Eo ) ~ R’° x R"~. Choose any algebraic compactification of R"~,
the one point compactification for instance. If A C is

semi-analytic and relatively semi-algebraic then i (A) is relatively compact
and subanalytic (even semi-analytic) in JRN x ,S’nN.

Let and denote

the truncation maps. The real modification : (M, Eo) - (R~,0) induces
a map

defined by composition o-* (~y) (t) = that gives an analytic map on
truncations

Clearly
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Let 1 C The jacobian determinant jac a of a may be
defined using any local coordinate system on M. Its order in t along 1(t), I
ordt jac a(1(t)), is independent of this choice. Given a positive integer e.
Define

The following lemma is an analogue of Lemma 3.4 of [6]

LEMMA 4.2. - Let e &#x3E; 1 and n &#x3E; 2e.

(a) Let = Q (~y2 ) mod t’+’ then
mod and 1

(b) is a globally subanalytic subset of 0). There exists
a subanalytic stratification of such that over each stratum a*n
is a tri vial fibration with fi ber R~.

Proof. - Let p E Eo. Choosing a local coordinate system at p we may
suppose that p = 0 E R d . Let E Ae, q(0) = 0. Denote by the

jacobian matrix of cr at x. Then

is a matrix with entries analytic functions in t. By Taylor formula

where R(-y(t), u) is analytic in t and u E Moreover, R(7(t), u) is divisible
by t2(n+I-e) and hence by tn+2. Let

We solve the following equation with respect to u C 

By (4.2), (4.3) is equivalent to
hence to

and

By the Implicit Function Theorem, for any vo E R , this equation has a
unique analytic solution u = u(t, v) defined in a neighborhood of (vo, 0).
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In particular, if v(t) is an analytic arc then (4.3) admits a solution being
an analytic arc = u(t,v(t)). This solution is unique since a is a

modification (and + tn+l-eU(t)) is not identically equal to 0,
see (4.4) below).

Now we show (a). Let m a(-y2) mod and consider a local

coordinate system at p = qi (0) = ~y2 (o) . By the above q2 (t) as the solution
of (4.3) with -y = -yl and is of the form

This shows the first claim of (a). By Taylor formula

since n -f- 1 - e &#x3E; e ~-- 1. This completes the proof of (a).
We show (b). By (a) the set Ae,n is the union of fibers of To

compute these fibers we fix -y(t) E A,. We keep the notation of the first
part of proof of lemma. By (4.3), the fiber of a *n over 1T n (a * (1’)) equals

and hence is isomorphic to a linear subspace of

There are invertible matrices A and B with entries in Rf tj such that
A Ja(q(t))B is equivalent over Rftl to a diagonal matrix with diagonal
elements tel , ... , ted . (For this it suffices to apply to Ja(q(t)) Gauss’

elimination method.) Necessarily e = ei + ... + ed and hence the fiber
is isomorphic to R~.

The map is analytic but not proper.
Therefore, even if Lle,n is a semi-analytic set, it is not immediate

that its image is subanalytic. This follows from the relative
semi-algebraicity of and Lle,n. By this we mean the following. Let
F C ,Cn (M, Eo) x be the graph of o,,,,, - Using a local system of
coordinates at po E Eo we identify an open neighborhood of po in M with
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an open neighborhood U of the origin in R d so that po corresponds to the
origin. Then O"*n restricted to U n Eo ) can be computed as follows.
Write y(t) E U n Eo) as in (4.1) and x(t) E 0) as

Denote x := (xi,..., xn). Then each coefficient of x (t) = a*n(y(t)), 
is analytic in p and polynomial in y. That is in these coordinates r is given
by an analytic equation x - 0 that is polynomial in (y, x).
We say for short that r is relatively semi-algebraic with respect to the
projection onto Eo. Let ro C r be the graph of restricted to Ae,n.
A similar argument shows that ho is relatively semi-algebraic with respect
to the projection onto Eo. Therefore, by Lojasiewicz’s version of Tarski-
Seidenberg Theorem [27], the projection pr(ro) of ro into Eo x 0)
is semi-analytic and relatively semi-algebraic. Finally, since Eo is compact,
the projection ofpr(rA) in Ln(JRd, 0), that equals is subanalytic.
Moreover, it is easy to see that it is globally subanalytic.

Our original identification of Ln (JRd, 0) with the space of truncated
arcs x(t) = alt+a2 t2 +... + antn gives an inclusion Ln (R d, 0) ~ L (R d, 0)
that is a section of 1T n. This allows us to define a section s of a n* by

that is defined on those curves that are not entirely contained in

the crititcal locus of a~, in particular on Let so be the

restriction of s onto U*n(A,,n) and let be the graph of We

shall show that is globally subanalytic in x Eo ) .
Considering as a subset of 0) by sequence of inclusions
U*n (Ae,n) C 0) C 0) define

Then the graph of sA is the projection of to x

Eo). Indeed, it is clear that hS,o is contained in this projection. On
the other hand, if x (t) = ~* (n+e) ( y (t) ) then a*(n+e) ( y (t) ) = 
and by (a), y(t) - s(x(t)) mod tn+l. Note that is a semi-analytic set
relatively semi-algebraic with respect to the projection to Eo, and hence
so is Note also that sA need not to be continuous and usually it is not,
see Example 4.3 below.

Now we are ready to finish the proof of (b). Fix a subanalytic
stratification of so that sA is analytic on each stratum. Such
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a stratification exists since the graph of so is globally subanalytic.
Fix a stratum S. Subdividing ,S’ if necessary, we may suppose that s(S)
is contained in an open subset of ,Cn(M, Eo) corresponding to a local chart
on M. Thus we may use local coordinates on M.

Since the kernel of J, (s (x) (t)) mod te is isomorphic to Rnd for each x E S’,
a *n is a locally trivial analytic fibration over S. Thus subdividing again S,
if necessary, we may ensure that the fibration becomes trivial over each

stratum. This ends the proof. 0

Let A C (or A C We say that A is subanalytic
if A = where C is a globally subanalytic subset of 
(resp. of 0)). We say that A is n-stable if A is subanalytic
and A = For instance by Lemma 4.2, is 2e stable.

It follows from (4.4) that A. is always e stable.

Example 4.3. - Let Let

be given by (x, y) = y) = (X2y X Y) . Consider the curve

The jacobian determinant jac a = X 2Y and

The conditions on A2 do not involve Xi, Yi, i &#x3E; 2, so A2 is 2-stable (as
always). In this example also a*(A2) is 2-stable. The truncations A2,2
and ~*2 (02,2 ), that are subsets of ,C2 (II~2 ) ^~ are given by the same
conditions. Note that ~*2(02,2) is irreducible but A2,2 has two irreducible
components. They are 2-truncations of

and their images are respectively
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Thus by modification a the geometry of the set of curves in ~* (A2) changes
dramatically and A2 contains the curves of two different kinds: the ones

hitting {~ = 0, Y # 01 transversally and the ones touching ~Y = 0, X # 01
with intersection number 2.

Both restrictions of and are trivial

fibrations with fiber R 2. For instance, the first one is given by

The section s of a*2 is defined in (4.5). We compute the restriction of s
to ~2(~2,2)- Fix a curve in 0’*2 (A’2,2),

that we consider as a curve in ~* ( 02 ) . It lifts to

That is s on Or,,2(A’2,2) is given by

Recall that x2 ~ 0 everywhere on ff*2 (02,2 ) but y1 vanishes on ~2(~2).
Thus s cannot be extended continuously from 0~2(~2) to ~*2 (02,2 ) ·
A similar computation shows that s on *2(02,2) is given by
- 2 

’

s(0.0 x2,0,0 Y2) (x2/2/2,0,0,0,0, Y21X2)-

By definition each subanalytic A C £(M, Eo) is n stable for n

sufficiently large. Following [18], [7], [8], we may associate to each n-stable A
its motivic measure that will be in our case simply

This expression is independent of n (if A is n-stable). We say that p : A --~ Z
is constructible if the image of Sp is finite and cp-1 (m) is subanalytic for
each m E Z. Then we define

The following corollary of Lemma 4.2 is a real analytic version of the
change of variables formula [18], [7], [8].
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COROLLARY 4.4. Let a : (M, Eo) - 0) be a real modification.
Let A C be subanalytic and suppose that ordt is bounded

on Then

Proof. The function cp = ordt t j ac (a) is constructible on A. Thus,
by additivity of x~, it suffices to show the formula only on

for e fixed. By Lemma 4.2, for n sufficiently large, is a locally
trivial fibration over with fiber Hence 

This ends the proof. 0

Proof of (1.1), (1.2). We show only ( 1.1 ) . The proof of (1.2) is

similar. The set = subanalytic and n-stable. The zeta
function of f can be equivalently written as

Let o r) = and Zn,e(f o a) = Zn(f o a) Then

o a) is the disjoint union of a finite number of o Indeed, by
comparing the multiplicities of f o a and jac a~ along the components of the
exceptional divisor we see that ordt jac a  n maxi (vi -1 ) INi on o a).
(Here we use the assumption that the critical locus of a is contained in
the zero set of f. Otherwise the union may be infinite.) By the change of
variables formula

where q = maxz (vz - 
o

Fix In a local system of coordinates at p the germ of f 0 a
at p, that we denote by g : (R~,0) - is a normal crossings

= unit. = Let unit. We

shall compute the weighted zeta function of g that is
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where Zn(g) n Note that is non-empty iff there are

kl, ... , I~S such that n = ~ and e == L kz (vz - 1). We denote the set
of (1~1, ... , by A(n, e). Thus (g) is the disjoin union

and the last factor comes from the remaining d - s variables yi that do not
contribute to the zero of g. Hence

Thus, by (1.4),

Formula ( 1.1 ) follows now from (4.6) by integration (with respect
to XC) of (4.7) along the fibers of the projection Eo) - Eo = 
More precisely, to establish the equality of coefficients of T’, we

integrate along the fibers of the projection Eo restricted
to Xn ( f o a) := Then, by (4.7), the Euler characteristic with
compact support of the fiber over p E EI is independent of the choice of p
in If we denote this Euler characteristic by o ~) I ) then

and the formula follows. D

THEOREM 4.5. - Let f, g : (R~,0) - be blow-analytically
equivalent function germs. Then
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Proof. - Since f, g : (JRd, 0) - (R, 0) are blow-analytically equivalent
there are real modifications

and an analytic isomorphism such

that 

First we show that we may assume that both p and J-t’ satisfy the
properties required by Denef and Loeser’s formula. Let o ~)
denote the jacobian determinant of p, resp. of p’ o V. By [16], [3] there is a
modification that f o p o pi, jac p o and jac(A’ 
are normal crossings simultaneously. Moreover, we may assume that pi is

a composition of blowings-up with smooth centers that are in normal

crossings with the old exceptional divisors and hence that jac J-tI is

normal crossings. Let a : = p o 
is normal crossings with respect to the same set of divisors. Set

~’ - ,u’ o pi. Then g o a’ = f o a is normal crossings and so is

o Thus both satisfy the
required properties.

Let Ei be an irreducible component of ( f o a) (0) (in ~-1 (BE)).
Since g o c~’ = f o a the multiplicities of these two functions coincide
on Ei. Thus, by formulae (1.1), (1.2), in order to show that the zeta

functions of f and g coincide it suffices to show that multEi jac a and
multEi jac ~’ are of the same parity for any irreducible component Ei of the
exceptional divisor of a since mult jac a = 0 outside the exceptional set E
of cr. Recall that V induces a homeomorphism ø: (Rd, 0) -&#x3E; (Rd,0) such
that f = g o 0. Then is of dimension  d - 2 and 0 is analytic on
the complement of ~(E). In particular the jacobian jac 0 has constant sign
on the complement of a(E). Fix p E Ei and a local system of coordinates
on MI at p. Then, since 0 o a = In

particular, j ac a (x) changes sign across Ei iff so does This shows

that the multiplicities multE2 jac cr and multEi jac ~’ are of the same parity,
as claimed. This ends the proof. 0

It follows that the modified zeta functions f and g are also equal if f
and g are blow-analytically equivalent.
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5. Various formulae to compute the Fukui invariant.

5.1. Formulae in terms of the resolution.

Let f : (II~d, 0) -~ (R,0) be an analytic function germ. Take any
analytic arc q : (I~, 0) -~ (R~,0). Then f( "y( t)) is a convergent power series
in t. We denote by ordt ( f (~y (t) ) ) its order in t. Set

In [11], T. Fukui proved that A( f ) is a blow-analytic invariant. Namely,
if analytic functions f, g : (R , 0) ~ (R, 0) are blow-analytically equivalent,
then A( f ) = A(g). We call A( f ) the Fukui invariant. Note that the smallest
number in A( f ) is the multiplicity of f. For a positive integer a E N, set

Example 5.1. - Let f : (IR2, 0) - be a polynomial function
defined by f (x, y) = x3 - y5. Then

Any integer 15 + s E A( f ), s E N, is attained along /’

For an analytic function germ f : (II~d, 0) - (R, 0), let a : M - Il~d
be a simplification of f -1 (o), namely, is a composition of a finite

number of blowings-up, M is smooth and f o a is normal crossing. As
in Subsection 1.2, we denote by Ei, i E J, the irreducible components
of ( f o (in where Bê is a small ball in centered at

the origin). For each i C J, let Ni - multEl f o a. Denote for I C J,
E, and EI = EI ) Ej. We put

Remark 5.2. - As stated in Section 1, we can assume that a-’ (0) is
the union of some of Ei . Then C = E, C 

For A, B C Nu define

where we set oo. Let us put

for
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THEOREM 5.3 (see [17]). - Let f : (Iaed, 0) - (R,0) be an analytic
function germ and let a be a simplification of Then u~e have

Let us put

where the overlines denote the closures in M.

Let A : U - R d be an analytic arc with A (0) = 0, where U denotes
a neighborhood of 0 E R. We call A nonnegative (resp. nonpositive) for f
if ( f o A) (t) &#x3E; 0 (resp.  0) in a positive half neighborhood [0, 6) C U. Then
we define the Fukui invariants with sign by

A+ ( f ) : ordt ( f o A); A is a nonnegative arc through 0 for 

A_ ( f ) : ~ ordt ( f o A) ; A is a nonpositive arc through 0 for /},
respectively. It is easy to see that these A+ ( f ) and A_ ( f ) are also blow-
analytic invariants. Remark that A( f ) = A+ ( f ) U A_ ( f ) . Then we have the
following formulae to compute the Fukui invariants with sign:

THEOREM 5.4 (see [17]). - Let f : (R, 0) - (R, 0) be an analytic
function germ. Then we have

5.2. List of the Fukui invariants for ±Xp ± yq.

Let p, q E N, and let (p, q) = d. Here, (p, q) denotes gcd(p, q). Then
there are pl , q, E N such that p = pl d, q = q1 d and (pl , ql ) = 1. Set

Using the argument of Example 5.1, we compute the Fukui invariants
for Brieskorn polynomials f (x, y) = ::l::xP ::l:: yq, (x, y) E }R2, p  q, listed

in Table 1.

Remark 5.5. - Let ::l::xP and f 2 (x, y) - ::l::xP - yq,
p odd, q even. If q is divisible by p, then [p, q] - q = q1 p. Thus

A~(f~) = A(f2) = A:f:(f2).

If q is not divisible by p, then &#x3E; q. Thus # A+ ( f 2 ) and
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Table 1. Fukui invariants for ~xp ~ yq

5.3. Thom-Sebastiani formulae for the Fukui invariant.

Let f : 0) - (R, 0) and g : (Iaed2, 0) --~ (R, 0) be analytic function
germs. Define I by as

in Section 2, and define also

In this subsection, we give the Thom-Sebastiani formulae expressing the
Fukui invariants of f (x) + g(y) and f (x) x g(y) in terms of the Fukui

invariants of f (x) and g(y).

THEOREM 5.6. - Let MI - min(A+(f) n A-(g)) and M2 =

min(A_( f ) n A+(g)).
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Proof. We show only (5.1 ) .
. Inclusion c. Take any k E A( f * g). We may assume that

k  oo since oo E A( f ) or A(g). Then there is an analytic arc

v = (A, J1) : (R, 0) - x (0, 0)) such that ordt ( ( f * g) o v) = k.
Let

Then u = ordt (f o A) C A( f ) and v = ordt (go p) E A(g). Since k E A( f * g)
and, u  k or v  k, it suffices to consider the following three cases:

(i) u = k and v &#x3E; k. In this case, k E A(f).

(ii) u &#x3E; k and v = k. In this case, k C A(g).

(iii) u = v  k. In this case, u E A+ ( f ) and v E A_ (g), or u E A_ ( f )
and v E A+ (g). This means u = v E (A+ ( f ) n A- (g)) U (A_ ( f ) n A+ (g) ) .
It follows that k &#x3E; u = v &#x3E; min ( Ml , M2 ) .

If 1~  min(Ml , M2), then case (i) or case (ii) holds. Thus

because k &#x3E; min(Ml, M2) implies k E (Mi + N) U (M2 + N).
. Inclusion D. It is obvious that A( f ), A(g) C A( f * g). Let us show

MI + N C A( f * g). First we recall the reparametrization formulae of
Remark 1.1 and Lemma 2.9. Let h : (R, 0) - (R, 0) be an analytic function
defined by

Then, if we replace t by at, a ~ 0,

Let A = a E R*1. Then A = R* for 1~ odd, A = for k even and

ak &#x3E; 0, and A = for 1~ even and ak  0. Similarly, if we replace t by
i &#x3E; 1,

and in this cases
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Take k + j E MI + N such that 1~ = MI and j E N. Then there are
a nonnegative arc for f, A : (R,0) --~ (R di , 0), and a nonpositive arc for g,
p: (R, 0) -~ (JRd2, 0), such that ordt ( f o A) = ordt (g o p) = k. Then

By the above there is a reparametrization ~c~l~ : (R, 0) 2013~ (IRd2, 0) such

that

Using the second type of reparametrizations we can construct by induction
on i an analytic (R, 0) -~ (JRd2, 0) such that

for 2  i  j. Using the same argument again, we show that there is an
analytic arc (R, 0) - (R~, 0) such that

with ak+j + 0. Define by v (t) =
(A (t), (t(t)). Then ordt ((f * g) o v) = k + j. Thus k + j E A( f * g), namely,

We can similarly show M2 + N c A( f * g). 0

Example 5.7. - Let and Then

and

Thus and

Concerning the Fukui invariant for f . g, we can easily show following
formulae.

PROPOSITION 5.8. - One has
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Remark 5.9. - If f is one variable function, then

Example 5.10. - Let Then

1) Let p or q be odd. Then .

2) Let p and q be even:

and.

and ..

6. Two variables Brieskorn polynomials.

6.1. Classification of two variables Brieskorn polynomials.

Let f : (II~2, 0) -~ (R, 0) be a two variables Brieskorn polynomial
defined by f(x, y) = ±Xp ± yq, p  q. If 0 is a regular point of f,
i.e., p = 1, then f is analytically equivalent to g(x, g) = x by the Implicit
Function Theorem. After this, we assume that 0 E ~2 is a singular point
of f, i.e., 2  p  q.

Let Ne (resp. No) denote the set of positive even integers (resp.
positive odd integers). Set

Let us consider the classification of Brieskorn polynomials by blow-
analytic equivalence. We denote by (~x, ~y) the Klein group G = Z2 EB ~2
consisting of the following four transformations of I1~2:

For a subset A of ~ f (x, y) _ :::i:xP :::i: yq; (p, q) E 9NI, let A/b.a.e (resp.
A/ (:::i:x, ±y)) denote the quotient of A by blow-analytic equivalence (resp.
the Klein G-equivalence). Then we have the following blow-analytic
classification.
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THEOREM 6.1. One has

Proof. By our list of the Fukui invariant in Subsection 5.2,
we can distinguish all real Brieskorn polynomials of two variables

f (x, g) - ±Xp ± yq, (p, q) E up +y)) by the Fukui invariant
except the following two cases:

. Case (i) : for a fixed even p and m = l, 2, 3, ..., or 
for a fixed even p and m = 1, 2, 3,....

. Case (ii) : ~xP + y"2P and ~xp - ymp for fixed odd p &#x3E; 3 and even m.

We first consider case (i). For a fixed even p, let fm(x, y) = xP + ymp
and = ymp, m = 1,2,3, .. ’. In this case,

Since p and mp are even, it follows from Corollary 2.5 that if
= then = On the other hand,

as seen in Example 1.3.1, Zg_(T) ~4 if m # n. Since the zeta
function is a blow-analytic invariant, fr,.t and fn are not blow-analytically
equivalent if m =1= n. The case of -xP - y"2p follows similarly.

We next consider case (ii). In this case, xP + ymp (resp. xp - 
is equivalent to -xP + g"2P (resp. -xP - ymp) under the transformation
of (x, y) ~ (-x, y). Therefore, we treat only f (x, y) = xp + g"2p and
g(x, y) = xP - for fixed odd p &#x3E; 3 and even m. Remark that the Fukui

invariants A( f ) and A~ ( f ) and the zeta functions and Zf,±(T)
coincide with A(g), A~ (g), Zg(T) and respectively.

Here we recall the Fukui-Paunescu Theorem.

LEMMA 6.2 (T. Fukui, L. Paunescu [13], T. Fukui, E. Yoshinaga [10]).
Given a system of weights a = (aI,"" ad). Let fs : 0) - (R, 0),
s E I = [0, 1], be an analytic family of analytic function germs. Suppose
that for each s E I, the weighted initial form of fs with respect to cx is of
the same weighted degree and has an isolated singularity at 0 E Then

blow-analytically trivial over I.
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be a family of polynomial functions defined by

Then it follows from Lemma 6.2 that xP + pxy?n(P-1) + and

xp are blow-analytically equivalent.

Nextly, let be families of polynomial functions

defined by

Then, by the same reason as above, xP + pxy’(P-1) + ymp (resp. xp +
are blow-analytically equivalent to (resp. xP - ymp).

Since blow-analytic equivalence is an equivalence relation (see [23]), 
and xP - ymp are blow-analytically equivalent.

This completes the proof of the theorem. 0

Concerning cases (i) and (ii) in the proof of Theorem 6.1, we have the
following remarks.

Remark 6.3. - By the above proof, we see that the Fukui invariants

distinguish all real Brieskorn polynomials of two variables except case

(i) and are not enough to give a complete classification of Brieskorn

polynomials by blow-analytic equivalence. Then it gives rise to the following
natural question:

Is the blow-analytic type of Brieskorn polynomials completely
determined by the zeta functions?

The answer is ’No’. Our zeta functions distinguish the blow-

analytic types of all real Brieskorn polynomials of two variables except
and

We shall see this fact in the next subsection. As seen in Example 1.3.2,

Z fm (T ) = = 0 for any m. On the other hand, is different

These remarks mean that the Fukui invariants and the zeta functions

are compensating each other for our blow-analytic classification.

Remark 6.4. - Consider two functions of case (ii), f (x, ~) = xP + ymp
and g(x, y) = xP - for fixed odd p &#x3E; 3 and even m. These functions are
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exceptional in our classification since they are blow-analytically equivalent,
but not Klein G-equivalent. It is easy to see that they are not analytically
equivalent. In addition, it was shown recently in [15], [14] that f and g are
not even bi-Lipschitz equivalent.

6.2. Distinction of Brieskorn polynomials by zeta functions.

Let f (x, y) == ±Xp ± yq , 2  p  q. Considering f (x, y) up to Klein
G-equivalence, we assume the following:

(i) In case p (resp. q) is odd, we consider only the positive case that is
the coefficient at xp (resp. yq) is -~1.

(ii) In case p = q are even, we consider /(~,~/) = ~ 2013 gq but not

We show that our zeta functions distinguish all real Brieskorn

polynomials of two variables up to blow-analytic equivalence except

Note that Z f (T ) = - 0 only for Brieskorn polynomials of

form (6.1) in the two variables case.

Assume that f (x, y) - ::!:xp ::!: yq is not of form (6.1). Let Z f (T ) _
- 

i 
as above. Then, by Theorem 2.1 and

Example 1.3.1, we see that ci = 0, 1  i  p - 1, and 0. Therefore p
is determined by Z f (T ) .

We first consider the even case that is p is even. If f (x, y) == xp ::!: yq
(resp. _Xp ± yq), p  q, then cp - 0, cp - 0 (resp. cp- - 0,

cp = 0). Therefore the sign at xP is determined by Z f,~ (T). Let ±xP.

By Corollary 2.5, Zyq,-:1: (T) (resp. Z_yq,-:1: (T)) or Zyq,-:1: (T) (resp. Z_yq,-:1: (T))
can be computed from (resp. Zo.(-yq),±(T)). As seen in

Example 2.4, are different from Z+yq+ (T ) if q =1= q’, and
/V N

Zyq, (T) are different from Z_yq, (T) (if q is even). Therefore q and the
sign at yq are determined by 

We next consider the odd case. Then, by Proposition 2.6, q is

determined by 2f,± (T). If q is even and not divisible by p, the sign
at yq is also determined by Z f,~ (T ) . On the other hand, as shown in the
preceding subsection, if q is even and divisible by p, xp and xp - yq
are blow-analytically equivalent. Therefore the zeta functions distinguish
Brieskorn polynomials up to blow-analytic equivalence in this case, too.
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7. Examples in three variables.

7.1. Brieskorn polynomials of three variables.

Using the zeta functions and the Fukui invariants we classify blow-
analytic types of Brieskorn polynomials of three variables, except for the
following families:
p even.

The following proposition generalizes Proposition 2.6.

PROPOSITION 7.1. Let f(Xl, - - -, Xd) be a Brieskorn polynomial,
f(xi , ... , xd) = ±x" all mi &#x3E; 2, and let g(y) - ± g’’. Then r
is determined by the zeta functions of f and of f * g. If, moreover, r is even
and r ~ then the sign at y’ is determined, too.

Proof. We use notation (2.6) for the modified zeta functions
of f, g, and f * g. By assumption the coefficients resp. C~ , of the
modified zeta functions of f, resp. f * g are given. Hence, by Thom-
Sebastiani Formulae (2.7), we may determine the coefficients B± of

the modified zeta functions of g for all n such that Cn - 0 that is

If there is n E U such that Bj = 0 then r is odd and equals the
minimum of such n. Similarly, if there is n E U such that B§ then, r
is even and equals the minimum of such n. In this case we may determine
the sign in g(y) = IyT.

From now on we suppose that

for all

Then r is a multiple of one of odd mi’s. We shall show that the values

determine r. Without loss of generality we may suppose that all odd mi
are distincts prime numbers. Otherwise, without increasing U, we replace
the set of odd mi’s by the set of all their prime divisors. Thus we assume
U = N B where P is a finite set of odd prime numbers. Let m be
the product of all p E P.

First we show that m’ - (m, r) is determined by the coefficients (7.1).
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Let m == Then (m", r) - 1. So there exist a, b E Z such that for
all k E N,

Since m" is odd, choosing k we may suppose that a + is even, and

a + km", N if k is sufficiently large. Then kr - b is odd. Fix such
natural

A even, B odd.

Each p E P divides either r or m" and hence does not divide q - 1 nor
q + 2, i.e., 9-1,~+2~~7. Thus, by Example 2.4, if g(y) -- -::1yr then

Suppose now that g(y) = gives the same coefficients (7.1) as

g(y) = and that there is po E P such that po divides rI but it does not
divide r. We show that this contradicts (7.2). Note that (7.2) is possible
only if either q or q + 1 is an even multiple of rl. Firstly, q + 1 = Bm",
as an odd number, cannot be an even multiple of rl. Secondly, po divides
q + 1 = Bm" so it does not divide q. Hence rI cannot divide q. Thus

if and g(y) = ±yr, give the same coefficients (7.1) they have
the same factors in P. That is == (m, r1 ) .

Let m’ = (m. r) - (m, rl), m = m’m". Then (r, rl) = dm’ where
(d, m") = 1. Suppose rl. Then one of them, say rl, is strictly bigger
than dm’. By assumptions (ri, rm" ) = dm’ so there is q E N of the form

Clearly q is a multiple of m so q - 1, q -~- 1 E U. But then, for g = ~yr,

But this is not possible for g = ±y" since
This ends the proof.

Remark 7.2. - We recall that the smallest number in the Fukui

invariant A( f ) is the multiplicity of f. Let

Then PI is determined as the smallest number in A(f). Let n be the
smallest number in A( f ) that is not divisible by pl . Suppose that PI is odd.
If  p2  (k + 1 ) pl for some positive integer k, then n = p2 . In case
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where p2 = kpi for some k, using the argument of Example 5.1 we see that
n = p2 + 1. Therefore, if kpi + 1  n  (k + 1)pl then p2 = n. If n = kpi + I
then p2 = n - 1 or n. This implies that if kpi + 1  n  (k + I)pi then p2
is determined by A(f).

THEOREM 7.3. - Let

i = l, 2, be two Brieskorn polynomials with the same Fukui invariants and
the same zeta functions. Then p, - P2 and one of the two following cases
holds:

(i) p = PI = p2 is even and fi and f 2 belong to one of the following
families :

(ii) ql = q2, rl = r2, and f, and f2 are blow-analytically equivalent.

We make the following convention. Whenever a Brieskorn polynomial
f(x, y, z) _ ~~p ~ yq ~ z’~ contains two terms with the same exponents and
different signs then ‘~’ preceeds ‘-’, for instance we write xP - yP instead
of -xp + 

Remark 7.4. - Suppose that the f i’s are written down according to
the above convention. Then, in the second case of Theorem 7.3 the signs
corresponding to the even exponents have to be the same for i = 1, 2, except
for the case when an even exponent (q or r) is a multiple of another exponent
(p or q) that is odd. In the latter case the sign cannot be determined. For
instance we cannot distinguish xP + y kp from xP - p odd, k even,
cf. proof of Theorem 6.1.

Proof of Theorem 7.3. - Let,
We show that except the cases considered in (i) the exponents p, q, and r
are determined by the zeta functions and the Fukui invariants of f. We
suppose that the signs in f satisfy the above convention.

First note that p is determined by the Fukui invariant.

If p is even then the Fukui invariants with sign determine the sign
at xP (if p = q by the sign convention). Then, by Corollary 2.5, the zeta
functions of g(y, z) = ±yq ± zT are determined by the zeta functions of f.
If Zg,± are not identically equal to zero then we may use Subsection 6.2
to determine the exponents and the blow-analytic type of g. The signs are
determined as in Remark 7.4. If the zeta functions of g are identically equal
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to zero then g ( y, z) _ ~ (gq + q even. Note that the Fukui invariants

of +xP + (yq + zq), p  q both even, are the same as the Fukui invariants
of +xP + yq. The latter are given in Subsection 5.2. Thus these invariants
determine q, and the sign, in all cases except (i) of the theorem.

Suppose that p is odd. Consider the Fukui invariant A( f ) . Let n be the
smallest number in A( f ) that is not divisible by p. If kp + 1  n  (k + l)p
then q = n. If moreover such q is even then A+ ( f ), A_ ( f ) determine the
sign at yq. Note that if we determine the second exponent, for instance q
but the argument works also if it is r, so that we can determine uniquely
the zeta functions of then the remaining third exponent is unique
by Lemma 7.1. This ends the proof if kp + 1  n  (k + 1)p.

Suppose n = kp + 1. Then q = kp or kp + 1. Consider first the case k
even. Then kp + 1 is odd. Let Z f~~ _ An"2. By Example 2.4 and by
Thom-Sebastiani Formula (2.7) applied twice to f, kp + 1 equals q or r if
and only if A p+1 - 0. If this is the case then we apply Proposition 7.1 to
determine the remaining exponent (and the sign as in Remark 7.4). If this
is not the case then q = kp. The zeta functions of +xP + yq do not depend
on the signs, see Example 2.7, and we may apply again Proposition 7.1 to
determine r.

Thus the only remaining case is p odd, q = kp or kp -i- 1, with k
odd. In this case, q can be determined by the coefficients A-
Ãtp+2 == the modified zeta function of f and the Fukui invariants,
that is the knowledge whether kp -f- 1 E A+ ( f ) or kp + 1 E A_ ( f ) . The
computation is summarized in Table 2. D

7.2. Example on blow-analytic sufficiency of jets.

The zeta functions can be used to distinguish the blow-analytic
types of functions that are not necessarily Brieskorn polynomials. For
such a function it may be simpler to use the standard zeta functions
than the modified ones. To facilitate the computations we reduce the
Thom-Sebastiani formulae of Theorem 2.1 modulo 2. Taking into account
that always Z+ - Z- mod 2, i.e., the coefficients satisfy an - an mod 2,
we obtain easily:

Of course these both formulae are equivalent.
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Table 2

Example 7.5. - Let K = R or C. We consider polynomial functions
fK, gK: (K 3,0) - (K, 0) defined by

Note that they are weighted homogeneous polynomials with isolated

singularities at 0 E K 3 and the Fukui invariants of for and gK are the
same and equal A+ = A- = ~3, 4, 5, .... I U Let 0: (K~, 0) - (K, 0)
be an analytic function germ In case K == R

(resp. K = C), it follows from Theorem 6.2 (resp. [4]) that if the Taylor
expansion of 0 contains a term of the form ay7, a ~ 0, then 0 is blow-
analytically equivalent (resp. topologically equivalent) to gR (resp. gc),
otherwise 0 is blow-analytically equivalent (resp. topologically equivalent)
to fR (resp. fc). Using the formula of Milnor and Orlik [30], we have

= 26 and 24. Thus it follows from [26] or [34] that fc and gc
are not topologically equivalent. The real jet w = fR was originally given by
W. Kucharz [19] as an example such that w is Co-sufficient in C8 functions
as a 6-jet but not C°-sufhcient in C7 functions as a 7-jet. Therefore fR
and!JR are topologically equivalent and w does not satisfy the Kuiper-Kuo
condition even as a real 7-jet.



2102

We show that fR and gR are not blow-analytically equivalent. As a
result, w E J~(2,1) is not blow-analytically sufficient.

Let us first compute mod 2. By (3.2),

Hence, by (7.3), the coefficients of mod 2 are given by

A similar computation of mod 2 shows that its coefficients are

equal to

Therefore, by Theorem 4.5, fR and gIR are not blow-analytically equivalent.
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